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Abstract

Kloosterman sums for a finite field Fp arise as Frobenius trace functions of certain local
systems defined over Gm,Fp . The moments of Kloosterman sums calculate the Frobenius
traces on the cohomology of tensor powers (or symmetric powers, exterior powers, etc.)
of these local systems. We show that when p ranges over all primes, the moments of
the corresponding Kloosterman sums for Fp arise as Frobenius traces on a continuous
`-adic representation of Gal(Q/Q) that comes from geometry. We also give bounds on
the ramification of these Galois representations. All of this is done in the generality
of Kloosterman sheaves attached to reductive groups introduced by Heinloth, Ngô and
Yun [Ann. of Math. (2) 177 (2013), 241–310]. As an application, we give proofs of
conjectures of Evans [Proc. Amer. Math. Soc. 138 (2010), 517–531; Israel J. Math.
175 (2010), 349–362] expressing the seventh and eighth symmetric power moments of
the classical Kloosterman sum in terms of Fourier coefficients of explicit modular forms.
The proof for the eighth symmetric power moment conjecture relies on the computation
done in Appendix B by C. Vincent.
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1. Introduction

1.1 Kloosterman sums and their moments
We first recall the definition of Kloosterman sums.

Definition 1.1.1. Let p be a prime number. Fix a nontrivial additive character ψ : Fp → C×.
Let n > 2 be an integer. Then the n-variable Kloosterman sum over Fp is a complex valued
function on F×p whose value at a ∈ F×p is

Kln(p; a) =
∑

x1,...,xn∈F×p ;x1x2···xn=a

ψ(x1 + · · ·+ xn).

These exponential sums arise naturally in the study of automorphic forms for GLn.

1.1.2 Deligne’s Kloosterman sheaf. Deligne [Del77] has given a geometric interpretation of
the Kloosterman sum. He considers the following diagram consisting of schemes over Fp.

Gn
m

π

}}{{
{{
{{
{{ F

  B
BB

BB
BB

B

Gm A1

Here the morphism π is taking the product and F is the morphism of taking the sum. Deligne
defines

Kln := Rn−1π!F
∗ASψ,

where ASψ is the rank-one local system on A1
Fp corresponding to the character ψ : Fp

∼
→ µp(C) ∼=

µp(Q`) (we make a choice of the latter isomorphism). He then shows that Kln is a Q`(µp)-local
system on Gm,Fp of rank n. The relationship between the local system Kln and the Kloosterman
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sum Kln(p; a) is explained by the following identity

Kln(p; a) = (−1)n−1Tr(Froba, (Kln)a).

Here Froba is the geometric Frobenius operator acting on the geometric stalk (Kln)a of the local
system Kln at a ∈ Gm(Fp) = F×p . The Kloosterman sheaf has been studied in depth by Deligne
[Del77] and Katz [Kat88].

For each representation V of GLn, we may form the corresponding local system KlVn . For
example, if V = Symd, the dth symmetric power of the standard representation of GLn, then
KlVn = Symd(Kln). We define

KlVn (p; a) := Tr(Froba, (KlVn )a).

Note that when V is the standard representation, KlVn (p; a) differs from the Kloosterman sum
Kln(p; a) by the sign (−1)n−1.

When n = 2, Deligne’s interpretation gives an expression Kl2(p; a) = −(αa + βa) where
αa, βa ∈ Q` are the eigenvalues of the operator Froba on (Kln)a. Taking V = Symd, we have

KlSymd

n (p; a) =
d∑
i=0

αiaβ
d−i
a .

Definition 1.1.3. Let V be a representation of GLn. The V -moment of Kln is the sum

mV
n (p) :=

∑
a∈F×p

KlVn (p; a).

One may ask whether there is a closed formula for mV
n (p) in terms of more familiar arithmetic

functions of the prime p. A related question is whether the behavior of the sequence of numbers
{mV

n (p)} exhibits certain ‘motivic’ nature. A typical example of a motivic sequence is the Fourier
coefficients {af (p)} of a holomorphic Hecke eigenform f . Another typical example is {#X(Fp)}
where X is an algebraic variety defined over Z. In this direction, Fu and Wan [FW08] showed
that for V = Symd,∧d or ⊗d, the moments mV

n (p) are the Frobenius traces on a virtual motivic
Galois representation of Gal(Q/Q).

Ron Evans (see [Eva10a, p. 523] and [Eva10b, p. 350]) has made very precise conjectures
about the moments mV

2 (p) when V = Symd and d = 5, 6, 7 or 8, the first two being proved and

the last two open. We denote mSymd

2 (p) by md
2(p).

(i) When d = 5, (−m5
2(p) − 1)/p2 is the pth Fourier coefficient of a holomorphic cuspdial

Hecke eigenform of weight 3, level Γ0(15) and quadratic nebentypus (·/15). This is proved by
Livné [Liv95] and Peters et al. [PTV92].

(ii) When d = 6, (−m6
2(p) − 1)/p2 is the pth Fourier coefficient of a holomorphic Hecke

eigenform of weight 4 and level Γ0(6). This is proved by Hulek et al. [HSVV01].

We now state the open conjectures of Evans about m7
2(p) and m8

2(p).

Conjecture 1.1.4 (Evans). (i) (See [Eva10b, Conjecture 1.1].) There exists a holomorphic
cuspdial Hecke eigenform f of weight 3, level Γ0(525) and nebentypus εf = (·/21)ε5, where
(·/21) is the quadratic character with conductor 21 and ε5 is a quartic character with conductor
5, such that for all primes p > 7, we have(

p

105

)
(−m7

2(p)− 1)/p2 = af (p)2εf (p)−1 − p2, (1.1)

where af (p) is the pth normalized Fourier coefficient of f .
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(ii) (See [Eva10a, p. 523].) There exists a holomorphic cuspidal Hecke eigenform f of weight 6,
level Γ0(6), such that for all odd primes p, we have

−m8
2(p)− 1− p4 = p2af (p),

where af (p) is the pth normalized Fourier coefficient f .

The main goal of this paper is to confirm these two conjectures.

Theorem 1.1.5. Conjecture 1.1.4 is true.

Part (i) of Conjecture 1.1.4 will be proved in § 4.7.7. Part (ii) of Conjecture 1.1.4 will be
reduced to a finite calculation in Theorem 4.6.1, and will be verified by computational softwares
in Appendix B by Christelle Vincent.

The proof of these conjectures are based on two key ingredients. One is Serre’s modularity
conjecture [Ser87] proved by Khare and Wintenberger [KW09a, KW09b]; the other is the
following existence result on the Galois representations (not just a virtual one) underlying the
moments md

2(p), which is a very special case of our main result (to be stated later).

Theorem 1.1.6 (Proved in § 4.4). (i) Let d > 3 be an odd integer. Then for each prime `,
there exists an orthogonal Q`-vector space M` of dimension (d − 1)/2 and a continuous Galois
representation

ρ` : Gal(Q/Q)→ O(M`)

with the following properties.

(a) The determinant of ρ` is the quadratic character given by the Jacobi symbol (·/d!!), where
d!! = d(d− 2)(d− 4) · · · 1.

(b) The representation ρ` comes from geometry. More precisely, there is a smooth projective
algebraic variety X of dimension d− 1 over Q (independent of `) such that the Gal(Q/Q)-
module M` appears as a subquotient of Hd−1(XQ,Q`)((d− 1)/2).

(c) For all primes p 6= ` satisfying p > d or p = 2, ρ` is unramified at p, and we have

−md
2(p)− 1 = p(d+1)/2Tr(Frobp,M`). (1.2)

(ii) Let d > 4 be an even integer. Then for each prime `, there exists a symplectic Q`-vector
space M` of dimension 2[(d+ 2)/4]− 2 and a continuous Galois representation

ρ` : Gal(Q/Q)→ GSp(M`)

with the following properties.

(a) The similitude character of ρ` is the (−d− 1)th power of the `-adic cyclotomic character.

(b) The representation ρ` comes from geometry. More precisely, there is a smooth projective
algebraic variety X of dimension d− 1 over Q (independent of `) such that the Gal(Q/Q)-
module M` appears as a subquotient of Hd−1(XQ,Q`)(−1).

(c) For a prime p 6= 2, p 6= `, M` as a Gal(Qp/Qp)-module can be decomposed into a direct sum

of symplectic Gal(Qp/Qp)-modules

M`|Gal(Qp/Qp)
∼= J2(−d/2)[d/2p] ⊕ Up. (1.3)

Here the action of Gal(Qp/Qp) on Up is unramified, and J2 is the unique two-dimensional

representation of Gal(Qp/Qp) which is an extension of Q`(−1) by Q` and on which the
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action of the inertia group Ip is unipotent but nontrivial (i.e. J2 corresponds to the Steinberg

representation under the local Langlands correspondence for GL2(Qp)). Moreover, we have

−md
2(p)− 1 = Tr(Frobp,M

Ip
` ) +

{
pd/2, d ≡ 0 mod 4,

0, d ≡ 2 mod 4.
(1.4)

In particular, ρ` is unramified at primes p > d/2, p 6= `.

We mention that when d = 7, Katz (private correspondence) proposed that there should

exist a Galois representation into O3 as in the above theorem that underlies the modular form

predicted by Evans.

1.2 General case of the main result

In the main body of the paper, we work with more general Kloosterman sheaves than Deligne’s.

Motivated by the work of Frenkel and Gross [FG09], Heinloth et al. [HNY13] construct a

Kloosterman sheaf Kl
Ĝ

for each almost simple split algebraic group Ĝ over Q`. It has the following

properties.

(i) Kl
Ĝ

is a ĜTt(Q`(µp))-local system over Gm,Fp = P1
Fp − {0,∞}. Here ĜTt is a slight

modification of Ĝ (after Deligne) in order to avoid half Tate twists, see § 2.1.4. In other words,

for every representation V of ĜTt there is a local system KlV
Ĝ

over Gm,Fp of rank dimV , such

that the assignment V 7→ KlV
Ĝ

is compatible with the formation of tensor products.

(ii) The local geometric monodromy of Kl
Ĝ

at the puncture 0 ∈ P1 is a regular unipotent

element in Ĝ.

(iii) The local geometric monodromy of Kl
Ĝ

at the puncture ∞ ∈ P1 is a ‘simple wild

parameter’ à la Gross and Reeder [GR10]. This roughly means that the Swan conductor at

∞ of the adjoint local system KlAd
Ĝ

takes the smallest possible nonzero value.

(iv) When Ĝ = SLn, Kl
Ĝ

is the Kloosterman sheaf Kln defined by Deligne.

Let V be a representation of ĜTt. We define a ‘balanced’ version of the V -moment for Kl
Ĝ

to be the Frobenius module

MV
!∗,Fp = Im(H1

c(Gm,Fp ,KlV
Ĝ

)→ H1(Gm,Fp ,KlV
Ĝ

)). (1.5)

When Ĝ = SLn, we have defined the V -moment of Kln in Definition 1.1.3, which is equal to

the alternating trace of Frobenius on the cohomology H∗c(Gm,KlVn ) according to the Lefschetz

trace formula. Therefore, Tr(Frob,MV
!∗,Fp) does not directly give the moment mV

n (p). However,

the difference between Tr(Frob,MV
!∗,Fp) and the moment mV

n (p) is explicitly computable in many

examples. It turns out that MV
!∗,Fp is a better object to work with.

Our main result is a generalization of Theorem 1.1.6 to all moments of all Kloosterman

sheaves Kl
Ĝ

.

Theorem 1.2.1 (Proved in §§ 3.4.2 and 3.3.4). Let V be the irreducible representation of Ĝ with

highest weight λ and we form the V -moment MV
!∗,Fp of Kl

Ĝ
as in (1.5).1 Suppose V Ĝgeom

= 0

1 We will see in § 2.1.5 that V can be viewed as a ĜTt-representation in a natural way, which is pure of weight
w = 〈2ρ, λ〉. Therefore KlV

Ĝ
and MV

!∗,Fp are defined.
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(here Ĝgeom ⊂ Ĝ is the Zariski closure of the geometric monodromy of Kl
Ĝ

for large p, to be

recalled in Theorem 2.3.2). Let w = 〈2ρ, λ〉 where 2ρ denotes the sum of positive coroots for Ĝ.

Then for each prime ` there exists a finite-dimensional Q`-vector space M` with a continuous

Gal(Q/Q)-action and a Gal(Q/Q)-equivariant (−1)w+1-symmetric perfect pairing

M` ⊗M`→ Q`(−w − 1)

so that the Galois representation

ρV` : Gal(Q/Q)→ GO(M`) when w is odd

or ρV` : Gal(Q/Q)→ GSp(M`) when w is even

has the following properties.

(i) It comes from geometry. More precisely, there exists a smooth projective algebraic variety

X over Q (independent of `), of dimension w−1, such that ρV` is a subquotient of the Gal(Q/Q)-

module Hw−1(X,Q`)(−1).

(ii) Let p 6= ` be a prime such that KlV
Ĝ

does not have geometrically trivial subquotients.

Then we have a canonical inclusion of Frobp-modules

MV
!∗,Fp ↪→ Q`(µp)⊗ Im(M

Ip
` → (M`)Ip). (1.6)

The proof of the above theorem again has two key ingredients.

First is the interpretation of the moments MV
!∗,Fp in terms of homogeneous Fourier transform

(Proposition 2.6.6). Unlike Fourier–Deligne transform which relies on working with a single

characteristic p, homogeneous Fourier transform (introduced by Laumon) is a ‘characteristic-

free’ version of Fourier–Deligne transform, and it serves as the bridge between moments in

characteristic p and motives over Q. We will give a quick review of Laumon’s homogeneous

Fourier transform in Appendix A. The algebraic variety X in Theorem 1.2.1(i) is closely related

to affine Schubert varieties in the affine Grassmannian.

Another ingredient is that in order to study the ramification behavior of the Galois

representations ρV` we need to work with Zp-models of various geometric objects such as affine

Grassmannian and perverse sheaves on them. Here the results of Pappas and Zhu [PZ13] play a

crucial role.

1.3 Towards more conjectures of Evans type

In view of Theorem 1.2.1 and the Langlands correspondence, Evans’s conjectures in § 1.1.4 should

be the first few examples of a large list of modularity problems relating moments of generalized

Kloosterman sums and automorphic forms. For example, we may start with a simply connected

almost simple group Ĝ and consider V -moments of the Kloosterman sheaf Kl
Ĝ

, where V is the

irreducible representation of Ĝ of highest weight λ. We then compute the dimension dV!∗ of MV
!∗,Fp

for large p.

(a) If dV!∗ = 2, and 〈2ρ, λ〉 is odd, then we get Galois representations into GO2. The V -moment

of Kl
Ĝ

should be expressible in terms of Fourier coefficients of a CM modular form.

Examples: (Ĝ, V ) = (SL2,Sym5), (SL4 or Sp4,Sym3).

(b) If dV!∗ = 2, and 〈2ρ, λ〉 is even, then we get two-dimensional Galois representations, and

the V -moment of Kl
Ĝ

should be expressible in terms of Fourier coefficients of a modular form.
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Examples:

(Ĝ, V ) = (SL2, Sym6), (SL2,Sym8),

(SL3, Sym4), (SL3, V2ω1+ω2), (SL3, V2ω1+2ω2),

(SL4 or Sp4,Sym4) and its dual, (Sp4, V3ω2).

Here {ω1, ω2} denote the fundamental weights of SL3 or Sp4, with ω1 corresponding to the
standard representation.

(c) If dV!∗ = 3 (in this case 〈2ρ, λ〉 is necessarily odd), then we get Galois representations into
O3
∼= PGL2 × {±1}. The PGL2-part of these representations should be liftable to GL2, and we

should again expect that the V -moment of Kl
Ĝ

be expressible in terms of a quadratic Dirichlet
character and the Fourier coefficients of a modular form.

Example: (Ĝ, V ) = (SL2,Sym7).

(d) If dV!∗ = 4 and 〈2ρ, λ〉 is odd, then we get Galois representations into O4. If, moreover, the
determinant character corresponds to a real quadratic field F/Q and if Gal(Q/F )→ SO4 lifts
to GSpin4 ↪→ GL2 ×GL2, then the V -moment of Kl

Ĝ
should be expressible in terms of Fourier

coefficients of two Hilbert modular forms for GL2 over F .
Example: (Ĝ, V ) = (SL2,Sym9).

(e) If dV!∗ = 4 and 〈2ρ, λ〉 is even, then we get Galois representations into GSp4. We should
then expect that the V -moment of Kl

Ĝ
be expressible in terms of a Siegel modular form for

GSp4 over Q.
Examples:

(Ĝ, V ) = (SL2, Sym10), (SL2,Sym12),

(SL3, Sym5), (SL3, V3ω1+ω2), (SL3, Sym6) and their duals,

(G2, Vω1+ω2), (G2, V2ω2), (G2, V3ω1).

Here ω1 (respectively ω2) are the dominant short (respectively long) root of G2.

And the list continues. We plan to investigate some of these examples in detail in the future.

1.4 Convention
Throughout the paper, G will be a connected, split, simple (hence adjoint) group over a field k.
We fix a maximal torus T ⊂ G and a Borel subgroup B containing T . This way we get a based
root system and the Weyl group W .

We also fix a prime ` which is different from char(k). All sheaves will be Q`-sheaves in the
étale topology of schemes or stacks.

Caution: all sheaf-theoretic functors are derived functors unless otherwise stated.
When k is a finite field, Frobk will denote the geometric Frobenius element in Gal(k/k).

Similarly, for a prime p, Frobp denotes the geometric Frobenius element in Gal(Fp/Fp).

2. Geometric setup for the moments

In this section, we give geometric interpretation of moments of Kloosterman sums. We will
work with the more general Kloosterman sheaves constructed in our earlier work [HNY13].
After some preparation on the geometric Satake equivalence in § 2.1, we review the construction
of generalized Kloosterman sheaves and their monodromy properties in §§ 2.2–2.4. Finally in
§§ 2.5–2.7 we define moments of Kloosterman sheaves and study them via homogeneous Fourier
transform.
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2.1 Deligne’s modification of the Langlands dual group and the Satake–Tate
category

In this subsection, k is either a finite field or a number field. Deligne has introduced a modification

of the Langlands dual group in the setup of the global Langlands correspondence, in order to avoid

making half Tate twists. We reformulate his construction from the viewpoint of the geometric

Satake equivalence. For a quick algebraic account, see [FG09, § 2].

2.1.1 Tate sheaves. The Tate sheaf Q`(1) is defined as a Q`-sheaf on Spec k, using the inverse

system lim
←−n µ`n of `-power roots of unity in k. Let δTt be the full subcategory of Q`-sheaves on

Spec k consisting of finite direct sums of Q`(n) for n ∈ Z. Then δTt admits a structure of a tensor

category using tensor product of sheaves. Fixing an algebraic closure k of k, the functor of taking

the k-stalk of a sheaf gives a fiber functor ω : δTt
→ VectQ` , and realizes a tensor equivalence

δTt ∼= Rep(GTt
m ).

Here GTt
m is simply the multiplicative group Gm. Under this equivalence, the tautological one-

dimensional representation of GTt
m corresponds to Q`(1).

2.1.2 The geometric Satake equivalence. Let LG be the loop group of G: this is an ind-

scheme representing the functor R 7→ G(R[[t]]). Let L+G the positive loops of G: this is a scheme

of infinite type representing the functor R 7→G(R[[t]]). The fppf quotient Gr = LG/L+G is called

the affine Grassmannian of G. Then L+G acts on Gr via left translation. The L+G-orbits on Gr

are indexed by dominant coweights λ ∈ X∗(T )+. The orbit containing the element tλ ∈ T (k((t)))

is denoted by Grλ and its closure is denoted Gr6λ. We have dim Grλ = 〈2ρ, λ〉, where 2ρ denotes

the sum of positive roots in G. The reduced scheme structure on Gr6λ is a projective variety

called the affine Schubert variety attached to λ. We denote the intersection complex of Gr6λ by

ICλ: this is the middle extension of the shifted constant sheaf Q`[〈2ρ, λ〉] on Grλ.

The Satake category Sat = PervL+G(Gr) is the category of L+G-equivariant perverse étale

sheaves on Gr (over k) whose support is of finite type. Similarly, we define Satgeom by considering

the base change of the situation to k. Then we have a pullback functor Sat→ Satgeom.

In [Lus83, Gin95] and [MV07], it was shown that Satgeom carries a natural tensor structure

(which is also defined for Sat), such that the global cohomology functor h = H∗(Gr,−) :

Satgeom
→ Vect is a fiber functor. It is also shown that the Tannakian group of the tensor

category Satgeom is a connected reductive split group over Q` whose root system is dual to

that of G. We denote this group by Ĝ. The Tannakian formalism gives the geometric Satake

equivalence of tensor categories

Satgeom ∼= Rep(Ĝ,Q`).

