Name:
To get the most of this quiz, allow yourself no more than 20 minutes to completely answer it, and do not use any notes or outside help. I will grade it if you hand it in to me on or before May 11.

Problem 1 (10 points): Find the general solution of the system

$$
\boldsymbol{x}^{\prime}(t)=\left[\begin{array}{ccc}
-2 & -9 & 0 \\
1 & 4 & 0 \\
1 & 3 & 1
\end{array}\right] \boldsymbol{x}(t)
$$

Solution: We first find the characteristic polynomial of this matrix:

$$
\left|\begin{array}{ccc}
-2-\lambda & -9 & 0 \\
1 & 4-\lambda & 0 \\
1 & 3 & 1-\lambda
\end{array}\right|=(1-\lambda)[(-2-\lambda)(4-\lambda)+9]=(1-\lambda)(\lambda-1)(\lambda-1)
$$

So we have the eigenvalue $\lambda=1$ repeated three times. We now find the dimension of the eigenspace:

$$
\left[\begin{array}{ccc}
-3 & 9 & 0 \\
1 & 3 & 0 \\
1 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
-3 & 9 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

From this we see that the eigenspace is two dimensional, so we are looking for two linearly independent eigenvectors \mathbf{v}_{1} and \mathbf{u}_{1}, and a generalized eigenvector \mathbf{v}_{2} such that $(\mathbf{A}-\mathbf{I})^{2} \mathbf{v}_{2}=0$ and $(\mathbf{A}-\mathbf{I}) \mathbf{v}_{2}=\mathbf{v}_{1}$.
First we find that $(\mathbf{A}-\mathbf{I})^{2}=0$, so we try $\mathbf{v}_{2}=(1,0,0)$. This gives us $(\mathbf{A}-\mathbf{I}) \mathbf{v}_{2}=(-3,1,1)=\mathbf{v}_{1}$. We now need to find another linearly independent eigenvector \mathbf{u}_{1}. We find the eigenspace to be

$$
\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right] t+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] s
$$

Our vector \mathbf{v}_{1} is

$$
\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(in other words $t=1$ and $s=1$), so one of many choices for \mathbf{u}_{1} is $(0,0,1)(t=0$ and $s=1$).
So the general solution is

$$
\mathbf{x}(t)=c_{1} e^{t}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right]+c_{3} e^{t}\left(\left[\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)
$$

