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Abstract. In this article we consider a certain distinguished set
U(Ω,m) ⊆ {1, 2, . . . , 2g + 1,∞} that can be attached to a marked
hyperelliptic curve of genus g equipped with a small period matrix
Ω for its polarized Jacobian. We show that as Ω and the marking m
vary, this set ranges over all possibilities prescribed by an argument
of Poor.

1. Introduction and Statement of Results

Let X be a hyperelliptic curve of genus g defined over C, and let
J(X) be its polarized Jacobian. In Definition 2.2, we associate to
J(X) a small period matrix Ω, which is an element of the Siegel upper
half-space Hg with the property that there is an isomorphism

(1.1) J(X)(C) ∼= Cg/LΩ,

where LΩ is the rank 2g lattice generated by the columns of Ω and the
standard basis {ei} of Cg.

After this choice we may define an analytic theta function

(1.2) ϑ(z,Ω): Cg → C,

whose exact definition is given in Definition 2.13. While this function
is not well-defined on J(X)(C), it is quasi-periodic with respect to the
lattice LΩ, and so its zero set on the Jacobian is well-defined. In this
article we study how a certain combinatorial characterization of this
zero set depends on the choice of small period matrix (since the theta
function itself depends on the small period matrix) and on a further
choice we now make.

Since X is hyperelliptic, there is a morphism π : X → P1 of degree
two, branched at 2g + 2 points. Suppose further that X is given a
marking of its branch points, denoted m, by which we mean that the
branch points of π are numbered 1, 2, . . . , 2g + 1,∞. As we explain in
Proposition 2.8, this choice gives a bijection between sets

(1.3) S ⊆ {1, 2, . . . , 2g + 1,∞}, #S ≡ 0 (mod 2),
1
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up to the equivalence S ∼ Sc, where c denotes taking the complement
within {1, 2, . . . , 2g + 1,∞}, and the two-torsion in J(X)(C).

Then we have the following theorem, which we will repeat and make
more precise in Theorem 2.14:

Theorem 1.1 (Riemann Vanishing Theorem). Let X be a hyperellip-
tic curve, m be a marking of its branch points, and let Ω be a small
period matrix associated to its polarized Jacobian. Then there is a dis-
tinguished set Θ on J(X)(C) (defined in Definition 2.12) and the zero
set of the theta function ϑ(z,Ω), considered as a subset of J(X)(C), is
exactly the set Θ translated by an element of the two-torsion of J(X).

Under the correspondence given above, this two-torsion point corre-
sponds to a set which we denote T (Ω,m). Note that the set T (Ω,m)
is only well-defined up to the equivalence S ∼ Sc, where as before c

denotes the complement.

This theorem gives rise to the following distinguished set:

Definition 1.2. Let X be a hyperelliptic curve of genus g, Ω a choice of
small period matrix associated to its Jacobian via the process described
in Definition 2.2, and m a marking of the branch points of X. Let
U(Ω,m) ⊂ {1, 2, . . . , 2g+1,∞} be defined up to the equivalence S ∼ Sc

by the following formula:

(1.4) U(Ω,m) =

{
T (Ω,m) if g is odd, and

T (Ω,m) ◦ {∞} if g is even,

where ◦ here denotes the symmetric difference of sets (see Definition
2.6). To fix one set in this equivalence class, we take U(Ω,m) to be the
set containing ∞.

Remark. We note that Mumford [Mum07b] adopts the opposite conven-
tion and chooses U(Ω,m) to be the member of the equivalence class
that does not contain ∞. In this respect we follow the convention
adopted by Poor [Poo94].

The significance of this set U(Ω,m) is especially salient in compu-
tational applications; we invite the reader to consult Section 2.3 for a
further account of its role. This set first appeared in work of Mum-
ford [Mum07b], where given a marked hyperelliptic curve X, the au-
thor constructs a certain small period matrix Ω and computes the set
U(Ω,m) explicitly. In this example, it is the case that

(1.5) #U(Ω,m) = g + 1,

where as before g is the genus of the curve. In the theorems following
this computation (in particular Mumford’s version of Theorem 2.15,
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Theorem 9.1 of [Mum07b], which is the most important of those from
our point of view), the set U(Ω,m) is always assumed to have this
cardinality.

