Math 213: Mock Final
December 15, 2009

YOUR NAME:

YOUR TA's NAME AND SECTION NUMBER:

Prob 1	
$/ 20$	
Prob 2 $/ 20$	
Prob 3 $/ 20$	
Prob 4 $/ 20$	
Prob 5 $/ 20$	
TOTAL	
100	

1. (20 points) Find positive numbers x and y, whose sum is 75 , such that $x y^{2}$ is maximized.
2. (20 points) Find the Taylor series of the function

$$
f(x)=\ln (1-5 x)
$$

and find its radius of convergence.
3. (20 points) The rate of a continuous money flow starts at $\$ 1000$ and increases exponentially at 5% per year for 3 years. Find the accumulated amount of money flow if the interest earned is 11% compounded continuously.
4. (20 points) Consider the differential equation

$$
\frac{d y}{d x}-2 x y-4 x=0 ; \quad y(1)=20 .
$$

a) Solve this differential equation.
b) Apply one step of Euler's method with step size 0.1 to approximate the value of y at $x=1.1$.
5. (20 points) Compute the following limit:

$$
\lim _{x \rightarrow 0} \frac{5 e^{x}-5}{x^{3}-8 x^{2}+7 x}
$$

