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Abstract

Consider the Drinfeld modular curve X0(p) for p a prime ideal of Fq[ T ]. It was previously
known that if j is the j-invariant of a Weierstrass point of X0(p), then the reduction of j
modulo p is a supersingular j-invariant. In this paper, we show the converse: Every
supersingular j-invariant is the reduction modulo p of the j-invariant of a Weierstrass
point of X0(p).

Introduction and statement of results
Given a smooth irreducible projective curve of genus g ≥ 2 defined over an algebraically
closed field of characteristic 0, we say that a point P on X is aWeierstrass point if there is
a nonzero rational function F on X with a pole of order less than or equal to g at P and
regular everywhere else. In this case, the set of such points is non-empty and finite.
Because of the geometric significance of such points, given a curve of arithmetic import,

it is natural to study its Weierstrass points. Such work was done by Atkin, Hasse, Lehner
and Newman, Ogg, Petersson, and Schoeneberg for three families that are important to
number theorists: the Fermat curves and the modular curves X(N) and X0(N). The inter-
ested reader should see Rohrlich’s 1982 paper [24] for a concise account of the results
and complete references. In the same paper, Rohrlich exhibited a modular form W (z)
for �0(N) whose divisor encodes information about the Weierstrass points of X0(N), the
modular Wronskian. In later work [25], restricting his attention to �0(�) for � a prime,
he was able to exhibit a form for SL2(Z) congruent to W (z) modulo �. Building on these
results, later work of Ahlgren and Ono [1] showed that not only were the elliptic curves
underlying the Weierstrass points of X0(�) supersingular at �, which was a result already
obtained by Ogg [23], but furthermore that∏

Q∈X0(�)

(x − j(Q))wt(Q) ≡
∏
E/F�

E supersingular

(x − j(E))g�(g�−1) (mod �),

where the quantity wt(Q) is a non-negative integer which is positive if and only if Q is
a Weierstrass point and which we will define in Section ‘Weierstrass points on X0(p)’,
Definition 7, and g� is the genus of X0(�).
The situation where the curve is defined over an algebraically closed field of positive

characteristic is more complicated: It can be the case that for each point P, there exists a
nonzero rational function with a pole of order less than or equal to the genus of the curve
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at P and regular elsewhere. Accordingly, to ensure that the set of Weierstrass points be
finite, a modified definition of Weierstrass points must be used, which will be given in
Section ‘Weierstrass points in characteristic p’ .
We consider in this paper the so-called Drinfeld setting, which offers for function

fields some structures playing roles analogous to those played by elliptic curves, mod-
ular forms, and modular curves for number fields. More precisely, we will study the
Weierstrass points on a family of Drinfeld modular curves which is denoted by X0(p),
where p is a prime ideal of Fq[T]. These curves are smooth, irreducible, and projec-
tive and defined over a complete, algebraically closed field of positive characteristic.
As such, it is natural to wish to study their Weierstrass points. Since they are (coarse)
moduli spaces of Drinfeld modules of rank 2 with a specified level structure, we may
ask what can be said about the Drinfeld modules underlying the Weierstrass points
of X0(p).
As far as we can tell, the only result in this direction which was known previously was

obtained by Baker [3] as a result of his work on the connection between linear systems on
a curve and linear systems on the dual graph of a regular semistable model of the curve.
As a corollary of one of his results, one can show that the Drinfeld modules underlying
the Weierstrass points of X0(p) have supersingular reduction at p.
In this paper, we prove a converse of Baker’s result:

Theorem 1. Let q be odd and let π(T) ∈ Fq[T] be a prime polynomial, generating the
prime ideal p. Then each supersingular Drinfeld module over Fp is the reduction modulo
p of a Weierstrass point of X0(p).

To obtain this theorem, we first introduce the necessary concepts and objects to define
a formW (z) analogous to the form defined by Rohrlich in [24]. By this, we mean that the
divisor of W (z) captures information about the Weierstrass points of X0(p), and the u-
series coefficients ofW (z) at the cusp ∞ are rational and p-integral. It is the study of this
form, using the main theorems of [30], that allows us to use a powerful theorem on the
arithmetic of the reduction of Drinfeld modular forms modulo a prime ideal p and obtain
Theorem 1.

Remark 1. The hypothesis that q be odd in our main theorem is a consequence
of Theorem 11, in which we show that W (z) is an eigenform of the Fricke involu-
tion in odd characteristic. In turn, this hypothesis is necessary to apply one of the
theorems of [30] (repeated here as Theorem 5). We expect that W (z) is an eigen-
form of the Fricke involution in even characteristic as well, but the argument in this
case would most likely rely on some geometric property of W (z) on X0(p) instead
of the argument we present here. Granting this hypothesis, the proof of Theorem 1
would carry through for q > 2. The exclusion of the case q = 2 would now come
from the other main theorem of [30] (repeated here as Theorem 4); see the remark
following the proof of Theorem 1.1 in [30] for a discussion of how this restriction
arises.

In Section ‘A special case’, we show that when q = p is an odd prime and π(T) has
degree 3, we can perform some explicit computations to obtain that
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Theorem 2. If p is odd, π(T) ∈ Fp[T] has degree 3, p is the ideal generated by π(T),
and the modular Wronskian on X0(p) is denoted by W (z), then

W (z) ≡ (−1)(p+1)/2g
p2(p−1)

2 h
p2(p+1)

2 (mod p).

Here, g and h are explicit Drinfeld modular forms which will be defined in Section
‘The Drinfeld setting’. Theorem 2 is an analogue of a result obtained by Rorhlich in [25].
This explicit computation allows us to show that

Theorem 3. If p is odd, π(T) ∈ Fp[T] has degree 3, and p is the ideal generated by
π(T), then we have∏

P∈Y0(p)

(x − j(P))wt(P) ≡
∏

φ/Fp
φ supersingular

(x − j(φ))gp(gp−1) (mod p),

where gp is the genus of the curve X0(p) and wt(P) is given in Definition 7.

This is an analogue of the formula from [1] quoted earlier.
The structure of the paper is the following: We begin by reviewing the theory of Weier-

strass points in positive characteristic in Section ‘Weierstrass points in characteristic p’.
Then, we introduce the basic objects from the Drinfeld setting that we will need in
Section ‘The Drinfeld setting’. Section ‘The Drinfeld setting’ contains as well all of the
statements of the results from the theory of Drinfeld modular forms that we will cite. In
Section ‘Hyperderivatives and quasimodular forms’, we introduce Drinfeld quasimodular
forms and some differentials operators that are needed in the definition of the Drin-
feld modular form W (z). We also prove some elementary results concerning the action
of these operators on Drinfeld modular forms. The definition of W (z) is finally given
in Section ‘Weierstrass points on X0(p)’, along with the properties of this form. Then,
the meat of the proof of Theorem 1 is in Section ‘Proof of Theorem 1’ where we apply
the machinery developed in the previous sections to the form W (z). Finally, in Section
‘The order of vanishing ofW (z) at the cusps’, we briefly consider the order of vanishing of
W (z) at∞ and establish a result needed to study the special case which yields Theorems 2
and 3. The proofs of these last two theorems are then given in Section ‘A special case’.

Weierstrass points in characteristic p
Since the theory ofWeierstrass points in positive characteristic p is much less well known
than the theory in characteristic 0, we begin with a short review of the facts we will need,
based on the treatment in [27] and [17]. In particular, proofs of all facts that are stated
here without proof can be found in [17].
For the duration of this section only, let k be an algebraically closed field andX a smooth

projective irreducible curve over k of genus g ≥ 2 with function field k(X). A natural
question to ask about X is the following: For P a point of X and n a positive integer, does
there exist a nonzero rational function F onX such that F has a pole of order exactly n at P
and F is regular elsewhere? If the answer to this question is negative, we say that n is a gap
at P; otherwise n is a pole number at P. It is a fact that for a point P on X, there are exactly
g gaps at P, and if n1(P), . . . , ng(P) are the gaps at P, indexed such that ni(P) < nj(P) if
i < j, we say that (n1(P), . . . , ng(P)) is the gap sequence at P.
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For a fixed curve X, it can be shown that there exists a sequence of positive inte-
gers (n1, . . . , ng) with ni < nj if i < j such that (n1, . . . , ng) is the gap sequence for all
but finitely many points of X. We call this sequence the canonical gap sequence of X.
There exist on X finitely many points that have a different gap sequence, and they are
called the Weierstrass points of X. If (n1, . . . , ng) is the canonical gap sequence of X and
(n1(P), . . . , ng(P)) is the gap sequence at P for any point P of X, then ni ≤ ni(P) for each i.

Remark 2. We exclude the case of g = 0 since in that case for any point P, there is a
nonzero rational function F on X such that F has a single pole at P and is regular else-
where. There are therefore noWeierstrass points. We also exclude the case of g = 1 since
in that case, there are no points P with a pole number of 1 (the existence of such a point
would force g = 0, a contradiction) and for each P on X, there is a nonzero rational func-
tion F onX such that F has a double pole at P and is regular elsewhere. There are therefore
again no Weierstrass points.

For any point P on X, a measure of how its gap sequence differs from the canonical gap
sequence is given by the quantity

g∑
i=1

(ni(P) − ni),

which is positive if and only if P is a Weierstrass point.
If X is defined over a field of characteristic 0, then the canonical gap sequence is always

(1, . . . , g). When k is of characteristic p > 0 and X has canonical gap sequence (1, . . . , g),
we say that X has a classical canonical gap sequence, or a classical canonical linear system
(this designation will be justified shortly when we define the canonical orders of X).

Example 1. Let X be a hyperelliptic curve of genus g ≥ 2, then its canonical gap
sequence is (1, . . . , g). (In characteristic p > 0 this is a theorem that was implicit in [19]
and stated explicitly in the seminal work of Schmidt [26] defining Weierstrass points in
positive characteristic.) Furthermore, the Weierstrass points of X are exactly the branch
points of f , where f : X → P1 is any separable degree 2 morphism. At such a branch point
P, the rational function F = 1

f−f (P)
has a double pole at P and is regular elsewhere, and so

at the Weierstrass points the gap sequence is (1, 3, . . . , 2g − 1).

Example 2. The projective curve of genus 3 given by X4
0 + X4

1 + X4
2 = 0 over F3 does

not have a classical gap sequence. On this curve, for each point P one can construct a
nonzero rational function having a pole of order ≤ 3 at P and regular elsewhere.

Because of the difficulty of computing the gap sequence of a point directly, it is often
more convenient to consider a related sequence of strictly increasing positive integers
(j1, . . . , jg−1) called the canonical orders of X, which we now describe. For any element
x ∈ k(X), we will write [ x] for the divisor of x,

∑
P vP(x)P, where the sum is taken over all

points P of X. As usual, for any divisor D on X, we may define the linear system

L(D) = {x ∈ k(X)× :[ x]≥ −D
} ∪ {0}.
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We further denote by �X the space of (algebraic) meromorphic differential forms on X.
Because X is defined over an algebraically closed field, we have a canonical isomorphism
between �X and the space of Weil differentials WX (in fact, to obtain this isomorphism,
it would suffice here to require that k′ ⊗ k(X) be a field for all finite extensions k′ of k).
This allows us to define the divisor [ω] of ω a meromorphic differential on X. We do this
in the following manner: Let Ak(X) denote the ring of adèles of k(X) and for D a divisor
on X, write

Ak(X)(D)
def= {α = (αP) ∈ Ak(X) | vP(αP) ≥ −vP(D) for all points P of X

}
.

Then, a Weil differential on X is a k-linear functional with domain Ak(X) that vanishes on
Ak(X)(D)+k(X) for some divisorD. For eachWeil differential ω∗, there is a unique divisor
D of maximum degree such that ω∗ vanishes onAk(X)(D)+k(X), and we define [ω∗] def= D.
Then if ω corresponds to ω∗ under the canonical isomorphism betweenWeil differentials
and meromorphic differentials, we simply write [ω]= [ω∗] and vP(ω) = vP([ω] ). One
pleasant consequence of this definition is that for x ∈ k(X) and ω ∈ �X we have [ xω]=
[ x]+ [ω]. Ifω is a meromorphic differential onX, its divisorC is called a canonical divisor
on X, and since any two meromorphic differentials differ by a function, any two canonical
divisors are linearly equivalent.
For a point P of X, consider the following sequence of spaces:

k = L(0) ⊆ L(P) ⊆ L(2P) ⊆ L(3P) ⊆ . . .

Then, we have that n is a gap at P if and only if L((n−1)P) = L(nP). By the Riemann-Roch
theorem, we have that for any positive integer n and any point P,

dim L(nP) = n − g + 1 + dim L(C − nP),

from which it follows that

dim L((n + 1)P)/L(nP) = 1 − dim L(C − nP)/L(C − (n + 1)P).

Writing LC(nP) = L(C − nP), this last equation justifies our interest in the (canonical)
osculating filtration at P:

L(C) = LC(0) ⊇ LC(P) ⊇ LC(2P) ⊇ LC(3P) ⊇ . . .