2.1.3 The Satake–Tate category. Let SatTt be the full subcategory of Sat whose objects are

finite direct sums of the form
⊕

λi,ni
ICλi(ni), where λi ∈ X∗(T )+ and ni ∈ Z. By [AB09, § 3.5],

the category SatTt is closed under the tensor product in Sat, and SatTt is itself a rigid tensor

category. Alternatively, one can define SatTt as the smallest tensor subcategory of Sat containing

the objects ICλ which is also stable under Tate twists. We have an embedding of tensor categories

δTt ⊂ SatTt sending Q`(n) to IC0(n), here IC0 is the skyscraper sheaf supported at the singleton

orbit Gr0.
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We have tensor functors

Satw=0

%%JJ
JJ

JJ
JJ

J δTt

zzuuu
uu
uu
uu

SatTt

HWt

$$II
III

III
II

yysss
sss

sss
s

Satgeom Vectgr

(2.1)

We explain the notation. The functor HWt is the global section functor H∗ with the grading
by weights. If we write an object K ∈ SatTt as K =

⊕
iKi, where Ki is pure of weight i, then

HWt(K) is the graded vector space
⊕

i h(Ki). The category Satw=0 is the full subcategory of
SatTt consisting of perverse sheaves which are pure of weight zero.

2.1.4 Modified Langlands dual group. The global section functor hTt = H∗(Gr,−) : SatTt
→

VectQ` is a fiber functor, which gives the Tannakian group ĜTt := Aut⊗(hTt) so that we have a
tensor equivalence

SatTt ∼= Rep(ĜTt,Q`).

For V ∈ Rep(ĜTt), we shall denote the corresponding object in SatTt by ICV .
By Tannakian duality, the diagram (2.1) gives a diagram of reductive groups over Q`

Ĝev GTt
m

ĜTt

Tt
==zzzzzzzz

aaCCCCCCCC

Ĝ

ι

=={{{{{{{{{{

π

OO

GWt
m

Wt

bbDDDDDDDDD

[−2]

OO

where the two diagonal sequences are short exact. The reductive group Ĝev is defined as the
Tannakian dual of Satw=0, and GWt

m is a one-dimensional torus.

2.1.5 Irreducible objects. Let λ be a dominant coweight of T , then ICλ is a complex pure

of weight 〈2ρ, λ〉. The corresponding object in ĜTt is an irreducible representation V Tt
λ of ĜTt.

What is this representation? Its restriction to Ĝ is the irreducible representation of highest
weight λ. Since ICλ is pure of weight 〈2ρ, λ〉, GWt

m acts on V Tt
λ by scalar multiplication via the

〈2ρ, λ〉th power of the tautological character. If we look at the action of Ĝ×GWt
m on V Tt

λ , then

the element ((−1)2ρ,−1) ∈ Ĝ × GWt
m acts trivially. Here 2ρ is viewed as a coweight of Ĝ. Note

that (−1)2ρ always lies in the center of Ĝ.
We use Q`(n) to denote the one-dimensional representation of ĜTt given by the nth power

of the character Tt : ĜTt
→ GTt

m . We also use V (n) to mean V ⊗Q`(n), as we do for sheaves.
Since every irreducible object in SatTt is of the form ICλ(n) for some dominant coweight

λ and n ∈ Z, every irreducible representation of ĜTt is of the form V Tt
λ (n). The action of Ĝ

on V Tt
λ (n) is still the same as its action on Vλ, and the action of GWt

m on it is through the
(〈2ρ, λ〉 − 2n)th power of the tautological character.

Lemma 2.1.6. The map Wt : GWt
m → ĜTt is central. The homomorphism ι×Wt : Ĝ×GWt

m → ĜTt

is an isogeny whose kernel is isomorphic to µ2 generated by ((−1)2ρ,−1) (which is central).
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Proof. Every irreducible object in SatTt is pure of some weight, hence GWt
m acts on the

corresponding representation by scalars. Therefore GWt
m is central.

Let Ĝ1 := Ĝ × GWt
m /µ2 where the µ2 is generated by ((−1)2ρ,−1). We have seen from the

discussion in § 2.1.5 that the action of Ĝ×GWt
m on every irreducible representations of ĜTt factors

through Ĝ1. Therefore, ι×Wt factors through a homomorphism φ : Ĝ1→ ĜTt. We then have a
commutative diagram

1 // Ĝ // Ĝ1

φ

��

// GWt
m /µ2

o
��

// 1

1 // Ĝ // ĜTt Tt // GTt
m

// 1

where the right-most map is the isomorphism induced from [−2] : GWt
m → GTt

m . Both the upper
and lower sequences are exact, we conclude that φ is an isomorphism. 2

Definition 2.1.7. An object V ∈ Rep(ĜTt) is pure of weight w, if the action of the weight torus

GWt
m on V (via GWt

m
Wt−−→ ĜTt

→ GL(V )) is by the wth power (as scalar multiplication).

If V ∈ Rep(ĜTt) is pure of weight w, the corresponding perverse sheaf ICV is pure of the
same weight w.

The following two examples will be important for our study of classical Kloosterman sums.

Example 2.1.8. Let n > 2 be an integer and G = PGLn. We have Ĝ = SLn. In this case,
(−1)2ρ = (−1)n−1In ∈ Ĝ. We have

ĜTt ∼=
{

SLn × (GWt
m /µ2) if n is odd,

(SLn ×GWt
m )/µ2 if n is even (µ2 is the diagonally embedded central subgroup).

We define a ‘standard representation’ of dimension n and weight n− 1:

St : ĜTt
→GLn

(g, t) ∈ SLn ×GWt
m 7→ tn−1g ∈ GLn.

The formula we gave above is a homomorphism from SLn×GWt
m to GLn, and it is easy to check

that it factors through ĜTt.

Example 2.1.9. Let n > 2 be an even integer and G = SOn+1. We have Ĝ = Spn. In this case,
(−1)2ρ =−In ∈ Ĝ and ĜTt ∼= (Spn×GWt

m )/µ∆
2
∼= GSpn. We also define a ‘standard representation’

of dimension n and weight n− 1

St : ĜTt
→GSpn ⊂ GLn

(g, t) ∈ Spn ×GWt
m 7→ tn−1g ∈ GSpn.

2.2 Construction of Kloosterman sheaves
In this subsection, the base field k is a finite field of characteristic p > 0. We fix a nontrivial
additive character ψ : Fp→ Q`(µp)

×, which gives rise to an Artin–Schreier sheaf ASψ on A1
k.

We recall the construction of the Ĝ-Kloosterman local system on Gm in [HNY13]. Here we
will actually give an enhancement of it to a ĜTt-local system.

Let π : GR → Gm be the Beilinson–Drinfeld affine Grassmannian over the curve Gm (see
[HNY13, Remark 2.8(1)]). In our case, there is a one-dimensional torus Grot

m acting on Gm by
multiplication. This action induces an action of Grot

m on GR such that π is Grot
m -equivariant.
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Using the Grot
m -action, the fibration π can be trivialized, and we may identify GR with Gr×Gm.

Let πGr : GR → Gr be the projection. For V ∈ Rep(ĜTt), let ICV,GR = π∗GrICV . Note that
ICV,GR[1] is a perverse sheaf.

In [HNY13, § 5.2] we defined an open sub-ind-scheme GR◦ ⊂ GR with a morphism f : GR◦→
Gr+1
a , where r is the semisimple rank of G:

GR◦

π◦

||yy
yy
yy
yy
y

f ##G
GG

GG
GG

GG
F

))RR
RRR

RRR
RRR

RRR
RRR

Gm Gr+1
a

σ // A1

(2.2)

Let ICV,GR◦ be the restriction of ICV,GR to GR◦.
One of the main results of [HNY13] can be stated as follows.

Theorem 2.2.1 (Heinloth et al. [HNY13, Theorem 1(1)]). For V ∈ Rep(ĜTt), we have the
following isomorphism in Db(Gm,Q`(µp))

π◦! (ICV,GR◦ ⊗ F ∗ASψ) ∼= π◦∗(ICV,GR◦ ⊗ F ∗ASψ) (2.3)

given by the natural transformation π◦! → π◦∗. (The tensor product above is taken over Q`.) Let
KlV

Ĝ
be any one of the two complexes above. Then KlV

Ĝ
is a local system on Gm. The assignment

V 7→ KlV
Ĝ

gives a tensor functor

Kl
Ĝ

: RepQ`(µp)(Ĝ
Tt)→ LocQ`(µp)(Gm).

In other words, we get a ĜTt(Q`(µp))-local system Kl
Ĝ

on Gm.

Note that the only difference between the above theorem and [HNY13, Theorem 1] is that
we have replaced the usual Langlands dual group Ĝ by Deligne’s modified Langlands dual group
ĜTt. The proof in [HNY13] works without change. When Ĝ is clear from the context, we simply
write KlV for KlV

Ĝ
.

Remark 2.2.2. The Kloosterman sheaf Kl
Ĝ

gives rise to a monodromy representation, well-
defined up to conjugacy

ρTt
Ĝ

: π1(Gm/k)→ ĜTt(Q`(µp)).

The monodromy representation ρTt
Ĝ

is compatible with the Tate torus in the following sense. The
composition

π1(Gm/k)
ρTt
Ĝ−−→ ĜTt(Q`(µp))

Tt−→ GTt
m (Q`(µp)) = Q`(µp)

×

factors through π1(Gm/k) → Gal(k/k) and is given by the `-adic cyclotomic character
χcyc : Gal(k/k)→ Z×` = Aut(Z`(1)), where Z`(1) = lim

←−n µ`n(k).

On the other hand, if an object V ∈ Rep(ĜTt) is pure of weight w, the corresponding local
system KlV is also pure of weight w.

2.3 Geometric monodromy of Kloosterman sheaves
2.3.1 Global monodromy. We also consider the restriction of ρTt

Ĝ
to the geometric

fundamental group

ρgeom

Ĝ
: π1(Gm/k)→ ĜTt(Q`(µp)).
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Let Ĝgeom be the Zariski closure of the image of ρgeom

Ĝ
. Since the composition π1(Gm/k) →

ĜTt(Q`(µp))→ GTt
m (Q`(µp)) factors through Gal(k/k) (Remark 2.2.2), the image of ρgeom

Ĝ
lies

in Ĝ = ker(ĜTt
→ GTt

m ), and hence Ĝgeom ⊂ Ĝ.

Theorem 2.3.2 (Heinloth et al. [HNY13, Theorem 3]). The subgroup Ĝgeom of Ĝ is a connected

and simply-connected group of types given by the following table (with restrictions on p stated

in the third column)

Ĝ Ĝgeom condition
A2n A2n p > 2
A2n−1, Cn Cn p > 2
Bn, Dn+1 (n > 4) Bn p > 2
E7 E7 p > 2
E8 E8 p > 2
E6, F4 F4 p > 2
B3, D4, G2 G2 p > 3

We have Ĝgeom = ĜOut(Ĝ),◦ (Out(Ĝ) acting on Ĝ as pinned automorphisms) unless Ĝ is of type

A2n or B3.

Let I0 and I∞ be the inertia groups at 0 and ∞. These are subgroups of the geometric

fundamental group π1(Gm/k), well-defined up to conjugacy. We shall describe the image of I0

and I∞ under the monodromy representation ρgeom

Ĝ
: π1(Gm/k)→ Ĝ(Q`(µp)).

2.3.3 Local monodromy at 0. By [HNY13, Theorem 1(2)], we know that ρgeom

Ĝ
is trivial on

the wild inertia Iw0 (i.e. Kl
Ĝ

is tame at 0) and sends a topological generator of the tame inertia

It0 to a regular unipotent element in Ĝ.

2.3.4 Local monodromy at ∞ for large p. The description of the local monodromy of Kl
Ĝ

at ∞ for large p is obtained in [HNY13] based on the work of Gross and Reeder on simple wild

parameters [GR10]. We review the results here. We assume p does not divide #W (W is also

identified with the Weyl group of Ĝ).

We have the lower numbering filtration for the image of I∞ under ρgeom

Ĝ
(see [Ser68, ch. IV,

Proposition 1])

D0 = ρgeom

Ĝ
(I∞) �D1 = ρgeom

Ĝ
(Iw∞) �D2 �D3 � · · · (2.4)

where Iw∞ is the wild inertia at ∞. Let Ĝad be the adjoint form of Ĝ, which is also the adjoint

form of ĜTt. Let D0 = ρgeom

Ĝad
(I∞)�D1 = ρgeom

Ĝad
(Iw∞)�D2� · · · be the lower numbering filtration

for the image of I∞ in Ĝad. We first describe D0 and D1 by combining [HNY13, Theorem 2,

Corollary 2.15] and [GR10, Proposition 5.6].

There is a unique maximal torus T̂ ad of Ĝad such that D1 ⊂ T̂ ad[p]. The group D0 lies in

the normalizer N(T̂ ad) of T̂ ad. The quotient D0/D1 is cyclic of order h (the Coxeter number

of G), and any generator of D0/D1 maps to a Coxeter element Cox in W under the map

D0/D1→ N(T̂ ad)/T̂ ad = W . Moreover, D1 ⊂ T̂ ad[p] is isomorphic to the additive group of some

finite field Fq = Fp[ζ] where ζ is a primitive hth root of unity in Fp. The action of a generator of

D0/D1 on D1
∼= Fp[ζ] is by multiplication by ζ.

79



Z. Yun

We then describe D0 and D1 (which is a p-group mapping onto D1). Since p is prime to
#ZĜ, D1 ⊂ Ĝ is the unique p-group mapping onto D1, and D1 lies in T̂ [p] (where T̂ is the

preimage of T̂ ad in Ĝ). Again D0 ⊂ N(T̂ ) because N(T̂ ) is the preimage of N(T̂ ad) in Ĝ. Since

D0/D1 is cyclic, D0 is of the form D1o〈C̃ox〉 where C̃ox ∈ N(T̂ ) is a lifting of a Coxeter element
Cox ∈ W . Any two liftings of Cox to N(T̂ ) are conjugate under T̂ . Note that when Ĝ is not

adjoint, the order of C̃ox is a multiple eh of h, but may not be h.

Example 2.3.5. Let G = PGLn, Ĝ = SLn. The Coxeter elements in the Weyl group W = Sn are
cyclic permutations of length n. When n is odd, any lifting of such an element to N

Ĝ
(T̂ ) still has

order n. However, when n is even, any lifting of a Coxeter element in Sn to N
Ĝ

(T̂ ) has order 2n.

When n is even and G = SOn+1, Ĝ = Spn. Then we are in the same situation as Ĝ = SLn:
the Coxeter element has order n but any lifting of it to N

Ĝ
(T̂ ) has order 2n.

Recall the Swan conductor of the representation ρgeom

Ĝ
|I∞ : I∞→ Ĝ→ GL(V ) is defined as

Swan∞(V ) =
∑
j>1

dimV − dimV Dj

[D0 : Dj ]

where Dj are the lower numbering filtration subgroups of D0 in (2.4) (see [Ser68, ch. VI,
Proposition 2] for the closely related Artin conductor; see also [GR10, § 2]).

Lemma 2.3.6. Let V ∈ Rep(ĜTt). Assume p - #W . Then

Swan∞(V ) =
dimV − dimV D1

h
.

Proof. Let eh be the order of C̃ox, then D0/D1
∼= Z/ehZ. The lower numbering filtration of D0

takes the form
D0 �D1 = D2 = · · · = De �De+1 = {1}. (2.5)

In fact, let K = k((t−1)) and let L/K be Galois extension with Galois group isomorphic to
D0 = ρgeom

Ĝ
(I∞). The quotient D0 corresponds to a subextension L′ ⊂ L. Let Kt (respectively

K ′t) be the maximal tamely ramified extension of K in L (respectively L′). Since D1 =D1, L is the
compositum L′Kt with L′∩Kt =K ′t. Pick a generating element x ∈ OL′ overOK′t . Then it is also a
generating element ofOL overOKt . For any g ∈D1, we then have valL(g(x)−x) = evalL′(g(x)−x).
Therefore, the jumps of the lower number filtration {Di} are exactly e times the jumps of {Di}.
Since we have D2 = {1}, the sequence {Di} must look like (2.5). We then have

Swan∞(V ) =
∑
j>1

dimV − dimV Dj

[D0 : Dj ]
=

e∑
j=1

dimV − dimV D1

eh
=

dimV − dimV D1

h
. 2

2.4 The classical Kloosterman sheaf
When G = PGLn, let us consider the following diagram.

Gn
m

π

}}{{
{{
{{
{{

f !!B
BB

BB
BB

B
F

((PP
PPP

PPP
PPP

PPP
PP

Gm Gn
a

σ // A1

(2.6)

Here the morphism π is given by taking the product π(x1, . . . , xn) = x1 · · ·xn; f is the natural
inclusion; σ is given by taking the sum σ(x1, . . . , xn) = x1 + · · · + xn; finally F = σ ◦ f .
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Deligne defined
Kln := m!F

∗ASψ[n− 1].

It is known [Del77, Théorème 7.8] that Kln is concentrated in degree zero, and is a local system
on Gm,Fp of rank n. Moreover, Kln is pure of weight n− 1.

2.4.1 Determinant. For the one-dimensional representation det of GLn, Kldet
n = det(Kln).

Deligne [Del77, (7.15.2)] has determined that

det Kln = Q`

(
−n(n− 1)

2

)
as Frob-modules.

2.4.2 Symplectic pairing. When n is even, there is a symplectic pairing (see [Del77, § 7.5])

Kln ⊗Kln→ Q`(−n+ 1).

The diagram (2.6) is very similar to (2.2). In fact, when we work with G = PGLn and V the

standard representation of ĜTt (see Example 2.1.8), the sheaf ICV is the shifted constant sheaf
Q`[n − 1] supported on a Schubert variety in Gr which isomorphic to Pn−1. Therefore, ICV,GR

is the shifted constant sheaf Q`[n− 1] on Gm × Pn−1 ⊂ GR. The intersection of the open subset
GR◦ with Gm × Pn−1 is isomorphic to Gn

m. Thus, we recover (2.6) as part of (2.2), and Kln is
the same as KlSt

SLn .
The next proposition gives the precise sense in which Kl

Ĝ
generalizes Deligne’s Kloosterman

sheaves Kln.

Proposition 2.4.3. (i) For n > 2, we have an isomorphism of local systems on Gm

KlSt
SLn
∼= Kln.

Here St is the standard representation of SLTt
n given in Example 2.1.8.

(ii) When n is even, there exists x ∈ Gm(Fp) and a character ε : Gal(k/k)→ {±1} such that

KlSt
Spn
∼= m∗xKln ⊗Q`(ε). (2.7)

Here mx : Gm → Gm is the multiplication by x, Q`(ε) is the rank-one local system on
Spec k obtained from the character ε, and St is the standard representation of SpTt

n given in
Example 2.1.9.

Proof. (1) is proved in [HNY13, Proposition 3.4]. When n is even, according to the description
of local monodromy of KlSpn in §§ 2.3.3 and 2.3.4, the local monodromy of KlSt

Spn
is unipotent

with a single Jordan block; at ∞, KlSt
Ĝn

is totally wild with Swan∞(KlSt
Ĝn

) = 1. Applying

Theorem [Kat88, 8.7.1] we conclude that there exists x ∈ Gm(Fp) and a continuous character

ε : Gal(k/k)→Q×` such that (2.7) holds. Since both KlSt
Ĝn

and Kln admit a symplectic autoduality

with values in Q`(−n+ 1), ε must be quadratic. 2

The monodromy representation of Kln reads

ρn : π1(Gm/Fp)→ SLTt
n (Q`(µp)),

which is well-defined up to conjugacy. Let ρgeom
n be the restriction of ρn to the geometric

fundamental group π1(Gm/Fp), and let Ĝgeom
n be the Zariski closure of the image of ρgeom

n .

Katz gave a complete description of Ĝgeom
n .
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Theorem 2.4.4 (Katz [Kat88, Main Theorem 11.1]). We have

Ĝgeom
n =


Spn, n even,

SLn, n odd, p > 2,

SOn, n 6= 7 odd, p = 2,

G2, n = 7, p = 2.

2.5 Moments
In this subsection we define moments of Kloosterman sheaves and study their basic properties.
Let k be a finite field.

