Quiz 2 Key

Math 320, Lecture 2 - Spring 2009

To get the most of this quiz, allow yourself no more than 20 minutes to completely answer it, and do not use any notes or outside help. I will grade it if you hand it in during discussion on February 16 (for Monday sections), February 18 (for Wednesday sections).

1. Problem 1 (10 points)

An epidemic hits our favorite mammal to model: bunnies. As a result, the bunnies can no longer reproduce. The death rate is proportional to the population of the remaining bunnies.
(a) Write the differential equation for the population $\mathrm{P}(\mathrm{t})$ of rabbits at time t .
(b) Assuming that $P(0)=P_{0}$, solve the initial value problem.
(c) Suppose that when the epidemic hits at $t=0$, there are 1500 rabbits. Six months after crisis strikes, there are only 500 rabbits remaining. How many rabbits will be alive in 12 months $(\mathrm{t}=12)$?

Solution:

This problem was meant to use remind you of the logistic equation problems we did where $\frac{d P}{d t}=(\beta-\delta) P$, where β and δ are the rate of births and of deathes, respectively. Recall homework problem \# 17 from Section 2.2.
(a) The general equation is $\frac{d P}{d t}=(\beta-\delta) P$, where β and δ are the birth and death rates, respectively. In our problem, $\beta=0$ and $\delta=k P$ for some positive constant k, because there are no births and the death rate is propornal to P. So the differential equation is $\frac{d P}{d t}=-k P^{2}$.
(b) We can solve this by using the separation of variables technique.

$$
\begin{aligned}
\frac{d P}{d t} & =-k P^{2} \\
\frac{1}{P^{2}} d P & =-k d t \\
\int \frac{1}{P^{2}} d P & =\int(-k) d t \\
-\frac{1}{P} & =-k t+C \\
\frac{1}{P} & =k t+C^{\prime} \\
P & =\frac{1}{k t+C^{\prime}}
\end{aligned}
$$

At time $t=0$, we have $P(0)=P_{0}$. We must use this information in order to solve for our constant C^{\prime}.

$$
\begin{aligned}
P(t) & =\frac{1}{k t+C^{\prime}} \\
P_{0} & =\frac{1}{k(0)+C^{\prime}} \\
P_{0} & =\frac{1}{C^{\prime}} \\
C^{\prime} & =\frac{1}{P_{0}}
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
P(t) & =\frac{1}{k t+\frac{1}{P_{0}}} \\
& =\frac{P_{0}}{P_{0} k t+1} \\
& =\frac{P_{0}}{1+P_{0} k t}
\end{aligned}
$$

(c) We see from the given information that $P_{0}=1500$. Also, $P(6)=500$. Using this piece of information, we can solve for the constant k.

$$
\begin{aligned}
P(t) & =\frac{1500}{1+1500 k t} \\
500 & =\frac{1500}{1+1500 k(6)} \\
1+9000 k & =3 \\
9000 k & =2 \\
k & =\frac{1}{4500}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
P(t) & =\frac{1500}{1+1500 k t} \\
& =\frac{1500}{1+1500\left(\frac{1}{4500}\right) t} \\
& =\frac{1500}{1+\frac{1}{3} t} \\
& =\frac{4500}{3+t}
\end{aligned}
$$

We can now easily see that after 12 months, there will be $P(12)=300$ bunnies remaining.