Indeed, for a positive integer n, n + 1 is a gap at P if and only if LC(nP) � LC((n + 1)P).
In turn, this implies the existence of a nonzero F ∈ L(C) such that vP(F) = n − vP(C).
Whenever such a function exists, we say that n is a canonical order at P. The definition of
the canonical orders at P does not depend on the choice of canonical divisor C: if n is a
canonical order at P and C′ is any canonical divisor, there will exist a nonzero F ′ ∈ L(C′)
such that vP(F ′) = n − vP(C′).
From the discussion above, it follows that for a positive integer n, n is a canonical order

at P if and only if n+ 1 is a gap at P. (We note that since X is a curve over an algebraically
closed field, the existence of a point P such that 1 is a pole number at P implies that X has
genus zero. Therefore in our case, 1 will always be a gap for any point P on X since we
restrict our attention to curves of genus greater than or equal to 2, but we do not say that
0 is a canonical order.) As was the case for gap sequences, all but finitely many points of
X have the same canonical orders, and we call the strictly increasing sequence of positive
integers (j1, . . . , jg−1) formed by these integers the canonical orders of X.
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If (j1, . . . , jg−1) are the canonical orders of X and (j1(P), . . . , jg−1(P)) are the canonical
orders at P for any point P of X, then again ji ≤ ji(P) for each i. Furthermore if as before
(n1, . . . , ng) is the canonical gap sequence of X and (n1(P), . . . , ng(P)) is the gap sequence
at P, then

g∑
i=1

(ni(P) − ni) =
g−1∑
i=1

(ji(P) − ji).

The point P is called an osculation point of X if jg−1(P) > g − 1. In particular, an
osculation point has at least one pole number that is less than or equal to g. If X has a
classical gap sequence, then the osculation points and the Weierstrass points of X exactly
coincide. Otherwise, every point of X is an osculation point.
An important tool in the study of Weierstrass points is a divisor w on X, whose

construction is due to Stöhr and Voloch [27]. This divisor has the property that

vP(w) ≥
g∑

i=1
(ni(P) − ni)

for any point P of X, with equality

vP(w) =
g∑

i=1
(ni(P) − ni) = 0

if P is not a Weierstrass point of X. We describe its construction now.
A separating variable for k(X) is an element s ∈ k(X) transcendental over k such that

k(X) is a finite, separable extension of k(s). With the assumptions on X enforced in this
section, we have that s is a separating variable if and only if the differential ds is not iden-
tically 0. Furthermore, s is a separating variable if s is a local parameter at a separable
point of X. Since in our case X is defined over an algebraically closed field k, every point
is separable.
On the polynomial ring k[ s], we may define the nth Hasse derivative with respect to s

by putting

D(n)
s (sm) =

{ (m
n
)
sm−n if m ≥ n,

0 otherwise,

and extending linearly to k[ s]. It can be shown that if s is a separating variable for k(X)

over k, then this family of maps can be uniquely extended to a family of maps D
(n)
s :

k(X) → k(X).
Again, let C be a canonical divisor on the curve X and consider the linear system L(C)

associated to it. It is a basic fact that L(C) is a k-vector subspace of k(X) of dimension g,
and that replacing C by a different canonical divisor yields an isomorphic subspace. Fix
any basis φ = {φ1, . . . φg

}
of L(C) and define the matrix

H = H(φ, s) =
(
D

(j)
s (φi)

)
for 1 ≤ i ≤ g and 0 ≤ j. Write furtherH(j) for the column ofH whose ith entry isD(j)

s (φi).
We are interested in the indices j such that H(j) is not a k(X)-linear combination of

lower numbered columns. This is true for j = 0 since the φi’s are not all zero. One can
show that there are g − 1 more such indices, which we will denote by j1, . . . , jg−1, and we
will write J(φ, s) = (j1, . . . , jg−1).This sequence has the property that J(φ, s) in fact does
not depend on our choice of s a separating variable, C a canonical divisor, or φ a basis for
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the linear system associated to C, and in fact that the ji’s are exactly the canonical orders
of X defined earlier.
For any sequence J = (j1, j2, . . .) of positive integers, letHJ be the submatrix ofH whose

first column is H(0) and whose (l + 1)st column is H(jl). Then, we may define the nonzero
rational function

W (φ, s) = detHJ(φ,s),

the Wronskian of φ with respect to s. While not independent of the choices made above,
this function behaves as well as can be expected. More precisely, put φ′

i = ∑j aijφj for
aij ∈ k such that φ′ = (φ′

1, . . . ,φ′
g) is a different basis for L(C), and let y ∈ k(X)× and t be

another separating variable. Then,

W (yφ′, t) = det(aij)yg (ds/dt)j1+...+jg−1 W (φ, s). (1)

In light of this equation, we define the following divisor:

w(φ, s) = [W (φ, s)] + gC + (j1 + . . . + jg−1
)
[ ds] ,

which by Equation (1) is in fact independent of any choice we made, so that we may
denote it simply by w. One can show that the points in the support of w are exactly the
Weierstrass points of X, and that vP(w) ≥ ∑g

i=1(ni(P) − ni) for any point P of X, with
equality vP(w) = ∑g

i=1(ni(P) − ni) = 0 if P is not a Weierstrass point of X, as claimed
above.
The divisor w is effective: Fixing a point P of X, one may choose a canonical divisor C

such that vP(C) = 0, which ensures that vP(φi) ≥ 0, so that vp([W (φ, s)] ) ≥ 0 since
taking Hasse derivatives does not lower the valuation. Furthermore, one can choose s to
be a local parameter at P, so that vP([ ds] ) = 0. With these choices and because of the
invariance of w, it follows that vP(w) ≥ 0 for each P.
In [27], the authors define the Weierstrass weight of a point to be vP(w). In

Section ‘Weierstrass points on X0(p)’, we will define a Drinfeld modular form W (z) that
will play for us a role analogous to the function W (φ, s). Because of this analogy, we will
use the divisor of W (z) to define the modular Weierstrass weight of a point P on the
Drinfeld modular curve X0(p), and study this integer in this work.

Remark 3. If X is defined over a field of characteristic 0, we have the equality vP(w) =∑g
i=1(ni(P) − ni) for all points P of X. In positive characteristic, this equality holds if and

only if det
(J ′
J
) �= 0, where J ′ = (j1(P), . . . , jg−1(P)) is the sequence of canonical orders at

P, J = (j1, . . . , jg−1) is the sequence of canonical orders of X, and
(J ′
J
)
is the (g−1)×(g−1)

matrix of binomial coefficients
(j′r
js
)
, where

(j′r
js
) = 0 if j′r < js and each binomial coefficient

is reduced modulo p, the characteristic of k.

We will also need the following well-known fact: We have that dimk(X) �X = 1, so that
�X = k(X) · ω for any non-zero ω ∈ �X . If C is a canonical divisor of X, by definition it is
the divisor of some Weil differential ω∗ and thus of a meromorphic differential ω. Then,
the map

�X → k(X)

xω �→ x
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is an isomorphism of k-vector spaces, and under this isomorphism, the space L(C) ⊂
k(X) corresponds to the space �X,reg of algebraic differentials without poles.

The Drinfeld setting
Throughout when we refer to rigid analytic objects, we will mean rigid analytic in the
sense of Fresnel and van der Put [9].

Drinfeld modules and Drinfeld modular forms

For a reference on Drinfeld modules and Drinfeld modular forms, we refer the reader to
Gekeler’s excellent Inventiones paper [13] or to the author’s PhD thesis [29].
In this paper, we will only consider the case of the affine ring A = Fq[T], with fraction

field K = Fq(T). We complete K at the infinite place v∞(x) = − deg(x) and write K∞ =
Fq((1/T)) for the completion of K at this place. We will also write

C = ˆ̄K∞

for the completed algebraic closure of K∞, and � = P1(C) − P1(K∞) = C − K∞.
(From now on, C will never be a canonical divisor again.) � has a rigid analytic structure
described in [15], and we call it the Drinfeld upper half-plane. The group GL2(A) acts on
� by fractional linear transformations.

Definition 1. Let � be a congruence subgroup of GL2(A). A function f : � → C is
called a Drinfeld modular form of weight k and type l for �, where k ≥ 0 is an integer and
l is a class in Z/(# det�), if

1. for γ =
(
a b
c d

)
∈ �, f (γ z) = (det γ )−l(cz + d)kf (z);

2. f is rigid analytic on �;
3. f is analytic at the cusps of �: at each cusp f can be written as a power series with a

positive radius of convergence in a (root of) a local parameter at this cusp (this will
be discussed further shortly).

For a congruence subgroup � of GL2(A), we will denote the (finite dimensional) vector
space of Drinfeld modular forms of weight k and type l for this subgroup by Mk,l(�),
the subspace of cusp forms (the forms having at least a single zero at each cusp of �) by
M1

k,l(�), and the subspace of double cusp forms (the forms having at least a double zero
at each cusp of �) by M2

k,l(�). We will define precisely what we mean by the order of
vanishing of a Drinfeld modular form at a cusp at the very end of this section.
Although they are important to this work, we will avoid discussing Drinfeld modules as

much as possible, referring rather the reader to [13] for background reading.We limit our-
selves to defining the Carlitz module and presenting only the barest facts about Drinfeld
modules of rank 2 that are necessary to read the text.

Definition 2. Let L be either a field extension of K or, if p is a prime ideal of A, an
extension of the field Fp = A/p. Further write τ(X) = Xq and let L{τ } ⊂ EndL(Ga) be
the subalgebra generated by τ over L, with commutation relation lτ = τ lq for l ∈ L. A
Drinfeld module of rank r over L is a ring homomorphism φ : A → L{τ } such that for
a ∈ A of degree d,
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φ(a) =
∑

0≤i≤rd
liτ i

with l0 = a and lrd �= 0. The numbers li are called the coefficients of φ.

We say that two Drinfeld modules φ and ψ are isogenous if there exists a nonzero ele-
ment u ∈ EndL(Ga) such that u ◦ φ = ψ ◦ u. If u ∈ L×, then we say that the two modules
are isomorphic over L. One may show that there is a one-to-one correspondence between
Drinfeld modules of rank r over C and rank r A-lattices in C.
In the 1930s, Carlitz studied some polynomials which had properties similar to those

exhibited by the classical cyclotomic polynomials [6]. Reinterpreting his work in the con-
text laid out by Drinfeld, his polynomials are now understood to give the action on C
of a certain Drinfeld module of rank 1. We call this module the Carlitz module and it is
defined by:

ρ(T) = Tτ 0 + τ . (2)

Under the correspondence mentioned above, this Drinfeld module corresponds to a cer-
tain rank 1 A-lattice L = π̃A, where the Carlitz period π̃ ∈ K∞(

q−1√−T) is defined up to
multiplication by an element of F×

q . We choose one such π̃ and fix it for the remainder of
this work. As usual we have the Carlitz exponential function

eA(z) def= z
∏
a∈A
a �=0

(
1 − z

a

)
.

Then, we write

u(z) def= π̃
1

eA(z)
(3)

for the parameter at infinity. This differs from Gekeler’s original notation, who used t(z)
for this function but agrees with the notation used in more recent articles, for example,
by Bosser and Pellarin in [5].
We will also consider Drinfeld modules of rank 2. For a ∈ A, φ a Drinfeld module over

L and L′ a field extension of L, write

φ[ a] (L′) = {x ∈ L′ : φ(a)(x) = 0}
for the a-torsion of φ. When φ is of rank 2 and defined over C, for π(T) a prime
polynomial generating the ideal p of A, we have

φ[π ] (C) ∼= A/p × A/p.

Again, if φ is of rank 2 but is now defined over the algebraic closure Fp of Fp = A/p, we
have

φ[π ] (Fp) =
{
0 in which case we say φ is supersingular, or
A/p in which case we say φ is ordinary.

There are gp + 1 supersingular Drinfeld modules defined over the algebraic closure of
A/p, where

gp
def=
⎧⎨⎩

qd−q
q2−1 if d is odd,
qd−q2
q2−1 if d is even.

(4)
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Remark 4. We use gp to denote the quantity above because it is the genus of the
modular curve X0(p).