However, in later work of Poor [Poo94], the same set U(Ω,m) is
shown to have the property that

(1.6) #U(Ω,m) ≡ g + 1 (mod 4)

(see [Poo94, Proposition 1.4.9]). This raises the following interesting
question: Does the set U(Ω,m) always have cardinality g + 1, or do
other cardinalities occur? We answer this question completely:

Theorem 1.3. Let g ≥ 1 and X be a hyperelliptic curve of genus g
defined over C. Then for any set U ⊆ {1, 2, . . . , 2g + 1,∞} containing
∞ such that

(1.7) #U ≡ g + 1 (mod 4),

there exists a small period matrix Ω associated to the Jacobian of X via
the process described in Definition 2.2, and a marking m of the branch
points of X such that

(1.8) U = U(Ω,m).

In other words, every possible set U occurs as the set U(Ω,m) for a
given hyperelliptic curve X, and Poor’s characterization of U(Ω,m) is
sharp.
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2. Preliminaries

Let X be a hyperelliptic curve, by which we mean a smooth complete
curve of genus g defined over C admitting a map π : X → P1 of degree
2. Throughout we denote its Jacobian variety by J(X).

2.1. The small period matrix of the Jacobian of a curve. We
give here standard facts about abelian varieties and Jacobians. We
refer the reader to [BL04] for further background and proofs.

We begin by giving an analytic space associated to polarized abelian
varieties of dimension g:
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Definition 2.1. Let g ≥ 1. The Siegel upper half-space Hg is the set
of symmetric g × g complex matrices M such that the imaginary part
of M (obtained by taking the imaginary part of each entry in M) is
positive definite.

Although much of the discussion below would apply to general polar-
ized abelian varieties, in this article we focus our attention to Jacobians
of curves equipped with their principal polarization. To simplify mat-
ters, at this time we restrict our attention to these objects. In this
setting, the connection between this space and Jacobians is through
the following object:

Definition 2.2. Let X be a curve of genus g defined over C, and let
J(X) be its principally polarized Jacobian. To J(X), we can associate
matrices Ω ∈ Hg in the following manner: Let Ai, Bi, i = 1, . . . , g,
be a basis for the homology group H1(J(X),Z) ∼= H1(X,Z), which is
a 2g-dimensional vector space over C. Assume further that this basis
is symplectic with respect to the cup product. There exists a unique
basis ω1, ω2, . . . , ωg of Ω1(J(X)) ∼= Ω1(X), the space of holomorphic
1-forms on J(X) or X, such that

(2.1)

∫
Bi

ωj = δij,

where δij is the Kronecker delta function. Then the matrix given by∫
Ai
ωj belongs to Hg and is called a small period matrix for J(X).

Let Sp2g(Z) be the group of 2g × 2g matrices with coefficients in Z
and symplectic with respect to the bilinear form given by the matrix

(2.2)

(
0 1g
−1g 0

)
,

where 1g is the g × g identity matrix. We note that two elements of
Hg can be associated to isomorphic polarized abelian varieties if and
only if they differ by a matrix in Sp2g(Z), where the action of Sp2g(Z)
on Hg is given in the following manner: Let

(2.3) γ =

(
A B
C D

)
∈ Sp2g(Z),

where A, B, C and D are four g × g matrices. Then

(2.4) γ · Ω = (AΩ +B)(CΩ +D)−1,

where on the right multiplication and addition are the usual operation
on g × g matrices.

We can further define an Abel-Jacobi map for a principally polarized
Jacobian variety J(X):
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Definition 2.3. Let X be a curve of genus g defined over C, let J(X)
be its principally polarized Jacobian, and fix Ai, Bi, i = 1, . . . , g, a
symplectic basis for the homology group H1(X,Z). Let ω1, ω2, . . . , ωg
be the basis of Ω1(X) described in Definition 2.2, Ω be the small pe-
riod matrix attached to J(X) via this choice of symplectic basis for
homology and let LΩ be the rank 2g lattice generated by the columns
of Ω and the standard basis {ei} of Cg. Then there is an isomorphism
called the Abel-Jacobi map

(2.5) AJ : J(X)→ Cg/LΩ,

given by the map

(2.6) D =
s∑

k=1

Pk −
s∑

k=1

Qk 7→

(
s∑

k=1

∫ Pk

Qk

ωi

)
i

,

where the Pks and Qks are points on X. This map is well-defined
since the value of each integral on X is well-defined up to the value
of integrating the differentials ωi along the basis elements Ai, Bi, and
thus up to elements of LΩ.

