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Abstract. The classical theory of “modular forms modulo �” was developed
by Serre and Swinnerton-Dyer in the early 1970’s. Their results revealed the
important role that the quasi-modular form E2, Ramanujan’s Θ-operator, and
the filtration of a modular form would subsequently play in applications of their
theory. Here we obtain the analog of their results in the Drinfeld modular form
setting.

1. Introduction and statement of results

In this paper we study the arithmetic properties of the coefficients of Drinfeld
modular forms, using as our tools a derivation on the algebra of Drinfeld modular
forms and knowledge about the algebra obtained from the reduction of Drinfeld
modular forms of all weights and types modulo a prime ideal. Our study is mo-
tivated by analogous theorems by Serre [12] and Swinnerton-Dyer [13] (see also
Chapter 2 of [11]) which give information about the interplay between Ramanu-
jan’s Θ-operator on q-series and the reduction of classical modular forms modulo a
prime �. The classical theory has numerous applications. Among them is the proof
of Ramanujan’s claim that the only so-called “Ramanujan-type” congruences for
the partition function p(n) are his famous congruences with modulus 5, 7, and 11,
a proof given by Ahlgren and Boylan in [1]. The theory developed by Serre and
Swinnerton-Dyer is also used by Elkies, Ono and Yang in [6] to determine a simple
condition under which the meromorphic modular function F (j(z)), for F (x) ∈ Z[x]
and j(z) the classical j-function for SL2(Z), satisfies U(p) congruences modulo p,
for p prime. These congruences generalize a classical result due to Lehner [10] that
states that

j(z) |U(p) ≡ 744 (mod p)

for every prime p ≤ 11.
Central to the classical theory of modular forms are the Eisenstein series: For

k ≥ 2 an even integer and z in the complex upper-half plane, define the Eisenstein
series of weight k by

(1.1) Ek(z)
def
=

1

2ζ(k)

∑

m,n∈Z

(m,n) �=(0,0)

1

(mz + n)k
,

Received by the editors November 24, 2009 and, in revised form, February 22, 2010.
2010 Mathematics Subject Classification. Primary 11F52; Secondary 11F33, 11F30, 11F25.
The author is grateful for the support of an NSERC graduate fellowship.

c©2010 American Mathematical Society
Reverts to public domain 28 years from publication

4217



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4218 CHRISTELLE VINCENT

where ζ(s) is the Riemann-zeta function. It is a fundamental fact that Ek is a
modular form for SL2(Z) of weight k if k ≥ 4. For k = 2, the convergence of the
series is not absolute so that the order of summation must be specified: E2 is defined
to be the double sum above summing first over n for fixed m and then summing
over m. Even with this modification E2 is not modular; instead it satisfies a slightly
more complicated transformation rule. Despite this E2 still plays an important role,
as we will see later. For each k ≥ 2 even, we have Ek(z+1) = Ek(z), and so Ek has
a Fourier expansion, and setting q = e2πiz, we will call this series its q-expansion.

Ramanujan defined the Θ-operator on modular forms by

Θ
def
=

1

2πi

d

dz
= q

d

dq
,

and he showed the following identities:

Θ(E2) =
E2

2 − E4

12
, Θ(E4) =

E2E4 − E6

3
, Θ(E6) =

E2E6 − E2
4

2
.

Thus the algebra generated by E2, E4 and E6, which contains all of the modular
forms for SL2(Z), is stable under the derivation Θ.

Let us now consider the function field K = Fq(T ) (for q a power of a prime p)
in the place of the rational numbers. Notice that here q is used with a different
meaning than above, but no confusion should arise from this. We consider the
completion K∞ = Fq((1/T )) of K at its infinite place and the completed algebraic
closure of K∞, which we will denote by C to emphasize the analogy with the
complex numbers. Then we may define the “Drinfeld upper-half plane” by Ω =
C −K∞.

