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Abstract

We consider the Drinfeld setting which offers analogues for function fields of some aspects

of the theory of modular forms, modular curves and elliptic curves. In this setting the

field Fq(T ), for q a power of a prime, plays the role of Q, and all objects are defined over

a complete, algebraically closed field of positive characteristic containing Fq(T ).

We first consider the action of the Hasse derivatives on Drinfeld modular forms,

which were shown by Uchino and Satoh to act as differential operators on the algebra

of Drinfeld quasi-modular forms. While these operators do not preserve modularity,

we show that they do preserve modularity modulo p for p a prime ideal of Fq[T ]. We

also study the behavior of the filtration under the action of the first Hasse derivative,

and obtain results analogous to those obtained by Serre and Swinnerton-Dyer about

Ramanujan’s Θ-operator in the classical setting.

We then consider the family of modular curves X0(p) constructed by Drinfeld, and

we study their Weierstrass points, a finite set of points of geometric interest. These

curves are moduli spaces for Drinfeld modules with level structure, which are the objects

which in our setting play a role analogous to that of elliptic curves. Previous work of

Baker shows that for each Weierstrass point, the reduction modulo p of the underlying

Drinfeld module is supersingular. We study a modular form W for Γ0(p) whose divisor

is closely related to the set of Weierstrass points, an idea first presented by Rohrlich in

the classical setting. To this end, we first establish a one-to-one correspondence between

certain Drinfeld modular forms on Γ0(p) and forms on the full modular group. In certain

cases we can then use knowledge about the action of the Hasse derivatives to compute
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explicitly a form W̃ that is congruent to W modulo p. This allows us to obtain an

analogue of Rohrlich’s result, which is the first important step towards obtaining a more

precise relationship between the supersingular locus and Weierstrass points on X0(p),

as illustrated by Ahlgren and Ono in the classical setting.
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Notations

A = Fq[T ] (Z)

K = Fq(T ) (Q)

K∞ = Fq((T−1)) (R)

C = ˆ̄K∞ (C)

Ω = C −K∞ (H)

GL2(A) (SL2(Z))

p = 〈π〉 (`)

π prime of degree d

Fp = A/p (Z/`Z)

x = ζx
(

1
T

)v∞(x)
ux ∈ K

[i] = T q
i − T

gp, the genus of X0(p)
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Chapter 1

Introduction

Because of the deep similarities between the ring Z and the ring Fq[T ], for q a power of

a prime and T an indeterminate, there is a rich and fruitful interaction between results

that can be obtained by taking one or the other as a basic object of study. In this work

we shall be interested in studying the so-called Drinfeld setting, which offers for function

fields certain constructions playing roles analogous to those played by modular forms,

modular curves, and elliptic curves in the classical number field setting.

Let A be the ring of functions on a curve X regular outside of a chosen closed point

denoted by ∞. We will say that such a ring is an affine ring. While many of the

constructions we will present here are available for any such A, the analogy is most rich

and most developed when X is chosen to be P1 and the chosen point is defined over

the base field Fq. For this reason, we will restrict our attention to this situation in the

present work.

In this set up, the field K = Fq(T ) plays the role of the field Q, the field K∞ =

Fq((T−1)) plays the role of R and the completion of the algebraic closure of K∞, denoted

here by C, plays the role of the field C. For the convenience of the reader we collect the

notations specific to this setting on page iv, along with the analogous classical object

when appropriate. More generally, whenever we speak of an affine ring A, we will write

K for its field of fractions and K∞ for the completion of K at ∞.
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In the first Section of this Introduction, we give a brief overview of the history of

the Drinfeld setting and of some of the results that have been obtained. In the second

Section, we present the classical results that guided and inspired the work presented here.

In the last Section we present an overview of what this work contains and summarize

the results that we will obtain.

1.1 The Drinfeld setting

In 1935, Carlitz [36] began the study of an exponential-like function defined over the

field Fq(T ). (This function is the Carlitz exponential function defined in equation (2.2)

below.) His work led him naturally to consider certain polynomials which he showed

shared many properties with the classical cyclotomic polynomials [37]. However, it was

not until 1974 that Hayes [31] completed the work of showing how Carlitz’s theory

could be used to generate the maximal abelian extension of Fq(T ) and to construct the

reciprocity law homomorphism of class field theory.