We will in fact need a slightly modified version of this Abel-Jacobi
map for our purposes:

Definition 2.4. Let X be a curve of genus g defined over C, let J(X)
be its principally polarized Jacobian, and fix Ai, Bi, i = 1, . . . , g, a
symplectic basis for the homology group H1(X,Z). Let Ω be the small
period matrix attached to J(X) via this choice of symplectic basis for
homology and let LΩ be the rank 2g lattice generated by the columns of
Ω and the standard basis {ei} of Cg. This gives rise to an isomorphism

(2.7) Cg/LΩ → R2g/Z2g,

given by writing an element of Cg/LΩ as a linear combination of the
columns of Ω and the standard basis {ei} of Cg and sending the el-
ement to the coefficients of the linear combination. Composing this
isomorphism with the Abel-Jacobi map defined in Definition 2.3, we
obtain the modified Abel-Jacobi map

(2.8) AJc : J(X)→ R2g/Z2g,

which gives the coordinates of a point of J(X) under the Abel-Jacobi
map.

In this paper we will need to know how a change of symplectic basis
for H1(X,Z) affects the image of the Abel-Jacobi map and the coordi-
nates of a point of J(X) under the Abel-Jacobi map. We have
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Proposition 2.5 (adapted from Section 1.4 of [Poo94]). Let X be a
curve of genus g defined over C, let J(X) be its principally polarized
Jacobian, and let Ai, Bi be a symplectic basis for H1(X,Z) from which
arises the small period matrix Ω, the Abel-Jacobi map AJ and the mod-
ified Abel-Jacobi map AJc. Let γ ∈ Sp2g(Z) act on the elements Ai,

Bi. Since Sp2g(Z) preserves the cup pairing, the images Ãi, B̃i gives

rise to a second Abel-Jacobi map ÃJ . If

(2.9) γ =

(
A B
C D

)
,

where A, B, C and D are g × g matrices, then

(2.10) ÃJ = (CΩ +D)−TAJ,

where M−T is the inverse of the transpose of the matrix M . Further-
more, we have

(2.11) ÃJ c = γ−TAJc.

2.2. The two-torsion on the Jacobian of a hyperelliptic curve.
We now turn our attention to the two-torsion of the Jacobian of a hy-
perelliptic curve of genus g defined over C. As a group, it is isomorphic
to C2g

2 , where C2 is the cyclic group with two elements.
Throughout, let B = {1, 2, . . . , 2g + 1,∞}. When S ⊆ B, we let Sc

be the complement of S in B.

Definition 2.6. Let S1 and S2 be any two subsets of B. We define

(2.12) S1 ◦ S2 = (S1 ∪ S2)− (S1 ∩ S2),

the symmetric difference of S1 and S2.

This binary operation on subsets in turns gives rise to the following
group:

Proposition 2.7. The set

(2.13) {S ⊆ B : #S ≡ 0 (mod 2)}/{S ∼ Sc}
is a commutative group under the operation ◦, of order 22g, with identity
∅ ∼ B. Since S ◦ S = ∅ for all S ⊆ B, this is a group of exponent 2.
Therefore this group, which we denote GB, is isomorphic to C2g

2 .

If the hyperelliptic curve X is equipped with a marking of its branch
points (recall that this means that we label the 2g+ 2 branch points of
the degree two map π : X → P1, P1, P2, . . . , P2g+1, P∞), there is in fact
an explicit isomorphism between GB and J(X)[2], the two-torsion on
the Jacobian of X:
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Proposition 2.8 (Corollary 2.11 of [Mum07b]). To each set S ⊆ B
such that #S ≡ 0 (mod 2), associate the divisor class of the divisor

(2.14) eS =
∑
i∈S

Pi − (#S)P∞.

This association is a group isomorphism between J(X)[2] and GB.

We may now compose the isomorphism of Proposition 2.8 with the
modified Abel-Jacobi map given in Definition 2.4.