For k a positive integer and z ∈ Ω, Goss defines in [9] an Eisenstein series of
weight qk − 1 for this function field as

(1.2) gk
def
= (−1)k+1π̃1−qkLk

∑

a,b∈Fq [T ]
(a,b) �=(0,0)

1

(az + b)qk−1
,

where Lk is the least common multiple of all monics of degree k, so that

Lk = (T q − T ) . . . (T qk − T ),

and π̃ is the Carlitz period, which roughly plays the role of the constant 2πi and
will be defined in the second section of this paper. These series converge and thus
define rigid analytic functions on Ω. They should be considered the analogs of the
modular Eisenstein series given in (1.1), and they can be shown to be modular (the
definition of a Drinfeld modular form will be given in Section 2.1). As an analog of
E2 defined above, Gekeler in [7] introduces the following object:

E
def
=

1

π̃

∑

a∈Fq [T ]
a monic

⎛

⎝
∑

b∈Fq [T ]

a

az + b

⎞

⎠ .

Like E2, E is not modular but satisfies a similar transformation rule under the
action of GL2(Fq[T ]). Finally, just as in the classical setting, we may define a
uniformizing parameter at infinity which will be denoted in this paper by u. Its
definition involves the Carlitz period mentioned above, as well as a certain lattice
function which should be considered the analog of the exponential function. These
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objects are introduced in the second section of this paper and the precise definition
of u follows.

The last series which is important in this paper is the Poincaré series of weight
q + 1 and type 1, first defined by Gerritzen and van der Put in [8, page 304]. Let
H be the subgroup {(

∗ ∗
0 1

)}
⊂ GL2(Fq[T ])

and

γ =

(
a b
c d

)
∈ GL2(Fq[T ]).

Then we may define a series

(1.3) h
def
=

∑

γ∈H\GL2(Fq[T ])

det γ · u(γz)
(cz + d)q+1

.

This is holomorphic provided that the sum converges and behaves well “at infinity”,
which can be shown using the properties of the function u. Furthermore, this series
in fact defines a Drinfeld modular form.

The series g1 and h generate the C-algebra of Drinfeld modular forms, just as
E4 and E6 generate the C-algebra of modular forms. We may again define the
Θ-operator, this time by

Θ
def
=

1

π̃

d

dz
= −u2 d

du
.

Now in analogy with the classical case, Gekeler [7] showed that

Θ(E) = −E2, Θ(g1) = Eg1 + h, Θ(h) = −Eh.

Hence the algebra generated by E, g1 and h is stable under the derivation Θ.
It is well-known that the q-series expansions of the classical Eisenstein series for

k ≥ 4 positive and even can be given simply by

Ek = 1− 2k

Bk

∞∑

n=1

σk−1(n)q
n,

where Bk is the kth Bernoulli number and σk−1(n) is the sum of the (k − 1)th
powers of the divisors of n. Thus using the von Staudt-Clausen Theorem one can
show that for every prime � ≥ 5,

E�−1 ≡ 1 (mod �)

and
E2 ≡ E�+1 (mod �),

where the congruence here is taken to mean the congruence modulo � of corre-
sponding coefficients in the q-series expansion. Serre and Swinnerton-Dyer showed
that in fact, the relation E�−1 ≡ 1 (mod �) is the only non-trivial relation modulo
�. In [7, Corollary 6.12], Gekeler proved that for p, the ideal generated by a monic
prime polynomial of degree d, we have

gd ≡ 1 (mod p),

where gd is as in (1.2). Moreover, just as in the classical case, this is the only rela-
tionship modulo p. Thus gd plays the role of the form E�−1 in this setting. However,
until now there had not been a clear analog to the second congruence written above.
In light of the theorems proven in this paper, the analogous statement is
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Theorem 1.1. Let ∂(gd) = Θ(gd)−Egd (note that this can be shown to be modular).
If p is the ideal generated by a monic prime polynomial of degree d, then

E ≡ −∂(gd) (mod p).

Remark. Notice that in the classical case we have that

12

(
Θ(E�−1)−

(�− 1)

12
E�−1E2

)

is a weight �+ 1 modular form and

12

(
Θ(E�−1)−

(�− 1)

12
E�−1E2

)
≡ E2 (mod �).