In that same year Drinfeld [14] published a paper in which he established function

field analogues of the Kronecker-Weber theorem, the main theorem of complex multi-

plication, and the Eichler-Shimura relation. His proof introduced objects now called

Drinfeld modules, which are an important object of study in this work and are defined

in a very explicit manner in Section 2.1. For now, we will say that for an affine ring

A, a Drinfeld A-module is a group scheme locally isomorphic with Ga and provided

with an A-action. While it seems that Drinfeld was unaware of Carlitz’s work, it is

now understood that when A = Fq[T ], the action of A on a certain Drinfeld module of

rank 1 (the Carlitz module introduced in equation (2.5)) is exactly given by Carlitz’s
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cyclotomic polynomials.

The significance of Drinfeld modules is that they play for K the role played for Q by

the Q-motives given by semi-abelian schemes. In particular, a major theme of this work

is that Drinfeld modules of rank 2 exhibit properties very analogous to those of elliptic

curves. This was already obvious in Drinfeld’s work: Let F be a quadratic extension of

K such that F 6⊂ K∞ (so that F is an “imaginary” quadratic extension), and let H be

the Hilbert class field of F . Then if one has a Drinfeld module φ of rank 2 defined over

H, the torsion points and the j-invariant of φ generate the ray class fields of F .

Finally, Drinfeld considers the l-adic cohomology groups of compactifications of mod-

uli spaces of Drinfeld modules of rank 2 with level structure, and exhibits a canonical

Galois- and Hecke-equivariant isomorphism between a suitable cohomology group and a

certain space of automorphic forms for GL2(AK). This in turns establishes a correspon-

dence between certain representations of Gal(Ksep/K) and the set of so-called special

automorphic representations. For more on this topic and its connection to the local

Langlands conjecture, we refer the reader to Deligne and Husemöller’s article [12].

In light of the deep connections between the arithmetic properties of K and the

Drinfeld modular curves (which are introduced in this work in Chapter 3), it is natural

to study their geometry. A useful tool for this purpose are the Drinfeld modular forms,

first defined as sections of line bundles on the Drinfeld modular curves by Goss in the

late 1970s and the early 1980s ([26], [27], [28]). Goss establishes many of the basic

properties of these objects: connections between their algebraic definition and their

analytic description as rigid analytic functions, existence of series expansions at the

cusps, existence of Hecke operators and Eisenstein series, etc. A perhaps surprising

result obtained by Goss is that “multiplicity one” results do not hold here: the Eisenstein
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series of weight q − 1 and the Drinfeld discriminant function ∆ have the same Hecke

eigenvalues for all primes. Goss’s work was continued and extended to general affine

rings by Gekeler in [22] and in his book [18], where the behavior of Drinfeld modular

forms near cusps was studied and consequences about the geometry of the modular

curves were derived.

In 1988, Gekeler’s Inventiones paper [20] introduced two important elements of the

theory of Drinfeld modular forms: The first one is a differential operator which he

denoted Θ, in analogy to Ramanujan’s Θ-operator in the classical case. Gekeler also

studied the ring of modular forms “modulo p”, for p a prime ideal of Fq[T ], proving

some fundamental results analogous to those known in the classical case. The ideas of

this paper will feature prominently in this work, and we will present some results on the

interplay between differential operators and reduction modulo p in Chapter 5.

We note here that by necessity Drinfeld modular forms cannot directly give rise

to automorphic forms, as in the classical case, since automorphic forms are functions

on adelic groups valued in fields of characteristic zero, while Drinfeld modular forms

are functions on a rigid-analytic space valued in a field of finite characteristic. There

is a relationship between the two objects, obtained by Gekeler and Reversat in [21].

Roughly speaking, Drinfeld modular forms of a certain type can be thought of as the

reduction modulo p (where p is the characteristic of K) of Z-valued automorphic forms.

This loss of information explains certain non-classical phenomena such as the failure

of the multiplicity one theorem mentioned above and the fact that the action of Hecke

operators on Drinfeld modular forms may fail to be semi-simple.