As before, let p be a prime ideal of A. For a Drinfeld module φ of rank 2 over K , there
is a notion of good reduction at p: First one must find a Drinfeld module ψ isomorphic
to φ over K , such that ψ has coefficients in A and such that the reduction of ψ modulo
p (obtained by reducing the coefficients modulo p) is a Drinfeld module. If this is possi-
ble and in addition the reduction of ψ modulo p has rank 2 as a Drinfeld module, then
we say that φ has good reduction at p. Furthermore, if the reduction of ψ modulo p is
supersingular, then we say that φ is supersingular at p.
We now present some facts on Drinfeld modular forms for the full modular group

GL2(A). As in the classical case, the algebraic curve YGL2(A) whose associated rigid ana-
lytic space is GL2(A)\� can be compactified by adding a single cusp which we denote by
∞. This will be discussed more rigorously in the next section.
As in [13], we will write gk for the normalized Eisenstein series of weight qk − 1 and

type 0 for GL2(A) and set g = g1 for simplicity. (From now on, we will never use g to
denote the genus of a curve again.) We will also write h for the Poincaré series of weight
q + 1 and type 1 for GL2(A) which was first defined in [16]. It is well known that the
graded C-algebra of Drinfeld modular forms of all weights and all types for GL2(A) is
the polynomial ring C[ g, h] (where each Drinfeld modular form corresponds to a unique
isobaric polynomial), that g has leading term 1, that h has a single zero at ∞ and leading
coefficient −1, and that both g and h have u-series expansions with integral coefficients.
We record here a computation which we will need later and which follows from

knowing that the algebra of Drinfeld modular forms is generated by g and h:

Proposition 1. For q ≥ 3, the dimension of the space of modular forms of weight qd + 1
and type 1 for GL2(A) is equal to gp + 1, and the dimension of its subspace of double cusp
forms is gp, where gp is as in equation (4).

We will also need a slash operator, which we define now. For any x ∈ K×∞, x can be
written uniquely as

x = ζx

(
1
T

)v∞(x)
ux (5)

where ζx ∈ F×
q , and ux is such that v∞(ux − 1) > 0, or in other words ux is a 1-unit at ∞.

We call ζx the leading coefficient of x.
For γ ∈ GL2(K), we have that det γ ∈ K×. By (5), we can write

det γ = ζdet γ

(
1
T

)v∞(det γ )

udet γ .

For simplicity, we write

ζdet γ = ζγ .
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We define a slash operator for γ =
(
a b
c d

)
∈ GL2(K) on a modular form of weight k

and type l by

f |k,l[ γ ]= ζ l
γ

(
det γ
ζγ

)k/2
(cz + d)−kf (γ z). (6)

Note that for γ ∈ GL2(A), we have that det γ = ζγ ; thus if f is modular of weight k and
type l for � and γ ∈ �, then f |k,l[ γ ]= f .

Drinfeld modular forms modulo p

An important tool we will use to study the Weierstrass points of the curve X0(p) is the
theory of Drinfeld modular forms for GL2(A) upon reduction modulo p. Everywhere in
this paper, we will write π(T) ∈ A for a monic prime polynomial of degree d and denote
by p the principal ideal that it generates. For x ∈ K , we write vp(x) for the valuation of x
at p.

Definition 3. Let f = ∑∞
i=0 ciui be a formal series with ci ∈ K . Then, we define the

valuation of f at p to be

vp(f ) = inf
i
vp(ci).

For two formal series f =∑ aiui and g =∑ biui, we write f ≡ g (mod pm) if vp(f −g) ≥
m.

For any u-series f with rational p-integral coefficients, define its filtration modulo p,
denoted wp(f ), to be the smallest integer k such that there exists a modular form f ′ of
weight k for GL2(A) such that f ≡ f ′ (mod p). We write wp(f ) = −∞ if f ≡ 0 (mod p).
As in the classical case, there is a deep connection between supersingular Drinfeldmod-

ules in characteristic p and forms with lower filtration than weight. It is this connection
which we will exploit to refine the connection between the Weierstrass points of X0(p)

and the supersingular locus.
To begin explaining the connection, let again gk be the Drinfeld Eisenstein series of

weight qk −1 and type 0 for GL2(A). As shown in [13], if p is an ideal generated by a prime
polynomial of degree d, we have gd ≡ 1 (mod p). Thus, the form gd has filtration equal to
0, which is strictly less than its weight. We note further that this is the only relation upon
reducing modulo p.
To connect gd to the supersingular Drinfeld modules, we must first define the so-called

companion polynomial to a Drinfeld modular form. In [7], the authors remark that the
fact that the algebra of Drinfeld modular forms for GL2(A) is generated by g and h implies
the following: For k, a positive integer and l a class in Z/(q − 1), define μ(k, l) and γ (k, l)
to be the unique pair of integers such that

μ(k, l) ≡ l (mod q − 1),

0 ≤ γ (k, l) ≤ q,

and k = μ(k, l)(q + 1) + γ (k, l)(q − 1).

(7)
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Then to every Drinfeld modular form of weight k and type l for GL2(A), one can associate
a unique polynomial P(f , x) ∈ C[ x] such that

f = gγ (k,l)hμ(k,l)P(f , j) (8)

where j is the (normalized) j-invariant, j = gq+1

−hq−1 . Since g only has a single zero at the
elliptic point with j = 0, the first consequence of this fact is that any form f of a given
weight k and type l vanishes to order at least γ (k, l) at j = 0. We will call these zeroes the
trivial zeroes of f . The second consequence of this fact is that since h is nonzero on the
Drinfeld upper half-plane, the polynomial P can be thought of as an object which keeps
track of the zeroes of the form f that are not trivial.
If we define the Drinfeld supersingular locus to be the following polynomial:

Sp(x) =
∏

φ defined over Fp
φ supersingular

(x − j(φ)),

then we have

Sp(x) ≡ xγ (qd−1,0)P(gd, x) (mod p),

where γ (qd − 1, 0) is 0 if d is even and 1 if d is odd.
Therefore upon reductionmodulo p, the form gd, which has lower filtration than weight

modulo p, has a single zero at each supersingular point. This fact is an example of a more
general phenomenon:

Proposition 2 (Dobi-Wage-Wang [7]). Assuming the notation above, let f be a Drinfeld
modular form for GL2(A) of weight k and type l with rational p-integral u-series coefficients
and finite filtration wp(f ). Define α = k−wp(f )

qd−1 and a =
⌊

αγ (qd−1,0)q+γ (k,l)
q+1

⌋
. Then, the

polynomial xaP(f , x) is divisible by Sp(x)α in Fp[ x], where Fp is the field A/p.

Proposition 2 when applied to a certain Drinfeld modular for W (z) defined in
Section ‘The modular Wronskian,’ immediately implies Theorem 1. To obtain the more
precise result given in Theorem 3 we will need the following proposition:

Proposition 3. Let f be a Drinfeld modular form of weight k and type l for GL2(A).

1. If d is even, then we have

P
(
fgd, x

) ≡ P(gd, x)P
(
f , x
)

(mod p).

2. If d is odd, then

P
(
fgd, x

) ≡
{

−xP(gd, x)P
(
f , x
)

(mod p) if γ (k, l) = q,
P(gd, x)P

(
f , x
)

(mod p) otherwise.

Proof. The case of d even: Since gd ≡ 1 (mod p), we have f ≡ fgd (mod p). Further-
more, if f is of weight k and type l, then fgd is of weight k + qd − 1 and type l. Using the
statement of Equation (8), we have

gγ (k,l)hμ(k,l)P
(
f , j
) ≡ gγ (k+qd−1,l)hμ(k+qd−1,l)P

(
fgd, j
)

(mod p).

Then,

P
(
fgd, j
) ≡ hμ(k,l)−μ(k+qd−1,l)gγ (k,l)−γ (k+qd−1,l)P

(
f , j
)

(mod p).
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We have μ(k, l) ≡ l ≡ μ(k + qd − 1, l) (mod q − 1), so let N be the integer such that
μ(k + qd − 1, l) − μ(k, l) = N(q − 1). Combining the equations

k = γ (k, l)(q − 1) + μ(k, l)(q + 1)

and

k + qd − 1 = γ (k + qd − 1, l)(q − 1) + μ(k + qd − 1, l)(q + 1),

we obtain that

qd − 1 =
(
γ (k + qd − 1, l) − γ (k, l)

)
(q − 1) + N(q − 1)(q + 1). (9)

Since both γ (k + qd − 1, l) and γ (k, l) are between 0 and q inclusively, then

−q ≤ γ (k + qd − 1, l) − γ (k, l) ≤ q.

If it were the case that

−q ≤ γ (k + qd − 1, l) − γ (k, l) < 0,

then by the uniqueness of the integers μ(qd − 1, 0) and γ (qd − 1, 0) in the Equation (9),
we must have

γ (k + qd − 1, l) − γ (k, l) = γ (qd − 1, 0) − q − 1 = −q − 1,

a contradiction. Therefore,

0 ≤ γ (k + qd − 1, l) − γ (k, l) ≤ q,

and again using uniqueness in Equation (9),

0 = γ (qd − 1, 0) = γ (k + qd − 1, l) − γ (k, l),

and

N(q − 1) = μ(qd − 1, 0).

Then,

P(fgd, j) ≡ h−μ(qd−1,0)P(f , j) (mod p).

Solving for P(gd, j) in

1 ≡ gd = hμ(qd−1,0)P(gd, j)

completes the proof.
The case of d odd: The proof proceeds as in the even case, except that we cannot rule out
the case

−q ≤ γ (k + qd − 1, l) − γ (k, l) < 0.

In that case, we must have

γ (k + qd − 1, l) − γ (k, l) = γ (qd − 1, 0) − q − 1 = 1 − q − 1 = −q,

which forces γ (k, l) = q. Furthermore, we have

μ(qd − 1, 0) = (N − 1)(q − 1),

where N is such that μ(k + qd − 1, l) − μ(k, l) = N(q − 1) as in the even case.
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Putting this together, we have

P
(
fgd, j
) ≡ hμ(k,l)−μ(k+qd−1,l)gγ (k,l)−γ (k+qd−1,l)P

(
f , j
)

(mod p)

≡ h−(N−1)(q−1)−(q−1)gqP
(
f , j
)

(mod p)

Multiplying both sides by

1 ≡ gd = ghμ(qd−1,0)P(gd, j) (10)

gives

P
(
fgd, j
) ≡ gq+1

hq−1 P(gd, j)P
(
f , j
)

(mod p),

and since j = gq+1

−hq−1 , this completes the proof of this case.
If

0 ≤ γ (k + qd − 1, l) − γ (k, l) ≤ q,

using uniqueness in Equation (9), we must have

1 = γ (qd − 1, 0) = γ (k + qd − 1, l) − γ (k, l),

and

N(q − 1) = μ(qd − 1, 0).

Then, we may conclude similarly as in the even case that

P
(
fgd, j
) ≡ g−1h−μ(qd−1,0)P

(
f , j
)

(mod p),

and the result follows using Equation (10) again.

We end this subsection by recalling results from [30] for the convenience of the reader:

Theorem 4 (Theorem 1.1 of [30]). Let q ≥ 3. There is a one-to-one correspondence
between forms of weight 2 and type 1 for �0(p) with rational p-integral u-series coefficients
at ∞ and forms of weight qd + 1 and type 1 for GL2(A) with rational p-integral u-series
coefficients.

Wewill also need a stronger version of Theorem 1.2 from [30] and take this opportunity
to correct a typo in the type of the form Ñ

(
f
)
:

Theorem 5. Let f be a Drinfeld modular form for �0(p) of weight k and type l with
rational, p-integral u-series coefficients at ∞. Suppose further that f is an eigenform of the
Fricke involution. Let

Ñ
(
f
)
(z) = πqdk/2

∏
γ∈�0(p)\GL2(A)

f |k,l[ γ ] .

Then, Ñ
(
f
)
has rational, p-integral u-series coefficients and

Ñ
(
f
) ≡ f 2 (mod p).

Furthermore, Ñ
(
f
)
is a form of weight (qd + 1)k and type 2l.



Vincent Research in theMathematical Sciences  (2015) 2:10 Page 15 of 40

Proof. We first note that the hypothesis in [30] that f have integral u-series coefficients
at ∞ is unnecessary; it suffices that the coefficients be rational and p-integral for all of the
arguments in the paper to work.
Corollary 5.4 of [30] asserts that for f as in the statement of the theorem,

f (z)
∏
λ∈A

degλ<d

f
(
z + λ

π

)
≡ f (z)2 (mod p).

By Proposition 3.9 of [30],

N(f ) =
∏

γ∈�0(p)\GL2(A)

f |k,l[ γ ]= 1
πqdk/2

f
∏
λ∈A

degλ<d

f
(
z + λ

π

)
,

which proves the equivalence modulo p.
Because �0(p) has index qd+1 in GL2(A), the weight of N(f ) is (qd+1)k, and the type is

(qd + 1)l. However, the type of a form for GL2(A) is an equivalence class in Z/(q− 1) and

(qd + 1)l = (qd − 1)l + 2l ≡ 2l (mod q − 1).

Drinfeld modular curves

We now turn our attention to Drinfeld modular curves and more specifically to the family
X0(p).
For � a congruence subgroup of GL2(A), the action of � on the Drinfeld upper half-

plane � by fractional linear transformations has finite stabilizer for each z ∈ �. It follows
thus that the quotient �\� is also a rigid analytic space. Moreover, it is connected and
smooth of dimension one. The curve �\� can be shown to arise from an algebraic curve:

Theorem 6 (Drinfeld [8]). There exists a smooth irreducible affine algebraic curve Y�

defined over C such that �\� and the underlying analytic space Y an
� of Y� are canonically

isomorphic as analytic spaces over C.