In the classical case, Swinnerton-Dyer [13] showed that while the formal q-series
Θ(f) for f a modular form is not a modular form itself, it is congruent to a modular
form modulo � for every prime �. He also described how the application of the Θ-
operator affects the filtration of a modular form, where the filtration of a q-series
is defined to be the smallest integer k for which there is a modular form of weight
k that is congruent to the series modulo �. Of course, we may define the filtration
of a Drinfeld modular form f (or more generally a u-series) for a prime ideal p in
the same manner, and this number will be denoted by wp(f). As in the classical
case, we will say that wp(f) = −∞ if f ≡ 0 (mod p). The first goal of this paper
is to derive properties of filtrations in the Drinfeld setting. We prove the following:

Theorem 1.2. Let f be a Drinfeld modular form of weight k and type l, and let p
be an ideal generated by a monic prime polynomial of degree d. If f has p-integral
u-coefficients and is not identically zero modulo p, then the following are true:

(1) Θ(f) is the reduction of a modular form modulo p.
(2) We have wp(Θ(f)) ≡ wp(f) + 2 (mod qd − 1) (where we take this to be

vacuously true if wp(Θ(f)) = −∞). Furthermore wp(Θ(f)) ≤ wp(f)+qd+1
with equality if and only if wp(f) 	≡ 0 (mod p).

Remark. The reader familiar with the theory in characteristic zero will remember
that applying the Θ-operator usually increases the filtration of a modular form by
� + 1. The only exception is when the filtration of the form is congruent to zero
modulo �, in which case the filtration decreases. In the Drinfeld modular setting
the filtration must be congruent to zero modulo p (where we recall that p is the
characteristic of Fq[T ]). Although something like this was to be expected, since
the filtration is an integer and thus its reduction modulo an ideal of Fq[T ] does not
make sense, it does completely change the flavor of the theory.

Because Θ acts as −u2 d
du on formal u-series, Θ necessarily acts nilpotently (Θp

is identically zero on all forms), which is not the case in characteristic zero. Some
knowledge of the exact “degree of nilpotency” of Θ on a particular form f may be
obtained from the following theorem:

Theorem 1.3. Define for every positive integer k and for p the characteristic of
Fq[T ] the integer n(k, p) as the unique integer 0 ≤ n(k, p) < p such that k+n(k, p) ≡
0 (mod p). Let f be a Drinfeld modular form of weight k and type l, and let p be
any ideal generated by a monic prime polynomial of degree d. If f has p-integral
u-coefficients and is not identically zero modulo p, then

wp(Θ
i(f)) = wp(f) + i(qd + 1) for 0 ≤ i ≤ n(wp(f), p).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DRINFELD MODULAR FORMS MODULO p 4221

Upon another iteration of the Θ-operator, we show that the filtration decreases,
and a more precise statement of this theorem given in Section 3.2 gives a modular
form to which Θn(wp(f),p)+1(f) is congruent modulo p.

The last section of this paper presents applications of this theorem. Two of these
applications make use of the fact that if we write a Drinfeld modular form f as

f =
∞∑

i=0

aiu
i,

applying Θj annihilates all ai’s such that i ≡ 0,−1, . . . ,−j + 1 (mod p). Thus
by studying the application of iterations of Θ on a Drinfeld modular form we can
under certain circumstances determine which classes modulo p contain coefficients
that are non-zero, or zero, depending on the application, modulo p.

Remark. In a paper defining a Cohen bracket for Drinfeld modular forms, Uchino
and Satoh [14] define a continuous higher derivation {Dn}∞n=0 such thatD1 = Θ and
Dp is not identically zero. For this application, as well as for others such as Bosser
and Pellarin’s study of Drinfeld quasi-modular forms in [2] and [3], this system
of divided derivatives is the correct analog in characteristic p to Ramanujan’s Θ-
operator. However, their operators are not suitable for the study of modular forms
modulo a prime ideal since they do not preserve p-integrality. It is possible that this
is yet another instance in which an object that plays multiple roles in characteristic
0 has to be replaced by several different objects in characteristic p.

2. Preliminaries

As in the introduction, we will fix q a power of a prime p and denote by Fq the
finite field with q elements. We will denote by A the ring of polynomials in an
indeterminate T , A = Fq[T ]. From the introduction, we recall that K = Fq(T ) is
the field of fractions of A, K∞ = Fq((1/T )) is the completion of K at its infinite
place,

C = ˆ̄K∞

is the completed algebraic closure of K∞, and Ω = C −K∞ is the Drinfeld upper-
half plane.

Let Λ be an A-lattice of C, by which we mean a finitely-generated A-submodule
having finite intersection with each ball of finite radius contained in C. We will
need in this paper the following lattice function:

eΛ(z)
def
= z

∏

λ∈Λ
λ �=0

(
1− z

λ

)
.

