A second-order Euler equation or equidimensional equation is an equation of the form

$$
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0
$$

for constants a, b, and c. To solve this equation, we try the solution $y(x)=A x^{r}$, which leads us to define the characteristic equation of this differential equation

$$
\operatorname{ar}(r-1)+b r+c=0
$$

The solution of the differential equation depends on the roots of its characteristic equation.

Case 1 : Two distinct real roots

If the characteristic equation has two distinct real roots r_{1} and r_{2}, then the general solution is

$$
y(x)=c_{1} x^{r_{1}}+c_{2} x^{r_{2}}
$$

Case 2 : A double real root

If the characteristic equation has a double real root r, then the general solution is

$$
y(x)=c_{1} x^{r}+c_{2} x^{r} \ln x
$$

Case 3 : Two complex conjugate roots

If the characteristic equation has two complex conjugate roots $\alpha+i \beta$ and $\alpha-i \beta$, then the general solution is

$$
y(x)=c_{1} x^{\alpha} \cos (\beta \ln x)+c_{2} x^{\alpha} \sin (\beta \ln x)
$$