We note further that the curve Y� is unique up to isomorphism and is in fact defined
over a finite abelian extension of K , K� . For each Y� , there exists a unique smooth pro-
jective curve X� over K� such that Y� is birationally equivalent to X� . As sets, Y�(C) and
X�(C) differ by finitely many points, which are in one-to-one correspondence with the

points of the set �\P1(K), where γ =
(
a b
c d

)
∈ � acts on (x1 : x2) ∈ P1(K) by

γ · (x1 : x2) = (ax1 + bx2 : cx1 + dx2).

These points are called the cusps of �.

For γ =
(
a b
c d

)
∈ �, we have

d(γ z)
dz

= det γ (cz + d)−2,
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so that for f a modular form for � of weight 2 and type 1, the differential form f (z)dz is
�-invariant. A short computation, presented in [15], shows that it descends to a holomor-
phic differential form on X� if f is a double cusp form. Since GAGA theorems hold for
rigid analytic curves [21,22], we have the following theorem:

Theorem 7 (Goss [18], Gekeler-Reversat [15]). Themap f �→ f (z)dz identifies the space
of double cusp forms of weight 2 and type 1 for � to the space of regular differential forms
on X� .

From this theorem, it follows that the dimension of the space of double cusp forms of
weight 2 and type 1 for � is g� , where g� is the genus of the curve X� . Furthermore, it
follows by a standard argument that all spaces of Drinfeld modular forms of a fixed weight
and type for a congruence group � are finite dimensional.
We will be interested in one family of congruence subgroups and the Drinfeld modular

curves attached to these groups. Recall that π(T) is a monic prime polynomial in A of
degree d generating the ideal p. Then, we may define the congruence subgroups

� = �0(p)
def=
{(

a b
c d

)
∈ GL2(A) | c ≡ 0 (mod p)

}
.

In this case, # det�0(p) = q − 1. From now on, we will denote the affine curve Y�0(p) by
Y0(p) and the projective curve X�0(p) by X0(p) to coincide with classical notation. Both
Y0(p) and X0(p) can be defined over K , but we will most often think of them as curves
over C.
As described in [15], every congruence subgroup corresponds to a certain moduli prob-

lem for Drinfeld modules of rank 2. The problem attached to �0(p) classifies Drinfeld
modules of rank 2 with a distinguished finite flat subgroup-scheme which is cyclic, locally
free of rank qd and contained in the p-torsion. We write M0(p) for the coarse moduli
scheme associated to this problem.
Drinfeld’s work on so-called generalized Drinfeld modules, we may deduce the exis-

tence of a compactification M0(p) of M0(p) over Spec A. We have that X0(p) as a
curve over K is M0(p) ×A K . From [11] and [8], we know that M0(p) has the following
properties:

Theorem 8. • M0(p) → Spec A is proper, normal, flat, and irreducible, of relative
dimension 1.

• M0(p) → Spec A is smooth away from p.
• If d is even,M0(p) is regular. If d is odd,M0(p) has a singularity on the fiber above p

at the supersingular j-invariant j = 0 and is otherwise regular. The singularity is of
type Aq.

The last part of the theorem requires a careful study of the moduli problem ‘in charac-
teristic p’. To obtain it, Gekeler [11] shows that the reduction of X0(p) modulo p is given
by two copies of X0(1) intersecting transversally at the supersingular points and inter-
changed by the Fricke involution Wp. The Fricke involution can be defined as follows: if
φ is a Drinfeld module and H is a �0(p)-level structure, so that (φ,H) is a point ofM0(p),
thenWp(φ,H) = (φ/H ,φ[ p] /H).
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Remark 5. From Theorem 8 above, we have that X0(p) is defined over K with function
fieldK(j, jp). In fact, because themoduli problem associated to�0(p) is defined overA, the
space of holomorphic differentials on X0(p) has a basis that is defined over A. Therefore,
the space of Drinfeld double cusp forms of weight 2 and type 1 for �0(p) has a basis of
forms with integral coefficients. It also follows from such considerations that Drinfeld
modular forms on �0(p) with rational u-series coefficients have bounded denominators.

From its action on pairs (φ,H), we can also see that the Fricke involution Wp is K-

rational. We note here that the analytic avatar ofWp is the action of the matrix
(
0 −1
π 0

)
on �.
Since X0(p) is smooth, its arithmetic and geometric genera are the same and do not

depend on the field over which we consider the curve. We denote the genus of X0(p) by
gp, and it is given by

gp =
⎧⎨⎩

q(qd−1−1)
q2−1 if d is odd,

q2(qd−2−1)
q2−1 if d is even.

(As promised, this is the same gp that appears in Equation (4).) This fact can be obtained
either by relating gp to h1(�0(p))\T ) as in [14], or by working directly on the Drinfeld
modular curve as in [10].
From [10], we also note that representatives for the two distinct equivalence classes

of �0(p)\P1(K) are (0 : 1) and (1 : 0), so that X0(p) has two cusps, denoted 0 and ∞,
respectively. Both of these cusps are K-rational points of X0(p). From the same source,
we have that X0(p)(C) has no elliptic point when d is odd and two elliptic points when
d is even. When d is even, both elliptic points have stabilizer of order q + 1 in �̃0(p) =
�0(p)/ (�0(p) ∩ Z(GL2(A))).

Expansions at the cusps

Some care is needed in discussing the behavior of Drinfeld modular forms at the cusps,
so we delve into this topic now. We focus on the groups GL2(A) and �0(p) as this is all we
will need here and leave the general case to [15] or [12].
Let us first consider the case of GL2(A). The set GL2(A)\P1(K) consists of a single

element, and we choose (1 : 0) as the representative of this element. The stabilizer �∞ of
(1 : 0) in GL2(A) is the set of all upper triangular matrices. This set contains a maximal
subgroup �un∞ :

�un∞ =
{(

1 a
0 1

)
: a ∈ A

}
,

and also cyclic transformations
(
a 0
0 d

)
for a, d ∈ F×

q . The image of this group of cyclic

transformations in PGL2(A) has size q − 1, the size of F×
q .

Recall the function u defined in Equation (3). Now writing

�c = {z ∈ � : infx∈K∞ |z − x| ≥ c},
we have that u identifies �un∞ \�c with a pointed ball Br − {0} of radius r for some small
r [15]. It can be shown that there is a constant c0 such that for c ≥ c0 and γ ∈ GL2(A),
�c ∩ γ (�c) �= ∅ implies that γ ∈ �∞. Thus for such a c,
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Brq−1 − {0} ∼= �∞\�c ↪→ GL2(A)\�
u(z)q−1 ←� z �→ z

is an open immersion of analytic spaces. Thus, u(z)q−1 is a uniformizer at the cusp ∞ for
GL2(A)\�.
The subtlety involved in defining the u-series expansion of a Drinfeld modular form is

that we allow them to have non-trivial type l and thus they are not invariant under the
full �∞ but rather only under �un∞ . This is why in general, a Drinfeld modular form of
non-trivial type will have a u-series expansion rather than a uq−1-series expansion.
There is also a second subtlety that comes into play. For a general congruence subgroup

�, to discuss the behavior of a function f at a cusp (a : b) ∈ �\P1(K), one first fixes an
element γ ∈ GL2(K) such that γ · (1 : 0) = (a : b). Then, the holomorphy properties and
order of vanishing of f at the cusp corresponding to (a : b) are the properties of f ◦ γ at
∞ and do not depend on the choice of (a : b) in its equivalence class modulo � and on
the choice of γ sending (1 : 0) to (a : b). However, for t a parameter at ∞ for the group �,
one might wish to define the t-series expansion of f at the cusp corresponding to (a : b)
as that of f ◦ γ at ∞. This is not well defined, as the coefficients of the expansion will
depend on the choice of (a : b) and γ .
To remove any ambiguity, in the case of GL2(A), we once and for all declare that the

expansion of f at ∞ is its u-series expansion, with u as defined in Equation (3).
We now consider �0(p). The cusp in the �0(p)-equivalence class of (1 : 0), which we

denote by ∞, has stabilizer �∞ in �0(p), where �∞ is again the set of all upper-triangular
matrices in GL2(A). Because of this, the same argument as above shows that uq−1 is a
parameter at ∞, and that modular forms for �0(p) have a u-series expansion at ∞. As
in the case of GL2(A), we fix once and for all that the expansion of f at ∞ is its u-series
expansion.
We now consider the other cusp of X0(p), which we will denote by 0. To fix a well-

defined choice of u-series expansion at 0, we fix (0 : 1) as the representative of the other
equivalence class, and the matrix

Wp =
(
0 −1
π 0

)
as the matrix sending (1 : 0) to (0 : 1). Thus, the u-series expansion of a Drinfeld modular
form of weight k and type l at the cusp 0 is defined to be that of the form

f |k,l[Wp]= πk/2(πz)−kf
(−1

πz

)
at ∞.
In any case, for a Drinfeld modular form with u-series expansion

∑∞
i=0 aiu(z)i at a cusp

c, we will write ordc(f ) for the least i ≥ 0 such that ai �= 0 and call this the order of
vanishing of f at c.

Hyperderivatives and quasimodular forms
In this section, we present the theory necessary to study the action of differential oper-
ators on the algebra of Drinfeld modular forms. These operators will not preserve
modularity, which naturally leads us to consider a larger set of rigid analytic functions
on �, the Drinfeld quasimodular forms. Throughout, we will use ‘analytic’ to mean ‘rigid
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analytic’. We will say that an analytic function f on � is ‘analytic at ∞’ to mean that there
are constants ai ∈ C, i ∈ Z≥0 such that

f (z) =
∞∑
i=0

aiu(z)i

for z such that infx∈K∞ |z − x| is large.

Drinfeld quasimodular forms

Definition 4. An analytic function f : � → C is called a Drinfeld quasimodular form
of weight k, type l, and depth m for GL2(A), where k ≥ 0 andm ≥ 0 are integers and l is a
class in Z/(q− 1). If there exist analytic functions f1, f2, . . . , fm on � which are A-periodic

and analytic at infinity such that for γ =
(
a b
c d

)
∈ GL2(A), we have

f (γ z) = (det γ )−l(cz + d)k
m∑
j=0

fj(z)
(

c
cz + d

)j
.

For a given quasimodular form f �= 0, the weight, type, and polynomial
∑m

j=0 fj(z)Xj

are uniquely determined by f as shown in [4]. Furthermore, as can be seen by choosing
γ to be the identity matrix, we necessarily have f = f0. Finally, every modular form is a
quasimodular form of depth 0 and vice-versa.
An important example of a Drinfeld quasimodular form is the function E introduced in

[13]:

E def= 1
π̃

∑
a∈Fq[T]
amonic

⎛⎝ ∑
b∈Fq[T]

a
az + b

⎞⎠ ,

which can be shown to be of weight 2, type 1, and depth 1. Its importance is reflected in
the fact that the graded C-algebra of Drinfeld quasimodular forms of all weights, types,
and depths is the polynomial ring C[ g, h,E], where each form corresponds to a unique
isobaric polynomial.
For a more in-depth discussion of Drinfeld quasimodular forms, we refer the interested

reader to the work of Bosser and Pellarin [4] and [5].

Higher derivatives

In [28], Uchino and Satoh consider the action of the Hasse derivatives on analytic
functions on �. We present here the results we need from their paper without proof.
We will use the fact that C is a complete field with a non-Archimedean dense valuation

(which we recall is the unique extension of v∞(x) = − deg(x) from K to C) and that �

is an open set. We will work in this section with analytic functions on � and denote the
space of these functions by An(�). For f ∈ An(�) such that f = ∑∞

i=0 ci,w(z − w)i in a
neighborhood of w ∈ �, we define the nth hyperderivative of f at w to be

Dn
(
f
)
(w) = cn,w. (11)

As remarked above, this is simply the Hasse derivative.
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For our purposes, it will be important that our differential operator preserves K-
rationality of the u-series coefficients, whichDn does not. However, the operator

Dn
def= 1

(−π̃)n
Dn (12)

does [4], and so we will use this normalized operator.

Remark 6. The operator−D1 was also studied by Gekeler in [13], where it was denoted
by �, in analogy with Ramanujan’s �-operator in the classical setting. This explains
the discrepancy in sign between this work and the cited paper in our statement of
Proposition 8 below.

We have the following facts:

Proposition 4 (Uchino-Satoh [28]). For f ∈ An(�) and w ∈ � such that f =∑∞
i=0 ci,w(z − w)i near w, we have:

1. Formally, in a neighborhood of w,

Dnf (z) = 1
(−π̃)n

∞∑
i=0

(
i
n

)
ci,w(z − w)i−n

and this has the same radius of convergence as
∑∞

i=0 ci,w(z − w)i.
2. In fact, Dnf is analytic on �.
3. The system of derivatives {Dn} is a higher derivation; in other words, it satisfies:

(a) D0f = f ,
(b) Dn is C-linear,
(c) for f and g in An(�), Dn(fg) =∑n

i=0 DifDn−ig.