It can be shown that the product converges uniformly on bounded sets in C, thus
defining an entire (in the rigid analytic sense) surjective function on C.

If we fix an A-lattice Λ of rank r in C, then for every a ∈ A there is a unique
map φΛ

a such that for all z ∈ C,

φΛ
a (eΛ(z)) = eΛ(az).

The map

φΛ : a 
→ φΛ
a



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4222 CHRISTELLE VINCENT

defines a ring homomorphism of A into the ring EndC(Ga) of additive polynomials
over C. EndC(Ga) is the non-commutative ring of polynomials of the form

∑
aiX

pi

,

where multiplication is defined by composition. If we write τ = Xq and let C{τ} ⊂
EndC(Ga) be the subalgebra of EndC(Ga) generated by τ , then in fact it can be
shown that φΛ takes values in C{τ} and for a ∈ A of degree d we have

(2.1) φΛ
a =

∑

0≤i≤rd

liτ
i

with l0 = a and lrd 	= 0.
A ring homomorphism φ : A → C{τ} that is given by (2.1) is called a Drinfeld

module of rank r over C. The association Λ 
→ φΛ is a bijection of the set of
A-lattices of rank r in C with the set of Drinfeld modules of rank r over C.

An important Drinfeld module is Carlitz’s module ρ of rank 1, first studied by
Carlitz in [4] and [5], and defined by:

ρT = TX +Xq.

This Drinfeld module corresponds to a certain rank-1 A-lattice L = π̃A, where the
“Carlitz period” π̃ ∈ K∞( q−1

√
−T ) is defined up to a (q − 1)th root of unity. We

choose one such π̃ and fix it for the remainder of this paper.
Now consider the function

u(z)
def
=

1

eL(π̃z)

for L = π̃A and π̃ the Carlitz period. Then we have that for any c > 1, u induces
an isomorphism of the set

A\{z ∈ Ω | infx∈K∞ |z − x| ≥ c}
with a pointed ball Br\{0}. Thus u(z) can be used as a “parameter at infinity”,
analogously to q = e2πiz in the classical case.

2.1. Drinfeld modular forms. A function f : Ω → C is called a Drinfeld modular
form of weight k and type l, where k ≥ 0 is an integer and l is a class in Z/(q− 1)Z
if

(1) for γ =

(
a b
c d

)
∈ GL2(A), f(γz) = (det γ)−l(cz + d)kf(z);

(2) f is rigid analytic;
(3) f has an expansion f(z) = F (u(z)) where F is a power series with a positive

radius of convergence.

From now on we will denote g1, the Eisenstein series of weight q − 1, simply by
g. It is a Drinfeld modular form of weight q − 1 and type 0. The Poincaré series
h defined in (1.3) is a Drinfeld modular form of weight q + 1 and type 1. It is a
well-known fact (see for example [7]) that the graded C-algebra of Drinfeld modular
forms of all weights and all types, denoted here by M , is the polynomial ring C[g, h]
(where each Drinfeld modular form corresponds to a unique isobaric polynomial).

We recall from the introduction the operator Θ = π̃−1 d
dz = −u2 d

du and further
define ∂k = Θ + kE on the C-vector space of forms of weight k and type l; we
will simply write ∂ when the weight is implicit or when we wish to consider ∂ as a
differential operator of weight 2 on the graded algebra of Drinfeld modular forms
M . We collect here a series of well-known results about these operators:
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Lemma 2.1 (see for example [7]). Let fi be a Drinfeld modular form of weight ki
and type li, for i = 1, 2.

(1) ∂ki
(fi) is again a Drinfeld modular form, of weight ki + 2 and type li + 1.

(2) If k = k1 + k2, then ∂k(f1f2) = ∂k1
(f1)f2 + f1∂k2

(f2).
(3) ∂(g) = h and ∂(h) = 0.
(4) ∂2(gd) = 0 for each d.