Definition 2.5.1. For the Kloosterman sheaf Kl
Ĝ

and a representation V ∈ Rep(ĜTt), we define
three versions of the V -moment of Kl

Ĝ
:

MV
! := RΓc(Gm,KlV )[1];

MV
∗ := RΓ(Gm,KlV )[1];

MV
!∗ := Im(H0MV

! → H0MV
∗ ) = Im(H1

c(Gm,KlV )→ H1(Gm,KlV )).

Each of these are objects in Db
c(Spec k). When we need to emphasize their dependence on k, we

denote them by MV
!,k,M

V
∗,k and MV

!∗,k, respectively.

Remark 2.5.2. The complex MV
! lies in cohomological degrees 0 and 1, and H1MV

! =

Vπ1(Gm/k)(−1) = V
Ĝgeom(−1). Therefore, if V Ĝgeom

= 0 (which is equivalently to V
Ĝgeom = 0 since

Ĝgeom is reductive) then MV
! is concentrated in degree zero (i.e. is a plain Gal(k/k)-module).

Dually, MV
∗ lies in cohomological degrees −1 and 0, and is concentrated in degree zero if

V Ĝgeom
= 0.

2.5.3 Basic properties of moments. Let j : Gm ↪→ P1 be the open inclusion, and let i0 and
i∞ be the inclusions of the point 0 and ∞ into P1. The distinguished triangle

j!KlV → j∗KlV → i0,∗i
∗
0j∗KlV ⊕ i∞,∗i∗∞j∗KlV → j!KlV [1]

gives a long exact sequence

0→H−1MV
∗ → H0i∗0j∗KlV ⊕H0i∗∞j∗KlV → H0MV

! → H0MV
∗

→H1i∗0j∗KlV ⊕H1i∗∞j∗KlV → H1MV
! → 0. (2.8)

We can rewrite the exact sequence (2.8) as

0→ V Ĝgeom
→ V I0 ⊕ V I∞ → H0MV

! → H0MV
∗

→ VI0(−1)⊕ VI∞(−1)→ V
Ĝgeom(−1)→ 0. (2.9)

Lemma 2.5.4. Let V ∈ Rep(ĜTt) be a pure object of weight w. As Gal(k/k)-modules, H0MV
! is

of weights at most w + 1 and H0MV
∗ is of weights at least w + 1. Moreover,

MV
!∗ = H0(P1, j!∗KlV [1]) = GrWw+1H0MV

! = GrWw+1H0MV
∗

which is pure of weight w+1. Here j!∗KlV [1] is the middle extension of the perverse sheaf KlV [1]
from Gm to P1.
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Proof. The local system KlV is pure of weight w by Remark 2.2.2. By [Del80, Théorème 3.3.1],
H0MV

! = H1
c(Gm,KlV ) has weights at most w + 1. A dual argument shows that H0MV

∗ is of
weights at least w + 1. Since MV

!∗ = Im(H0MV
! → H0MV

∗ ), it is pure of weight w + 1.
By (2.9), the kernel of the natural map H0MV

! → H0MV
∗ is a quotient of H0i∗0j∗KlV ⊕

H0i∗∞j∗KlV , which has weight at most w because H0i∗0j∗KlV and H0i∗∞j∗KlV are stalks of the
perverse sheaf j!∗KlV which is pure of weight w. Therefore, MV

!∗ = GrWw+1H0MV
! . A dual argument

shows that MV
!∗ = GrWw+1H0MV

∗ . 2

Using the description of local monodromy of the Kloosterman sheaves, we can give a formula
for the dimension of MV

! ,M
V
∗ and MV

!∗ .

Lemma 2.5.5. Let N ∈ Lie Ĝ be a regular nilpotent element. Then we have

dimMV
! = dimMV

∗ = Swan∞(V ), (2.10)

dimMV
!∗ = Swan∞(V )− dimV N − dimV I∞ + dimV Ĝgeom

. (2.11)

When p - #W , we have

dimMV
!∗ =

dimV − dimV D1

h
− dimV N − dimV D1,C̃ox + dimV Ĝgeom

.

Proof. Equation (2.10) follows from the Grothendieck–Ogg–Shafarevich formula. Equation (2.11)
follows from (2.10) and the sequence (2.9). Note that V I0 = V N by the result stated in § 2.3.3.
Finally (2.5.5) follows from (2.11) and Lemma 2.3.6. 2

2.5.6 Independence of dimension of moments for large p. We are going to show that the
dimensions of MV

?,Fp (? =!, ∗ and !∗) are independent of p when p is sufficiently large.

Let X∗(T̂ )Q,prim ⊂ X∗(T̂ )Q be the subspace where Cox acts via a primitive hth root of unity.

Then X∗(T̂ )Q,prim is a simple Q[Cox]-module isomorphic to Q[x]/(φh(x)), the cyclotomic field

generated by hth roots of unity. Let X∗(T̂ )prim = X∗(T̂ )Q,prim ∩ X∗(T̂ ). Let X∗(T̂ )⊥prim ⊂ X∗(T̂ )

be the annihilator of X∗(T̂ )prim.

Lemma 2.5.7. Assume p - #W so that we have D1 ⊂ T̂ [p] for some maximal torus T̂ ⊂ Ĝ (see
§ 2.3.4). Let V ∈ Rep(Ĝ) and let V (λ) be the λ-weight space of V for λ ∈ X∗(T̂ ). Then for
sufficiently large p (depending on V ), we have

V D1 =
⊕

λ∈X∗(T̂ )⊥prim

V (λ).

In particular, according to Lemma 2.5.5, dimMV
!,Fp ,dimMV

∗,Fp and dimMV
!∗,Fp are constant for p

sufficiently large.

Proof. For each weight λ ∈ X∗(T̂ ), D1 acts on V (λ) via the character λ|D1 : D1 → Q`(µp)
×.

Therefore, we need to show that λ|D1 is trivial for sufficiently large p if and only if λ ∈ X∗(T̂ )⊥prim.

We define X∗(T̂ )Fp,prim ⊂ X∗(T̂ )Fp = X∗(T̂ )⊗ZFp to be the Fp[Cox]-submodules generated by

those on which Cox acts via a primitive hth root of unity (so X∗(T̂ )Fp,prim may not be a simple

Fp[Cox]-module). For sufficiently large p, X∗(T̂ )Fp,prim is the reduction mod p of X∗(T̂ )prim, i.e.

X∗(T̂ )Fp,prim = X∗(T̂ )prim,Fp .
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We identify T̂ [p] with X∗(T̂ )Fp hence view D1 as a Fp[Cox]-submodule of X∗(T̂ )Fp . By the

description of D1 in § 2.3.4, we have D1 ⊂ X∗(T̂ )Fp,prim. By the discussion above, for p large, we

may view D1 as a Fp[Cox]-submodule of X∗(T̂ )prim,Fp .

If λ⊥X∗(T̂ )prim, then λ restricts trivially to X∗(T̂ )prim,Fp . Hence, for sufficiently large p, λ

mod p is trivial on X∗(T̂ )Fp,prim, hence on D1.

On the other hand, if λ is nonzero on X∗(T̂ )prim, we claim that λ|D1 is also nontrivial for

sufficiently large p. Let λ be the image of λ in X∗(T̂ )prim = X∗(T̂ )∨prim. The vectors λ,Cox(λ), . . . ,

Coxφ(h)−1(λ) span the Q-vector space X∗(T̂ )Q,prim. Therefore, for sufficiently large p, λ mod p

generate X∗(T̂ )Fp,prim as a Fp[Cox]-module. If λ|D1 = 1, then λ mod p could only generate a

proper Fp[Cox]-submodule of X∗(T̂ )Fp,prim (contained in the annihilator of D1). Therefore, λ|D1

is nontrivial. 2

2.6 Moments via homogeneous Fourier transform
We would like to express the moments MV

! using homogeneous Fourier transform, which has the
advantage that the new formula makes sense over any base field (i.e. the Artin–Schreier sheaf
disappears in the new formula). Basic definitions and properties of the homogeneous Fourier
transform are recalled in Appendix A, following the original article of Laumon [Lau03].

2.6.1 An alternative description of GR◦. Here we give an alternative description of the open
part GR◦ of the Beilinson–Drinfeld Grassmannian defined in [HNY13, § 5.2]. We would like to
show that GR◦ is a group ind-scheme over Gm and the morphism f : GR◦ → Gr+1

a is a group
homomorphism.

Fix a pair of opposite Borel subgroups B,Bopp ⊂G with intersection T = B∩Bopp a maximal
torus of G. Let LG0 and LG∞ be the loop group of G, with the formal parameter chosen to be the
local coordinate t around 0 ∈ P1 and s = t−1 around ∞ ∈ P1. We use Bopp to define an Iwahori
subgroup Iopp

0 ⊂ LG0, i.e. I0 is the preimage of Bopp under the evaluation map L+G0 → G.
Similarly, we use B to define an Iwahori subgroup I∞ ⊂ LG∞. We also consider the following
Moy–Prasad subgroups of I∞ (see [HNY13, § 1.2]):

I∞ = I∞(0) � I∞(1) � I∞(2).

Here I∞(1) is the preimage of N (radical of B) under the evaluation map L+G∞ → G, so that
I∞(0)/I∞(1) = T . On the other hand I∞(1)/I∞(2) can be identified with the (r + 1)th product
of the additive group Ga, where r is the rank of G; each copy of Ga is the root subgroup of LG∞
corresponding to a simple affine root.

Recall that in [HNY13, § 1.4] we introduced moduli stacks BunG(0,i) for i = 0, 1, 2. It classifies
G-torsors over P1 with an Iopp

0 -level structure at 0 and an I∞(i)-level structure at ∞. There is
an open point ? ∈ BunG(0,1) (with no automorphisms), which corresponds to the trivial G-torsor
over P1 with the tautological Iopp

0 and I∞(1)-level structures. We denote this G-torsor with level
structures by E?0,1. Its image in BunG(0,0) will be denoted E?0,0, with automorphism group T .

The connected components of BunG(0,i) are indexed by Ω = X∗(T )/ZΦ∨ where ZΦ∨ is the
coroot lattice. For ω ∈ Ω, we let BunωG(0,i) be the corresponding component. We may identify Ω

with the quotient NLG0(Iopp
0 )/Iopp

0 , hence it acts on BunG(0,i) by changing the G-torsors in the
formal neighborhood of 0. This action permutes the components of BunG(0,i) simply transitively.
Using Ω-translates of E?0,i we get an open point ω(?) ∈ BunωG(0,i), which corresponds to a G-torsor

Eω(?)
0,i with level structures at 0 and ∞. The Ω-action only changes a G-torsor in the formal
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neighborhood of 0, hence there are canonical isomorphisms Eω(?)
0,i |P1−{0}

∼
→ E?0,i|P1−{0} for all

ω ∈ Ω.

For x ∈ Gm(k), and ω ∈ Ω, define an ind-scheme

Gω
x = IsomP1−{x}(Eω(?)

0,1 , E?0,1).

When ω = 1, G1
x is the automorphism group (ind-scheme) of E?0,1|P1−{x}, which acts on each Gω

x .

When x varies over Gm, we get an ind-scheme Gω over Gm, and we define

Gx :=
⊔
ω∈Ω

Gω
x , G :=

⊔
ω∈Ω

Gω.

We define a group structure on G as follows. For ϕ ∈ Gω and ϕ′ ∈ Gω′ , we define ϕ◦ϕ′ to be the

composition Eωω
′(?)

0,1

ω(ϕ′)−−−→ Eω(?)
0,1

ϕ−→ E?0,1. It is easy to check that this defines a group ind-scheme

structure on G over Gm.

For each ϕ ∈ Gω
x , which is an isomorphism Eω(?)

0,1 |P1−{x} → E?0,1|P1−{x}, we may consider its

restriction ϕ∞ to the formal neighborhood of ∞ ∈ P1. Since Eω(?)
0,1 is the same as E?0,1 away from

0, ϕ∞ gives an element in L+G∞. Since ϕ∞ preserves the I∞(1)-level structures, ϕ∞ ∈ I∞(1).

This defines a group homomorphism

ev∞ : G→ I∞(1),

and hence a group homomorphism by composition

fG : G→ I∞(1)→ I∞(1)/I∞(2) ∼= Gr+1
a .

Lemma 2.6.2. There is a canonical isomorphism of ind-schemes over Gm

ι : G
∼
→ GR◦

such that fG = f ◦ ι.

Proof. We first recall the definition of GR◦ in [HNY13]. We defined the Hecke correspondence

(see [HNY13, § 2.3])

HkG(0,1)

pr1xxrrr
rrr

rrr
r pr2

&&LL
LLL

LLL
LL

prGm // Gm

BunG(0,1) BunG(0,1)

In [HNY13, § 5.2], the Beilinson–Drinfeld Grassmannian is defined to be the fiber pr−1
2 (?) of

the open point ? ∈ BunG(0,1) in HkG(0,1). The open subscheme GR◦ ⊂ GR is defined as the

preimage of the union of the open points
⊔
ω∈Ω ω(?) ⊂ BunG(0,1) under the first projection

pr1 : GR → BunG(0,1). Therefore, GR◦ is the union of the preimages of (ω(?), ?) under the

projections pr1×pr2 : HkG(0,1)→ BunG(0,1)×BunG(0,1). By the moduli interpretation of HkG(0,1),

this preimage is exactly G. The rest of the lemma is clear. 2
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Remark 2.6.3. Let us give the morphism Gx ↪→ GRx explicitly. The G-torsors E?0,1 and Eω(?)
0,1 are

canonically trivialized at x ∈ Gm by definition. Therefore, restricting an isomorphism ϕ ∈ Gx to
the formal punctured neighborhood of x gives a homomorphism of group ind-schemes

evx : Gx→ LGx (2.12)

where LGx is the loop group of G at x. Now the morphism Gx → GRx is given by composing
(2.12) with the projection LGx→ GRx = LGx/L

+Gx.
In § 4.1 we will give a more explicit description of G in the case G = PGLn.

2.6.4 Torus action on G. We may define a variant of G as follows. Instead of considering

isomorphisms between Eω(?)
0,1 we consider Eω(?)

0,0 . This way we get an ind-scheme G′ω→ Gm whose

fiber over x ∈ Gm is IsomP1−{x}(Eω(?)
0,0 , E?0,0). Let G′ =

⊔
ω∈Ω G′ω. Similarly, we have the evaluation

map ev′∞ : G′→ I∞ and hence a morphism

τ : G′→ I∞→ I∞/I∞(1) = T.

By construction, G = τ−1(1). Note also that T = AutP1(Eω(?)
0,0 ) = AutP1(E?0,0) acts on each

G′ωx both from the right and from the left by pre- and post-composition. Combining these two
actions gives an adjoint action of T on G′. The morphism ev′∞ is equivariant under the adjoint
T -actions: T also acts on I∞ by conjugation. Since the homomorphism τ is invariant under the
adjoint T -action, the T -action preserves G. Therefore we obtain an action of T on G, such that
the morphism fG : G→ I∞(1)/I∞(2) is T -equivariant.

Recall Grot
m is the one-dimensional torus acting on P1 by scaling the natural coordinate:

s ∈ Grot
m as t 7→ s−1t. This action induces a Grot

m -action on G ∼= GR◦ which commutes with the
adjoint T -action. This way we conclude.

Lemma 2.6.5. There is an action of T×Grot
m on G making the morphism fG : G→ I∞(1)/I∞(2)∼=

Gr+1
a equivariant under T × Grot

m . Here, for i = 0, 1, . . . , r, T × Grot
m acts on the ith coordinate

of Gr+1
a through the simple affine root αi of the loop group LG∞. Identifying Gx with GR◦x, the

T -action on GR◦x ⊂ LGx/L+Gx is via left multiplication.

Define a one-dimensional subtorus G(ρ∨,h)
m ⊂ T ×Grot

m by

G(ρ∨,h)
m 3 s 7→ (sρ

∨
, sh) ∈ T ×Grot

m .

where h is the Coxeter number of G. For example, when G = PGLn, G(ρ∨,h)
m ⊂ T × Grot

m is

given by (diag(sn−1, sn−2, . . . , s1, 1), sn). This subtorus G(ρ∨,h)
m has the property that it acts on

each simple affine root space by dilation. Therefore, the map F = σ ◦ fG : G ∼= GR◦ → A1 is

G(ρ∨,h)
m -equivariant, where G(ρ∨,h)

m acts on A1 still by dilation.
Using the Grot

m -action we may trivialize the group ind-scheme G → Gm and write G =
G1 × Gm. We have a canonical identification G1

∼= GR◦1. We may also identify GR1 with the
affine Grassmannian Gr = LG/L+G (by using the standard local coordinate t−1 at 1 ∈ Gm). We
write Gr◦ for GR◦1 under this identification. Now T acts only on the G1-factor (by conjugation)
and Grot

m only acts on the Gm-factor (by translation). Therefore,

[GR◦/G(ρ∨,h)
m ] ∼= [Gr◦/µρ

∨

h ] ∼= [G1/Ad(µρ
∨

h )].

The notation emphasizes that µh acts on Gr◦ via the cocharacter ρ∨ : Gm→ T and the adjoint
T -action on G1

∼= Gr◦.
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Because F is equivariant under G(ρ∨,h)
m , it descends to a morphism of stacks [GR◦/G(ρ∨,h)

m ]→

[A1/G(ρ∨,h)
m ]. Therefore, we may rewrite F as a morphism

F : [Gr◦/µρ
∨

h ] ∼= [G1/Ad(µρ
∨

h )]→ [A1/Gm]. (2.13)

Every object in SatTt is also T -equivariant, and in particular µh-equivariant. We use the
same notation ICV to mean a µh-equivariant perverse sheaf on Gr, whose restriction to Gr◦ is
still denoted by IC◦V . The complexes F!ICV,GR◦ and F∗ICV,GR◦ belong to Db

Gm(A1,Q`), and can

be identified with F !IC
◦
V and F ∗IC

◦
V .

Let S be any base scheme. For an object F ∈ Db
Gm,S (A1

S ,Q`), we use Fη to denote its

restriction to the ‘open point’ S = [Gm,S/Gm,S ]. The following proposition gives a formula for
MV

! , which has the potential of making sense over a general base scheme S other than Spec k.

Proposition 2.6.6. There are canonical isomorphisms in Db(Spec k,Q`(µp))

MV
!
∼= HFour(F !IC

◦
V )η ⊗Q`(µp). (2.14)

Proof. By definition of KlV and MV
! , and proper base change, we have

MV
! = RΓc(Gm,KlV )[1] = RΓc(GR◦, ICV,GR◦ ⊗ F ∗ASψ)[1] = RΓc(A1, F!ICV,GR◦ ⊗ASψ)[1].

The last object is the stalk at 1 ∈ A1(k) of the Fourier–Deligne transform Fourψ(F!ICV,GR◦), see
§A.1. By Theorem A.2.1(ii), we conclude that MV

! is the same as the stalk at 1 of HFour(F !IC
◦
V ),

which is the same as HFour(F !IC
◦
V )η ⊗Q`(µp). 2

2.7 Autoduality of moments

For V,W ∈ Rep(ĜTt), the isomorphism KlV ⊗KlW
∼
→ KlV⊗W induces a cup product

H∗c(Gm,KlV )⊗H∗c(Gm,KlW )→ H∗c(Gm,KlV⊗W ),

which is equivalent to a map
MV

! ⊗MW
! →MV⊗W

! [1]. (2.15)

When W = V ∨, KlV
∨

is the dual local system of KlV , therefore (2.15) composed with the
evaluation map V ⊗ V ∨→ Q` (the trivial representation) gives

MV
! ⊗MV ∨

! →MV⊗V ∨
! [1] ∼= H∗c(Gm,Q`(µp))[2]→ Q`(µp)(−1) (2.16)

where the last map is given by projecting to H2
c(Gm,Q`(µp)).

2.7.1 The opposition σ. Recall that in [HNY13, § 6.1] we studied the behavior of Kl
Ĝ

under
pinned automorphisms of G. Let σ be the opposition on G: this is the pinned automorphism of
G which acts as −w0 on X∗(T ). Then σ induces an involution (which we still denote by σ) on
ĜTt as well which is the identity on GWt

m . Then [HNY13, Corollary 6.5 and Table 2] says that
when G is not of type A2n, the monodromy of Kl

Ĝ
lies in ĜTt,σ, i.e. we have a tensor functor

K : Rep(ĜTt,σ)→ Loc(Gm)

(we suppress the coefficient field Q`(µp) in the notation), denoted V 7→ KV , such that the
following diagram is made commutative by a canonical natural isomorphism.