4. This higher derivation is iterative: for all integers i ≥ 0 and j ≥ 0, we have:

Di ◦ Dj = Dj ◦ Di =
(
i + j
i

)
Di+j.

5. This higher derivation has a chain rule property: For each n ≥ 1 and each
1 ≤ i ≤ n, there exist maps Fn,i from An(�)n+1−i to An(�) such that:

(a) for f and g in An(�) such that the composition f ◦ g is defined, we have

Dn(f ◦ g) =
n∑

i=1
Fn,i(D1g, . . . ,Dn+1−ig)(Dif ) ◦ g,

(b) and if n ≥ 2, then Fn,1 is a C-linear map.

In the case where g is a linear fractional transformation, [4, Lemma 3.3] gives the
following more precise formula for the maps Fn,i that appear in the chain rule property:

Lemma 1. Let f : � → C be an analytic function. For all n ≥ 1, z ∈ �, and γ =(
a b
c d

)
∈ GL2(A), we have

Dn(f ◦γ )(z)=(−1)n
(

c
cz + d

)n n∑
i=1

(−1)i
(
n−1
n−i

)(
c(cz+d)

det γ

)−i 1
(−π̃)n−i (Dif )

(
az + b
cz + d

)
.
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We note here that since the Dn’s are iterative and using Lucas’s theorem, we have that

Dn = 1
n0! . . . ns!

Dns
ps ◦ . . . ◦ Dn1

p ◦ Dn0
1 , (13)

for n = nsps + · · · + n1p + n0 the representation of n in base p, with 0 ≤ nj ≤ p − 1 for
each j, and where the exponent of nj on Dpj denotes the nj-fold composition.
As remarked at the beginning of this section, the Dn’s do not preserve modularity, but

they do preserve quasimodularity, as shown in [4]. For our purposes, we shall only need
this weaker version of their more general theorem:

Proposition 5. Let f be a modular form of weight k and type l for GL2(A). Then for all

n ≥ 0 Dnf is A-periodic and analytic at ∞, and for γ =
(
a b
c d

)
∈ GL2(A), we have

Dnf (γ z) = (cz + d)k+2n(det γ )−l−n
n∑

j=0

(
n + k − 1

j

)Dn−jf (z)
(−π̃)j

(
c

cz + d

)j
. (14)

In other words, the function Dnf is a quasimodular form of weight k + 2n, type l + n, and
depth n.

Integrality and vanishing results

For i ∈ N, write [ i]= Tqi − T , the product of all monic prime polynomials of degree
dividing i, di =[ 1]qi−1 · · · [ i− 1]q [ i], the product of all monics of degree i, and d0 = 1. In
[4], Bosser and Pellarin obtain the following result on the action of theDn’s on the u-series
coefficients of quasimodular forms:

Proposition 6. Let f ∈ An(�) be analytic at ∞ with u-series expansion f (z) =∑
i≥0 aiui. Then for all n ≥ 0 we have Dnf (z) =∑i≥2 bn,iui, where

bn,i =
i−1∑
r=1

(−1)n+r
(
i − 1
r

)⎛⎜⎜⎝ ∑
n1,...,nr≥0

qn1+···+qnr=n

1
dn1 · · · dnr

⎞⎟⎟⎠ ai−r . (15)

From this explicit formula, we can clearly see that

Corollary 1. For n < qe, the operator Dn preserves p-integrality of the u-series
coefficients for all prime ideals p generated by a prime polynomial of degree ≥ e.

Proof. Let e be a positive integer. If n < qe, then we have nj < e for each nj appearing in
the sum defining the bn,i’s in Equation (15). Since dnj is only divisible by primes of degree
≤ nj, for n < qe Dn introduces only denominators of degree < e.

From this, it easily follows that

Corollary 2. Suppose that f ≡ f ′ (mod p) for p generated by a prime of degree d. Then,
Dn( f ) ≡ Dn( f ′) (mod p) for n < qd.

We will also need:
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Proposition 7. Let w ∈ � and f ∈ An(�), then ordwDn( f ) ≥ ordw( f ) − n. When
n ≤ ordw( f ), we have equality if and only if

(ordw(f )
n
) �≡ 0 (mod p).

Proof. This follows by Proposition 4 part 1.

A computational tool

The action of Dn quickly becomes difficult to compute explicitly as n grows. A better-
behaved operator was defined by Serre in the classical case (see [20]), and we will use its
analogue in the Drinfeld setting. Let n and d be non-negative integers. The nth Serre’s
operator of degree d is defined by the formula:

∂(d)
n f = Dnf +

n∑
i=1

(−1)i
(
d + n − 1

i

)
(Dn−if )(Di−1E). (16)

In [5], the authors show that ∂
(k)
n sends Drinfeld modular forms of weight k and type l to

Drinfeld modular forms of weight k + 2n and type l + n.
For simplicity, we will denote the operator ∂

(k)
1 by ∂ and make the convention that if f is

a Drinfeld modular form of weight k, then ∂(f ) = ∂
(k)
1 (f ). Then for f a Drinfeld modular

form of weight k,

∂(f ) = D1(f ) − kEf .

We have the following:

Proposition 8 (Gekeler [13]).

1. Let fi for i = 1, 2 be Drinfeld modular forms of weight ki, then
∂(f1f2) = ∂(f1)f2 + f1∂(f2).

2. ∂(g) = −h and ∂(h) = 0.

This proposition allows us to compute the action of ∂ on all Drinfeld modular forms,
since g and h generate the algebra of Drinfeldmodular forms. Furthermore, sinceDn(E) =
En+1 for 1 ≤ n < p, a tedious but easy computation shows that for a Drinfeld modular
form f of weight k, we have

∂nf = n! ∂(k)
n f (17)

for 1 ≤ n < p, where again the exponent on ∂ on the lefthand side denotes n-fold com-
position of the ∂ operator. This relation in fact holds for p ≤ n < q as well, which simply
implies that the n-fold composition of ∂ beyond ∂p−1 is identically zero, as expected in
characteristic p.

Weierstrass points on X0(p)

Previous results

As discussed in Section ‘Weierstrass points in characteristic p’, crucial to the study of
Weierstrass points in positive characteristic is the knowledge of the curve’s canonical gap
sequence.

Proposition 9 (Armana, personal communication). Let p be a prime ideal generated by
a polynomial of degree at least 3 in Fq[T]. Then, X0(p) has a classical gap sequence.
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Proof. Recall from Section ‘Weierstrass points in characteristic p’ that if X is a smooth
projective irreducible curve defined over an algebraically closed field that has a classical
gap sequence, then the osculation points and the Weierstrass points of X coincide; if X
does not have a classical gap sequence, then every point of X is an osculation point.
Using an argument analogous to Ogg’s argument in the classical case, Armana [2] shows

the following: Let P be a K-rational point of X0(p) such that its unique extension to a
section of M0(p) over A is not supersingular at p, and denote by c ≥ 1 the smallest pole
number at P. Then c ≥ 1 + gp, where, as before, gp is the genus of X0(p).
We repeat her argument here since [2] is in French: Let P be such a point, and let c ≥ 1

be an integer such that c is a pole number of P; recall that this means that there is a
function F on X that has a pole of order c at P and is regular elsewhere. Since P is K-
rational, we may suppose that F is defined over K as well. The Fricke involution Wp of
X0(p) is also defined over K , and we write P′ = Wp(P); P′ is also K-rational. Up to adding
to F a constant belonging to K , we may suppose that f (P′) = 0.
As stated in Section ‘Drinfeld modular curves,’ the reduction of X0(p) modulo p is given

by two copiesZ andZ′ ofX0(1) intersecting transversally at the gp+1 supersingular points
over the algebraic closure of A/p and interchanged by the Fricke involutionWp. Without
loss of generality, suppose that the reduction modulo p of P, which we denote P̃, belongs
to Z and the reduction modulo p of P′, denoted P̃′, belongs to Z′. Up to multiplication by
a constant in K×, we may suppose that the reduction modulo p of F , F̃ , is reduced and
non-constant.
On Z′, F̃ has a zero at P̃′ and no pole since P̃ is not supersingular and therefore does

not belong to Z′. Therefore, F̃ is identically zero on Z′. In particular, F̃ vanishes at each
supersingular point. On Z, the restriction of F̃ has at least gp + 1 zeroes and at most a
pole at P of order c. Since the degree of the divisor of a function is zero, it follows that
gp + 1 ≤ c.
It suffices now to notice that such a point is not an osculation point of the curve. Either

one of the cusps of X0(p) satisfies the conditions on the point P above. Thus, X0(p) has a
point that is not an osculation point, and the result follows.

Remark 7. The requirement that p be generated by a prime polynomial of degree at
least 3 ensures that X0(p) has genus at least 2. (See Equation (4) for an expression giving
the genus of X0(p) as it depends on the degree d of the prime polynomial generating p

and Remark 2 for an explanation of the requirement that the genus be at least 2.)

It is immediate from the proof of Proposition 9 above that the K-rational Weierstrass
points of X0(p) have supersingular reduction modulo p. A stronger result can be deduced
using the following theorem:

Theorem 9 (Baker [3]). Let R be a complete discrete valuation ring with algebraically
closed residue field k. Let X be a smooth, proper, geometrically connected curve defined
over the fraction field of R, and denote by X a proper model for X over R. (In other words,X
is a proper flat scheme over SpecR such that its generic fiber is X.) Suppose that the special
fiber ofX consists of two genus 0 curves intersecting transversally at 3 or more points. Then,
every Weierstrass point of X defined over the fraction field of R specializes to a singular
point of the special fiber of X.
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The proof of this theorem is a corollary of a specialization lemma proved in the same
paper, which roughly says that the dimension of a linear system can only increase under
specialization from the curve X to the dual graph of the model X.
Let Kun

p denote the maximal unramified extension of the field Kp, where Kp the com-
pletion of K at p. Baker’s theorem implies that the Kun

p -rational Weierstrass points of
X0(p) have supersingular reduction modulo p since M0(p) satisfies the hypothesis of the
theorem when considered as a scheme over the ring of integers of Kun

p .

Themodular Wronskian

It is natural to ask whether it is possible to say more about the connection between the
supersingular locus at p and the Weierstrass points of X0(p), as was done in the classical
case by Rohrlich [25] and Ahlgren and Ono [1]. To refine the connection, we now develop
the ideas of Section ‘Weierstrass points in characteristic p’ for the curve X0(p) over C
using Drinfeld modular forms, as Rohrlich did in the classical setting.
We consider the rigid analytic structure on X0(p), so that we can compute with Drinfeld

modular forms. For ease of reading, we will continue to write analytic below to mean
rigid analytic. An analytic function without poles will be a holomorphic function, and an
analytic function possibly with poles will be said to be meromorphic.
We first note that GAGA theorems hold for rigid analytic geometry [21,22]. More pre-

cisely, we will need the following: Let X be a smooth projective algebraic curve defined
over a complete non-Archimedean field k of positive characteristic p, and let Xan be the
rigid analytic space associated to X. (See for example [9] for the construction of Xan.)
Then, there is an equivalence of category between the algebraic coherent sheaves on X
and the analytic coherent sheaves on Xan. Using this correspondence, we will associate to
an algebraic coherent sheaf F on X an analytic coherent sheaf denoted Fan on Xan.
We note that the sets of points (throughout, we will consider only C-valued points) of

X and Xan coincide, so that we will not make a distinction between a divisor on X and a
divisor on Xan. We denote by O the sheaf of algebraic regular functions on X and by O
the sheaf of holomorphic functions on Xan.
The linear space L(D) associated to a divisor D on X is the space of global sections of

an algebraic sheaf which we will also denote by L(D). The sheaf L(D) is coherent and thus
corresponds to a sheaf L(D)an on Xan.
Because the operation ∗an commutes with duals and tensor products, L(D)an is none

other than L(D), the subsheaf of meromorphic functions M on Xan such that for U an
open set of Xan, we have

L(D)(U) = {f ∈ M(U) |[ f ]≥ −D|U} ∪ {0}.
In particular, by GAGA, the space of global sections of L(D) is isomorphic to the space

of global sections of L(D), and for a point P of Xan, we may instead consider the sequence
of spaces

k = L(0)(Xan) ⊆ L(P)(Xan) ⊆ L(2P)(Xan) ⊆ L(3P)(Xan) ⊆ . . .