2.2. Modular forms modulo p. From now on we will fix a monic prime polyno-
mial in A of degree d and denote by p the principal ideal that it generates. The

reduction homomorphism A → Fp
def
= A/p and everything derived from it will be

denoted by a tilde a 
→ ã. Let Ap be the localization of A at p, let Mp denote the
ring of modular forms having coefficients in K with denominators prime to p, and
write

M̃
def
= {f̃ ∈ Fp[[u]] | ∃f ∈ Mp such that f ≡ f̃ (mod p)}

(where as before f1 ≡ f2 (mod p) means the congruence modulo p of corresponding
coefficients in the u-series expansion) for the Fp-algebra of Drinfeld modular forms
modulo p.

Following [13], we find it convenient to adopt the following notation: If f is a

function which has a u-series expansion
∑∞

i=0 aiu
i such that every ai is in Ap, then f̃

will denote the formal power series
∑∞

i=0 ãiu
i. Similarly, if φ(X,Y ) is a polynomial

in Ap[X,Y ], then φ̃(X,Y ) will denote the polynomial in Fp[X,Y ] obtained from
φ by reducing its coefficients modulo p. Naturally we will wish to evaluate these
polynomials at the formal power series in u corresponding to g̃ and h̃ and denote
by φ̃(g̃, h̃) the element of Fp[[u]] obtained from this polynomial by substitution. As
a consequence of this notation, if f is a Drinfeld modular form in Mp, there is a

unique polynomial φ such that f = φ(g, h), and f̃ = φ̃(g̃, h̃). Finally, motivated
by the derivation ∂ described above, we define a derivation, also denoted ∂, on
Ap[X,Y ] and Fp[X,Y ] by setting ∂(X) = Y and ∂(Y ) = 0 in both cases. The
operator Θ described earlier analogously extends from Ap[[u]] to Fp[[u]].

Since Mp contains the elements g and h, we have the following composition of
homomorphisms:

Ap[X,Y ]
∼−→ Fp[X,Y ]

ε−→ Fp[[u]](2.2)

(X,Y ) 
→ (g̃, h̃)

(where we recall that the tilde denotes the “reduction modulo p” homomorphism).
Consequently we will assign weight q−1 to X and weight q+1 to Y . Here we quote
a theorem from [7, Corollary 6.12] in order to make more precise a result about the
reduction of gd modulo p stated in the introduction:

Theorem 2.2. Let Ad ∈ A[X,Y ] be the polynomial defined by Ad(g, h) = gd.
Assuming the notation and hypotheses above, the following are true:

(1) Ãd(X,Y ) is square-free.

(2) M̃ ∼= Fp[X,Y ]/(Ãd(X,Y )− 1).

3. New results

As a consequence of Theorem 2.2, if fi ∈ Mp is of weight ki for i = 1, 2 and

f1 ≡ f2 (mod p), then k1 ≡ k2 (mod qd − 1). Thus M̃ has a natural grading
by Z/(qd − 1)Z. As in the introduction we will denote by wp(f) the filtration of
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f , which is defined to be the smallest integer k such that there exists a Drinfeld
modular form of weight k congruent to f modulo p, with the convention that the
form 0 has weight −∞ as before.

3.1. Flushing out the analogy. To continue the analogy with the classical case,
Theorem 1.1 indicates that the analog of the modular form E�+1 is the Drinfeld
modular form ∂(gd). The theorem below, which gives Theorem 1.1, shows that
indeed ∂(gd) shares the important properties that E�+1 enjoys.

Theorem 3.1. Let Bd ∈ A[X,Y ] be the polynomial defined by Bd(g, h) = ∂(gd).
Assuming the notation and hypotheses above, the following are true:

(1) B̃d(X,Y ) shares no common factor with Ãd(X,Y ).
(2) We have E ≡ −∂(gd) (mod p).

Proof. For the proof of the first fact, let a be an irreducible factor of Ãd over
Fp[X,Y ] and write Ãd = a · b. Since Ãd is square-free, a does not divide b. We have

B̃d = ∂(Ãd) = ∂(a)b+ a∂(b)

and a divides B̃d if and only if a divides ∂(a). Since a must be isobaric, we can
have either a = X, a = Xq+1 + cY q−1 for some nonzero c in the algebraic closure
of Fp or a = Y . In the first two cases, we have respectively that ∂(a) = Y and
∂(a) = XqY , so a does not divide ∂(a).