Rep(ĜTt)
Res //

Kl
Ĝ

77
Rep(ĜTt,σ)

K // Loc(Gm)
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When G is of type A2n, then [HNY13, Corollary 6.5 and Table 2] says that there is a Ĝo〈σ〉-local
system K on Gm such that the following diagram is made commutative by a canonical natural
isomorphism.

Rep(ĜTt o 〈σ〉) K //

Res
��

Loc(Gm)

[2]∗

��
Rep(ĜTt)

Kl
Ĝ // Loc(Gm)

Here [2]∗ is the pullback functor along the square morphism [2] : Gm→ Gm.
For V ∈ Rep(ĜTt), let V σ be the same vector space with the action of ĜTt given by the

composition ĜTt σ−→ ĜTt
→ GL(V ).

Lemma 2.7.2. Let V ∈ Rep(Ĝ). When G is not of type A2n there is a canonical isomorphism

KlV
Ĝ

∼
→ KlV

σ

Ĝ
. (2.17)

When G is of type A2n, there is a canonical isomorphism

[2]∗KlV
Ĝ

∼
→ [2]∗KlV

σ

Ĝ
. (2.18)

In particular, for all G, we always have a canonical isomorphism

MV
!
∼
→MV σ

! . (2.19)

Proof. We shall use the local system K introduced in § 2.7.1. When G is not of type A2n, both
sides of (2.17) can be identified with KV (since V = V σ as ĜTt,σ-representations). When G

is of type A2n, both sides of (2.18) can be identified with KW where W = Ind
ĜTto〈σ〉
ĜTt

V =

Ind
ĜTto〈σ〉
ĜTt

V σ ∈ Rep(ĜTt o 〈σ〉). 2

Proposition 2.7.3. Let V be an irreducible object in Rep(ĜTt) of weight w. Then there is a
canonical isomorphism

MV
!
∼= MV ∨

! (−w) (2.20)

such that the pairing

MV
! ⊗MV

!
∼= MV

! ⊗MV ∨
! (−w)

(2.16)−−−→ Q`(µp)(−w − 1) (2.21)

is (−1)w+1-symmetric.

Proof. Since V is irreducible of weight w, we have V ∨(−w) ∼= V σ. The isomorphism (2.20) comes
from this isomorphism and (2.19).

We may rewrite the isomorphism V ∨(−w) ∼= V σ as a perfect pairing

(· , ·) : V ⊗ V → Q`(−w) (2.22)

such that (gu, σ(g)v) = (u, v) for all g ∈ Ĝ. When G is not of type A2n, let Ĥ = ĜTt,σ and
let W = V viewed as an Ĥ representation. Then we have KW = KlV

Ĝ
. When G is of type A2n, let

Ĥ = ĜTt o 〈σ〉 and let W = IndĤ
ĜTtV as an Ĥ representation, then KW is also defined. From the
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proof of Lemma 2.7.2, the pairing (2.21) is induced from the pairing of local systems on Gm:

KW ⊗KW → Q`(µp)(−w). (2.23)

The above pairing comes from a pairing W ⊗W → Q`(−w) of Ĥ-modules, which in turn comes
from the pairing (2.22) (via an induction process when G is of type A2n). Hence, the pairing
(2.23) has the same symmetry type as (2.22).

We now claim that (2.22) is (−1)w-symmetric. In fact, since V is an irreducible representation
of Ĝ, pairings on V satisfying (gu, σ(g)v) = (u, v) (for all g ∈ Ĝ) are unique up to a scalar.
In particular, the transposed pairing (u, v)′ := (v, u) also satisfies the same condition, hence
(v, u) = (u, v)′ = c(u, v) for some constant c, and clearly c = ±1. Let ϕ : SL2 → Ĝσ ⊂ Ĝ be the
principal SL2 whose restriction to the diagonal torus of SL2 is given by the cocharacter 2ρ of
Ĝ. Then (2.22) is ϕ(SL2)-invariant. Decomposing V as a direct sum of irreducible SL2-modules,
the irreducible representation Symn with n largest appears with multiplicity one. In fact, the
highest weight space under the SL2-action is the same as the highest weight space for Ĝ (which
is one-dimensional), and we have n = 〈2ρ, λ〉 if λ is the highest weight of V . The symmetry type
c of V is then the same as the symmetric type when restricted to Symn. From the discussion
in § 2.1.5, the weight w of V is also 〈2ρ, λ〉. Since any SL2-invariant autoduality on Symn is
(−1)n-symmetric, the constant c must be (−1)n = (−1)w.

Now we have shown that the pairing (2.23) is (−1)w-symmetric. Since taking H1
c changes the

sign of the pairing, the pairing (2.21) is (−1)w+1-symmetric. 2

Remark 2.7.4. Since MV
!∗ = H1(P1, j!∗KlV ) by Lemma 2.5.4, the pairing (2.16) factors through

a perfect pairing
MV

!∗ ⊗MV ∨
!∗ → Q`(µp)(−1).

Therefore, the pairing (2.21) also factors through a (−1)w+1-symmetric perfect pairing

MV
!∗ ⊗MV

!∗ → Q`(µp)(−w − 1).

3. The Galois representations attached to moments

The goal of this section is to prove the main Theorem 1.2.1, which attaches a Galois
representation of Gal(Q/Q) to each pair (Ĝ, V ∈ Rep(ĜTt)), such that the local behavior
at p of this Galois representation is closely related to the moment MV

!∗,Fp defined earlier in
Definition 2.5.1. The proof starts by ‘gluing’ the moments defined over Fp into a moment defined
over Spec Z.

3.1 Moments over Z
In this subsection, we consider schemes over S = Spec Z[`−1]. We use underlined letters to denote
schemes over S. We use the following notation for inclusions of closed points and the generic
point of S:

Spec Fp
ip−→ S

j
←− Spec Q.

Let G be the Chevalley group over S with the same root datum as the simple group G
we fixed in the beginning. The affine Grassmannian GR,Gr, as well as GR◦ ∼= G, Gr◦ ∼= G1

have natural models GR,Gr, etc. over S. For example, the affine Grassmannian Gr over S can
be defined as the fppf quotient LG/L+G. See [PZ13, § 5.b.1, Proposition 5.3]. Its generic fiber
GrQ and special fibers GrFp are the old affine Grassmannians defined over a field, see [PZ13,
Corollary 5.6].
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Lemma 3.1.1. Let V ∈ Rep(ĜTt). Let j : GrQ ↪→ Gr be the inclusion of the generic fiber and
ip : GrFp ↪→ Gr be the inclusion of the mod p special fiber. Let ICV = j!∗ICV . Then we have

i∗ICV
∼= ICV,Fp .

Here ICV,Fp ∈ SatTt
Fp is the perverse sheaf on GrFp corresponding to V .

Proof. Since we are dealing with a single prime p at a time, we may restrict the situation to
Spec Zp, and retain the same notation. By [PZ13, Proposition 9.15], the nearby cycles sheaf
Ψ(ICV ) (a perverse sheaf on GrFp) is isomorphic to ICV,Fp . Also, by [PZ13, Proposition 9.12],
the monodromy action on Ψ(ICV ) is trivial (because we are in the situation of a split G and
hyperspecial parahoric level structure, in the context of [PZ13]). Then, by [PZ13, Lemma 9.19],
i∗j!∗ICV is isomorphic to Ψ(ICV ), which is in turn isomorphic to ICV,Fp . 2

Remark 3.1.2. We may similarly define the convolution product of ICV ∗ ICW on Gr, using
the integral model of the convolution diagram [MV07, § 4]. We claim that there is a natural
isomorphism

ICV⊗W
∼= ICV ∗ ICW .

In fact, both sides above are isomorphic when restricted to GrQ, and they both have trivial
monodromy on the nearby cycles towards the special fiber GrFp (in the case of ICV ∗ ICW ,
use fact that the nearby cycles commute with proper push-forward). Therefore, by [PZ13,
Lemma 9.19] again, both sides above are middle extensions of their restriction to GrQ, hence
they are canonically isomorphic to each other.

Although we do not have Kloosterman sheaves defined over Gm,S , the moments of
Kloosterman sheaves do have natural analogs over S. In fact, from the description of G ∼= GR◦

in § 2.6.1, we see that the morphism F in (2.13) can be extended to a morphism over S:

F : [Gr◦/µρ
∨

h
] ∼= [G1/Ad(µρ

∨

h
)]→ [A1/Gm]. (3.1)

From Proposition 2.6.6, we arrive at the following natural definition.

Definition 3.1.3. For V ∈ Rep(ĜTt), we define

MV
! = HFour(F !IC

◦
V )η

as an object in Db
c(S,Q`). Here, as usual, IC◦V denotes the restriction of ICV to Gr◦.

Lemma 3.1.4. We have an isomorphism in Db(Spec Fp,Q`(µp))

i∗pM
V
! ⊗Q`(µp) ∼= MV

!,Fp . (3.2)

Here MV
!,Fp is defined in Definition 2.5.1 for the base field k = Fp.

Proof. For arbitrary base change i : S′ → S, the formation of HFour commutes with i∗: this
follows from proper base change. Therefore, we have

i∗pM
V
!
∼= i∗pHFour(F !IC

◦
V )η ∼= HFour(i∗pF !IC

◦
V )η ∼= HFour(F !i

∗
pIC
◦
V )η.

By Lemma 3.1.1, we have i∗pIC
◦
V
∼= IC◦V,Fp . Therefore,

i∗pM
V
!
∼= HFour(F !IC

◦
V,Fp)η.

Using Proposition 2.6.6, we get (3.2). 2
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The next proposition will be used in the next subsection to establish a pairing on MV
!

analogous to the pairing on MV
!,Fp defined in Proposition 2.7.3. What we need there is a definition

of the cup product (2.15) without appealing to Kloosterman sheaves.

Proposition 3.1.5. For V,W ∈ Rep(ĜTt), there is a bifunctorial morphism

MV
! ⊗MW

! →MV⊗W
! [1] (3.3)

such that after taking i∗p for any prime p - ` and using the isomorphism (3.2), the above morphism
becomes the cup product (2.15) for the base field Fp.

Proof. The moduli stack BunG(0,1) defined in § 2.6.1 has a natural integral model BunG(0,1) over
S, which contains an open substack Bun◦G(0,1) =

⊔
ω∈Ω ω(?) consisting of the open S-points of

BunG(0,1). Consider the moduli functor G(2) classifying the data (x, E ′, E , α, β) where x ∈ Gm,

E ′ ∈ BunG(0,1), E ∈ Bun◦G(0,1), α : E|P1−{x}
∼
→ E ′|P1−{x} and β : E ′|P1−{x}

∼
→ E?0,1|P1−{x}.

We have morphisms

G(2)

p1
}}{{
{{
{{
{{
{

p3

$$H
HH

HH
HH

HH
H

p2

��
GR GR◦ Hk◦G(0,1)

where p1(x, E ′, E , α, β) = (x, E ′, β); p2(x, E ′, E , α, β) = (x, E , β ◦ α) and p3(x, E ′, E , α, β) = (x, E ,
E ′, α). The fibers of p1 are isomorphic to the affine Grassmannian Gr, hence G(2) is also
represented by an ind-scheme.

We have

IC◦V⊗W
∼= (ICV ∗ ICW )|GR◦

∼= p2,!(p
∗
1ICV ⊗ p∗3ICW ). (3.4)

Here the first equality follows from Remark 3.1.2. In the last term, we use ICW to denote also the
complex on HkG(0,1) whose restriction to each fiber of the projection HkG(0,1)→ Gm×BunG(0,1)

(the fibers are identified with the affine Grassmannian) is isomorphic to ICW . The second equality
follows from the definition of the convolution product for sheaves on the affine Grassmannian in
[MV07, § 4].

We consider the open ind-scheme j : G(2),◦ ↪→ G(2) classifying the data (x, E ′, E , α, β) with
the open condition that E ′ ∈ Bun◦G(0,1). Then there is an isomorphism

G×Gm G
∼
→ G(2),◦

mapping (x, ϕ′ : Eω
′(?)

0,1 |P1−{x} → E?0,1|P1−{x}, ϕ : Eω(?)
0,1 |P1−{x} → E?0,1|P1−{x}) to (x, Eω

′ω(?)
0,1 , Eω

′(?)
0,1 ,

ω′(ϕ), ϕ′). Under this isomorphism, the morphism p◦2 = p2|G(2),◦ : G(2),◦
→ GR◦ ∼= G becomes

the multiplication map under the group structure of G

m : G×Gm G→ G.

Moreover,

j∗(p∗1ICV ⊗ p∗3ICW ) ∼= IC◦V �Gm IC◦W .

Therefore, by adjunction, we get a map

m!(IC
◦
V �Gm IC◦W ) ∼= p2,!j!j

∗(p∗1ICV ⊗ p∗3ICW )→ p2,!(p
∗
1ICV ⊗ p∗3ICW ) ∼= IC◦V⊗W . (3.5)
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Since F : G→ A1 is a group homomorphism, we have an isomorphism in Db
Gm(A1):

F !m!(IC
◦
V �Gm IC◦W ) ∼= F !IC

◦
V ∗+ F !IC

◦
W .

Here F1 ∗+ F2 = a!(F1 � F2) means the convolution on A1 using the addition map a : A1 ×
A1
→ A1. Descending to the stack [A1/Gm] and combining with (3.5), we get a morphism in

Db
c([A1/Gm]), bifunctorial in V and W

F !IC
◦
V ∗+ F !IC

◦
W → F !IC

◦
V⊗W .

Applying HFour and using the compatibility between convolution ∗+ and the tensor product
(see Theorem A.2.1(v)), we get

HFour(F !IC
◦
V )η ⊗HFour(F !IC

◦
W )η ∼= HFour(F !IC

◦
V ∗+ F !IC

◦
W )η[1]→ HFour(F !IC

◦
V⊗W )η[1],

which gives (3.3).
Next we try to identify the mod p stalk of (3.3) with (2.15). Now we work over Fp. We have

the following commutative diagram.

G×Gm G
(F,F ) //

m

��

(π,π)

zzuu
uu
uu
uu
u

A1 × A1

a
��

Gm G
F //πoo A1

We get a commutative diagram of cohomology groups.

H∗c(G, IC
◦
V ⊗ F ∗ASψ)⊗H∗c(G, IC

◦
W ⊗ F ∗ASψ)OO ∼ // H∗c(Gm,KlV )⊗H∗c(Gm,KlW )//

H∗c(G×Gm G, IC◦V �Gm IC◦W ⊗ (F, F )∗(ASψ �ASψ))

α

��

∼ // H∗c(Gm,KlV ⊗KlW )

o

��

H∗c(G,m!(IC
◦
V �Gm IC◦W )⊗ F ∗ASψ)

(3.5)

��
H∗c(G, IC

◦
V⊗W ⊗ F ∗ASψ) // H∗c(Gm,KlV⊗W )

The isomorphism α in the middle left column uses the composition of

(F, F )∗(ASψ �ASψ) ∼= (F, F )∗a∗ASψ ∼= m∗F ∗ASψ

and the projection formula

m!((IC
◦
V �Gm IC◦W )⊗m∗F ∗ASψ) ∼= m!(IC

◦
V �Gm IC◦W )⊗ F ∗ASψ.

It is easy to see that the composition of the left column is the same as i∗p applied to the map
(3.3); the right column is the cup product giving (2.15). Therefore, the result of i∗p on (3.3) is
the same as (2.15). 2
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3.2 Construction of the Galois representation

In this subsection we fix an irreducible representation V of ĜTt, pure of weight w such that

V Ĝgeom
= 0. Here Ĝgeom is the Zariski closure of the geometric monodromy of Kl

Ĝ
for large p as

tabulated in Theorem 2.3.2. We note that this condition is rather weak: when Ĝgeom = Ĝ this
simply means that V is not the trivial representation.

3.2.1 The open subset S′. Let Sbad be the set of primes p such that V Ĝgeom
p 6= 0, where Ĝgeom

p

is the Zariski closure of the geometric monodromy of Kl
Ĝ

over Gm,Fp . According to the table in
Theorem 2.3.2, Sbad ⊂ {2, 3}. Let S′ = S − Sbad. This is a Zariski open subset of S.

When Ĝ = SL2n or Sp2n, KlSt
Ĝ

is essentially the same as Kl2n according to Proposition 2.4.3.

Then by Katz’s Theorem 2.4.4, Ĝgeom
p = Sp2n for all primes p, hence S′ = S in these cases.

Lemma 3.2.2. The complex MV
! [1] is a perverse sheaf on S, and MV

! |S′ is a sheaf.

Proof. We first show that MV
! [1] ∈ pD>0(S,Q`). In fact, ICV [1] is perverse (because the base

scheme S now has dimension one) and F when restricted to Gr◦6λ is affine (because Gr◦6λ
is a closed subscheme of finite type of the ind algebraic group G1). Therefore, F !IC

◦
V [1] ∈

pD>0([A1/Gm],Q`). Since the functor HFour is t-exact with respect to the perverse t-structure

(Theorem A.2.1(iv)), HFour(F !IC
◦
V )[1] ∈ pD>0([A1/Gm],Q`) and hence MV

! [1] ∈ pD>0(S,Q`).

We then show that the stalks ofMV
! lie in degree at most 1, which, combined with the previous

paragraph will prove that MV
! [1] is perverse. Since MV

! is constructible, it suffices to show that
i∗pM

V
! lies in degree at most 1 for every prime p - `, and in degree at most 0 for almost all p. In

fact, by (3.2), the mod p stalk (up to tensoring with Q`(µp)) is MV
!,Fp
∼= H∗c(Gm,KlV )[1], which

lies in degree 0 and 1. For p appearing in S′, the Zariski closure of the geometric monodromy of
Kl

Ĝ
is the same as Ĝgeom, hence H2

c(Gm,KlV ) = V
Ĝgeom(−1) = 0 by our assumption on V , which

implies that i∗pM
V
! lies in degree 0. This last statement also shows that MV

! |S′ is a sheaf. This
finishes the proof. 2

Proposition 3.2.3. Recall w is the weight of V . There is a canonical pairing (of complexes
on S):

MV
! ⊗MV

! → Q`(−w − 1) (3.6)

which is (−1)w+1-symmetric when restricted to S′, i.e. it factors through Sym2(MV
! |S′) if w is

odd and through ∧2(MV
! |S′) if w is even.

Proof. For the trivial representation 1, IC1 is the constant sheaf supported at the unit section

S ↪→ Gr. The zero section z : S → [A1/Gm] can be factored as S
g−→ BGm

α−→ [A1/Gm]. Direct
calculation shows that

HFour(z!Q`)η ∼= g∗g!Q`[1].

Hence,

M1
! = HFour(F !IC

◦
1)η = HFour(z!Q`)η ∼= g∗g!Q`[1].

Applying Proposition 3.1.5 to W = V ∨ (dual representation) we get a canonical map

MV
! ⊗MV ∨

! →MV⊗V ∨
! [1]

ε−→M1
! [1] ∼= g∗g!Q`[2]→ Q`(−1). (3.7)

Here the map ε is induced by the evaluation map V ⊗ V ∨ → 1; the last map is induced by the
truncation g!Q`→ R2g!Q`[−2] ∼= Q`[−2](−1).
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Next, we would like to produce an isomorphism

MV
!
∼= MV σ

! (3.8)

whose mod p fiber is the same as the isomorphism (2.19) in Lemma 2.7.2. Now the argument
of Lemma 2.7.2 no longer works because we do not have Kloosterman sheaves over S. What we
do instead is to unravel the argument of [HNY13, § 6.1] for the σ-invariance of Kl

Ĝ
and give a

construction of the isomorphism (3.8) which only uses the morphism F in (3.1). Let ε = −1 if
G is of type A2n and ε = 1 otherwise. We view ε as a point of Grot

m . Consider the involution
(σ, ε) acting on G ∼= GR◦, where σ is the pinned involution of G which induces −w0 on X∗(T )
and ε acts via Grot

m . This action commutes with the Gm
(ρ∨,h)-action on G and descends to an

involution on the stack [G/Gm
(ρ∨,h)]. It is easy to check that F in (3.1) is invariant under this

involution. Hence, we get an isomorphism

MV
! = HFour(F !IC

◦
V )η ∼= HFour(F !(σ, ε)

∗IC◦V )η = HFour(F !IC
◦
V σ)η = MV σ

! .

Since V σ ∼= V ∨(−w), we can apply (3.8) to the pairing (3.7) as we did in Proposition 2.7.3, and
get the desired pairing (3.6). The construction guarantees that after taking the mod p stalk,
(3.6) becomes the pairing (2.21).