Then, L((n − 1)P)(X) = L(nP)(X) if and only if L((n − 1)P)(Xan) = L(nP)(Xan), so that
the gap sequences can be computed analytically.
Denote by Ccan a canonical divisor on X. Arguing as in the algebraic case, if j is a

canonical order at P, there is F ∈ L(Ccan)(Xan) such that vP(F) = j − vP(Ccan).
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We now start our work on X0(p) in earnest. Our task now is to define a Drinfeld mod-
ular form W (z) for �0(p) whose divisor will capture information about the Weierstrass
points ofX0(p). We note that since the cusps ofX0(p) are notWeierstrass points, to obtain
our main result, it is enough to consider the divisor of W (z) away from the cusps. In
Section ‘The order of vanishing of W (z) at the cusps,’ we will collect what we know of
the divisor of W (z) at the cusp ∞. We recall that Y0(p) denotes the affine curve whose
C-points are exactly those of X0(p) but with the cusps excluded.
We first compute the divisor of dz away from the cusps, where z is a parameter on�: Let

P ∈ Y0(p) and choose τ ∈ � to be a representative of P in the Drinfeld upper half-plane.
Throughout, we write eτ for the order of the stabilizer of τ in

�̃0(p) = �0(p)/�0(p) ∩ Z(GL2(A)).

Then, we may choose t = (z − τ)eτ as an analytic parameter at P. We have

dz = 1
eτ

t(eτ −1)/eτ dt

(eτ is either 1 or q + 1 [15] so it is prime to the characteristic p of C) and so dz has a pole
of order

eτ − 1
eτ

at τ .

Proposition 10. Let P be a point on Y0(p), and write j0(P) = 0 and (j1(P), . . . , jgp−1(P))

for the canonical orders at P. Choose τ ∈ � to be a representative of P in the Drinfeld
upper half-plane, and write eτ for the order of the stabilizer of τ in �̃0(p). Then, there is a
basis {fi}gp−1

i=0 of M2
2,1(�0(p)) such that:

ordτ (fi) = eτ ji(P) + eτ − 1.

for each i.

Proof. Fix a point P on Y0(p), and let s be a parameter at P. We choose as our
canonical divisor the divisor [ ds]. There is a basis {F0, . . . , Fgp−1} of L([ ds] ) such that
ordP(Fi) = ji(P). Furthermore, {Fids} is a basis for the space of analytic regular differ-
entials H0(X0(p)an,�1

an) on X0(p). Because of the correspondence between the space
M2

2,1(�0(p)) of double cusp forms of weight 2 and type 1 for �0(p) and the space of ana-
lytic regular differentials on X0(p), we have that there is a basis {fi} for M2

2,1(�0(p)) such
that fi(z)dz = Fids. In particular, ordP(fi(z)dz) = ordP(Fids) = ordP(Fi) = ji(P).
We now use the fact that for P ∈ Y0(p), τ ∈ � a representative of P in the Drinfeld

upper half-plane and a Drinfeld modular form f , we have

ordP(f ) = ordτ (f )
eτ

.

Then,

ordP(fi(z)dz) = ordP(fi) + ordP(dz) = ordτ (fi)
eτ

− eτ − 1
eτ

,

and the result follows.
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Definition 5. For any basis {f0, f1, . . . fgp−1} ofM2
2,1(�0(p)), we define

W
(
f0, . . . , fgp−1

) =

∣∣∣∣∣∣∣∣
f0(z) D1(f0(z)) . . . Dgp−1(f0(z))
...

...
fgp−1(z) D1(fgp−1(z)) . . . Dgp−1(fgp−1(z))

∣∣∣∣∣∣∣∣ ,
where Dn is the normalized Hasse derivative introduced in Section ‘Hyperderivatives and
quasimodular forms’. This is a modular form of weight gp(gp + 1) and type gp(gp+1)

2 for
�0(p).

If
{
f0, . . . fgp−1

}
and
{
f ′
0, . . . f ′

gp−1

}
are two bases forM2

2,1(�0(p)), thenW
(
f0, . . . , fgp−1

)
= aW

(
f ′
0, . . . , f ′

gp−1

)
for 0 �= a ∈ C.

Lemma 2. There exists a basis
{
f0, . . . , fgp−1

}
of M2

2,1(�0(p)) with integral u-series coef-
ficients at ∞ such that W ( f0, . . . , fgp−1) has rational, p-integral u-series coefficients at ∞
and

vp(W ( f0, . . . , fgp−1)) = 0.

Proof. By Remark 5, there is a basis
{
f1, . . . , fgp

}
for the space M2

2,1(�0(p)) that has
integral u-series coefficients at ∞.
When computingW ( f1, . . . , fgp), we will compute Dn for n ≤ gp − 1. From the explicit

formula (4), we have gp ≤ 2qd−2, so that n ≤ 2qd−2 − 1 < qd . In this case, Proposition 1
says that Dn preserves p-integrality of the u-series coefficients, so W ( f1, . . . , fgp) has
rational, p-integral u-series coefficients.
Suppose that

vp(W ( f0, . . . , fgp−1)) > 0.

Then, there exist a0, . . . , agp−1 with each ai ∈ A such that

a0f0 + . . . + agp−1fgp−1 ≡ 0 (mod p),

and for at least one i such that 0 ≤ i ≤ gp − 1,

ai �≡ 0 (mod p).

Without loss of generality, suppose that

a0 �≡ 0 (mod p).

Then, we have

vp
(
f0 + 1

a0
(
a1f1 + . . . + agp−1fgp−1

)) = m > 0,

for somem ∈ Z. Putting

f ′
0 = 1

πm

(
f0 + 1

a0
(
a1f1 + . . . + agp−1fgp−1

))
,

we have that f ′
0 has integral u-series coefficients at ∞, W ( f ′

0, f1, . . . fgp−1) has rational,
p-integral u-series coefficients at ∞, and

vp(W ( f0, . . . , fgp−1)) > vp(W ( f ′
0, . . . , fgp−1)).
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If

vp(W ( f ′
0, . . . , fgp−1)) > 0,

we may repeat the procedure above. We can continue this process until the valuation is
0.

Definition 6. As a consequence of Lemma 2, there is a unique Drinfeld modular form
W ( f0, . . . , fgp−1) such that

vp(W ( f0, . . . , fgp−1)) = 0

and the leading coefficient of W ( f0, . . . , fgp−1) is a power of π . We denote this form by
W (z) and call it themodular Wronskian of X0(p).

We note that the forms {f0, . . . , fgp−1} which give us W (z) can be chosen to have
rational, p-integral u-series coefficients at ∞.
We are interested inW (z) because of its relation to the Weierstrass points of X0(p):

Theorem10. Let (n1, . . . , ngp) = (1, . . . , gp) denote the canonical gap sequence of X0(p),
P be a point of Y0(p), and (n1(P), . . . , ngp(P)) be the gap sequence at P. Then, we have

ordP
(
W (z)(dz)gp(gp+1)/2

)
≥

gp∑
i=1

(ni(P) − ni).

In addition, when P is not an elliptic point nor a Weierstrass point, we have equality:

ordP
(
W (z)(dz)gp(gp+1)/2

)
= 0.

Proof. Let P be a point on Y0(p), and choose a basis {fi} of M2
2,1(�0(p)) that satisfies

the conclusion of Proposition 10. We also continue to use the notation introduced in the
statement of Proposition 10. Then

ordP
(
W (f0, . . . , fgp−1)(dz)gp(gp+1)/2

)
= ordP

(
W (z)(dz)gp(gp+1)/2

)
,

so we may work withW (f0, . . . , fgp−1) for convenience.
Choose τ ∈ � to be a representative of P in the Drinfeld upper half-plane. By

Proposition 7, for k = 0, . . . , gp − 1, we have that

ordτ (Dk(fl)) ≥ eτ jl(P) + eτ − 1 − k

with equality if and only if
(eτ jl(P)+eτ −1

k
) �≡ 0 (mod p). When computing the determi-

nant W (f0, . . . , fgp−1), we will be adding terms all of whose order of vanishing at τ is
≥∑gp−1

i=0 (eτ ji(P) − i + eτ − 1). Thus,

ordτW ( f0, . . . , fgp−1) ≥
gp−1∑
i=0

(eτ ji(P) − i + eτ − 1).

Since X0(p) has canonical orders (j1, . . . , jgp−1) = (1, . . . , gp − 1) and

gp∑
i=1

(ni(P) − ni) =
gp−1∑
i=1

(ji(P) − ji),
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for any point P on X0(p), we have

gp−1∑
i=0

(eτ ji(P) − i + eτ − 1) = eτ
gp∑
i=1

(ni(P) − ni) + gp(gp + 1)
2

(eτ − 1).

Thus,

ordP
(
W (f0, . . . , fgp−1)(dz)gp(gp+1)/2

)
≥

gp∑
i=1

(ni(P) − ni) + gp(gp + 1)
2

eτ − 1
eτ

− gp(gp + 1)
2

eτ − 1
eτ

=
gp∑
i=1

(ni(P) − ni).

In the case where P is not elliptic and P is not a Weierstrass point, the terms on the
diagonal of W (f0, . . . , fgp−1) have order of vanishing exactly 0, and all of the terms below
the diagonal have order of vanishing strictly greater than 0. Thus, ordτW (f0, . . . , fgp−1) =
0 =∑gp

i=1(ni(P) − ni).

The significance of the previous theorem is that away from the cusps, the divisor

[W (z)]+gp(gp + 1)
2

[ dz]

is the modular avatar of the invariant divisor w constructed by Stöhr and Voloch [27].
Consequently, we make the following definition:

Definition 7. The (modular) Weierstrass weight of a point P on Y0(p) is

wt(P) = ordP
(
W (z)(dz)gp(gp+1)/2

)
.

Finally, to apply Theorem 5, we will need:

Proposition 11. Suppose that q is odd. Then, W (z) is an eigenform of the Fricke
involution.

Proof. Since we are in odd characteristic, the Fricke involution is diagonalizable. Let
{f1, . . . , fgp} be a basis of eigenforms of Wp of the space M2

2,1(�0(p)), say with fi|[Wp]=
λifi.
We compute

W (f0, . . . , fgp−1)

(−1
πz

)
=

∣∣∣∣∣∣∣∣
f0
(−1

πz
)

(D1f0)
(−1

πz
)

. . . (Dgp−1f0)
(−1

πz
)

...
...

fgp−1
(−1

πz
)

(D1fgp−1)
(−1

πz
)

. . . (Dgp−1fgp−1)
(−1

πz
)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
λ0πz2f0(z) (D1f0)

(−1
πz
)

. . . (Dgp−1f0)
(−1

πz
)

...
...

λgp−1πz2fgp−1(z) (D1fgp−1)
(−1

πz
)

. . . (Dgp−1fgp−1)
(−1

πz
)
∣∣∣∣∣∣∣∣ .
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By Proposition 1, we have for each i and n:

Dn

(
fi
(−1

πz

))
= z−n

n∑
j=1

(−1)j
(
n − 1
n − j

)
1

(πz)j
1

(−π̃)n−j (Djfi)
(−1

πz

)
. (18)

Furthermore using the product rule, we have

Dn
(
λiπz2fi(z)

) = λiπ
(
z2(Dnf )(z) + 2z(Dn−1f )(z) + (Dn−2f )(z)

)
. (19)

Combining Equations (18) and (19) and using induction on n, we obtain that

(Dnfi)
(−1

πz

)
= (−1)nλiπn+1z2n+2(Dnfi)(z) + λi

⎛⎝n−1∑
j=0

An,j(π , z)(Dnfi)(z)

⎞⎠ ,

where An,j is a polynomial that depends only on n and j. Therefore, we may successively
add to column Cn linear combinations of earlier columns to obtain

W (f0, . . . , fgp−1)

(−1
πz

)
= | λiπn+1z2n+2(Dnfi)(z) |,

where 0 ≤ i ≤ gp − 1 indexes the rows and 0 ≤ n ≤ gp − 1 indexes the columns of the
matrix.
Pulling out the constant λi from each row and πn+1z2n+2 from each column gives

W (f0, . . . , fgp−1)

(−1
πz

)
=
⎛⎝gp−1∏

i=0
λi

⎞⎠π gp(gp+1)/2zgp(gp+1)W (f0, . . . , fgp−1)(z).

Since W (z) is a constant multiple of W (f0, . . . , fgp−1)(z), we conclude that W (z) is an
eigenform of the Fricke involution with eigenvalue

∏gp−1
i=0 λi.

Proof of Theorem 1
We are now in a position to prove our main theorem.
For simplicity throughout this section, we will write

W = Ñ(W ) = πqdk/2
∏

γ∈�0(p)\GL2(A)

W |k,l[ γ ] , (20)

which is the form appearing in the statement of Theorem 5. It has weight (qd+1)gp(gp+1)
and type gp(gp + 1). We also write

Fp(x)
def=

∏
P∈Y0(p)

(x − j(P))wt(P). (21)

We note that this is a polynomial since only finitely many points P have wt(P) �= 0, where
wt(P) is as in Definition 7, and that we have excluded the cusps from consideration in this
product, so that the quantity j(P) is not infinite.
The strategy to prove Theorem 1 is to relate the companion polynomial ofW(z) to the

polynomial Fp(x). Then applying Theorems 4 and 5 to W (z), we show that W has lower
filtration than weight, and conclude that its divisor is supported on all of the supersingular
locus.