Definition 2.9. We denote by ηΩ,m the isomorphism

(2.15) ηΩ,m : {S ⊆ B : #S ≡ 0 (mod 2)}/{S ∼ Sc} → (
1

2
Z)2g/Z2g

given by composing the isomorphism GB → J(X)[2] given in Proposi-
tion 2.8 and the map AJc given in Definition 2.4.

Remark. We note that in Poor’s work [Poo94], this is the class of the
map η, which is an equivalence class of maps to (1

2
Z)2g. In this work we

will not need the distinction between the “true” η-map and its class,
and therefore by a slight abuse of notation we consider the map above
to be the η-map.

This map ηΩ,m will allow us to give a more concrete definition of the
set U(Ω,m), which we will use in our proof in Section 3. We first need
one more notion.

Definition 2.10. If x ∈ C2g, let x = (x1, x2), with xi ∈ Cg; in other
words let x1 denote the vector of the first g entries of x, and x2 denote
the vector of the last g entries of x. Furthermore, for xi ∈ Cg, let xTi
denote the transpose of xi. Then for ξ ∈ (1

2
Z)2g, we define

(2.16) e∗(ξ) = exp(4πiξT1 ξ2)

to be the parity of ξ. Note that e∗ is also well-defined on (1
2
Z)2g/Z2g.

Proposition 2.11. [Lemma 1.4.13 of [Poo94]] Let X be a hyperelliptic
curve of genus g equipped with a marking m of its branch points, and
let J(X) be equipped with a choice of small period matrix Ω via the
process described in Definition 2.2. Then the set U(Ω,m) of Definition
1.2 is given by

(2.17) {i ∈ {1, 2, . . . , 2g + 1} : e∗(ηΩ,m({i,∞})) = −1} ∪ {∞}.

In other words, if we consider the distinguished elements Di = Pi −
P∞ ∈ J(X)[2] for i = 1, 2, . . . , 2g+ 1,∞, the set U(Ω,m) can be made
to contain ∞ as well as i such that the coordinates of Di under the
Abel-Jacobi map are odd, for i = 1, 2, . . . , 2g + 1.



8 CHRISTELLE VINCENT

2.3. Mumford and Poor’s vanishing theorem. We now turn our
attention to explaining the significance of the set U(Ω,m). As we
explained briefly in the introduction, the set connects the vanishing
set of an analytic theta function to a distinguished divisor Θ on the
Jacobian J(X) of a marked hyperelliptic curve X.

We begin by defining this divisor:

Definition 2.12. Let X be a curve of genus g defined over C and P∞
be a basepoint on X. Then we define the theta divisor Θ on J(X) to
be the subset of divisor classes of the form

(2.18)

g−1∑
i=1

Qi − (g − 1)P∞.

Note that if X is a marked hyperelliptic curve and we choose P∞ to be
the branch point of X labeled ∞, this gives a unique choice of theta
divisor on J(X). We therefore call it “the” theta divisor on the marked
curve X.

We now define the theta function whose zeroes we will study:

Definition 2.13. For z ∈ Cg and Ω ∈ Hg, we define the theta function

(2.19) ϑ(z,Ω) =
∑
n∈Zg

exp(πinTΩn+ 2πinT z).

Remark. As noted in the introduction, this function is quasi-periodic
for the lattice LΩ in the coordinate z. Indeed, if k ∈ Zg, by [Mum07a, p.
120], we have

(2.20) ϑ(z + k,Ω) = ϑ(z,Ω)

and

(2.21) ϑ(z + Ωk,Ω) = exp(−iπkTΩk − 2πikT z)ϑ(z,Ω).

However, since the automorphy factor is non-zero, the zero set of ϑ is
well-defined as a subset of Cg/LΩ.