Finally we determine the parity of the pairing (3.6). We write MV
! |S′ ⊗MV

! |S′ as a direct
sum Sym2(MV

! |S′)⊕ ∧2(MV
! |S′). Suppose first that w is even. Let

α : S := Sym2(MV
! |S′)→ Q`(−w − 1)

be the restriction of the pairing (3.6) to the symmetric part of MV
! |S′ ⊗ MV

! |S′ . By
Proposition 2.7.3, each mod p stalk of the pairing (3.6) is skew symmetric, therefore i∗pα = 0.
Since S is a local system over an open subset U ⊂ S′ and i∗pα = 0 for those p appearing in U ,
α|U must be zero. Hence, α factors through S → i∗i

∗S → Q`(−w − 1) where i : S′ − U ↪→ S′ is
the inclusion. The latter map becomes β : i∗S → i!Q`(−w − 1) by adjunction. But now i∗S lies
in degrees 0 by Lemma 3.2.2 while i!Q` lies in degree 2, β must also be zero. This shows that
α = 0 and the pairing (3.6) factors through ∧2(MV

! |S′). The case where w is odd is proved in
the same way. 2

The pairing (3.6) induces a morphism

MV
! [1]→ (D(MV

! [1]))(−w − 2). (3.9)

from the left copy of MV
! to the dual of the right copy of MV

! . Here we use the convention that the
dualizing complex on S is Q`[2](1), so that the Verdier duality is D(−) = RHomS(−,Q`[2](1)).
By Lemma 3.2.2, both the source and the target of the above morphism are perverse sheaves.

Definition 3.2.4. We define an object MV
!∗ ∈ Db

c(S,Q`) by requiring that MV
!∗[1] be the image

of morphism (3.9) in the abelian category of perverse sheaves on S.

By definition, we have a morphism MV
! →MV

!∗ which is a surjection of perverse sheaves after
applying a shift. We denote the generic stalk of MV

!∗ by MV
!∗,Q, which is viewed as a continuous

Gal(Q/Q)-module (concentrated in degree 0).
By construction, ker(MV

! → MV
!∗) lies in the radical of the pairing (3.6). Therefore,

(3.6) factors through a (−1)w+1-symmetric pairing on MV
!∗|S′ such that following diagram is
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commutative.

MV
! |S′ ⊗MV

! |S′

����

(3.6) // Q`(−w − 1)

MV
!∗|S′ ⊗MV

!∗|S′ // Q`(−w − 1)

(3.10)

Taking the generic stalk MV
!∗,Q of MV

!∗, we obtain a (−1)w+1-symmetric Galois equivariant pairing

on MV
!∗,Q:

〈 , 〉V : MV
!∗,Q ⊗MV

!∗,Q→ Q`(−w − 1). (3.11)

This pairing is perfect because by construction, ker(MV
!,Q →MV

!∗,Q) is exactly the radical of the
generic stalk of the pairing (3.6).

The Galois representation MV
!∗,Q is the Galois representation M` mentioned in Theorem 1.2.1.

The rest of the theorem will be proved in the subsequent subsections.

3.3 Proof of Theorem 1.2.1(ii)
We keep the same notation from the previous subsection. We shall need the following notion.
Let U ⊂ S be a nonempty Zariski open subset.

Definition 3.3.1. A Q`-sheaf P on U is called punctual if it is a direct sum of sheaves supported
at closed points of U . A Q`-sheaf M on U is said to be a middle extension sheaf, if M [1] is a middle
extension perverse sheaf, i.e. M [1] = u!∗u

∗M [1] for some non-empty open subset u : U ′ ↪→ U .

We collect some elementary properties about middle extension Q`-sheaves, which are
standard exercises in perverse sheaf theory and we omit the proof.

Lemma 3.3.2. Let ME(U,Q`) be the category of middle extension Q`-sheaves on U .

(i) The category ME(U,Q`) is a Serre subcategory of Q`-sheaves on U .

(ii) Let M ∈ ME(U,Q`), then its geometric generic stalk M affords a continuous Galois
representation

ρM : Gal(Q/Q)→ GL(M).

The functor M 7→ (M,ρM ) gives an equivalence of categories

ME(U,Q`)
∼
→ Repaeur

cont(Gal(Q/Q),Q`)

where Repaeur
cont(Gal(Q/Q),Q`) is the abelian category of continuous representations of Gal(Q/Q)

into finite-dimensional Q`-vector spaces which are unramified at almost all primes p.

(iii) Let Spec Fp be a closed point of U and let M be the geometric generic stalk of M
which affords the Gal(Q/Q)-action. Fix an embedding of Q ↪→ Qp and use it to define the

decomposition and the inertia groups at p, i.e. Gal(Q/Q) > Gal(Qp/Qp) > Ip. Then we have
canonical isomorphisms of Frobp-modules

i∗pM
∼= MIp .

Proposition 3.3.3. The complex MV
!∗|S′ is a middle extension sheaf on S′.

Proof. Let M = MV
! |S′ . Then by Lemma 3.2.2, M [1] is a perverse sheaf satisfying the following

stronger condition: the mod p stalks of M all lie in degree −1. We make the following claims.
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(i) There is no nonzero map from M [1] to punctual sheaves.

(ii) We claim that M [1] fits into an exact sequence of perverse sheaves

0→ P →M [1]→ N [1]→ 0

where P is a punctual sheaf and N is a middle extension sheaf.

For property (1), suppose ip,∗P is a punctual sheaf supported at some closed point Spec Fp ↪→
S′, with P in degree zero, then a map M [1]→ ip,∗P is adjoint to i∗pM [1]→ P . Since the stalk
i∗pM [1] lies in degree −1, this map must be zero.

For property (2), let u : S′ ↪→ S′ be the open locus where M is lisse, and consider the
natural map of perverse sheaves α : u!u

∗M [1]→M [1]. Since the cokernel of α is punctual, and
by claim (1) M [1] does not map to punctual sheaves, α must be surjective. Since the kernel of α
is also punctual, it is contained in the maximal punctual subsheaf ker(u!u

∗M [1]→ u!∗u
∗M [1]).

Therefore, we can write M [1] as an extension of the middle extension perverse sheaf N [1] =
u!∗u

∗M [1] and a punctual sheaf as in property (2).
Now let M ′ = D(MV

! )|S′ [−2](−w − 2). By Verdier duality, the perverse sheaf M ′[1] satisfies
the dual of the two properties (1) and (2): M ′[1] does not admit any nonzero map from punctual
sheaves and it fits into an exact sequence

0→ N ′[1]→M ′[1]→ P ′→ 0

where N ′ ∈ ME(S′,Q`) and P ′ is punctual.
Consider the morphism M [1] → M ′[1] given by (3.9). The properties (1) and (2) of M [1]

and the dual properties of M ′ imply that M [1]→M ′[1] necessarily factors as

M [1]� N [1]
γ−→ N ′[1] ↪→M ′[1].

Therefore, MV
!∗
∼= Im(N

γ[−1]−−−→ N ′) is a middle extension sheaf, since both N and N ′ are. 2

3.3.4 Proof of Theorem 1.2.1(ii). Let p 6= `. The condition that KlV
Ĝ

over Gm,Fp does not

contain a trivial sub-local system is equivalent to V Ĝgeom
p = 0. For such a prime p, Spec Fp is

contained in S′. Consider the perfect pairing 〈 , 〉V (3.11) of the Gal(Qp/Qp)-module M := MV
!∗,Q.

Let Ip < Gal(Qp/Qp) be the inertia group. A general fact says that the restriction of the pairing

〈 , 〉V to Ip-invariants may not be perfect, but it factors through a perfect pairing between M :=
Im(MIp →MIp):

MIp ⊗MIp

���� ����

// Q`(−w − 1)

M ⊗M perfect // Q`(−w − 1)

(3.12)

Here the vertical maps are the quotient map MIp �M .
By Proposition 3.3.3, MV

!∗|S′ is a middle extension sheaf, hence i∗pM
V
!∗
∼= MIp by

Lemma 3.3.2(iii). On the other hand, taking the mod p stalks of the diagram (3.10) and using
Lemma 3.1.4, we get another diagram.

MV
!,Fp ⊗MV

!,Fp

�� ��

// Q`(µp)(−w − 1)

(MIp ⊗Q`(µp))⊗Q`(µp) (MIp ⊗Q`(µp)) // Q`(µp)(−w − 1)

(3.13)

96



Galois representations and conjectures of Evans

Combining (3.12) and (3.13), we get a commutative diagram of pairings.

MV
!,Fp ⊗MV

!,Fp

�� ��

// Q`(µp)(−w − 1)

(M ⊗Q`(µp))⊗Q`(µp) (M ⊗Q`(µp))
perfect// Q`(µp)(−w − 1)

In other words, the natural map MV
!,Fp →M ⊗Q`(µp) kills the radical R of the pairing on MV

!,Fp .

On the other hand, we also know from Remark 2.7.4 that the same pairing on MV
!,Fp factors

through a perfect pairing on the quotient MV
!∗,Fp , identifying MV

!∗,Fp as MV
!,Fp/R. Therefore, we

get the desired inclusion (1.6).
We have the following immediate corollary of Theorem 1.2.1(ii). Recall from Lemma 2.5.7

that dimMV
!∗,Fp is a constant for p large; we denote this dimension by dV!∗.

Corollary 3.3.5. Assumptions as in Theorem 1.2.1. Let B be the set of primes p such that

either V Ĝgeom
p 6= 0 or dimQ`(µp)M

V
!∗,Fp 6= dV!∗. Then the system of Galois representations {ρV` }

is Frobenius-compatible (same as the notion of ‘strictly compatible’ in [Ser89, § 2.3]) with
exceptional set B. More precisely, when p /∈ B∪{`}, the Galois representation ρV` is unramified at
p, and MV

!∗,Fp is isomorphic to MV
!∗,Q⊗Q`(µp) as Frobp-modules. The characteristic polynomial of

ρV` (Frobp) has Z-coefficients which are independent of `, and all of its roots are p-Weil numbers
of weight w + 1.

3.4 Proof of Theorem 1.2.1(i)
3.4.1 Weight filtration on Galois representations. By [Del80, § 6.1.1], we may talk about

mixed sheaves over varieties XQ defined over Q. A mixed Q`-sheaf F over XQ is a sheaf that
extends to a sheaf F on an integral model X of XQ over Z[1/N ] (for some N) such that F
admits a filtration with pure subquotients on each special fiber of X. In particular we may talk
about mixed Q`-sheaves over Spec Q, i.e. continuous Gal(Q/Q)-modules on Q`-vector spaces
with weight filtrations. In [Del80, § 6.1], Deligne proved that the category of mixed sheaves
on varieties over Q are stable under the usual sheaf-theoretic operations. In particular, for a
mixed sheaf F over XQ, its cohomology Hi

c(XQ,F) and Hi(XQ,F) are Gal(Q/Q)-modules with
canonical weight filtrations.

Notation: in what follows, when we write Hi(X,Q`) or Hi
c(X,Q`) for an algebraic variety X

over Q, we always mean Hi(XQ,Q`) or Hi
c(XQ,Q`), as Gal(Q/Q)-modules.

3.4.2 Proof of Theorem 1.2.1(i). Up to Tate twist we may assume ICV = ICλ, which is pure
of weight w = 〈2ρ, λ〉. To simplify notation, we denote ICλ,GR by ICλ, and denote ICλ,GR◦ by
IC◦λ.

Applying Theorem A.2.1(i) to the object F !IC
◦
λ, we get a long exact sequence

· · ·→ H0
c(F

−1(1), IC◦λ)→ H0MV
!,Q→ H1

c(F
−1(0), IC◦λ)→ · · · . (3.14)

Every object in this sequence carries a weight filtration. Since IC◦λ is pure of weight w, F!IC
◦
λ

is of weight at most w. This implies that H1(F−1(0), IC◦λ) has weight at most w + 1 and
H0(F−1(1), IC◦λ) has weight at most w. Since MV

!∗,Q is pure of weight w + 1 (Corollary 3.3.5),

the exact sequence (3.14) implies that MV
!∗,Q (as a quotient of H0MV

!,Q) can be identified with a

subspace of GrWw+1H1
c(F

−1(0), IC◦λ).
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The complex IC◦λ is the intersection cohomology complex of GR◦6λ, which is an open subset
of GR6λ. We have a T ×Grot

m -equivariant resolution of singularities ν : Y = Y1 ×Gm→ Gr6λ ×
Gm = GR6λ given by the Bott–Samelson resolution of Gr6λ. Let ν◦ : Y ◦ → GR◦6λ be the
restriction of ν to GR◦6λ, which is again T × Grot

m -equivariant. By the decomposition theorem

[BBD82, Théorème 6.2.5], IC◦λ is geometrically (i.e. over Q) a direct summand of pH0ν◦∗Q`[w]. It is
necessarily invariant under Gal(Q/Q) because it is the only direct summand of pH0ν◦∗Q`[w] with
full support. Therefore, H1

c(F
−1(0), IC◦λ) is a direct summand of H1

c(F
−1(0), pH0ν◦∗Q`[w]). On the

other hand, the Leray spectral sequence attached to the perverse filtration on ν◦∗Q`[w] degenerates
at the E1 page by the decomposition theorem again, therefore H1

c(F
−1(0), pH0ν◦∗Q`[w]) is in

turn a subquotient of H1
c(F

−1(0), ν◦∗Q`[w]). Let Z = (F ◦ ν◦)−1(0), then H1
c(F

−1(0), ν◦∗Q`[w]) =
Hw+1
c (Z,Q`). At this point we have shown that MV

!∗,Q is a subquotient of GrWw+1Hw+1
c (Z,Q`) as

Gal(Q/Q)-modules.
Since F ◦ν◦ : Y ◦→ A1 is dominant and Y ◦ is smooth irreducible of dimension w+1, we have

dimZ = w. Since F ◦ ν◦ is G(ρ∨,h)
m -equivariant, the torus G(ρ∨,h)

m still acts on Z = (F ◦ ν◦)−1(0).
Moreover, we have a projection πZ : Z ⊂ Y ◦ ⊂ Y1 × Gm → Gm which is equivariant under the

homomorphism G(ρ∨,h)
m → Grot

m . Let Z1 = π−1
Z (1), then dimZ1 = w − 1 and Z = Z1

µh× G(ρ∨,h)
m .

By Künneth formula, we then have

GrWw+1Hw+1
c (Z,Q`)∼= GrWw+1Hw+1

c (Z1 ×G(ρ∨,h)
m ,Q`)

µh

∼= GrWw+1Hw
c (Z1,Q`)

µh ⊗GrW0 H1
c(Gm)

⊕GrWw−1Hw−1
c (Z1,Q`)

µh ⊗GrW2 H2
c(Gm). (3.15)

Since H∗c(Z1,Q`) is the stalk at 0 of the complex (F ◦ ν◦1)!Q` (where ν◦1 : Y ◦1 → Gr◦6λ is the
resolution), which has weight at most 0, therefore Hw

c (Z1,Q`) has weight at most w. Therefore,
the first summand in (3.15) is zero, and we have

GrWw+1Hw+1
c (Z,Q`) ∼= GrWw−1Hw−1

c (Z1,Q`)
µh(−1).

At this point, we have shown that MV
!∗,Q is a subquotient of GrWw−1Hw−1

c (Z1,Q`)(−1) as

Gal(Q/Q)-modules, where Z1 is an algebraic variety over Q of dimension w − 1.
Let Z1 be the closure of Z1 in Y1, which is projective and defined over Q. We then have

GrWw−1Hw−1
c (Z1,Q`) ↪→ GrWw−1Hw−1(Z1,Q`). Finally let X → Z1 be a resolution of singularities

over Q, so that X is smooth and projective of dimension w − 1, then GrWw−1Hw−1(Z1,Q`) ↪→
Hw−1(X,Q`) (see [Del74, Proposition 8.2.5]). Combining the previous steps we have shown
that MV

!∗,Q is a subquotient of Hw−1
c (X,Q`)(−1) as Gal(Q/Q)-modules, where X is smooth

and projective of dimension w − 1 over Q. This finishes the proof of Theorem 1.2.1(i).

4. Symmetric power moments of Kl2

In this section we shall prove Evans’s conjectures. We start by giving more precise information
on the motives underlying the symmetric power moments of the classical Kloosterman sheaves
in § 4.1. In §§ 4.2 and 4.3, we make explicit calculations on moments of Kl2, which are necessary
for the proof of Theorem 1.1.6 in § 4.4. Evans’s conjectures are proved in §§ 4.5–4.7.

4.1 The motives underlying the symmetric power moments
In this subsection, we explicitly describe the algebraic varieties over Z whose `-adic cohomology
accommodates the Galois representations attached to the symmetric power moments of Kln.
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4.1.1 Bifiltered vector bundles. We shall work in the slightly different context where G =
GLn instead of PGLn. We first describe the moduli stacks Bunn(0, i) := BunGLn(0,i) (as recalled
in § 2.6.1) more explicitly in this case.

The stack Bunn(0, 0) classifies triples (E , F ∗E , F∗E) where:

(i) E is a vector bundle of rank n on P1;

(ii) a decreasing filtration F ∗E giving a complete flag of the fiber of E at ∞,

E = F 0E ⊃ F 1E ⊃ · · · ⊃ FnE = E(−{∞});

(iii) an increasing filtration F∗E giving a complete flag of the fiber of E at 0,

E(−{0}) = F0E ⊂ F1E ⊂ · · · ⊂ FnE = E ;

Remark 4.1.2. Given a triple (E , F ∗E , F∗E) as above, we can extend the filtration F∗E to all
integer indices such that Fi+nE = FiE ⊗ O({0}). Similarly we can extend the filtration F ∗E to
all integer indices such that F i+nE = F iE ⊗ O(−{∞}).

The moduli stack Bunn(0, 1) classifies the data (E , F ∗E , F∗E , {vi}ni=1) where (E , F ∗E , F∗E) is
as above and vi is a basis of F i−1E/F iE for i = 1, 2, . . . , n.

The moduli stack Bunn(0, 2) classifies the data (E , F ∗E , F∗E , {ṽi}ni=1) where (E , F ∗E , F∗E) is
as above and ṽi ∈ F i−1E/F i+1E is a vector whose projection to F i−1E/F iE is nonzero (i = 1,
2, . . . , n).

4.1.3 Open points. The stack Bunn(0, i) is decomposed into connected components

Bundn(0, i) according to the integer d = deg(E). For each component of Bundn(0, 1), there is
a unique open point (Ed, F ∗, F∗, {ei}) which we recall now (see also [HNY13, § 3.1]).

When d = 0, we take E0 = Oe1⊕ · · · ⊕Oen. The symbols e1, . . . , en are incorporated only to
emphasize the ordering of the various factors. Define F iE0 = O(−{∞})e1 ⊕ · · · ⊕ O(−{∞})ei ⊕
Oei+1 ⊕ · · · ⊕ Oen for i = 0, . . . , n − 1, and extend this definition to F iE0 for all i ∈ Z as in
Remark 4.1.2. Define FiE0 = Oe1⊕· · ·⊕Oei⊕O(−{0})ei+1⊕· · ·⊕O(−{0})en for i = 0, . . . , n−1
and extend this definition to FiE0 for all i ∈ Z as in Remark 4.1.2. This finishes the definition of
(E0, F

∗, F∗).
For arbitrary integer d, we define Ed = Fn+dE0 and FiEd = Fi+dE0. Therefore, we have a

canonical isomorphism between Ed and E0 over P1 − {0}. We define F iEd|P1−{0} to be the image

of F iE0 under this isomorphism, and let F iEd be the vector bundle obtained by gluing F iEd|P1−{0}
and Ed|P1−{∞} over Gm.

The basis vectors {ei} give a canonical basis ei ∈ F i−1E0/F
iE0 = F i−1Ed/F iEd. It also gives

a vector ẽi ∈ F i−1E0/F
i+1E0 = F i−1Ed/F i+1Ed.

For each d > 0, let Gd be the space of homomorphisms φ : E0→ Ed of coherent sheaves such
that:

(a) φ(F iE0) ⊂ F iEd and φ(FiE0) ⊂ FiEd for all i ∈ Z;

(b) φ(ei) = ei, under the natural identification F i−1E0/F
iE0 = F i−1Ed/F iEd;

(c) the zeros of φ are concentrated at a single point in Gm.

4.1.4 Torus action. Let Tn = Gn
m be the diagonal torus of GLn. The object (Ed, F ∗, F∗)

admits an action of Tn by (t1, . . . , tn) · ei = tiei. Let s be the local coordinate at ∞ ∈ P1. The
torus Grot

m acts on P1 by scaling s. We normalize the equivariant structure of E0 by making Grot
m
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act trivially on ei, which then induces a canonical Grot
m -equivariant structure on all Ed and their

filtrations.
The torus Tn acts on Gd by t · φ = t ◦ φ ◦ t−1, where the t (respectively t−1) refers to the

action of Tn on E0 (respectively Ed). This action factors through the adjoint torus T ad
n ⊂ PGLn.