Theorem 11. Let W(z) be as in Equation (20). Let P(W , x) be the companion polyno-
mial of the formW(z) defined in Equation (8). Then,

P(W , x) = xε(d)Fp(x).

for
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ε(d) =
{

1
q+1 (qgp(gp + 1) − γ ((qd + 1)gp(gp + 1), gp(gp + 1))) if d is even,
1

q+1γ ((qd + 1)gp(gp + 1), gp(gp + 1)) if d is odd.

Proof. Our strategy to relate P(W , x) to Fp(x) is to first relate the Weierstrass weight
wt(P) of a point to the order of vanishing at τ ofW (z), where τ is a representative of P in
the upper half-plane. We then relate the order of vanishing ofW(z) at τ0 ∈ � to the order
of vanishing ofW (z) at points τ that are GL2(A)-equivalent to τ0.
Let τ be any element of the Drinfeld upper half-plane �, and let Pτ be the point on

Y0(p) corresponding to τ . Further, let eτ be the order of the stabilizer of τ in �̃0(p). Then,
we have

1
eτ

ordτW (z) = ordPτ

(
W (z)(dz)gp(gp+1)/2

)
+ gp(gp + 1)

2

(
1 − 1

eτ

)
.

In the case where Pτ is not elliptic, since eτ = 1, we simply obtain that

ordτW (z) = wt(Pτ ), (22)

whereas if P is elliptic, in which case eτ = q + 1, we have

ordτW (z) = (q + 1)wt(Pτ ) + q
gp(gp + 1)

2
. (23)

We now proceed to the second step of the proof.
Let first τ0 be a point in the Drinfeld upper-half space � that is not in the equivalence

class of the elliptic point of X0(1). SinceW is a multiple of∏
γ∈�0(p)\GL2(A)

W |k,l[ γ ] ,

and the map X0(p) → X0(1) is unramified above τ0, we have

ordτ0W(z) =
∑

Pτ ∈Y0(p),
τ∼τ0

ordτW (z) =
∑

Pτ ∈Y0(p),
τ∼τ0

wt(Pτ ), (24)

where ∼ denotes GL2(A)-equivalence.
We note that in Equation (24), the left-hand side is exactly the power of (x − j(τ0))

appearing in P(W , x) and the right-hand side is exactly the power of (x − j(τ0)) in
xε(d)Fp(x).
We now consider the case of τ0 in the equivalence class of the elliptic point of X0(1),

i.e., j(τ0) = 0.
The case of d even: If the degree d of the prime polynomial generating p is even, then

X0(p) has two elliptic points, both of which are unramified overX0(1). The fiber above the
elliptic point ofX0(1) inX0(p) contains in addition qd−1

q+1 non-elliptic points, each ramified
above Pτ0 ∈ X0(1) with index q + 1 ([10], pages 77-78).
Thus if τ0 ∈ � is in the GL2(A)-equivalence class of the elliptic point on X0(1), using

Equations (22) and (23), we have

ordτ0W(z) = 2q
gp(gp + 1)

2
+ (q + 1)

∑
τ∈Y0(p),

τ∼τ0

wt(Pτ ).

On the other hand, by Equation (8), we have

ordτ0W(z) = γ ((qd + 1)gp(gp + 1), gp(gp + 1)) + (q + 1)M,

whereM is the order of vanishing of P(W , x) at j(τ0) = 0.
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Combining these two equations, we obtain

M = 1
q + 1

(qgp(gp + 1) − γ ((qd + 1)gp(gp + 1), gp(gp + 1))) +
∑

τ∈Y0(p),
τ∼τ0

wt(Pτ ). (25)

For d even, let ε(d) = 1
q+1 (qgp(gp + 1) − γ ((qd + 1)gp(gp + 1), gp(gp + 1))).

Equations (24) and (25) imply the equality of polynomials

P(W , x) = xε(d)Fp(x).

The case of d odd: If the degree d of the prime polynomial generating p is odd, then
X0(p) has no elliptic points, and the fiber above the elliptic point of X0(1) in X0(p) con-
tains qd+1

q+1 non-elliptic points, each ramified above X0(1) with index q+ 1. Thus if τ0 is in
the GL2(A)-equivalence class of the elliptic point on X0(1), we have

ordτ0W(z) = (q + 1)
∑

τ∈Y0(p),
τ∼τ0

wt(Pτ ).

On the other hand, by Equation (8), we have

ordτ0W(z) = γ ((qd + 1)gp(gp + 1), gp(gp + 1)) + (q + 1)M,

whereM is the order of vanishing of P(W , x) at j(τ0) = 0.
Combining these two equations, we obtain that

M = 1
q + 1

γ ((qd + 1)gp(gp + 1), gp(gp + 1)) +
∑

τ∈Y0(p),
τ∼τ0

wt(Pτ ). (26)

For d odd, let ε(d) = 1
q+1γ ((qd + 1)gp(gp + 1), gp(gp + 1)).

Equations (24) and (26) now imply

P(W , x) = xε(d)Fp(x),

as in the even case but with a different ε(d).

We now use the trace map to obtain a form of low weight for GL2(A) that is congruent
toW (z) modulo p.

Theorem12. Let q ≥ 3, then there exists a Drinfeldmodular form F of weight gp(gp+qd)
and type gp(gp+1)

2 for GL2(A) such that

W (z) ≡ F(z) (mod p).

Proof. We choose a basis {f0, . . . , fgp−1} for the spaceM2
2,1(�0(p)) such that

W (z) = W (f0, . . . , fgp−1),

and such that for each i, fi has rational, p-integral u-series coefficients at ∞.
By Theorem 4, there is a basis {F0, . . . , Fgp−1} for the space M2

qd+1,1(GL2(A)), all of
whose elements have rational, p-integral u-series coefficients and such that fi ≡ Fi
(mod p).
As we remarked in the proof of Proposition 2, when computing the forms

W (f0, . . . , fgp−1) and W (F0, . . . , Fgp−1), one needs to compute Dn for n < qd. Thus in all
of the cases we will consider, we have that fi ≡ Fi (mod p) implies that Dn(fi) ≡ Dn(Fi)
(mod p) by Corollary 2.
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Therefore, we have

W (f0, . . . , fgp−1) ≡ W (F0, . . . , Fgp−1) (mod p).

The form W (F0, . . . , Fgp−1) is modular for GL2(A) of weight gp(gp + qd) and type
gp(gp+1)

2 , and we denote it F for simplicity.

We can now prove Theorem 1:

Proof. SinceW has rational, p-integral u-series coefficients at ∞ and is an eigenform of
the Fricke involution, Theorem 5 states that

W = Ñ(W ) ≡ W 2 (mod p),

As remarked earlier, W is a form of weight (qd + 1)gp(gp + 1) and type gp(gp + 1) for
GL2(A).
By Theorem 12, we have

W ≡ F2 (mod p). (27)

The form F2 is of weight 2gp(gp + qd) and type gp(gp + 1).
We note now that the proof of Proposition 2 can be adapted say the following: Let f

and f ′ be two Drinfeld modular forms for GL2(A) of weights k > k′ and of types l and
l′, respectively, both with rational p-integral u-series coefficients and not ≡ 0 (mod p).
Then for α = k−k′

qd−1 and a =
⌊

αγ (qd−1,0)q+γ (k,l)
q+1

⌋
, the polynomial xaP(f , x) is divisible by

Sp(x)α in Fp[ x]. (We recall that Fp is the field A/p.)
Applying this to Equation (27), we have α = gp(gp − 1). Then in Fp[ x], we have that

Sp(x)gp(gp−1) | xaP(W , x) = xa+ε(d)Fp(x),

where

a =
⌊
gp(gp − 1)γ (qd − 1, 0)q + γ ((qd + 1)gp(gp + 1), gp(gp + 1))

q + 1

⌋
. (28)

The case of d even: In this case, j = 0 is not supersingular at p, so x does not divide
Sp(x), and we conclude that

Sp(x)gp(gp−1) | Fp(x).
Thus, each supersingular j-invariant is the reduction modulo p of a root of Fp(x).
By Theorem 10, for P ∈ Y0(p),

wt(P) = ordP(W (z)(dz)gp(gp+1)/2) ≥
gp∑
i=1

(ni(P) − ni),

with wt(P) = 0 if P is neither a Weierstrass point nor an elliptic point. Recall also that a
Weierstrass point is a point such that

gp∑
i=1

(ni(P) − ni) > 0.

By definition (Equation (21)), the polynomial Fp(x) has zeroes at theWeierstrass points
and possibly also at the elliptic points of X0(p), which have j = 0. Since j = 0 is not
supersingular when d is even, then each supersingular j-invariant is the reductionmodulo
p of the j-invariant of a Weierstrass point.
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The case of d odd: As argued in the case of d even, the zeroes of Fp are eitherWeierstrass
points or elliptic points. SinceX0(p) does not have elliptic points when d is odd, the zeroes
of Fp are exactly the Weierstrass points.
Since

Sp(x)gp(gp−1) | xa+ε(d)Fp(x),

where a is as in Equation (28) and ε(d) is as in the statement of Theorem 11, we con-
clude that each supersingular j-invariant in characteristic p except possibly j = 0 is the
reduction modulo p of the j-invariant of a Weierstrass point.
To conclude that j = 0 is also the j-invariant of a Weierstrass point, we must show that

gp(gp − 1) > a + ε(d),

from which it will follow that x | Fp(x).
We first investigate the number ε(d) = 1

q+1γ ((qd + 1)gp(gp + 1), gp(gp + 1)). Since
(qd + 1)gp(gp + 1) is divisible by q + 1 and by the uniqueness of the numbers γ ((qd +
1)gp(gp + 1), gp(gp + 1)) and μ((qd + 1)gp(gp + 1), gp(gp + 1)), satisfying the conditions
of (7), we must have

μ((qd + 1)gp(gp + 1), gp(gp + 1)) = (qd + 1)gp(gp + 1)
q + 1

and

γ ((qd + 1)gp(gp + 1), gp(gp + 1)) = 0,

so ε(d) = 0 when d is odd.
Since d is odd, we have that γ (qd − 1, 0) = 1 and in light of the work above, the formula

for a simplifies to

a =
⌊
gp(gp − 1)q

q + 1

⌋
.

Since⌊
gp(gp − 1)q

q + 1

⌋
≤ gp(gp − 1)q

q + 1
< gp(gp − 1),

it follows that j = 0 is also the reductionmodulo p of the j-invariant of aWeierstrass point
of X0(p).

A refinement of the statement

SinceW is of weight (qd + 1)gp(gp + 1) and type gp(gp + 1), F2 is of weight 2gp(gp + qd)
and type gp(gp + 1), and

W ≡ F2 (mod p),

we have that W and F2ggp(gp−1)
d are two forms of the same weight and type that are

congruent modulo p, and therefore their companion polynomials are congruent modulo
p:

P(W , x) ≡ P(F2ggp(gp−1)
d , x) (mod p).

The case of d even: Applying Proposition 3 part 1 gp(gp − 1)times, we have

P(W , x) ≡ P(F2, x)P(gd, x)gp(gp−1) (mod p).
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Since P(W , x) = xε(d)Fp(x) and P(gd, x) = Sp(x), we have

xε(d)Fp(x) ≡ P(F2, x)Sp(x)gp(gp−1) (mod p).

The case of d odd: Applying Proposition 3 part 2 gp(gp − 1)times, we have

P(W , x) ≡ xbP(F2, x)P(gd, x)gp(gp−1) (mod p),

where b =
⌊
gp(gp−1)+γ (k,l)

q+1

⌋
.

Then, we have

Fp(x) ≡ xbP(F2, x)P(gd, x)gp(gp−1) (mod p),

since ε(d) = 0 when d is odd.
Therefore, the extent to which we can understand the polynomial P(F2, x) will deter-

mine how much more we can understand about the Weierstrass points of X0(p) and the
quantity wt(P) defined in this paper. In addition, it is this polynomial which keeps us from
obtaining the main result of [1] in full generality in this setting.

The order of vanishing ofW (z) at the cusps
In the discussion surrounding the definition of modular weight (Definition 7), we avoided
considering the valuation of the divisor

[W (z)]+gp(gp + 1)
2

[ dz]

at the two cusps of X0(p). From the algebraic theory of Weierstrass points developed
in Section ‘Weierstrass points in characteristic p,’ we would expect this divisor to have
valuation 0 or at worst positive valuation at the cusps. Unfortunately, at present we cannot
show this directly but we proceed to say what we can.
We begin by considering the divisor of dz at the cusps. From explicit computations [15],

we have that 1
u2 du = −π̃dz. Recall from Section ‘Expansions at the cusps’ the function

t = uq−1, which is a uniformizer at the cusps 0 and ∞ for X0(p). Then, we have
1

tq/(q−1) dt = π̃dz,

and dz has a pole of order
q

q − 1

at the cusps 0 and ∞.