The third possibility (in which case a divides ∂(a)) does not happen. In other

words, Y does not divide Ãd for any d. This can be shown using induction on d
and the recursive formula, proven in [7, Proposition 6.9],

(3.1) Ãd = Ãd−1X
qd−1

+ (T qd−1 − T )Ãd−2Y
qd−2(q−1)

with Ã0 = 1 and Ã1 = X. By (3.1), if Y does not divide Ãd−1, then Y does not

divide Ãd. Obviously Y does not divide Ã1, so Y does not divide Ãd for any d.
For the proof of the second fact, it suffices to note that since gd ≡ 1 (mod p),

Θ(gd) ≡ 0 (mod p) and ∂(gd) = Θ(gd) + (qd − 1)Egd ≡ −E (mod p). �

We will also need a result on modular forms that have lower filtration than
weight:

Proposition 3.2. Let f be a Drinfeld modular form in Mp of weight k and type l

with f̃ 	= 0, and write f = φ(g, h). Then wp(f) < k if and only if Ãd|φ̃.

Proof. Suppose that f ′ is of weight strictly less than f and f ≡ f ′ (mod p). Write
f ′ = ψ(g, h) with ψ ∈ Ap[X,Y ]. Then

φ̃ = c(Ãd − 1) + ψ̃

for some polynomial c ∈ Fp[X,Y ]. Writing c =
∑n

i=0 ci as a sum of its isobaric
components with ci of weight strictly less than ci+1, we have that

φ̃ = cnÃd, c0 = ψ̃ and ci = ci−1Ãd for i = 1, ...n,

and Ãd divides φ̃.
Suppose now that φ̃ = Ãdψ̃ for some polynomial ψ̃ ∈ Fp[X,Y ] which must be

isobaric of weight k − qd + 1. Lifting ψ̃ to ψ ∈ A[X,Y ], we have that f ′ = ψ(g, h)
is of weight strictly less than k and f ≡ f ′ (mod p). �
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3.2. Proofs of theorems. We are now ready to prove the theorems stated in the
introduction.

Proof of Theorem 1.2. By Lemma 3.1, Θ(f) ≡ ∂(f)gd+k∂(gd)f (mod p), which is
a form of weight k + qd + 1 and type l + 1. Now without loss of generality assume
that f is of weight wp(f). Since Θ(f) is congruent to a form of weight wp(f)+qd+1
it follows that

wp(Θ(f)) ≡ wp(f) + 2 (mod qd − 1).

Furthermore, since f is of weight wp(f), then Ãd does not divide φ̃. We have that

Θ(f̃) = ∂(φ̃(g̃, h̃))Ãd(g̃, h̃) + wp(f)B̃d(g̃, h̃)φ̃(g̃, h̃)

so that Θ(f̃) is the image in Fp[[u]] of the polynomial

∂(φ̃)(X,Y )Ãd(X,Y ) + wp(f)B̃d(X,Y )φ̃(X,Y )

under the map ε given in (2.2). Since Ãd and B̃d have no common factors, Ãd

divides ∂(φ̃)Ãd + wp(f)B̃dφ̃ if and only if wp(f) ≡ 0 (mod p). �

We now characterize the action of iterations of the operator Θ on the filtration
of modular forms:

Proof of Theorem 1.3. Let f ′ be of weight wp(f) such that f ≡ f ′ (mod p). As
promised in the introduction, in addition to Theorem 1.3, we will show that

Θn(wp(f),p)+1(f) ≡ ∂n(wp(f),p)+1(f ′) (mod p).

If n(wp(f), p) = 0, the theorem is trivial and we have

Θ(f) ≡ Θ(f ′) ≡ ∂(f ′)gd + wp(f)∂(gd)f
′ ≡ ∂(f ′) (mod p),

thus proving the additional assertion.
Suppose now that 0 < n(wp(f), p) < p. We define a sequence of modular forms

in the following manner, for 0 ≤ i ≤ n(wp(f), p) + 1:

f0 = f ′

f1 = ∂(f ′)gd + wp(f)∂(gd)f
′

f2 = ∂(f1)gd + (wp(f) + 1)∂(gd)f1

...

fi = ∂(fi−1)gd + (wp(f) + i− 1)∂(gd)fi−1

... .

We first claim that

fi ≡ Θi(f) (mod p) for all 0 ≤ i ≤ n(wp(f), p) + 1.