For the convenience of the reader, we repeat the Riemann Vanishing
Theorem now that all terms have been defined:

Theorem 2.14 (Riemann Vanishing Theorem, or Theorem 5.3 of
[Mum07b]). Let X be a hyperelliptic curve, m be a marking of its branch
points, and let Ω be a small period matrix associated to its Jacobian via
the process described in Definition 2.2. If Θ ∈ J(X) is as in Definition
2.12, then the zero set of the theta function ϑ(z,Ω), considered as a
subset of J(X)(C) is a translate of Θ by a two-torsion point of J(X).
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From the introduction, we recall that this gives rise to the set U(Ω,m)
in the following manner: Given a marking m and a small period matrix
Ω, the Riemann Vanishing Theorem singles out a divisor on the Jaco-
bian of X (the zero locus of the function ϑ). As this is a translate of
Θ by a two-torsion point, this gives in turn a distinguished two-torsion
point on J(X). Recall that Proposition 2.8 gives an isomorphism be-
tween the group GB defined in Proposition 2.7 and the two-torsion of
J(X). Therefore, via this isomorphism, we obtain an element of the
group GB. Finally, since the elements of GB are equivalence classes of
certain subsets of B (where the equivalence consists in taking the com-
plement in B = {1, 2, . . . , 2g+1,∞}), we obtain a certain (equivalence
class of) subset of B, which we denote by T (Ω,m) here.

We then define the set U(Ω,m) to be the element of the equivalence
class of

(2.22)

{
T (Ω,m) if g is odd, and

T (Ω,m) ◦ {∞} if g is even

that contains ∞, as noted in Definition 1.2.
This definition is motivated by the proof of Proposition 6.2 of [Mum07b]:

Under the correspondence given in part a) of this Proposition, the set
T (Ω,m) when g is odd, or T (Ω,m) ◦ {∞} when g is even, corresponds
to the translate Θ + eT (Ω,m) and to the characteristic δ + ηT (Ω,m) (in
our notation ηT (Ω,m) is ηΩ,m(T (Ω,m))). Since ηT (Ω,m) = δ and δ ∈ 1

2
LΩ,

T (Ω,m) when g is odd, or T (Ω,m) ◦ {∞} when g is even, corresponds
to 0 and is therefore the set U(Ω,m) defined here.

We end by giving part of the Vanishing Criterion for hyperellip-
tic small period matrices, which highlights how truly central the set
U(Ω,m) is to the computational theory of hyperelliptic curves.

Theorem 2.15 (Main Theorem 2.6.1 of [Poo94]). Let X be a hyperel-
liptic curve of genus g, with a marking of its branch points m and let Ω
be a small period matrix associated to its Jacobian J(X) via the process
described in Definition 2.2. Then for S ⊆ B with #S ≡ 0 (mod 2),
we have

(2.23) ϑ(AJ(eS),Ω) = 0

if and only if

(2.24) #(S ◦ U(Ω,m)) 6= g + 1.

We stress that here we have only stated part of the Vanishing Cri-
terion for hyperelliptic matrices, and that the important part of this
Vanishing Criterion for computational purposes is a strengthening of
the statement which allows one to give a converse for general curves.
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This converse then allows the detection of hyperelliptic small period
matrices among all small period matrices. We refer the reader to Poor’s
work [Poo94], notably Definition 1.4.11 for a complete account of this
converse with proofs, or to [BILV16] for a shorter exposition.

3. The proof

The proof of Theorem 1.3 has two main parts. In the first part,
for a fixed g ≥ 1 we count the number of different sets U satisfying
U ⊆ {1, 2, . . . , 2g + 1,∞}, ∞ ∈ U and #U ≡ g + 1 (mod 4) (this is
Proposition 3.4). In the second part, we count how many different sets
U(Ω,m) arise as we vary among all possible small period matrices Ω
that can be associated to the Jacobian of a hyperelliptic curve X via
the process described in Definition 2.2 and all possible markings m of
its branch points (this is Proposition 3.11). Since these two numbers
are equal, we conclude that every allowable set U must arise U(Ω,m)
for some choice of Ω and m.

3.1. Counting the allowable sets U . Counting the sets such that
U ⊆ {1, 2, . . . , 2g + 1,∞}, #U ≡ g + 1 (mod 4), and ∞ ∈ U is equiv-
alent to counting the sets satisfying the following two conditions:

• Ũ ⊆ {1, 2, . . . , 2g + 1}, and
• #Ũ ≡ g (mod 4).

We turn to this task.

Definition 3.1. Let n ≥ 1, d ≥ 0 and m ≥ 2 be integers. We define
the sum

(3.1) S(n, d,m) =
∑

0≤k≤n
k≡d (mod m)

(
n

k

)
.

This is the number of subsets of {1, . . . , n} of any cardinality k ≡ d
(mod m).