Proposition 12. Let P be a cusp of X0(p), and write τ = 0 or τ = ∞. Then, there is a
basis {fi}gp−1

i=0 of M2
2,1(�0(p)) such that:

ordτ (fi) = (q − 1)i + q

for each i.

Proof. As in the proof of Proposition 10, since the canonical orders at P are (1, . . . , gp −
1) (recall that the cusps are not Weierstrass points), we have that there is a basis of
M2

2,1(�0(p)) with

ordP(fi(z)dz) = i.
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If P is a cusp of X0(p), τ = 0 or ∞, and f is a Drinfeld modular form for �0(p), we have

ordP(f ) = ordτ (f )
q − 1

.

Then, since

ordP(fi(z)dz) = ordP(fi) + ordP(dz) = ordτ (fi(z))
q − 1

− q
q − 1

,

the result follows.

For the next result, we will need the following definition: Let n be a positive integer and
q be a power of a prime such that the expansion of n in base q is n = ∑r

i=0 niqi, where
each 0 ≤ ni ≤ q − 1 for each i. Then, we write ‖n‖q =∑r

i=0 ni.

Proposition 13. Let f be analytic at ∞, then ord∞Dn(f ) ≥ ord∞(f ) + ‖n‖q.

Proof. Let

αn,j =
∑

n1,...,nj≥0
qn1+···+qnj=n

1
dn1 · · · dnj

,

where di was defined at the beginning of Section ‘Hyperderivatives and quasimodular
forms’. Then, we have that αn,j �= 0 if and only if j ≡ ‖n‖q (mod q− 1) and j ≤ n. Indeed,
the least j such that there exists n1, . . . nj ≥ 0 with qn1+· · ·+qnj = n is ‖n‖q. Furthermore,
given a tuple (n1, . . . , nj) such that qn1 + · · · + qnj = n and at least one ni > 0, we can
write another tuple (m1, . . . ,mj+q−1) such that qm1 + · · · + qmj+q−1 = n by ‘unbundling’ a
term qni into q terms of the form qni−1 if ni > 0. This process is no longer possible when
each ni = 0, in which case we have q0 + . . . + q0 = n. This shows that for each j between
‖n‖q and n such that j ≡ ‖n‖q (mod q − 1), αn,j �= 0. Conversely if there is (n1, . . . , nj)
such that qn1 + · · · + qnj = n, then

n = (qn1 − 1) + · · · + (qnj − 1) + j ≡ j (mod q − 1).

But applying this same trick to the sum n =∑r
i=0 niqi, we have n ≡ ‖n‖q (mod q − 1).

Using the explicit formula given in Proposition 6, we have that if f = ∑∞
i=0 aiui and

Dnf =∑∞
i=0 bn,iui, then

bn,i =
i−1∑
r=1

(−1)n+r
(
i − 1
r

)
αn,rai−r .

In light of the remarks above, the only terms that can possibly appear in this sum are those
with r ≡ ‖n‖q (mod q− 1). Therefore, the least i for which bn,i is possibly nonzero is one
where i − ‖n‖q ≥ ord∞(f ).

Proposition 14. Let p be generated by a prime polynomial of degree 3, so that gp = q.
Then if P is the cusp ∞ of X0(p), we have

ordP
(
W (z)(dz)gp(gp+1)/2

)
≥ 0.
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Proof. We choose a basis {fi} of M2
2,1(�0(p)) that satisfies the conclusion of

Proposition 12 at ∞. Then,

ordP
(
W
(
f0, . . . , fgp−1

)
(dz)gp(gp+1)/2

)
= ordP

(
W (z)(dz)gp(gp+1)/2

)
,

so we may work withW ( f0, . . . , fgp−1) for convenience.
By Proposition 13, for k = 0, . . . , gp − 1 = q − 1, we have that

ord∞(Dk( fl)) ≥ (q − 1)l + q + ‖k‖q = (q − 1)l + q + k,

since ‖k‖q = k because 0 ≤ k ≤ q − 1. When computing the determinant
W ( f0, . . . , fgp−1), we will be adding terms all of whose order of vanishing at ∞ is ≥∑gp−1

i=0 ((q − 1)i + q + i). Thus,

ordτW ( f0, . . . , fgp−1) ≥
gp−1∑
i=0

q(i + 1).

We have
gp−1∑
i=0

q(i + 1) = q
gp(gp + 1)

2
.

And so

ordP
(
W ( f0, . . . , fgp−1)(dz)gp(gp+1)/2

)
≥ q

q − 1
gp(gp + 1)

2
− q

q − 1
gp(gp + 1)

2
= 0.

Remark 8. To obtain Proposition 14 for all p, it would be sufficient to show that for a
basis ofM2

2,1(�0(p)) satisfying the conclusion of Proposition 12 at ∞,

ord∞(Dk(fl)) ≥ ord∞(fl) + k = (q − 1)l + q + k,

but that is not true. For example, fixing q = 3 and any d > 3, we have that ord∞(f1) = 5
but

ord∞(D3(f1)) = 6 < 5 + 3 = 8.

For this reason, we expect that to show that the divisor of W (z)(dz)gp(gp+1)/2 is effective
at the cusps will require an intricate and precise study of the action of Dn, beyond the
scope of what we wish to accomplish in this paper.

Remark 9. We note that it should be straightforward to obtain a result similar to
Proposition 14 for the cusp 0 using Lemma 1, but we do not need it at the moment.

A special case
As remarked in Section ‘A refinement of the statement’, because of its significance, it
would be of great interest to compute the reduction modulo p of the form F explicitly
or even just its divisor modulo p. This task, however, involves computing the action of
Dn for large n, which quickly gets complicated. However, under some rather restrictive
conditions, we are able to prove Theorem 2 which provides an explicit form which is
congruent to F modulo p and gives us an analogue of the main theorem of [25]. This in
turns allows us to prove Theorem 3, which is an analogue of the main theorem of [1].
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Wewill need some notation: For a system of derivatives {δn}which is a higher derivation
and a positive integer n, we will writeWδ( f1, . . . , fn) for the quantity∣∣∣∣∣∣∣∣

f1 δ1( f1) . . . δn−1( f1)
...

...
fn δ1( fg) . . . δn−1( fn)

∣∣∣∣∣∣∣∣ .
We note thatWD( f1, . . . , fn) = W ( f1, . . . , fn).
Recall from the proof of Theorem 12 that there exists a basis {F0, . . . , Fgp−1} for

the space M2
qd+1,1(GL2(A)), all of whose elements have rational, p-integral u-series

coefficients and such that

W (z) ≡ WD(F0, . . . , Fgp−1) (mod p). (29)

Furthermore,WD(F0, . . . , Fgp−1) was the form which we denoted by F .
Let ∂

(d)
n be the Serre operator from Section ‘A computational tool,’ we have that Dn(f )

and ∂
(k)
n (f ), for k the weight of f , differ by the sum
n∑

i=1
(−1)i

(
k + n − 1

i

)
(Di−1E)(Dn−if ).

We note that the quantity (−1)i
(k+n−1

i
)
(Di−1E) depends on k and n, but not on f . To ease

notation, we write MD for the matrix appearing in the definition of WD(F0, . . . , Fgp−1),
and M∂ for the matrix appearing in the definition of W∂ (F0, . . . , Fgp−1). Then, we have
that the (n + 1)st column of M∂ is equal to the (n + 1)st column of MD plus a linear
combination of earlier columns of MD. Since we are taking a determinant, we conclude
that

WD(F0, . . . , Fgp−1) = W∂ (F0, . . . , Fgp−1). (30)

In order to proceed with the computation, we first restrict our attention to the case
where d = 3. In that case, gp = q and the canonical orders of X0(p) are (1, . . . , q − 1).
We now give a basis for the space M2

q3+1,1(GL2(A)). We recall that the algebra of
Drinfeld modular forms for GL2(A) is generated by g, a Drinfeld modular form of weight
q− 1 and type 0 which is not a cusp form, and h, a Drinfeld modular form of weight q+ 1
and type 1 with a simple zero at the cusp. We note that both g and h have integral u-series
coefficients at ∞. To give a basis for M2

q3+1,1(GL2(A)) with integral u-series coefficients
is thus simply equivalent to enumerating all monomials gahb with a ≥ 0, b ≥ 2 and such
that

a(q − 1) + b(q + 1) = q3 + 1

and b ≡ 1 (mod q − 1). This is easily done, and we get that

gn(q+1)hq
2−q+1−n(q−1), 0 ≤ n ≤ q − 1

is a basis of Drinfeld modular forms with integral u-series coefficients for the space we
are interested in.
Therefore, there is a constant a ∈ K such that

WD(F0, . . . , Fgp−1) = W∂ (F0, . . . , Fgp−1)

= aW∂

(
hq

2−q+1, . . . , gq
2−1hq

)
,
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where the first equality is Equation (30) and so

W (z) ≡ aW∂

(
hq

2−q+1, . . . , gq
2−1hq

)
(mod p) (31)

by Equation (29).
As before, we make the convention that if f is a Drinfeld modular form of weight k, then

∂(f ) = ∂
(k)
1 (f ). Then if 1 ≤ n < p for p odd, we have ∂nf = n! ∂(k)

n f , where as before the
exponent of n on ∂ denotes the n-fold iteration. Therefore, when q = p, the computation
ofW∂

(
hp2−p+1, . . . , gp2−1hp

)
can be performed using the fact that ∂(g) = −h and ∂(h) =

0, and we get

W∂

(
hp

2−p+1, . . . , gp
2−1hp

)
= g

p2(p−1)
2 h

p2(p+1)
2 .

Thus, Equation (31) becomes

W (z) ≡ ag
p2(p−1)

2 h
p2(p+1)

2 (mod p) (32)

We now investigate the value of the constant a. The first non-zero u-series coefficient

of g
p2(p−1)

2 h
p2(p+1)

2 has index p2(p+1)
2 . Since the leading coefficient of h is−1 and the leading

coefficient of g is 1, the leading coefficient of g
p2(p−1)

2 h
p2(p+1)

2 is (−1)(p+1)/2.
Denote by n0 the index of the first non-zero coefficient of the u-series expansion of

W (z) at ∞. Then, the order of vanishing ofW (z)(dz)
p(p+1)

2 at ∞ is
n0

p − 1
− p

p − 1

(
p(p + 1)

2

)
.

Since this quantity must be non-negative by Proposition 14, we have that n0 ≥ p2(p+1)
2 .

Equation (32) then forces n0 = p2(p+1)
2 . Since the leading coefficient ofW (z) is a power

of π by definition and (−1)(p+1)/2 is not zero modulo p, this forces the leading coefficient
ofW (z) to be 1 and

1 ≡ a(−1)(p+1)/2 (mod p),

from which it follows that

a ≡ (−1)(p+1)/2 (mod p).

This proves the following theorem:

Theorem 2. If p is odd, π ∈ Fp[T] has degree 3, p is the ideal generated by π , and the
Wronskian on X0(p) is denoted by W (z), then W (z) has leading coefficient 1 and rational,
p-integral u-series coefficients at ∞ and furthermore we have

W (z) ≡ (−1)(p+1)/2g
p2(p−1)

2 h
p2(p+1)

2 (mod p).

Thanks to this congruence, we may now prove:

Theorem 3. If p is odd, π ∈ Fp[T] has degree 3, p is the ideal generated by π , then we
have ∏

P∈Y0(p)

(x − j(P))wt(P) ≡
∏

φ/Fp
φ supersingular

(x − j(φ))gp(gp−1) (mod p),

where gp is the genus of the curve X0(p).
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Proof. Still in the case where d = 3 and q = p is an odd prime, we have that

G def=
(

(−1)(p+1)/2g
p2(p−1)

2 h
p2(p+1)

2

)2
is of weight 2p(p3 + p) and type p(p + 1) ≡ 2 (mod p − 1). We have

μ(2p(p3 + p), 2) = 2p3 − 2p2 + 3p − 1

and

γ (2p(p3 + p), 2) = p − 1.

In turn, this allows us to compute

P(G, x) = x(p−1)2 .

We also have that ε(d) = 0 since d is odd, as shown at the end of the proof of Theorem 1.
We apply Proposition 3 part 2, gp(gp − 1) = p(p − 1) times. Since p(p − 1) = 2 + (p −

2)(p+ 1) and γ (2p(p3 + p), 2) = p− 1, we will be in the case where γ (k + p3 − 1, 2) = p
exactly p − 1 times. Therefore,

Fp(x) ≡ P(W , x) (mod p)

≡ (−x)p−1P(G, x)P(g3, x)p(p−1) (mod p)

≡ xp(p−1)P(g3, x)p(p−1) (mod p)

≡ Sp(x)p(p−1),

since p − 1 is even.
This concludes the proof since gp = p in this case.
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