This follows easily since for any Drinfeld modular form of weight k,

Θ(f) ≡ ∂(f)gd + k∂(gd)f (mod p).

From this fact, since the weight of each fi is

wp(f) + i(qd + 1) ≡ wp(f) + i (mod p),

it follows that Θ(fi) ≡ fi+1 (mod p). It suffices now to note that f1 ≡ f2 (mod p)
implies Θ(f1) ≡ Θ(f2) (mod p).
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Now since fi ≡ Θi(f), of course wp(Θ
i(f)) = wp(fi). For 1 ≤ i ≤ n(wp(f), p), a

simple induction shows that

wp(fi−1) = wp(f) + (i− 1)(qd + 1)

is not zero modulo p so that wp(fi) = wp(f) + i(qd + 1), as required by part 2 of
Theorem 1.2.

Secondly we claim that for each 1 ≤ i ≤ n(wp(f), p) and for each 1 ≤ j ≤ i+ 1,

(3.2) ∂j(fi−j+1) = (wp(f) + i)∂j(fi−j)∂(gd) + ∂j+1(fi−j)gd.

The proof is done by induction on j. For any i in the range and j = 1, (3.2) follows
by applying ∂ to both sides of the equalities defining the fi’s and remembering that
∂2(gd) = 0. As an induction step, we suppose that (3.2) is true for i− 1 and j − 1,
and again by simply applying ∂ we obtain (3.2) for i and j.

Now fix i = n(wp(f), p). Then (3.2) becomes

(3.3) ∂j(fn(wp(f),p)−j+1) = ∂j+1(fn(wp(f),p)−j)gd

for 1 ≤ j ≤ n(wp(f), p). Using equation (3.3) recursively we obtain that

fn(wp(f),p)+1 = ∂n(wp(f),p)+1(f ′)g
n(wp(f),p)+1
d .

Since Θn(wp(f),p)+1(f) ≡ fn(wp(f),p)+1 (mod p) and gd ≡ 1 (mod p), the additional
assertion follows. �

4. Three applications

4.1. Forms of lower filtration than weight. Of course, we have the following
clear corollary to Theorem 1.3:

Corollary 4.1. Let f be a Drinfeld modular form in Mp for p an ideal of A
generated by a monic prime polynomial, and assume that f is not identically zero
modulo p. Then

Θi(f) 	≡ 0 (mod p) for 1 ≤ i ≤ n(wp(f), p).

This corollary can be used to detect forms that have lower filtration than weight.
For example, consider any Drinfeld modular form over F25[T ] of weight 1376 and
an ideal p of A generated by a monic prime of degree 2. Suppose further that
it can be shown that Θ3(f) ≡ 0 (mod p). Then it must be the case that f has
lower filtration modulo p than weight, since a form of filtration 1376 would have
Θi(f) 	≡ 0 (mod p) for 0 ≤ i ≤ 4. One can in fact determine that wp(f) = 128 in
the following manner: As a consequence of Theorem 2.2, we know that the filtration
of f must be congruent to 1376 modulo 624. Thus since f has lower filtration than
weight, it must have filtration 752 or 128. But if it had filtration 752, the corollary
above would say that Θ3(f) 	≡ 0 (mod p).

4.2. Vanishing modulo p of coefficients. One can turn the above idea on its
head by constructing forms that have lower filtration than weight and using the
theory to deduce the vanishing modulo p of some of their coefficients. Consider as
a toy example the Drinfeld modular form

f = (T q − T )ghq+2 + gq+2h3 =

∞∑

i=3

aiu
i
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over Fq[T ]. It has weight q
2 +4q+1. If one considers a monic prime polynomial of

degree greater than or equal to 3, it is clear that this form has filtration equal to
its weight. Thus for such primes we have n(wp(f), p) = p− 1, from which we may
deduce that there is i ≡ 1 (mod p) such that ai 	= 0, because Θp−1(f) 	= 0 and
Θp−1 annihilates all coefficients but those ai’s that have i ≡ 1 (mod p). However,
for an ideal p generated by a prime polynomial of degree 2, the form is congruent
to gh3 modulo p. (By (3.1), g2 = (T q − T )hq−1 + gq+1, and g2 ≡ 1 (mod p) if p
is generated by a prime polynomial of degree 2.) We will show in Proposition 4.2
that Θp−1(gh3) = 0, which implies that Θp−1(f) ≡ 0 (mod p). Thus for each i ≡ 1
(mod p), ai ≡ 0 (mod p) if p is generated by a monic prime polynomial of degree
2.