We are interested in computing the quantity S(2g+ 1, g, 4). We first
note the following well-known result:

Proposition 3.2. Let n be any positive integer, then

(3.2) S(n, 0, 2) = S(n, 1, 2) = 2n−1.

In other words, for any n, of the 2n subsets of {1, . . . , n}, half of
them have even cardinality, and half have odd cardinality.

Lemma 3.3. We have

(3.3) S(n, d, 4) = S(n− 1, d, 4) + S(n− 1, d− 1, 4).
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Proof. This follows from Pascal’s identity, which says that for n ≥ 1
and k ≥ 0, we have

(3.4)

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Here we use the usual convention that
(
n
k

)
= 0 if k < 0.

�

This is enough to show

Proposition 3.4. Let g ≥ 1, then

(3.5) S(2g + 1, g, 4) = 2g−1(2g + 1).

Proof. The proof is done by induction on g. The case of g = 1 is the
claim that S(3, 1, 4) = 3. Indeed, of the subsets of {1, 2, 3}, three of
them have cardinality congruent to 1 modulo 4 (and therefore actually
equal to 1, since there are no subsets of {1, 2, 3} of cardinality greater
than or equal to 5).

We know assume that S(2g− 1, g− 1, 4) = 2g−2(2g−1 + 1) and g ≥ 2.
We have

S(2g + 1, g, 4) = S(2g, g, 4) + S(2g, g − 1, 4)(3.6)

= (S(2g − 1, g, 4) + S(2g − 1, g − 1, 4))(3.7)

+ (S(2g − 1, g − 1, 4) + S(2g − 1, g − 2, 4))

= S(2g − 1, g, 4) + S(2g − 1, g − 2, 4)(3.8)

+ 2S(2g − 1, g − 1, 4).

We now note that if g is even, then

(3.9) S(2g − 1, g, 4) + S(2g − 1, g − 2, 4) = S(2g − 1, 0, 2),

and if g is odd, then

(3.10) S(2g − 1, g, 4) + S(2g − 1, g − 2, 4) = S(2g − 1, 1, 2).

In either case, by Proposition 3.2,

(3.11) S(2g − 1, g, 4) + S(2g − 1, g − 2, 4) = 22g−2.

Furthermore, by induction S(2g − 1, g − 1, 4) = 2g−2(2g−1 + 1).
Therefore we have

S(2g + 1, g, 4) = 22g−2 + 2 · 2g−2(2g−1 + 1)(3.12)

= 2g−1(2g−1 + 2g−1 + 1)(3.13)

= 2g−1(2g + 1).(3.14)

This completes the proof. �



12 CHRISTELLE VINCENT

3.2. Counting the different sets U(Ω,m) for a hyperelliptic curve.
Here we show that in fact, given a hyperelliptic curve X with a mark-
ing m of its branch points, every allowable U -set is realized as U(Ω,m)
as we vary the small period matrix Ω associated to its Jacobian J(X)
by Definition 2.2. This certainly implies our main theorem. Thus we
begin by fixing a marking m on the branch points of X.

The proof is carried out by considering the action of Sp2g(Z) on Ω
and considering which matrices fix the set U(Ω,m). We will see in
Proposition 3.9 that they are exactly a subgroup of Sp2g(Z) denoted
Γ1,2:

Definition 3.5. Let Γ1,2 be the subgroup of Sp2g(Z) containing the

matrices that fix the parity of every element of (1
2
Z)2g. In other words,

γ ∈ Γ1,2 if and only if

(3.15) e∗(γξ) = e∗(ξ)

for all ξ ∈ (1
2
Z)2g, where e∗ is as in Definition 2.10 and γξ is the usual

matrix-vector multiplication.

We will need two further characterizations of these matrices below.
First, we have:

Proposition 3.6. Let γ ∈ Sp2g(Z) with

(3.16) γ =

(
A B
C D

)
where A, B, C and D are four g×g matrices. Then γ ∈ Γ1,2 if and only
if the diagonals of the matrices ATC and BTD have all even entries.