The Grot
m -equivariant structures on both (E0, F

∗, F∗) and (Ed, F ∗, F∗) induce an Grot
m -action on

Gd, which commutes with the action of Tn.
Let φ : E0 → Ed be a point in Gd. For i = 1, . . . , n − 1 we can write φ(ẽi) = ẽi + aiei+1

mod F i+1Ed for some ai ∈ A1. For i = n, φ(ẽn) = ẽn + anse1 modF i+1Ed for some an ∈ A1. The
assignment φ 7→ (a1, . . . , an) defines a morphism f = fn,d : Gd

→ An. A direct calculation shows
that the map fn,d is Tn ×Grot

m -equivariant.
We thus get the following diagram which is analogous to (2.2) and (2.6).

Gd

π

}}||
||
||
||
|

fdn   A
AA

AA
AA

A
F dn

((PP
PPP

PPP
PPP

PPP
P

Gm An σ // A1

Here π takes φ ∈Gd to the support of the zeros of φ, which is a unique point in Gm by assumption
on φ. The schemes in the above diagram are defined over Q.

To emphasize the dependence on n and on the prime `, we introduce the notation

Md
n,` := MSymd

!∗,Q (4.1)

where the right-hand side is the generic stalk of the object defined in Definition 3.2.4 for the
Symd moment of the usual Kloosterman sheaf Kln.

Proposition 4.1.5. Let Z0 = F d,−1
n (0) and Z1 = F d,−1

n (1). These are affine varieties of dimension
d(n− 1) over Q.

(i) The Gal(Q/Q)-module Md
n,` fits into a short exact sequence

0→Md
n,`→ GrWd(n−1)+1Hd(n−1)+1

c (Z0,Q,Q`)
Sp−→ GrWd(n−1)+1Hd(n−1)+1

c (Z1,Q,Q`)→ 0. (4.2)

where the map Sp is induced from the specialization map Sp : H∗c(Z0,Q`)→ H∗c(Z1,Q`).

(ii) Define a Q-Hodge structure Md
n,Hod of weight d(n − 1) + 1 to be the kernel of the

specialization map

SpHod : GrWd(n−1)+1Hd(n−1)+1
c (Z0(C),Q)→ GrWd(n−1)+1Hd(n−1)+1

c (Z1(C),Q).

Then the multiset of Hodge–Tate weights of Md
n,` (viewed as a Gal(Q`/Q`)-module) is the

same as the multiset where i ∈ Z appears dim Gr−iF M
d
n,Hod (where F is the Hodge filtration on

Md
n,Hod ⊗ C). In particular, the multiset of Hodge–Tate weights of Md

n,` is independent of `.

Proof. (1) The proof is a more refined version of the first part of the argument in § 3.4.2. By
Lemma 3.1.4, Corollary 3.3.5 and Lemma 2.5.4, for large p we may identify the mod p stalk of

MSymd

!∗ with the weight d(n− 1) + 1-quotient of the mod p stalk of MSymd

! . Therefore, we have

Md
n,` = MSymd

!∗,Q = GrWd(n−1)+1M
Symd

!,Q .
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The morphism F dn is equivariant under the action of G(ρ∨,n)
m ⊂ Tn × Grot

m on Gd and the
dilation action on A1, hence it descends to a morphism of stacks

F
d
n : [Gd/G(ρ∨,n)

m ]→ [A1/Gm].

The scheme Gd is naturally a subscheme of G in the context of § 2.6.1 for the group G = PGLn.
When V = Symd, the intersection complex ICV,GR◦ is the shifted constant sheaf Q`[d(n− 1)] on
Gd. Therefore by Definition 3.1.3, we have

MSymd

!,Q
∼= HFour(F

d
n,!Q`)η[d(n− 1)].

By Theorem A.2.1(i), we get an exact sequence

Hd(n−1)
c (Z1,Q,Q`)→MSymd

!,Q → Hd(n−1)+1
c (Z0,Q,Q`)→ Hd(n−1)+1

c (Z1,Q,Q`)→ 0. (4.3)

Here the maps H∗c(Z0,Q,Q`)→ H∗c(Z0,Q,Q`) are the maps called ‘Sp’ in Theorem A.2.1(i). Since

Q`[d(n− 1)] is the same as the intersection complex on Gd, Hi
c(Zα,Q,Q`) is of weight at most i

for all i and α = 0 or 1. Taking the weight d(n − 1) + 1 part of the sequence (4.3), we get the
short exact sequence (4.2).

(2) Fix an embedding Q` ↪→ C. We introduce an abelian category H consisting of triples
(H`, HHod, c) where H` is a de Rham representation of Gal(Q`/Q`) over Q`, HHod is a Q-Hodge
structure and c is an isomorphism compatible with Hodge filtrations on both sides

c : HHod ⊗Q C ∼= (H` ⊗Q` BdR)Gal(Q`/Q`) ⊗Q` C.

The morphisms in H are required to respect the isomorphisms c.
Since both specialization maps Sp and SpHod are surjective, to show (2), we only need

to show that, for α = 0 and 1, we can complete the pair (GrWd(n−1)+1H
d(n−1)+1
c (Zα,Q,Q`),

GrWd(n−1)+1H
d(n−1)+1
c (Zα(C),Q)) into an object in H, i.e. providing a comparison between the

pure weight pieces of the étale and singular cohomologies (after tensoring with period rings)
which preserve Hodge filtrations. In fact, we will show a stronger statement. For any variety Z
over Q, and any m,w ∈ Z, we know that the Gal(Q`/Q`)-module GrWw Hm

c (ZQ,Q`) (in fact the
whole Hm

c (ZQ,Q`)) is de Rham by a theorem of Kisin [Kis02, Theorem 3.2]. We will show that
there is an isomorphism of C-vector spaces equipped with Hodge filtrations

(GrWw Hm
c (Z(C),Q))⊗Q C ∼= (GrWw Hm

c (ZQ,Q`)⊗Q` BdR)Gal(Q`/Q`) ⊗Q` C. (4.4)

In other words, we will complete the pair (GrWw Hm
c (ZQ,Q`)),GrWw Hm

c (Z(C),Q) into an object

GrWw h
m
c (Z) ∈ H.

For Z proper smooth over Q, the isomorphism (4.4) follows from Faltings’s theorem [Fal02]
and classical Hodge theory: both sides of (4.4) can be identified with the algebraic de Rham
cohomology of Z (with scalars extended to C) equipped with the Hodge filtration. We now have
the object hm(Z) ∈ H.

In general, when Z is not necessarily smooth, one can find a proper hypercovering {Zn}
of Z with each Zn a smooth variety over Q, and a simplicial compactification {Zn} ↪→ {Xn}
with normal crossing divisors {Dn = Xn − Zn}, as in [Del74, § 6.2.8]. For each i > 0, let D̃n,i

be the normalization of closed subscheme of Xn where at least i local components of Dn meet.
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Then D̃n,i is proper smooth over Q and D̃n,0 = Xn. According to the H∗c variant of [Del74,
Proposition 8.1.20(2)], GrWw Hm

c (Z(C),Q) is the (m − w)th cohomology of the simple complex

associated with the double complex Ca,bHod = Hw(Da,b(C),Q) (the differentials are given by
pullback maps). The same argument shows that GrWw Hm

c (ZQ,Q`) is the (m− w)th cohomology

of the simple complex associated with the double complex Ca,b` = Hw(Da,b,Q,Q`). Since Da,b is

proper smooth over Q, the pair (Ca,b` , Ca,bHod) can be completed into the object hw(Da,b) ∈ H.

This way we get a double complex C∗,∗H with Ca,bH = hw(Da,b) in the category H. The (m−w)th
cohomology of the simple complex associated with C∗,∗H is also an object in H, giving the desired
object GrWw h

m
c (Z) ∈ H. 2

4.1.6 The case n = 2. When d = 2k + 1, k > 0, Gd classifies maps φ : Oe1 ⊕ Oe2 →

O(k)e1 ⊕ O(k + 1)e2 such that φ0(e1) ∈ Span{e2}, and φ∞(e1) = e1 + Span{e2}, φ∞(e2) = e2.
Using the local coordinate s at ∞, every point of Gd is uniquely represented by a matrix

φ =

(
1 + x1s+ · · ·+ xks

k y1s+ · · ·+ yk+1s
k+1

z0 + z1s+ · · ·+ zks
k 1 + w1s+ · · ·+ wks

k

)
subject to the equation

(1+· · ·+xksk)(1+· · ·+wksk)−(y1s+· · ·+yk+1s
k+1)(z0+· · ·+zksk) =

(
1+

x1 + w1 − y1z0

2k + 1
s

)2k+1

and an open condition

x1 + w1 − y1z0 6= 0. (4.5)

When d = 2k, k > 0, we can similarly write every point φ ∈ Gd as a matrix

φ =

(
1 + x1s+ · · ·+ xks

k y1s+ · · ·+ yks
k

z0 + z1s+ · · ·+ zk−1s
k−1 1 + w1s+ · · ·+ wks

k

)
subject to the equation

(1+ · · ·+xksk)(1+ · · ·+wksk)−(y1s+ · · ·+yksk)(z0 + · · ·+zk−1s
k−1) =

(
1+

x1 + w1 − y1z0

2k
s

)2k

and the same open condition as (4.5).
In both cases, Gd is a d + 1-dimensional affine subvariety of A2d defined by imposing d − 1

equations and removing one divisor (4.5). The action of t ∈ T ad
2 on Gd sends yi 7→ t−1yi and

zi 7→ tzi. The action of t ∈ Grot
m on Gd sends (?)i 7→ ti(?)i, where (?) = x, y, z or w. The morphism

fn,d is given by

φ 7→ (z0, y1).

4.2 Dimension of moments: p > 2
From now on, until the end of the paper, we shall restrict our consideration to Kl2. We introduce
the notation

Md
2,?,Fp := MSymd

?,Fp for ? = !, ∗ or !∗.

Here the right-hand side is understood in the context Ĝ = SL2 and Definition 2.5.1 for the base
field k = Fp.
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We would like to give explicit formula for the dimension of Md
2,? for ? =!, ∗ and !∗. Let

V = Symd. According to Theorem 2.4.4, we have V Ĝgeom
p = 0 for all primes p. Therefore, MV

2,!

and MV
2,∗ are both concentrated in degree zero, and the exact sequence (2.9) simplifies to

0→ V I0 ⊕ V I∞ →Md
2,!,Fp →Md

2,∗,Fp → VI0(−1)⊕ VI∞(−1)→ 0. (4.6)

We first calculate V I0 and V I∞ as Frobp-modules.

Lemma 4.2.1 (Special case of [Kat88, Theorem 7.3.2(3)]). For all primes p, we have V I0 ∼= Q`

as Frobp-modules.

Lemma 4.2.2. Let p > 2 be a prime. As Frobp-modules

V I∞ ∼=


Q`(µp)(−d/2)[d/2p]+1, d ≡ 0 mod 4,

Q`(µp)(−d/2)[d/2p], d ≡ 2 mod 4,

0, d odd.

Proof. By the discussion in § 2.3.4, we may assume that the image of the wild inertia Iw∞ under
the monodromy representation of Kl2 is contained in the diagonal torus T̂1 ⊂ SL2. Then the wild
inertia Iw∞ surjects onto T̂1[p]. The Coxeter element acts as

(
0 1
−1 0

)
∈ SL2. Let φ ∈ GL2 = ĜTt

be the image of a lifting of Frob∞. Since φ normalizes the image of Iw∞, we must have φ ∈
NGL2(T̂1) = NGL2(T̂ ) where T̂ is the diagonal torus in GL2. Up to multiplying φ by the Coxeter
element (changing the lifting of the Frobenius) we may assume that φ ∈ T̂ . From § 2.4.1 we know

that detφ = p, therefore φ =
(√pα 0

0
√
pα−1

)
for some α ∈ Q×` . The commutation relation between

Frob∞ and It∞ forces that(√
p−1α−1 0

0
√
p−1α

)(
0 1

−1 0

)(√
pα 0

0
√
pα−1

)
≡
(

0 1

−1 0

)p
mod T̂1[p].

This implies that α ∈ ±µp.
Under the action of T̂1

∼= Gm, we have a weight decomposition

V =
⊕

−d6i6d,i≡d mod 2

V (i).

We have
V D1 =

⊕
−d6jp6d,j≡d mod 2

V (jp).

When d is odd, Cox2 acts as −1 on V D1 and hence V I∞ = 0.
When d is even, the action of φ =

√
pdiag(α, α−1) on V (jp) is via pd/2αjp. Since α2p = 1 and

2p|jp, we conclude that φ acts on V D1 by the scalar pd/2.
It remains to calculate the dimension of V I∞ = V D1,Cox when d is even. The Coxeter element

acts on V as an involution, and it permutes the factors V (j) and V (−j) for j 6= 0, and acts on
V (0) by (−1)d/2. Therefore

dimV D1,Cox =



[
d

2p

]
+ 1, d ≡ 0 mod 4,[

d

2p

]
, d ≡ 2 mod 4,

0, d odd. 2
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Applying Lemmas 2.5.5 and 4.2.2 we get the following corollary.

Corollary 4.2.3 (Fu and Wan [FW05]). For p > 2, we have

dimMd
2,!,Fp = dimMd

2,∗,Fp =


d

2
−
[
d

2p

]
, d even,

d+ 1

2
−
[
d

2p
+

1

2

]
, d odd;

dimMd
2,!∗,Fp =



d

2
− 2

[
d

2p

]
− 2, d ≡ 0 mod 4,

d

2
− 2

[
d

2p

]
− 1, d ≡ 2 mod 4,

d− 1

2
−
[
d

2p
+

1

2

]
, d odd.

We shall also use the following formula for the determinant of the Frob-action on Md
2,!∗,Fp ,

proved by Fu–Wan [FW10, Theorem 0.1].

Theorem 4.2.4 (Fu–Wan[FW10]). We have

p
−(d+1)/2 dimMd

2,!∗,Fp det(Frob,Md
2,!∗,Fp)

=


1, d even,(−2

p

)[(d/2p)+1/2] ∏
06j6(d−1)/2,p-2j+1

(
(−1)j(2j + 1)

p

)
, d odd.

4.3 Dimension of moments: p = 2

4.3.1 Inertia image at ∞ when p = 2. Let ` be an odd prime, and ρ : I∞ → SL2(Q`)

be the restriction of the monodromy representation of Kl2 over Gm,F2 to the inertia at ∞. Let

D0 = ρ(I∞) < SL2(Q`). We first determine the image D0 of ρ(I∞) in PGL2(Q`). Note that D0 is

a finite subgroup of PGL2 which has a normal Sylow 2-subgroup. According to the classification

of Platonic groups, we have the following possibilities:

(1) D0 is cyclic;

(2) D0 is dihedral of order 2k, k > 1;

(3) D0
∼= A4.

Suppose that D0 is cyclic, so is D0. Therefore, ρ decomposes into a sum of two characters

which are inverse to each other. In this case Swan∞(Kl2) must be an even number and cannot

be one. Thus, we can eliminated the first possibility.

Suppose D0 is dihedral of order 2k for some k > 1, then up to conjugacy D0 = µ2k · 〈w0〉
where µ2k is embedded into the diagonal torus of SL2 and w0 =

(
0 1
−1 0

)
. Then Sym2(ρ) can be

decomposed as V2⊕V1 with dimV2 = 2, Swan∞(V2) > 0, dimV1 = 1 on which D0 acts nontrivially

through its quotient D0/µ2k
∼= 〈w0〉. This implies that Swan∞(Sym2(Kl2)) > 2. However, Katz

proved [Kat88, Proposition 10.4.1] that Swan∞(Kl2⊗Kl2) = 1. This is a contradiction. Therefore,

we can eliminate the second possibility as well.

In conclusion, we must have D0
∼= A4. This also implies that D0

∼= Ã4, the preimage of

A4 < PGL2(Q`) in SL2(Q`). Let K4 < A4 be the Klein group of order 4. The preimage
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of K4 in Ã4 is the quarternion group Q8 = {±1,±I,±J,±K}. The lower numbering filtration of
D0 = ρ(I∞) ∼= Ã4 is a decreasing filtration

D0 �D1 �D2 � · · ·�Dm = {1}.

Here D1 = ρ(Iw∞) = Q8, each quotient Di/Di+1 is an elementary abelian 2-group, and m is the
smallest integer such that Dm is trivial. Then the Swan conductor of ρ (or of Kl2 at ∞) is

Swan∞(Kl2) =
∑
j>1

2− dim ρDj

[D0 : Dj ]
=

2

3

(
1 +

m−1∑
j=2

1

[D1 : Dj ]

)
.

Here we use the fact that ρDm−1 = 0 because ρ is irreducible. Since Swan∞(Kl2) = 1, D1 = Q8,
we have

∑m−1
j=2 #Dj = 4. Note each #Dj = 2 or 4. There are only two cases:

(i) #D2 = #D3 = 2, D4 = {1};
(ii) #D2 = 4, D3 = {1}.

The second case is impossible because the order-4 subgroups of Q8 are not elementary abelian
2-groups. We are left with the first possibility, and the lower numbering filtration looks like

D0 = Ã4 �D1 = Q8 �D2 = D3 = {±1}�D4 = {1}.

4.3.2 Image of Frobenius. Finally we determine the image of Frobenius at∞. Let φ ∈GL2 be

the image of a lifting of the geometric Frobenius Frob∞. By § 2.4.1 we may write φ =
√

2φ1 where
φ1 ∈ SL2. Since φ1 normalizes Ã4, it lies in NSL2(Ã4) = S̃4, the preimage of S4 = NPGL2(A4)
in SL2. The tame quotient of the local Galois group then maps to S̃4/Q8

∼= S3. The image of a
generator of the tame inertia is a cyclic permutation C ∈ S3. The relation φ−1Cφ = C2 forces
the image of φ in S3 to be a transposition. In particular, φ1 ∈ S̃4 − Ã4.

With the preparations above, we may now perform calculations.

Lemma 4.3.3. When p = 2, the Swan conductor of the action of I∞ on V = Symd is given by

Swan∞(Symd) =


d+ 1

2
, d odd,[

d+ 2

4

]
, d even.

(4.7)

Proof. Use the standard basis {xryd−r}r=0,...,d for Symd. We extend scalars from Q` to Q`(i)
where i =

√
−1. Recall the quarternion group Q8 = {±1,±I,±J,±K} acts on the standard

two-dimensional representation Span{x, y} as

I : (x, y) 7→ (ix,−iy); J : (x, y) 7→ (−y, x).

When d is odd, the action of D3 = {±1} on Symd is by −1. Therefore, D1, D2, D3 do not have
invariants on Symd. We get

Swan∞(Symd) =
3∑
j=1

d+ 1

[D0 : Dj ]
=
d+ 1

2
. (4.8)

When d is even, the action of I∞ on Symd factors through A4 < PGL2(Q`). Therefore, D2 acts
trivially on Symd and D1 acts via its quotient K4. In terms of a standard basis xiyd−i for Symd,
I : xiyd−i 7→ (−1)d/2+ixiyd−i and J : xiyd−i 7→ (−1)ixd−iyi. Therefore, dim(Symd)K4 = d/4 + 1
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if 4|d and dim(Symd)K4 = [d/4] if d ≡ 2 mod 4 . The Swan conductor is

Swan∞(Symd) =
1

3
(d+ 1− dim(Symd)K4) =

[
d+ 2

4

]
. (4.9)

2

Lemma 4.3.4. When p = 2 and V = Symd, then we have an isomorphism of Frob-modules

V I∞ ∼=



0, d odd,

Q`(d/2)[d/24]+1 ⊕ sgn(d/2)[d/24], d ≡ 0 mod 8,

Q`(d/2)[d/24] ⊕ sgn(d/2)[d/24]+1, d ≡ 6 mod 8,

Q`(d/2)[d/24] ⊕ sgn(d/2)[d/24], d ≡ 2, 4, 10 mod 24,

Q`(d/2)[d/24]+1 ⊕ sgn(d/2)[d/24]+1, d ≡ 12, 18, 20 mod 24.

(4.10)

Here sgn stands for the one-dimensional Frob-module on which Frob acts as −1.

