NAME:

To get the most of this quiz, allow yourself no more than 20 minutes to completely answer it, and do not use any notes or outside help. I will grade it if you hand it in to me on or before May 11.

Problem 1 (10 points): Find the general solution of the system

$$\mathbf{x}'(t) = \begin{bmatrix} -2 & -9 & 0\\ 1 & 4 & 0\\ 1 & 3 & 1 \end{bmatrix} \mathbf{x}(t)$$

Solution: We first find the characteristic polynomial of this matrix:

$$\begin{vmatrix} -2 - \lambda & -9 & 0\\ 1 & 4 - \lambda & 0\\ 1 & 3 & 1 - \lambda \end{vmatrix} = (1 - \lambda)[(-2 - \lambda)(4 - \lambda) + 9] = (1 - \lambda)(\lambda - 1)(\lambda - 1)$$

So we have the eigenvalue $\lambda = 1$ repeated three times. We now find the dimension of the eigenspace:

- 3	9	0]		$\left[-3\right]$	9	0
1	3	0	\sim	0	0	0
1	3	0		$\begin{bmatrix} -3\\0\\0 \end{bmatrix}$	0	0

From this we see that the eigenspace is two dimensional, so we are looking for two linearly independent eigenvectors \mathbf{v}_1 and \mathbf{u}_1 , and a generalized eigenvector \mathbf{v}_2 such that $(\mathbf{A}-\mathbf{I})^2\mathbf{v}_2=0$ and $(\mathbf{A}-\mathbf{I})\mathbf{v}_2=\mathbf{v}_1$.

First we find that $(\mathbf{A}-\mathbf{I})^2=0$, so we try $\mathbf{v}_2=(1,0,0)$. This gives us $(\mathbf{A}-\mathbf{I})\mathbf{v}_2=(-3,1,1)=\mathbf{v}_1$. We now need to find another linearly independent eigenvector \mathbf{u}_1 . We find the eigenspace to be

$$\begin{bmatrix} -3\\1\\0 \end{bmatrix} t + \begin{bmatrix} 0\\0\\1 \end{bmatrix} s$$
$$\begin{bmatrix} -3\\1\\0 \end{bmatrix} + \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

Our vector \mathbf{v}_1 is

(in other words t = 1 and s = 1), so one of many choices for \mathbf{u}_1 is (0,0,1) (t = 0 and s = 1).

So the general solution is

$$\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 0\\0\\1 \end{bmatrix} + c_2 e^t \begin{bmatrix} -3\\1\\1 \end{bmatrix} + c_3 e^t \left(\begin{bmatrix} -3\\1\\1 \end{bmatrix} t + \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right)$$