4.3. Support of non-zero coefficients of monomials. As a final application of
the theorems collected here, we will show a result on the vanishing of coefficients
of monomials.

Proposition 4.2. Let α and β be non-negative integers and consider the monomial
gαhβ which has weight k = α(q−1)+β(q+1). Write a for the unique integer such
that 0 ≤ a < p and a ≡ α (mod p) and similarly write b for the unique integer such
that 0 ≤ b < p and b ≡ β (mod p). Then either 0 < b − a < p or b = 0, in which
case

Θn(k,p)+1(gαhβ) = 0 and Θi(gαhβ) 	= 0 for 1 ≤ i ≤ n(k, p),

or −p < b− a ≤ 0 but b 	= 0, in which case

Θi(gαhβ) 	= 0 for 1 ≤ i < p.

Proof. First suppose that p is an ideal of A generated by a monic prime polynomial
of degree 1. Then

gαhβ ≡ hβ (mod p)

and so

wp(g
αhβ) = β(q + 1) ≡ b (mod p).

If b 	= 0, then n(wp(g
αhβ), p) = p− b and by the proof of Theorem 1.3,

Θp−b+1(gαhβ) ≡ ∂p−b+1(hβ) = 0 (mod p).

Finally, if b = 0, then n(wp(g
αhβ), p) = 0, and by Theorem 1.3 we have Θ(gαhβ) ≡

∂(hβ) = 0 (mod p).
Now suppose that p is an ideal of A generated by a monic prime polynomial of

degree d, where d > 1. Then

wp(g
αhβ) = k ≡ b− a (mod p).

We consider two cases:
First suppose that 0 < b− a < p. Then n(k, p) = p− b+ a, and

Θp−b+a+1(gαhβ) ≡ ∂p−b+a+1(gαhβ) = 0 (mod p).

But then since p − b + a + 1 ≥ p − b + 1, Θp−b+a+1(gαhβ) ≡ 0 modulo every
prime ideal in A, and we conclude that Θn(k,p)+1(gαhβ) = 0. We also have that
for 1 ≤ i ≤ p − b + a, Θi(gαhβ) 	= 0 since it is not zero modulo p for any ideal
generated by a prime of degree greater than 1.

Now suppose that −p < b− a ≤ 0. Then n(k, p) = a− b. As above we have that

(4.1) Θi(gαhβ) 	= 0 for 1 ≤ i ≤ a− b
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and

Θa−b+1(gαhβ) ≡ ∂a−b+1(gαhβ) (mod p).

If b = 0, then ∂a+1(gαhβ) = 0, and the result follows since Θn(k,p)+1(gαhβ) ≡ 0
modulo every prime ideal of A. If b 	= 0, we have

(4.2) Θa−b+1(gαhβ) ≡ ∂a−b+1(gαhβ) 	= 0 (mod p).

If a = p− 1 and b = 1, then a− b+ 1 = p− 1, and so by combining (4.1) and (4.2)
the result follows.

Notice now that since b 	= 0 and we have already considered the case a = p− 1
and b = 1, it only remains to consider the cases where −p+ 3 ≤ b− a ≤ 0. In any
case we have

wp(∂
a−b+1(gαhβ)) = (α−a+b−1)(q−1)+(β+a−b+1)(q+1) ≡ a−b+2 (mod p).

We now would like to apply Theorem 1.3 to ∂a−b+1(gαhβ). Since −p+3 ≤ b−a ≤ 0,
we have 2 ≤ a− b+ 2 ≤ p− 1. Then

n(wp(∂
a−b+1(gαhβ)), p) = p− a+ b− 2.

Applying Theorem 1.3 to ∂a−b+1(gαhβ), we find that

Θa−b+1+i(gαhβ) ≡ Θi(∂a−b+1(gαhβ)) 	= 0 (mod p)

for 1 ≤ i ≤ p− a+ b− 2 or, combining with (4.1),

Θi(gαhβ) 	= 0 for 1 ≤ i ≤ p− 1,

which is the result we sought. �
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