Here are a collection of facts you might want to know about Taylor Series Expansions.
Fact 1 We start first with a theorem:

Taylor's Theorem

Under certain circumstances, a function f which is infinitely differentiable on the open interval (a, x) has a Taylor series expansion

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}
$$

where for each n we have

$$
a_{n}=\frac{f^{(n)}(a)}{n!}
$$

and $f^{(n)}(a)$ denotes the $n^{\text {th }}$ derivative of f evaluated at a.

This tells you how to get a Taylor series expansion for a function whose derivatives you know.

Fact 2 It is important to know that a Taylor series has what we call a radius of convergence, denoted here by R, which is a number such that the series converges (in other words, makes sense) if $|x-a|<R$ and does not converge (does not make sense) if $|x-a|>R$. A way to think about this is that everything makes sense and is good "near enough" a (when we are at most R away from a) and nothing makes sense and nothing works "far away" from a. Some series converge everywhere, like for example the series expansion for e^{x}.

Fact 3 We now collect theorems about what we can do to Taylor series.

Theorem

If $f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ for all x in $(a-R, a+R)$, then

$$
f^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n}(x-a)^{n-1}
$$

for all x in $(a-R, a+R)$.

Theorem

If $f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ for all x in $(a-R, a+R)$, then

$$
\int f(x) d x=\sum_{n=0}^{\infty} a_{n} \frac{(x-a)^{n+1}}{n+1}
$$

for all x in $(a-R, a+R)$.

These theorems tell you that you can basically differentiate and integrate a Taylor series in the same way you can differentiate and integrate a polynomial. Note that these are deep theorems; it is not clear that we should be able to do this.

Theorem
Let $p(x)$ be a polynomial and $f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ for all x in $(a-R, a+R)$. Then we have

$$
p(x) f(x)=\sum_{n=0}^{\infty} a_{n} p(x)(x-a)^{n}
$$

for all x in $(a-R, a+R)$ and

$$
f(p(x))=\sum_{n=0}^{\infty} a_{n}(p(x)-a)^{n}
$$

for all x such that $p(x)$ is in $(a-R, a+R)$.

Examples

a) We have that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

for $|x|<1$, so if we use $p(x)=x$, we have

$$
\frac{x}{1-x}=\sum_{n=0}^{\infty} x^{n+1}
$$

for $|x|<1$.
b) Using $p(x)=\frac{x}{2}$, we get that

$$
\frac{x}{2-x}=\frac{\frac{x}{2}}{1-\frac{x}{2}}=\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n+1}=\sum_{n=0}^{\infty} \frac{x^{n+1}}{2^{n+1}}
$$

for $\left|\frac{x}{2}\right|<1$ or more simply $|x|<2$.
Fact 4 Finally here are a few common series expansions:
a) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all x.
b) $\ln (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ for all $|x|<1$.
c) $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for all $|x|<1$.
d) $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$ for all x.
e) $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$ for all x.