Despite this, it is nevertheless possible to attach a Galois representation to Drinfeld

Hecke eigenforms. In 1986, Anderson [3] introduced a higher-dimensional generalization
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of Drinfeld A-modules called t-motives, and in [29] Goss showed how one can attach

function field L-series to these objects. Recently Böckle and Pink [8] generalized the

notion of t-motives further to define a theory of A-crystals, which gives a theory sim-

ilar to the étale setting in the classical case. This has allowed Böckle [7] to interpret

Drinfeld modular forms as étale cohomology classes by establishing an Eichler-Shimura

isomorphism, and by considering generalized eigenspaces one can thus attach a Galois

representation to a cuspidal Drinfeld eigenform. We note here that all representations

attached to Drinfeld modular forms are one-dimensional.

1.2 Classical results

In the early 1970s, their work on `-adic Galois representations led Serre and Swinnerton-

Dyer to study the algebra of (classical) modular forms modulo ` for ` a prime of Z. In

[49], Swinnerton-Dyer collects some fundamental results: First, he shows that E2 ≡ E`+1

(mod `), for E2 the false Eisenstein series and E`+1 the Eisenstein series of weight `+ 1,

from which it follows that while Ramanujan’s Θ-operator q d
dq

does not preserve modu-

larity, it preserves modularity modulo ` for any prime `. Secondly, he defines a filtration

on the algebra of modular forms modulo ` and studies how this filtration behaves under

the operation of the Θ-operator. Building on these results, Serre [46] defines a notion of

`-adic modular forms and shows that modular forms for Γ0(`) are `-adic modular forms

for SL2(Z). His theory allows him to attach `-adic zeta functions to arbitrary totally

real extensions of Q. These results have proved to be of fundamental importance in the

theory of classical modular forms. For example, they provided the setting for Ahlgren

and Boylan’s proof [1] that Ramanujan’s partition function congruences are the only
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such congruences of this type. We will present results analogous to those of Serre and

Swinnerton-Dyer for the Drinfeld setting in Chapters 5 and 6.

One interesting application of the theory of modular forms modulo ` is the study of

Weierstrass points on certain modular curves. For a curve X of genus g defined over C,

we define a Weierstrass point to be a point P such that there exits a function F on X

with a pole of order ≤ g at P and regular elsewhere. This defines a finite set of intrinsic

geometric points on X. As an example of their significance in geometry, we note that

information about Weierstrass points has been recently used to classify certain Hurwitz

surfaces by Magaard [39].

Because of the arithmetic significance of the classical modular curves, it is natural

to wish to compute their Weierstrass points. This work was started in the 1950s by

Petersson [41] and Schoeneberg [45], who studied the Weierstrass points of the modular

curves associated to the principal congruence subgroup Γ(N), for N an integer. By

proving a general result relating the normalizer of the modular group to the Weierstrass

points of the associated modular curve, Schoeneberg was able to show that for N ≥ 7,

the cusps of X(N) are Weierstrass points, and that except for three unsettled cases, for

N ≥ 9 the points above i and ρ = e2πi/3 are also Weierstrass points.

Schoeneberg’s method was applied by Lehner and Newman in 1964 [38] to the group

Γ0(N) to establish that the cusps of Γ0(4N) and Γ0(9N) are almost always Weierstrass

points (their approach does not work in certain cases) and that the fixed points of the

Fricke involution WN are Weierstrass points for all but finitely many Γ0(N). In 1967,

a beautiful paper of Atkin’s [5] studies ramification at the cusps of covers of the form

X0(`2N) → X0(`N) to establish that if N has sufficiently many divisors, the cusps 0

and ∞ are always Weierstrass points, thus leaving open the question of whether one
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could exhibit an infinite family of curves such that the cusps are not Weierstrass points.

Such a family was produced by Ogg in 1978 [40], who used the Deligne-Rapoport model

of X0(`) to show that the elliptic curves underlying Weierstrass points of X0(`) have

supersingular reduction modulo `. As a consequence of this, the cusps of X0(`) are

never Weierstrass points.

