NAME:
To get the most of this quiz, allow yourself no more than 20 minutes to completely answer it, and do not use any notes or outside help. I will grade it if you hand it in during discussion on May 4 or 6 .

Problem 1 (10 points): Consider the system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+2 x_{2} \\
& x_{2}^{\prime}=2 x_{1}+x_{2}
\end{aligned}
$$

a) Write this as $\boldsymbol{x}^{\prime}(t)=\boldsymbol{P}(t) \boldsymbol{x}(t)$.
b) Your matrix \boldsymbol{P} should in fact be constant (all of its entries should be constants, not functions of t). Find its eigenvalues and a basis for its eigenspaces.
c) Check that

$$
\boldsymbol{x}_{1}(t)=e^{-t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \text { and } \quad \boldsymbol{x}_{2}(t)=e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

are two linearly independent solutions of this system. Armed with this knowledge, write the general solution of this system.

Solution:

a) We have

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

b) We first find the characteristic polynomial:

$$
\left|\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-4=(\lambda-3)(\lambda+1)
$$

So the two eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=-1$.
The eigenspace associated to the first eigenvalue is found by finding all vectors $\mathbf{v}=\left(v_{1}, v_{2}\right)$ such that:

$$
\left[\begin{array}{cc}
1-3 & 2 \\
2 & 1-3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0
$$

To do this we row-reduce

$$
\left[\begin{array}{ccc}
-2 & 2 & 0 \\
2 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
-2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So v_{2} is a free variable, say $v_{2}=s$, and back-solving for v_{1} we get that $v_{1}=s$ as well. The eigenspace is given by all vectors that can be written as

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] s
$$

and a basis for the eigenspace is the vector $(1,1)$.
The eigenspace associated to the second eigenvalue is found by finding all vectors $\mathbf{v}=\left(v_{1}, v_{2}\right)$ such that:

$$
\left[\begin{array}{cc}
1+1 & 2 \\
2 & 1+1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0
$$

To do this we row-reduce

$$
\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So v_{2} is a free variable, say $v_{2}=s$, and back-solving for v_{1} we get that $v_{1}=-s$. The eigenspace is given by all vectors that can be written as

$$
\left[\begin{array}{c}
-1 \\
1
\end{array}\right] s
$$

and a basis for the eigenspace is the vector $(-1,1)$.
c) We must first check that $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are solutions to the equation.

We have that on the one hand

$$
\mathbf{x}_{1}^{\prime}(t)=\left[\begin{array}{c}
-e^{-t} \\
e^{-t}
\end{array}\right]
$$

and on the other hand,

$$
\mathbf{P x}_{1}(t)=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
e^{-t} \\
-e^{-t}
\end{array}\right]=\left[\begin{array}{c}
-e^{-t} \\
e^{-t}
\end{array}\right]
$$

Since these are equal $\mathbf{x}_{1}(t)$ is a solution of the system.
For $\mathbf{x}_{2}(t)$, we have

$$
\mathbf{x}_{2}^{\prime}(t)=\left[\begin{array}{l}
3 e^{3 t} \\
3 e^{3 t}
\end{array}\right]
$$

and

$$
\mathbf{P x}_{2}(t)=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
e^{3 t} \\
e^{3 t}
\end{array}\right]=\left[\begin{array}{l}
3 e^{3 t} \\
3 e^{3 t}
\end{array}\right]
$$

Since these are equal $\mathbf{x}_{2}(t)$ is a solution of the system.
We now check that the two given solutions are linearly independent by computing the Wronskian

$$
\left|\begin{array}{cc}
e^{-t} & e^{3 t} \\
-e^{-t} & e^{3 t}
\end{array}\right|=e^{2 t}+e^{2 t}=2 e^{2 t}
$$

Since this is not zero, the solutions are linearly independent.
Because we have two linearly independent solutions to a system of two first-order differentials equations, we know that they span the whole solution space, and all solutions can be written as:

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\left[\begin{array}{c}
e^{-t} \\
-e^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
3 t \\
e^{3 t}
\end{array}\right]
$$