Proof. We have V I∞ = (Symd)Ã4 , and we would like to calculate dim(Symd)Ã4 and Tr(φ,

(Symd)Ã4) (where φ is the image of a lift of Frob∞ as we discussed in § 4.3.2).
We first make a general remark about the calculation. If G is a finite group with a normal

subgroup N � G, let V be a representation of G, and let a ∈ G/N ; then a acts on V N and its
trace is given by

Tr(a, V N ) =
1

#N

∑
x∈aN

Tr(x, V ).

Applying this remark to N = Ã4 �G = S̃4, taking a = 1 we get∑
d>0

dim(Symd)Ã4td =
1

24

∑
g∈Ã4

1

1− Tr(g)t+ t2
.

Here we write Tr(g) for the trace of g ∈ Ã4 under the standard two-dimensional representation.
Similarly, taking a = φ1 (note φ =

√
2φ1 where φ1 ∈ S̃4), we get∑

d>0

Tr(φ1, (Symd)Ã4)td =
1

24

∑
g∈φÃ4

1

1− Tr(g)t+ t2
.

We may identify S̃4 with the quarternions

±1,±I,±J,±K, 1

2
(±1± I ± J ±K), (4.11)

1√
2

(±1± I),
1√
2

(±1± J),
1√
2

(±1±K),
1√
2

(±I ± J),
1√
2

(±J ±K),
1√
2

(±K ± I). (4.12)

The line (4.11) consists of elements in Ã4. Since Tr(±1) = ±2, Tr(±I) = Tr(±J) = Tr(±K) = 0,
we see that one element in Ã4 has trace 2, one has trace −2, 8 have trace 1, 8 have trace −1 and
the remaining 6 have trace 0. Therefore,∑

d>0

dim(Symd)Ã4td =
1

24

(
1

(1− t)2
+

1

(1 + t)2
+

6

1 + t2
+

8

1− t+ t2
+

8

1 + t+ t2

)
=

1

12

∑
j>0

(2j + 1)t2j +
1

4

∑
j>0

(−1)jt2j +
2

3

∑
j>0

(t6j − t6j+4).
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Computing coefficients, we get

dimV I∞ =


0, d odd,[
d

12

]
+ 1, d ≡ 0, 6, 8 mod 12,[

d

12

]
, d ≡ 2, 4, 10 mod 12.

(4.13)

Since φ1 /∈ Ã4, the coset φ1Ã4 consists of the second line (4.12) of the above list. We see
that 6 of these elements have trace

√
2, 6 of them have trace −

√
2 and the rest have trace zero.

Therefore,

∑
d>0

Tr(φ1,dim(Symd)Ã4)td =
1

24

(
6

1−
√

2t+ t2
+

6

1 +
√

2t+ t2
+

12

1 + t2

)
=

1

2

(∑
j>0

(−1)jt4j +
∑
j>0

(−1)jt4j+2 +
∑
j>0

(−1)jt2j
)
.

Therefore,

Tr(φ1, dim(Symd)Ã4) =


1, d ≡ 0 mod 8,

−1, d ≡ 6 mod 8,

0, otherwise.

Since φ =
√

2φ1, we get

Tr(Frob∞, V
I∞) =


2d/2, d ≡ 0 mod 8,

−2d/2, d ≡ 6 mod 8,

0, otherwise.

(4.14)

Finally, since φ2
1 lies in the image of I∞, it acts trivially on V I∞ . Therefore, the eigenvalues of

Frob =
√

2φ1 on V I∞ are ±2d/2. Combining information from (4.13) and from (4.14) we get the

multiplicities of the eigenvalues ±2d/2, and hence the formula (4.10). 2

Combining the previous lemmas we get the following result.

Corollary 4.3.5. When p = 2, d > 1, we have

dimMd
2,!,F2

= dimMd
2,∗,F2

=


d+ 1

2
, d odd,[

d+ 2

4

]
, d even.

dimMd
2,!∗,F2

=



d− 1

2
, d odd,

2

[
d+ 2

12

]
, d ≡ 2, 4, 6, 8, 10 mod 12,

d

6
− 2, d ≡ 0 mod 12.
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In the following table, we summarize the dimension of Md
2,!∗,Fp for the first few primes p.

d 1 2 3 4 5 6 7 8 9 10 11 12 13
good p 0 0 1 0 2 2 3 2 4 4 5 4 6
duality + + - + - + - + - +
p = 2 good good 0 good 0 good 2 good 0 good
p = 3 0 1 0 2 0 2 2 3 0 4
p = 5 good 1 good 2 good 3 2 4 2 5
p = 7 good good good 2 good 3 good 4 good 5
p = 11 good good good good good good good 4 good 5
p = 13 good good good good good good good good good 5

4.4 Proof of Theorem 1.1.6
We recall the notation Md

2,` from (4.1), which is equipped with the continuous Gal(Q/Q)-action

ρd2,` : Gal(Q/Q)→ GL(Md
2,`).

From Corollary 4.2.3, we see that the dimension of Md
2,!∗,Fp for large p is

dimMd
2,!∗,Fp =


2

[
d+ 2

4

]
− 2, d even, p > d/2,

d− 1

2
, d odd, p > d or p = 2.

(4.15)

This gives the dimension of the Gal(Q/Q)-module Md
2,`.

4.4.1 When d is odd. Let M` := Md
2,`((d+ 1)/2). It is equipped with the orthogonal pairing

M` ⊗M`→ Q`

induced from the orthogonal (since (−1)d+1 = 1) pairing Md
2,` ⊗ Md

2,` → Q`(−d − 1) from
Theorem 1.2.1. We then get an orthogonal Galois representation

ρ` = ρd2,`χ
(d+1)/2
cyc,` : Gal(Q/Q)→ O(M`) ∼= O(d−1)/2(Q`).

We can compute det(ρ`) using Theorem 4.2.4. For p > d, we have

det(ρ`(Frobp)) = p−((d+1)/2)((d−1)/2) det(Frobp,M
d
2,!∗,Fp) =

(
(−3)5(−7) · · · (±d)

p

)
=

(
p

d!!

)
.

Therefore, det(ρ`) is the quadratic Dirichlet character (·/d!!).
Finally, by the Lefschetz trace formula and the sequence (4.6) we have

−md
2(p) = Tr(Frob,Md

2,!,Fp) = Tr(Frob0, V
I0) + Tr(Frob∞, V

I∞) + Tr(Frob,Md
2,!∗,Fp).

For all primes p we have Tr(Frob0, V
I0) = 1 by Lemma 4.2.1, and V I∞ = 0 by Lemmas 4.2.2

and 4.3.4. Therefore,
−md

2(p) = 1 + Tr(Frob,Md
2,!∗,Fp).

For p > d, p 6= `, Corollary 3.3.5 together with (4.15) implies that ρ` is unramified, and
that Md

2,!∗,Fp is isomorphic to Md
2,` as Frobp modules. Therefore, Tr(Frob,Md

2,!∗,Fp) is equal to

p(d+1)/2Tr(Frobp,M`). Combining these facts we get the formulae (1.2).
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4.4.2 When d is even. Let M` := Md
2,`. It is equipped with the symplectic (since

(−1)d+1 = −1) pairing
M` ⊗M`→ Q`(−d− 1)

from Theorem 1.2.1. We then get a symplectic Galois representation

ρ` = ρd2,` : Gal(Q/Q)→ GSp(M`) ∼= GSp2[(d+2)/4]−2(Q`)

with the similitude character equal to χ−d−1
cyc . Corollary 3.3.5 together with (4.15) implies that

ρ` is unramified at primes p > d/2, p - `.

4.4.3 Proof of (1.3) and (1.4). The argument for (1.2 works as well for d even. In particular,
we know that ρ` is unramified for p > d/2, p 6= `, in which caseMd

2,!∗,Fp is isomorphic to Md
2,` =M`

as Frobp modules.

Let us deal with the general case p > 2 (p 6= ` is always assumed). Let M ! = MSymd

! be the
sheaf on S = Spec Z[`−1] defined in Definition 3.1.3 for the Symd-moment of Kl2. In the proof
of Proposition 3.3.3 we have shown that M ! fits into an exact sequence

0→ P [−1]→M !→ N → 0

where P =
⊕

p ip,∗δp is a punctual sheaf (the sum is finite) and N is a middle extension sheaf
on S. By definition, the middle extension sheaf M !∗ is a quotient of N . Let K = ker(N →M !∗),
which is also a middle extension sheaf. Taking the stalk at a prime p 6= `, we get an exact
sequence

0→ i∗pM !→ i∗pN → δp→ 0.

By Lemma 3.1.4, we have i∗pM !
∼= Md

!,Fp . Recall the notation: for a sheaf N over S we use NQ to

denote its generic stalk, which is a continuous Gal(Q/Q)-module. Since N is a middle extension

sheaf, we have i∗pN = N
Ip
Q , which is an extension of M

Ip
` by K

Ip
Q . For large enough p, δp = 0

and i∗pK is equal to ker(i∗pM !→ i∗pM !∗) = ker(Md
2,!,Fp →Md

2,!∗,Fp) = V I0p ⊕ V I∞p . (Here we write

V I∞p etc. to emphasize its dependence on p.) By Lemma 4.2.1 and Lemma 4.2.2, we see that for
p large,

Tr(Frobp,KQ) = 1 +

{
0, d ≡ 2 mod 4,

pd/2, d ≡ 0 mod 4.
(4.16)

Therefore, up to semisimplification, we have KQ ∼= Q` ⊕ Q`(−d/2) as Galois representations,
which is unramified over S. In particular, (4.16) holds for all primes p 6= `.

For every p 6= `, let Lp be the kernel of the map N
Ip
Q � M

Ip
` → M`,Ip . Then Lp is an

extension of ker(M
Ip
` →M`,Ip) by KQ. The inclusion i∗pM !⊗Q`(µp) ∼= Md

!,Fp ↪→ i∗pN ⊗Q`(µp) =

N
Ip
Q ⊗Q`(µp) fits into an exact sequence of maps

0 // V I0p ⊕ V I∞p� _

��

//Md
!,Fp� _

��

//Md
!∗,Fp� _

��

// 0

0 // Lp ⊗Q`(µp) // N
Ip
Q ⊗Q`(µp) // Im(M

Ip
` →M`,Ip)⊗Q`(µp) // 0

(4.17)

We claim that the vertical maps are all injective: the argument is already contained in the proof
of Theorem 1.2.1(ii) in § 3.3.4, namely for both rows the first term is the radical of the natural
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pairing on the middle term. When p > 2, comparing the formula for V I∞p in Lemma 4.2.2 and

the formula for KQ in (4.16), we see that ker(M
Ip
` → M`,Ip) = Lp/KQ should contain at least

Q`(−d/2)[d/2p] as a Frobp submodule. In other words, M` contains at least [d/2p] unipotent
Jordan blocks of size > 2 under the action of Ip. We then have

dimM` > 2

[
d

2p

]
+ dim Im(M

Ip
` →M`,Ip) > 2

[
d

2p

]
+ dimMd

2,!∗,Fp .

However, by Lemma 4.2.3, the above inequalities have to be equalities. Equivalently, all vertical
maps in (4.17) have to be isomorphisms. This means that for p > 2 and p 6= `, Ip acts unipotently
on M` with [d/2p] Jordan blocks of size 2 and trivial Jordan blocks elsewhere. Moreover, the

action of Frobp on M
Ip
` is Q`(−d/2)[d/2p] ⊕Md

2,!∗,Fp . This proves the decomposition (1.3) with

Up ∼= Md
2,!∗,Fp as Frobp modules.

Finally, by Lefschetz trace formula and using the fact that Md
2,!,Fp = N

Ip
Q ⊗Q`(µp), we have

−md
2(p) = Tr(Frob,Md

2,!,Fp) = Tr(Frobp, N
Ip
Q ) = Tr(Frobp,KQ) + Tr(Frobp,M

Ip
` ).

Combined with (4.16), we get (1.4).
In the following subsections, we shall study the cases d = 5, 6, 7 and 8 in more details.

4.5 Sym5 of Kl2
For d = 5, Theorem 1.1.6 gives a Frobenius-compatible system of continuous Galois
representations

ρ` = ρ5
2,`χ

3
cyc : Gal(Q/Q)→ O2(Q`)

with determinant (·/15) and ramified at 3, 5 and `.

At p= 3 or 5, according to Theorem 1.2.1(ii), we have dim Im(M
Ip
` →M`,Ip)> dimM5

2,!∗,Fp =
1. Since ρ` does ramify at p, the only possibility is that Ip acts through its tame quotient and a
generator of Itp maps to a matrix conjugate to diag(1,−1).

The Hodge–Tate weights of ρ5
2,` lie in {−1,−2, . . . ,−5} by Theorem 1.2.1(i), hence the

Hodge–Tate weights of ρ` are (k,−k) where k ∈ {0, 1, 2} (we see from Proposition 4.1.5 that
k is independent of `).

Let K = Q(
√
−15). The restriction ρ`|Gal(Q/K) is an abelian representation into SO2(Q`)

which is ramified only at `. If k = 0, then ρ`|Gal(Q/K) form a Frobenius-compatible family of

Galois representations with finite image. We may choose ` such that ρ`|Gal(Q/K) is everywhere

unramified, which then factors through the class group Cl(OK) = Z/2Z. But this possibility can
be excluded by numerical calculation of m5

2(p) for the first few p.
Therefore, k = 1 or 2, and the Frobenius-compatible family ρ`χ

−k
cyc : Gal(Q/Q)→ GL2(Q`)

then comes from a CM form of weight 2k + 1, level Γ0(15) and nebentypus (·/15) (using the
converse theorem since the L-function of ρ` is the same as the L-function of the Galois character
ρ|Gal(Q/K)). The value of k can again be checked by numerics.

4.6 Sym6 and Sym8 of Kl2
When d = 6 or d = 8, Theorem 1.1.6(ii) gives a Frobenius-compatible system of continuous
Galois representations

ρ` = ρd2,` : Gal(Q/Q)→ GL2(Q`),
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with determinant det(ρ`) = χ−d−1
cyc , which are at most ramified at 2, 3 and `. Moreover, at p = 3,

the action of Gal(Qp/Qp) is via J2(−d/2). By Theorem 1.2.1(i), the Hodge–Tate weights of
ρ`|Gal(Q`/Q`)

are (−d/2− 1 + k,−d/2− k) for 1 6 k 6 d/2.

The next theorem reduces the proof of Conjecture 1.1.4(ii) to a finite calculation.

Theorem 4.6.1. There exist integers 1 6 k 6 4, 0 6 e 6 8 and a holomorphic cuspdial Hecke
eigenform f of weight 2k, level Γ0(2e ·3) and rational Fourier coefficients such that for all primes
p > 3, we have

−m8
2(p)− 1− p4 = p5−kaf (p) (4.18)

where af (p) is the pth normalized Fourier coefficient of f .

Proof. Set d = 8, then 1 6 k 6 4 for all `. Let ρ′` = ρ`χ
5−k
cyc,`. Then the Hodge–Tate weights of ρ′`

are (0, 1− 2k).
We shall use the Serre conjecture, proved by Khare and Wintenberger [KW09a, KW09b], to

deduce the modularity of ρ′`, following an argument originally due to Serre in [Ser87, § 4.8]. One
can find a similar argument from Kisin’s survey article [Kis07, Theorem 1.4.3]. Let ρ′` be the
reduction mod ` of ρ′`, well-defined up to semisimplification. Let L be the set of primes ` such
that:

(a) ` > 7;

(b) the variety X in Theorem 1.2.1(i) has good reduction at `, so that ρ` is crystalline at `; by
Fontaine–Laffaille theory (note that ` > dimX = 7, see [FL82], see also [BLZ04, Corollary
4.3]), the semisimplification of ρ′`|I` is either of the form 1⊕ω1−2k or ω′1−2k ⊕ω′′1−2k; here
ω is the mod ` cyclotomic character and ω′, ω′′ : I` → F×

`2
are the level two fundamental

characters; by the definition of Serre weights [Ser87, § 2], the Serre weight of ρ′` is equal to
2k;

(c) ` 6≡ ±1 mod 8 (see [Ser87, (4.8.7)]).

This set L is infinite. Strong Serre conjecture then implies that for each ` ∈ L, ρ′` is modular
of weight 2k, level of the form 2e3 for some 0 6 e 6 8 (see the estimate of Artin conductors
in [Ser87, Corollary to Proposition 9] and [Ser87, Last paragraph of p. 216]; this is why we
need the third condition when defining L). We have 3 in the level because Gal(Qp/Qp) acts
under ρ` by J2(−d/2). The finiteness of such modular forms then implies the modularity of
the compatible system {ρ′`} (for details, we refer to [Ser87, § 4.8]). Therefore, there is a Hecke
eigenform f of weight 2k, level Nf = 2e3 for some 0 6 e 6 8 (and trivial nebentypus) such that

the attached Galois representation ρf,` is isomorphic to ρ`χ
5−k
cyc,` for every prime ` ∈ L. Since

ρ`χ
5−k
cyc,` form a Frobenius-compatible family, ρf,` ∼= ρ`χ

5−k
cyc,` for all `. The theorem now follows

from Theorem 1.1.6(ii). 2

Remark 4.6.2. The same proof works for m6
2(p), with the weight of the modular form now

2k with 1 6 k 6 3. We actually get more precise information at p = 2 thanks to the fact
(Sym6)I∞ ∼= sgn(−3) proved in Lemma 4.3.4. Using this fact, the same argument in § 4.4.3
allows us to show that ρ`|Gal(Q2/Q2)

∼= J2 ⊗ sgn(−3), and in particular the modular form f in

question should have Γ0(6). Finally (4.18) should change to

−m6
2(p)− 1 = p4−kaf (p)

which holds for all primes p.
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4.7 Sym7 of Kl2
Theorem 1.1.6(i) gives a Frobenius-compatible system of Galois representations

ρ` = ρ7
2,`χ

4
cyc,` : Gal(Q/Q)→ O3(Q`)

with determinant (·/105) and ramified only at 3, 5, 7 and `. By Theorem 1.2.1(i), the Hodge–Tate

weights of ρ7
2,`|Gal(Q`/Q`)

are in {−1, . . . ,−7}, hence the Hodge–Tate weights for ρ`|Gal(Q`/Q`)
are

(−k, 0, k) for 0 6 k 6 3 independent of ` (see Proposition 4.1.5(2)).

We then define

ρ′` = ρ`

( ·
105

)
: Gal(Q/Q)→ SO3(Q`) ∼= PGL2(Q`).

For p = 3, 5 and 7, Theorem 1.2.1(ii) implies that dim Im(M
Ip
` →M`,Ip) > dimM7

2,!∗,Fp = 2.

Since ρ` does ramify at p, this inequality must be an equality, the action of Ip factors through

its tame quotient, and a generator of Itp maps under ρ` to a matrix conjugate to diag(1, 1,−1) ∈
O3(Q`). Equivalently, a generator of Itp maps under ρ′` to a matrix conjugate to ζ = diag(−1, 1)

∈ PGL2(Q`). We fix a lifting of Frobp to Gal(Qp/Qp) and let φp ∈ PGL2(Q`) be its image under

ρ′`. Then the relation φ−1
p ζφp = ζp = ζ forces φp to lie in NPGL2(ζ) = T ∪ Tw, where T is the

diagonal torus in PGL2(Q`) and w =
(

0 1
1 0

)
.

We say p is of abelian type if φp ∈ T ; we say p is of dihedral type if φp ∈ Tw.

Lemma 4.7.1. Here p = 3 and 7 are of abelian type, and p = 5 is dihedral type.

Proof. Whether φp ∈ T or φp ∈ Tw can be detected by computing the determinant of Frobp

on M7
2,!∗,Fp . In fact, under ρ7

2,`, Frobp acts on the two-dimensional orthogonal space M
Ip
` with

similitude p4. If det(Frobp,M
7
2,!∗,Fp) = p8, then φ ∈ T ; if det(Frobp,M

7
2,!∗,Fp) = −p8, then φ ∈ Tw.

We then use Theorem 4.2.4 to see that det(Frob3,M
7
2,!∗,F3

) = det(Frob7,M
7
2,!∗,F7

) = p8 while

det(Frob5,M
7
2,!∗,F5

) = −p8. 2

Lemma 4.7.2. For any prime ` > 7, ρ′` is absolutely irreducible as a three-dimensional orthogonal

Galois representation.

Proof. If not, there should be a continuous character χ : Gal(Q/Q) → Q×` such that ρ′` is

isomorphic to χ ⊕ χ−1 ⊕ 1 up to semisimplification. By the Hodge–Tate property, we have

χ = χkcycχ0 where χ0 has finite order. Therefore, for each prime p 6= 3, 5, 7 or `, we have(
p

105

)−m7
2(p)− 1

p4
= Tr(ρ′`(Frobp)) = pkχ0(p) + p−kχ0(p)−1 + 1. (4.19)

In particular, we have

|m7
2(p) + 1| > p4(pk − p−k − 1) > p5 − p4 − p3.