Proof. This can be verified directly, or found in [Mum07a, page 189].
�

The second characterization of these matrices relies on an important
property of the vectors ηΩ,m({i,∞}) for i = 1, 2, . . . , 2g + 1:

Proposition 3.7. Let X be a marked hyperelliptic curve, J(X) its Ja-
cobian, and Ω a small period matrix associated to J(X) via the process
outlined in Definition 2.2. Furthermore, given this data, let ηΩ,m be the
map given in Definition 2.9. Then the set

(3.17) {ηΩ,m({i,∞}) : i = 1, . . . , 2g + 1}
contains a basis of the F2-vector space (1

2
Z)2g/Z2g.

Proof. By the proof Lemma 1.4.13 of [Poo94], the set

(3.18) {ηΩ,m({i,∞}) : i = 1, . . . , 2g + 1}



U(Ω,m) SETS OF A HYPERELLIPTIC CURVE 13

is an azygetic basis of (1
2
Z)2g/Z2g, and by Definition 1.4.12 of ibid,

therefore spans the vector space (1
2
Z)2g/Z2g. Therefore it contains a

basis of the space. �

We can now prove the following:

Lemma 3.8. A matrix γ ∈ Sp2g(Z) belongs to Γ1,2 if and only if it
fixes the parity of ηΩ,m({i,∞}) for i = 1, 2, . . . , 2g + 1.

Proof. It is clear that if γ ∈ Γ1,2, then it will fix the parity of ηΩ,m({i,∞})
for i = 1, 2, . . . , 2g+1. Therefore we assume that γ ∈ Sp2g(Z) fixes the
parity of ηΩ,m({i,∞}) for i = 1, 2, . . . , 2g + 1 and show that γ ∈ Γ1,2.

We first establish some notation: For ξ ∈ (1
2
Z)2g, let

(3.19) q(ξ) = ξT1 ξ2

be the quadratic form associated to the parity function e∗ defined in
Definition 2.10. We note that

(3.20) q(ξ) ≡ q(ζ) (mod (
1

2
Z)2g),

if and only if

(3.21) e∗(ξ) = e∗(ζ).

Let also

(3.22) b(ξ, ζ) = ξTJζ,

be the bilinear form associated to the matrix J , where as before

(3.23) J =
(

0 1g

−1g 0

)
,

and 1g is the g × g identity matrix.
A quick computation shows that for any ξ, ζ ∈ (1

2
Z)2g

(3.24) q(ξ + ζ) ≡ q(ξ) + q(ζ) + b(ξ, ζ) (mod (
1

2
Z)2g).

Now let γ ∈ Sp2g(Z). We have then that

(3.25) b(γξ, γζ) = b(ξ, ζ),

by definition of b and Sp2g(Z). Therefore, for any ξ, ζ ∈ (1
2
Z)2g

q(γ(ξ + ζ)) = q(γξ + γζ) ≡ q(γξ) + q(γζ) + b(γξ, γζ) (mod (
1

2
Z)2g)

(3.26)

≡ q(γξ) + q(γζ) + b(ξ, ζ) (mod (
1

2
Z)2g).(3.27)
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As a result, if

(3.28) q(γξ) ≡ q(ξ) (mod (
1

2
Z)2g)

and

(3.29) q(γζ) ≡ q(ζ) (mod (
1

2
Z)2g),

then

(3.30) q(γ(ξ + ζ)) ≡ q(ξ + ζ) (mod (
1

2
Z)2g).

From this discussion we conclude that if e∗(γξ) = e∗(ξ) and e∗(γζ) =
e∗(ζ), it follows that

(3.31) e∗(γ(ξ + ζ)) = e∗(ξ + ζ).

The result now follows from the fact that the set

(3.32) {ηΩ,m({i,∞}) : i = 1, . . . , 2g + 1}
contains a basis of the F2-vector space (1

2
Z)2g/Z2g by Proposition 3.7.

Therefore if a matrix γ fixes the parity of each element of this basis, it
must fix the parity of each element of the vector space. �

We are now in a position to show:

Proposition 3.9. Let X be a marked hyperelliptic curve, J(X) its
Jacobian, and Ω a small period matrix associated to J(X) via the pro-
cess outlined in Definition 2.2. Furthermore, given this data, let ηΩ,m

be the map given in Definition 2.9 and U(Ω,m) be the set defined in
Definition 1.2.

Let γ ∈ Sp2g(Z). Then the matrix γ · Ω is another small period
matrix for J(X), to which we may similarly attach a map ηγ·Ω,m and a
set U(γ · Ω,m).