Three years later, Rohrlich [42] remarked that a useful tool in the study of Weierstrass

points for modular curves might be the Wronskian determinant: For g the genus of the

modular curve associated to the congruence group Γ, and f1, . . . fg a basis of weight 2

cusp forms for Γ, consider the form

W (f1, . . . , fg) =

∣∣∣∣∣∣∣∣∣∣
f1(z) . . . f

(g−1)
1 (z)

...
...

fg(z) . . . f
(g−1)
g (z)

∣∣∣∣∣∣∣∣∣∣
, (1.1)

where f (n)(z) = dnf
dzn

. Then the so-called modular Wronskian W is the multiple of

W (f1, . . . , fg) that has leading coefficient 1 in its q-series expansion at∞. W is modular

of weight g(g+ 1) for Γ and is such that the points in the divisor of W (z)(dz)g(g+1)/2 are

exactly the Weierstrass points. Although this is not the usual definition, we may further

define the Weierstrass weight of a point P , denoted wt(P ), to be the order of vanishing

of W (z)(dz)g(g+1)/2 at P , since the usual quantity agrees with this.

Following up on this idea, Rohrlich obtains the following theorem in 1985 [43]:

Theorem 1.1. Let ` ≥ 23 and write `+ 1 = 12g+ r for r = 0, 6, 8 or 14. Let W (z) be

the normalized Wronskian associated to the curve X0(`). Then the Fourier coefficients

of W (z) are `-integral and

W (z) ≡ ∆(z)g(g+1)Er(z)gE
g(g−1)/2
14 (mod `),
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where Ek is the Eisenstein series of weight k and ∆ is the unique normalized cusp form

of weight 12 for SL2(Z).

The two main ingredients of the proof are first the fact that since the moduli problem

associated to X0(`) is defined over Z, all the relevant spaces of modular forms have basis

with integral Fourier coefficients, and secondly the theorem, proved by Serre in [46], that

the forms of weight 2 for Γ0(`) correspond modulo ` to forms of weight `+ 1 for SL2(Z).

While interesting, this result did not answer the question of the precise relationship

between Weiertrass points on X0(`) and the supersingular locus. It was not until 2003

that Ahlgren and Ono [2] used Rohrlich’s work as a starting point to obtain the following

beautiful formula:

∏
Q∈X0(`)

(x− j(Q))wt(Q) ≡
∏
E/F`

E supersingular

(x− j(E))g(g−1) (mod `). (1.2)

Its significance is the following: The Weierstrass points on X0(`) map to the supersin-

gular elliptic curves in the nicest way possible; each supersingular elliptic curve is the

reduction of a Weierstrass point, and the fibers above each supersingular elliptic curve

contain the same number of Weierstrass points if each Weierstrass point P is counted

with multiplicity wt(P ).

1.3 Our results

We begin this work by reviewing the background we will need. In Chapter 2, we present

all of the basic facts about Drinfeld modules and Drinfeld modular forms which will

be needed. Then in Chapter 3 we describe the analytic and algebraic constructions of

Drinfeld modular curves in some generality, and subsequently restrict our attention to
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the curves X0(p). Finally, in Chapter 4 we present the theory of Drinfeld quasimodular

forms and some results on the action of the Hasse derivatives on Drinfeld modular forms.

At the end of this Chapter we include some integrality and order of vanishing results

for these operators which are easy consequences of theorems obtained by Bosser and

Pellarin.

In Chapter 5 we present some results on the action of the Hasse derivative Dn for

n small on the filtration of Drinfeld modular forms which were published in [51]. For

p an ideal generated by a monic prime polynomial π of degree d, E the false Drinfeld

Eisenstein series, gd the Drinfeld Eisenstein series of weight qd − 1 and ∂ a differential

operator which preserves modularity (∂ is introduced in Chapter 4), we show:

Theorem 5.2.

E ≡ ∂(gd) (mod p).

Thanks to this result we have a Drinfeld modular form which can play the role played

by E`+1 in Swinnerton-Dyer’s work [49], and we can obtain the following:

Theorem 5.4. Let f be a Drinfeld modular form of weight k and type l, and p be an

ideal generated by a monic prime polynomial π of degree d. If f has rational p-integral

u-series coefficients and is not identically zero modulo p, then the following are true:

1. D1(f) is the reduction of a modular form modulo p.

2. We have wp(D1(f)) ≡ wp(f) + 2 (mod qd− 1) (where we take this to be vacuously

true if wp(D1(f)) = −∞). Furthermore wp(D1(f)) ≤ wp(f) + qd + 1 with equality

if and only if wp(f) 6≡ 0 (mod p).
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In Chapter 6 we obtain an analogue of Serre’s theorem that says that forms of weight

2 for Γ0(`) correspond modulo ` to forms of weight `+1 for SL2(Z). To do so we consider

the integrality of the operators Up and Vp on the coefficients of u-series expansions. Our

main result is:

Theorem 6.1. Let q ≥ 3. There is a one-to-one correspondence between forms of weight

2 and type 1 for Γ0(p) with rational p-integral u-series coefficients and forms of weight

qd + 1 and type 1 for GL2(A) with rational p-integral u-series coefficients.

