1. Give an example of a 2×2 (two equations in two unknowns) system of linear equations such that
(a) The system has a unique solution.
(b) The system has no solution.
(c) The system has infinitely many solutions.
2. Solve the following system of linear equations.

$$
\begin{array}{rr}
3 x_{1}-x_{2}+2 x_{3}+4 x_{4}+x_{5}= & 2 \\
x_{1}-x_{2}+2 x_{3}+3 x_{4}+x_{5}= & -1 \\
2 x_{1}-3 x_{2}+6 x_{3}+9 x_{4}+4 x_{5}= & -5 \\
7 x_{1}-2 x_{2}+4 x_{3}+8 x_{4}+x_{5}= & 6
\end{array}
$$

3. (a) Solve problem 3.18 in Section One.I.3. You should get two general solutions that look different.
(b) The vector $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 4\end{array}\right)$ is a solution of this system. In the first of your general solutions, what value of the parameter gives you this solution?
(c) The vector $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 4\end{array}\right)$ is a solution of this system. In the second of your general solutions, what value of the parameter gives you this solution?
(d) The vector $\left(\begin{array}{c}-5 \\ 1 \\ -7 \\ 10\end{array}\right)$ is a solution of this system. In the first of your general solutions, what value of the parameter gives you this solution?
(e) The vector $\left(\begin{array}{c}-5 \\ 1 \\ -7 \\ 10\end{array}\right)$ is a solution of this system. In the second of your general solutions, what value of the parameter gives you this solution?
(f) Plug in the value 2 for the parameter into each of your two general solutions. Do you get the same particular solution? Is that okay?