In that case, we have

(3.33) U(γ · Ω,m) = U(Ω,m)

if and only if

(3.34) γ ∈ Γ1,2.

Proof. Recall from Proposition 2.11 that U(Ω,m) can be described as
the set

(3.35) {i ∈ {1, 2, . . . , 2g + 1} : e∗(ηΩ,m({i,∞})) = −1} ∪ {∞}.
Since ηΩ,m({i,∞}) ∈ (1

2
Z)2g/Z2g is none other than AJc(e{i,∞}), by

Proposition 2.5, we have

(3.36) ηγ·Ω,m({i,∞}) = γ−TηΩ,m({i,∞}),
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Therefore we have that

(3.37) U(γ · Ω,m) = U(Ω,m)

if and only if multiplication by γ−T does not change the parity of any
ηΩ,m({i,∞}) for i = 1, 2, . . . , 2g + 1. By Lemma 3.8, this is the case if
and only if γ−T ∈ Γ1,2.

To finish the proof we must show that γ−T ∈ Γ1,2 if and only if
γ ∈ Γ1,2. Note that since γ ∈ Sp2g(Z), we have

(3.38) γ−T =

(
D −C
−B A

)
.

By Proposition 3.6, it suffices thus to show that the diagonals of the
matrices

(3.39) DT (−B) = (−BTD)T

and

(3.40) (−C)TA = (−ATC)T

have all even entries if and only if the diagonals of the matrices ATC
and BTD have all even entries, which is true. �

As a direct consequence we now have:

Theorem 3.10. The number of different sets U(Ω,m) that arise, as
Ω varies over all small period matrices that can be attached to the
polarized Jacobian of a marked hyperelliptic curve X with the process
outlined in Definition 2.2, is equal to the cardinality of the quotient
group

(3.41) Sp2g(Z)/Γ1,2.

Proof. As described in Section 2, the group Sp2g(Z) acts transitively
on the set of small period matrices that can be associated to J(X) via
the process described in Definition 2.2. This action changes U(Ω,m) if
and only if γ ∈ Γ1,2 by Proposition 3.9, which completes the proof.

�

We now compute the cardinality of this quotient group, which will
give us the number of different sets U(Ω,m) attached to a fixed hyper-
elliptic curve X with a marking of its branch points m as Ω is allowed
to vary over all possible small period matrices that can be associated
to its Jacobian J(X) via the process described in Definition 2.2.

Proposition 3.11. We have that

(3.42) # Sp2g(Z)/Γ1,2 = 2g−1(2g + 1).
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Proof. To compute the cardinality of this quotient group, we use the
following facts: First, by the Third Group Isomorphism Theorem,

(3.43) Sp2g(Z)/Γ1,2
∼=

Sp2g(Z)/Γ(2)

Γ1,2/Γ(2)
,

where

(3.44) Γ(2) =
{
γ ∈ Sp2g(Z) : γ ≡ 12g (mod 2)

}
.

Furthermore, we have

(3.45) Sp2g(Z)/Γ(2) ∼= Sp2g(F2),

where Sp2g(F2) is the group of matrices with coefficients in F2 and
symplectic with respect to the bilinear form given by the matrix

(3.46)

(
0 1g
1g 0

)
,

and

(3.47) Γ1,2/Γ(2) ∼= SO2g(F2,+1),

where SO2g(F2,+1) is the special orthogonal group of matrices with
entries in F2 and preserving the quadratic form

(3.48) Q(x1, x2, . . . , x2g−1, x2g) =

g∑
i=1

xixg+i.

(These last two facts are implicit in the discussion in [Mum07a], Ap-
pendix to Chapter 5.)

There are therefore

(3.49)
# Sp2g(F2)

# SO2g(F2,+1)

different sets U(Ω,m) as Ω varies over all small period matrices that
can be associated to J(X) via the process described in Definition 2.2.

We have

(3.50) # Sp2g(F2) = 2g
2

g∏
i=1

(22i − 1),

(see for example [Gro02, Theorem 3.12]) and

(3.51) # SO2g(F2,+1) = 2 · 2g(g−1)(2g − 1)

g−1∏
i=1

(22i − 1),

(see for example [KL90, Table 2.1C]). Computing the quotient gives
the result we sought.

�
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