However, from [Eva10b, Table 2.1], we see that neither p = 11 nor p = 13 (at least one of them

is not equal to `) satisfies the above inequality. 2

Lemma 4.7.3. For ` > 7, the Galois representation ρ′` does not have finite image.
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Proof. We need to eliminate the possibility that Im(ρ′`) is cyclic, dihedral, A4, S4 or A5. Since

ρ′` fits into a Frobenius-compatible system, it is unramified at `.

By Lemma 4.7.2, the image of ρ′` cannot be cyclic.

Suppose Im(ρ′`) = D2n, then we have a surjection ε : Gal(Q/Q) � D2n � {±1} which is

unramified away from 3, 5, 7. Therefore, for some N |105 we have ε = (·/N). For those prime p

such that (p/N) = −1, Frobp lies in the non-neutral component of O2 ⊂ SO3
∼= PGL2, hence has

trace −1. Therefore, whenever (p/N) = −1, we must have(
p

105

)−m7
2(p)− 1

p4
= −1.

Checking all possible N and numerics of m7
2(p) from [Eva10b, Table 2.1] we can eliminate this

possibility.

Suppose Im(ρ′`) = A4, S4 or A5, then Tr(ρ′`(Frobp)) can only take at most five different values.

However, numerics from [Eva10b, Table 2.1] show that (p/105)(−m7
2(p)− 1)/p4 takes more than

five values for varying p. 2

Corollary 4.7.4. The Hodge–Tate weights of ρ′` are not all zero.

Proof. Since ρ′` is a subquotient of the cohomology of some fixed smooth projective variety X

over Q (independent of `) by Theorem 1.2.1(i), we may take ` such that ρ′` is crystalline. If the

Hodge–Tate weights of ρ′` are all zero, it should be unramified at `. Then we know that ρ′` is only

ramified at 3, 5 and 7 with inertial image of order 2. Hence, for each m the image of the reduction

Gal(Q/Q)→ PGL2(Z/`m) is a finite Galois group Gal(Km/Q) for Km of bounded discriminant

independent of m. The inductive system lim−→m
Km should then stabilize and ρ′` must have finite

image. But this is impossible by Lemma 4.7.3. 2

Corollary 4.7.5. Let c be a complex conjugation in Gal(Q/Q), then ρ′`(c) ∈ PGL2(Q`) is

conjugate to diag(1,−1).

Proof. We only need to show that ρ′`(c) = ρ`(c) 6= 1.

Consider the Q-Hodge structure M7
2,Hod defined in Proposition 4.1.5(2). By the comparison

of singular and étale cohomology, there is an isomorphism M7
2,Hod⊗Q`

∼
→M7

2,` which intertwines

the action of the complex conjugation on M7
2,Hod (coming from the complex conjugation acting

on the C-points of varieties defined over R), and the action of c on M7
2,`. By Proposition 4.1.5(2),

the Hodge–Tate weights of M7
2,Hod are also (4 − k, 4, 4 + k), i.e. the Hodge decomposition for

M7
2,Hod⊗QC reads H4+k,4−k ⊕H4,4⊕H4−k,4+k, with each summand one-dimensional. We know

from Corollary 4.7.4 that k > 0.

Since the Galois group Gal(C/R) acts on M7
2,Hod ⊗Q C (obtained by extending scalars from

its action on M7
2,Hod) by permuting H4+k,4−k and H4−k,4+k, we conclude that ρ`(c) 6= 1. 2

Lemma 4.7.6. For sufficiently large prime `, there exists a continuous Galois representation

ρ̃` : Gal(Q/Q)→ GL2(Q`).

lifting the Galois representation ρ′` : Gal(Q/Q)→ PGL2(Q`) ↪→ PGL2(Q`). Moreover, the lifting

ρ̃` may be chosen to satisfy the following properties.
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(i) It is unramified away from 3, 5, 7 and `.

(ii) When p = 3 or 7, ρ̃`|Ip is tame, and maps a generator of Itp to a matrix conjugate to

diag(1,−1) in GL2(Q`).

(iii) When p = 5, ρ̃`|Ip is tame, and maps a generator of Itp to a matrix conjugate to diag(x,−x)

in GL2(Q`), where x is a primitive 8th root of unity;

(iv) It is crystalline at ` with Hodge–Tate weights (0,−k).

Proof. By a result of Patrikis [Pat12, Corollary 13.0.15], there exists a lifting ρ̃ † which is

‘geometric’ in the sense of Fontaine–Mazur, namely it is almost everywhere unramified and

de Rham at `. Below we will define continuous characters cp : Z×p → Q×` , one for each prime p,

and trivial for almost all p. Ultimately the product of {cp} will give a character c of Gal(Q/Q)

such that ρ̃ † ⊗ c−1 satisfies all of the requirements in the lemma.

For p 6= 3, 5, 7 or `, the restriction ρ̃ †|Gal(Qp/Qp) is abelian because ρ̃ †|Ip maps to scalar

matrices in GL2(Eλ). Therefore, ρ̃ †|Ip corresponds to a character cp : Z×p → Q×` by local class

field theory. Since ρ̃ † is ramified only at finitely many places, cp is trivial for almost all p.

For p = 3 or 7, ρ′`|Gal(Qp/Qp) is of abelian type (i.e. its image lies in a torus), hence

ρ̃ †(Gal(Qp/Qp)) is also abelian and can be conjugated to diag(cp, c
′
p). Here cp, c

′
p : Gal(Qp/Qp)→

Q×` are characters such that cp/c
′
p restricted to Ip has order two.

For p = 5, ρ′`|Gal(Qp/Qp) is of dihedral type, the restriction ρ̃ †|Gal(Qp/Qp2 ) is still abelian, and

can be conjugated to diag(d1, d2) where d1, d2 : Gal(Qp/Qp2)→ Q×` are characters. One easily

sees that d2 = dσ1 where σ ∈ Gal(Qp2/Qp) is the nontrivial element. Also d1/d2 = d1/d
σ
1 when

restricted to Ip has order exactly two. Using class field theory we may write d1|Ip : Z×
p2
→ Q×` .

Now d1/d
σ
1 is trivial on (Z×

p2
)2, i.e. d1|(Z×

p2
)2 is invariant under Gal(Qp2/Qp). Identify Z×

p2
with

(1 + pZp2)× F×
p2

, we conclude that d1 factors through

Z×
p2
∼= (1 + pZp2)× F×

p2
Nm,(−)(p+1)/2

−−−−−−−−−→ (1 + pZp)× µ2(p−1)(Fp).

We denote the resulting character (1 + pZp)×µ2(p−1)(Fp)→ Q×` by d. Since d1/d
σ
1 is nontrivial,

d1 does not factor further through (1 + pZp)×F×p = Z×p . Then there exists a character cp : Z×p =

(1 + pZp)× F×p → Q×` which is equal to d on (1 + pZp). Then d1c
−1
p (which is now tame) maps

a generator of Itp to a primitive 2(p− 1) = 8th root of unity.

We suppose ` is sufficiently large so that ρ′` is crystalline. At `, the Hodge–Tate weights are

(a, a−k) for some a ∈ Z. Since ρ′`|Gal(Q`/Q`)
admits a de Rham lifting, it also admits a crystalline

lifting φ : Gal(Q`/Q`)→ GL2(Q`), by a result of Conrad [Con, Corollary 6.7]. By making a Tate

twist we may assume φ has Hodge–Tate weights (0,−k). We then have ρ̃ †`|Gal(Q`/Q`)
= φ · d` for

some continuous character d` : Gal(Q`/Q`)
ab
→ Q×` . The restriction of d` to the inertia group

then gives a character c` : Z×` → Q×` .

Let c : Gal(Q/Q)ab ∼=
∏
p Z×p → Q×` be the product of the cp defined above for all primes p.

This makes sense because cp is trivial for almost all p. Also c is continuous since each cp is. Then

ρ̃` := ρ̃ † ⊗ c−1 satisfies all of the requirements. 2

4.7.7 Proof of Conjecture 1.1.4(i). Fix a lifting ρ̃` as in Lemma 4.7.6 (` is sufficiently large).

114



Galois representations and conjectures of Evans

The Artin conductor of ρ̃` at 3, 5 and 7 are 1, 2 and 1, respectively, according to the description
of local behavior of ρ̃` in Lemma 4.7.6.

From the description on the behavior of ρ̃` at p = 3, 5 and 7 again, we see that under ρ̃` a
generator of I3 or I7 gets mapped to diag(1,−1), with determinant −1. A generator of I5 gets
mapped to diag(x,−x), where x is a primitive 8th root of unity, with determinant a primitive
4th root of unity. Therefore,

det(ρ̃`) ∼=
( ·

21

)
ε5ε`χ

−k
cyc,`.

Here ε5 : Gal(Q/Q)� (Z/5Z)×
∼
→ µ4(Q`) is a quartic Dirichlet character of conductor 5; ε` is a

Dirichlet character of conductor a power of `.
Let ρ̃` be the reduction mod ` of ρ̃`, i.e. a continuous representation Gal(Q/Q)→ GL2(F`).

Since ρ̃` is crystalline at ` with Hodge–Tate weights (0,−k), and ` is assumed to be sufficiently
large, Fontaine–Laffaille theory implies that the Serre weight of ρ̃` is k + 1 (as in the proof of
Theorem 4.6.1). Therefore the `-part of det(ρ̃`) should be ω−k` here ω` is χcyc,` mod `. Hence, ε`

is trivial modulo `, and therefore admitting a square root ε
1/2
` . Changing ρ̃` to ρ̃`ε

−1/2
` , our new

lifting, which we still denote by ρ̃` (and still satisfying the properties of Lemma 4.7.6), satisfies

det(ρ̃`) ∼=
( ·

21

)
ε5χ
−k
cyc,`. (4.20)

By Corollary 4.7.5, a complex conjugation c gets mapped to diag(1,−1) ∈ PGL2(Q`) under
ρ′`, therefore ρ̃` is odd. Since (·/21)ε5 takes value −1 on c as well, we conclude from (4.20) that
k is even. Since 1 6 k 6 3, we get k = 2.

Let us summarize our knowledge about ρ̃` for large ` at this point. It is absolutely irreducible
(by Lemma 4.7.2), odd, with Artin conductor 525 = 3 · 52 · 7 (away from ` part), Serre weight
equal to k + 1 = 3 and determinant given by (4.20) modulo `.

We now appeal to Serre’s argument for modularity [Ser87, § 4.8] again. Although we do not
know whether we can choose the liftings {ρ̃`} to form a Frobenius-compatible family, we have the
following weaker property. The lifting ρ̃` satisfying the condition (4.20) is unique up to twisting
by a quadratic Dirichlet character. Hence, for p 6= 3, 5 or 7, Tr(ρ̃`(Frobp))

2 is independent of `.
This property will play the role of Frobenius-compatibility in the argument below. Therefore,
by Serre’s conjecture, for sufficiently large `, ρ̃` comes from the mod ` Galois representation
of a Hecke eigenform of weight 3, level 525 and nebentypus εf = (·/21)ε5. Since there are only
finitely many possibilities for such eigenforms, we conclude that there is such a newform f such
that ρf,`

∼= ρ̃` for infinitely many `. Therefore, for each prime p 6= 3, 5 or 7, Tr(ρ̃`(Frobp))
2 is

congruent mod ` to the Fourier coefficient af (p)2 for infinitely many `. Hence, for each prime
p 6= 3, 5 or 7, we have

Tr(ρ̃`(Frobp))
2 = af (p)2.

This means that

Tr(ρ′`(Frobp)) =
Tr(ρ̃`(Frobp))

2

det(ρ̃`(Frobp))
− 1 = af (p)2p−2εf (p)−1 − 1. (4.21)

By Theorem 1.1.6(i), we see that

−m7
2(p) = 1 + p4Tr(ρ`(Frobp)) = 1 + p4

(
p

105

)
Tr(ρ′`(Frobp)).

Plugging in (4.21), we get (1.1).
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Appendix A. Fourier transform

In this appendix, we collect some facts about homogeneous Fourier transform that we need in
the main body of the paper. We follow Laumon’s original paper [Lau03].

A.1 Fourier–Deligne transform
Let S be a scheme of finite type over k. Let A and A∨ both be the affine line A1

S over S. We
recall the Fourier–Deligne transform

Fourψ : Db
c(A,Q`(µp))→ Db

c(A∨,Q`(µp)).

It is defined as follows. Consider the following diagram

A×S A∨ m //

pr
{{vvv

vv
vv
vv
v

pr∨

$$I
II

II
II

II
A1

A A∨

where pr, pr∨ are projections and m is the multiplication map. For F ∈Db
c(A,Q`(µp)), its Fourier

transform is defined as

Fourψ(F) = pr∨! (pr∗F ⊗m∗ASψ)[1].

A.2 Laumon’s homogeneous Fourier transform
We still let A and A∨ be affine lines over S, except now S is allowed to be any scheme over
finite type over Z[`−1]. The notation Gm now means the torus Gm,S over S, which acts on A and
A∨. We shall consider the equivariant derived categories Db

Gm(A,Q`) and Db
Gm(A∨,Q`). Laumon

defines a homogeneous Fourier transform

HFour : Db
Gm(A,Q`)→ Db

Gm(A∨,Q`).

Its definition uses a similar diagram of stacks over S.

[A/Gm]×S [A∨/Gm]
m //

prvvmmm
mmm

mmm
mmm

m
pr∨

((RR
RRR

RRR
RRR

RR
[A1
S/Gm]

[A/Gm] [A∨/Gm]

Let β : S = [Gm/Gm] ↪→ [A1
S/Gm] be the open inclusion, and let Ψ = β∗Q` ∈ Db

Gm(A1
S ,Q`). For

F ∈ Db
Gm(A,Q`), its homogeneous Fourier transform is defined as

HFour(F) = pr∨! (pr∗F ⊗m∗Ψ).

We summarize the major properties of the homogeneous Fourier transform.

Theorem A.2.1. Let S be a scheme of finite type over Z[`−1]. Let F ∈ Db
Gm(A,Q`).
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(i) Let F0 and F1 be restriction of F to the sections 0S and 1S of the projection A → S
(recall A = A1

S). Then there is a specialization morphism

Sp(F) : F0→ F1

functorial in F , such that the generic stalk HFour(F)η of the homogeneous Fourier transform
HFour(F) (i.e. the restriction of HFour(F) to [Gm/Gm] = S) fits into a distinguished triangle

F0
Sp(F)−−−→ F1→ HFour(F)η → F0[1]. (A.1)

(ii) Suppose S is over Fp, then we have a canonical isomorphism in Db
c(A∨,Q`(µp))

Fourψ(F ⊗Q`(µp)) ∼= HFour(F)⊗Q`(µp).

(iii) There is an isomorphism of functors:

HFour ◦ D ∼= (D ◦HFour)(−1).

(iv) The functor HFour is t-exact with respect to the perverse t-structure on Db
Gm(A,Q`).

(v) Let ∗+ denote the convolution on Db
Gm(A,Q`) using the additive group structure. Then

for F1,F2 ∈ Db
Gm(A,Q`), we have a canonical isomorphism

HFour(F1 ∗+ F2)[1] ∼= HFour(F1)⊗HFour(F2).

Proof. (1) Let h : A→ S be the structure morphism. By definition and proper base change, we
have

HFour(F)η = h!(β∗ ⊗F). (A.2)

Let α : BGm ↪→ [A/Gm] be the closed embedding of the origin. Consider the distinguished
triangle in Db

Gm(A):
β!Q`→ β∗Q`→ α∗α

∗β∗Q`→ β!Q`[1]. (A.3)

Also let g : S → BGm be the quotient morphism, then by [Lau03, Lemme 1.4(ii)] we have an
isomorphism in Db

Gm(S,Q`)
α∗β∗Q`

∼= g!Q`[1].

Therefore (A.3), after rotating the triangle, becomes

α∗g!Q`→ β!Q`→ β∗Q`→ α∗g!Q`[1].

Tensoring with F and applying the functor h!, we get

h!(α∗g!Q` ⊗F)→ h!(β!Q` ⊗F)→ h!(β∗ ⊗F)→ . (A.4)

By projection formula

h!(α∗g!Q` ⊗F) = h!α!g!(g
∗α∗F) = F0, (A.5)

h!(β!Q` ⊗F) = h!β!(β
∗F) = F1. (A.6)

Plugging (A.5), (A.6) and (A.2) into (A.4), we get the desired triangle (A.1), which also includes
the definition of the functorial map Sp(F) : F0→ F1 as part of the triangle.

For part (ii), see [Lau03, Théorème 2.2].
For part (iii), see [Lau03, Théorème 4.1].
For part (iv), see [Lau03, Théorème 4.2].
Part (v) is the special case of [Lau03, Lemme 1.7] in the case of the linear map A2

→ A1

given by the addition of two coordinates. 2
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Appendix B. Proof of Conjecture 1.1.4(ii): computational

Christelle Vincent

In this appendix we give a brief account of the computational part of the proof of
Conjecture 1.1.4(ii). This computation was carried out using the open source software Sage
(http://www.sagemath.org), and part of the computation was carried out on the Sage
Cloud (http://cloud.sagemath.com). All Sage code written for this project is available online
(http://math.stanford.edu/∼cvincent/research.html).

Fix a prime p. We first compute the numbers m8
2(p). In the notation of § 1, for each a ∈ F×p ,

we have
Kl2(p; a) = −(αa + βa),

for αa and βa the eigenvalues of Froba acting on (Kl2)a, and

m8
2(p) =

∑
a∈F×p

8∑
i=0

αiaβ
8−i
a .

Sage already has a function to compute twisted Kloosterman sums. Since in our case the
Dirichlet character is trivial, we modified the code to remove the dependence on the Dirichlet
character. Even though it is possible to return the exact value of the Kloosterman sum, we
compute it as an approximate complex number to speed up computations.

Using these values, we may compute, for n > 1, the sums

Sn(p) =
∑
a∈F×p

(Kl2(p; a))n.

Since we only have an approximation for Kl2(p; a), to recover the exact value of Sn(p) we use
the congruence

Sn(p) ≡ (−1)n−1(n− 1)p (mod p2)

proved in [CE07].
Using Sn(p) and the fact that αaβa = p, we have

m8
2(p) = S8(p)− 7pS6(p) + 15p2S4(p)− 10p3S2(p) + p5 − p4 + 10p3 − 15p2 + 7p− 1.

From there we can obtain the Fourier coefficients of the form f which we are looking for:

af (p) = −(m8
2(p) + 1 + p4)/p5−k,

where k is half of the weight of the form f .
We begin by noticing that m8

2(5) = 1024. If 2k = 2 or 2k = 4, we have that the predicted
Hecke eigenvalue is not an integer. Since Hecke eigenvalues are integral we do not need to check
these cases. We are left with the possibility of a form f of weight 6 or of weight 8.

For each
N ∈ {3, 6, 12, 24, 48, 96, 192, 384},

and 2k = 68 and each
N ∈ {3, 6, 12, 24, 48, 96, 192},

and 2k = 8, we compute the space of cuspidal new modular symbols of weight k and level Γ0(N).
We then decompose it into invariant subspaces under the action of the Hecke operators of index
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coprime to the level. Each of these spaces is simple, and we compute the eigenvalue of the Hecke
operator T5 on each space.

When 2k = 6, if this eigenvalue is not equal to af (5) = −66, we can immediately discard the
space. In only two cases is the eigenvalue equal to −66: when N = 6, and in one of the subspaces
obtained when N = 48. In the second case, we check the eigenvalue of the Hecke operator T7,
and it is −176, which is not equal to af (7) = 176. We can therefore discard this space too.

When 2k = 8, the eigenvalue is never equal to af (5) = −330.
When N = 768 and 2k = 6, N = 384 and 2k = 8 or N = 768 and 2k = 8 the spaces become

too large and the computation becomes prohibitively long. So we instead compute the space of
cuspidal new modular symbols over the field F13. In each case we then compute the characteristic
polynomial of the Hecke operator T5 and check whether the number −66 when 2k = 6 or −330
when 2k = 8 is a root of this polynomial. It is not, and therefore neither of these subspaces
contains an eigenform with eigenvalue for T5 congruent to −66, respectively −330, modulo 13.
We can therefore discard those spaces as well.

This leaves us with the unique new cusp form of weight 6 and level Γ0(6). For good measure,
we check that its Hecke eigenvalues agree with our list of af (p), and they do for all primes p
such that 3 6 p < 1000.
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