As in Serre’s work, this theorem is a corollary of the following theorem:

Theorem 6.2. Let f be a modular form of weight k and type l for Γ0(p), with rational

u-series coefficients. Then f is a “p-adic Drinfeld modular form” for GL2(A).

Finally, in Chapter 7 we seek to apply the theory of Drinfeld modular forms to study

the Weierstrass points of X0(p). We start by reviewing the definition of Weierstrass

points in characteristic p, and state a result of Baker’s which generalizes Ogg’s theorem

and can be used to show that the Drinfeld modules underlying the Weierstrass points of

X0(p) have supersingular reduction modulo p. We then define the modular Wronskian

in our setting, and proceed to show in a specific case an analogue of the theorem of

Rohrlich quoted above:

Theorem 7.11. If p is odd, π ∈ Fp[T ] has degree 3, p is the ideal generated by π, and

the Wronskian on X0(p) is denoted by W (z), then we have

W (z) ≡ (−1)(p+1)/2g
p2(p−1)

2 h
p2(p+1)

2 (mod p).
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Chapter 2

Drinfeld modules and Drinfeld

modular forms

In this Chapter we present basic facts on the theory of Drinfeld modular forms and Drin-

feld modules. An excellent standard reference for this material is Gekeler’s Inventiones

paper [20]. For facts on rigid analytic geometry, we refer the reader to [15].

Throughout we will fix q a power of a prime p, and denote by Fq the finite field

with q elements. We will denote by A the ring of polynomials in an indeterminate T ,

A = Fq[T ], and by K the field Fq(T ), the field of fractions of A. Then for x ∈ K we

may define the order of x at∞ to be v∞(x) = − deg(x). We will write K∞ = Fq((1/T ))

for the completion of K at its infinite place, and

C = ˆ̄K∞

for the completed algebraic closure of K∞. C is thus a complete algebraically closed field

of characteristic p. Finally we will also need the analytic space Ω = P1(C)− P1(K∞) =

C −K∞, which we will call the Drinfeld upper half-plane.

For any x ∈ K∗∞, x can be written uniquely as

x = ζx

(
1

T

)v∞(x)

ux (2.1)

where ζx ∈ F∗q, and ux is such that v∞(ux − 1) > 0, or in other words ux is a 1-unit at
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∞. We call ζx the leading coefficient of x.

2.1 Drinfeld modules

Let Λ be an A-lattice of C, by which we mean a finitely-generated A-submodule having

finite intersection with each ball of finite radius contained in C. Consider the following

lattice function:

eΛ(z)
def
= z

∏
λ∈Λ
λ 6=0

(
1− z

λ

)
. (2.2)

The product converges uniformly on bounded sets in C, thus defining a (rigid) analytic

surjective function on C.

If we fix an A-lattice Λ of rank r in C, then for every a ∈ A there is a unique map

φΛ
a such that for all z ∈ C,

φΛ
a (eΛ(z)) = eΛ(az).

The map

φΛ : a 7→ φΛ
a

defines a ring homomorphism of A into the ring EndC(Ga) of additive polynomials over

C. In other words, EndC(Ga) is the non-commutative ring of polynomials of the form

∑
aiX

pi ,

where multiplication is defined by composition. If we write τ = Xq and let C{τ} ⊂

EndC(Ga) be the subalgebra of EndC(Ga) generated by τ , then in fact Drinfeld shows

[14] that φΛ takes values in C{τ} and for a ∈ A of degree d we have

φΛ
a =

∑
0≤i≤rd

liτ
i (2.3)
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with l0 = a and lrd 6= 0.

In general, a ring homomorphism φ : A → C{τ} that is given by (2.3) is called a

Drinfeld module of rank r over C. The association Λ 7→ φΛ is a bijection of the set of

A-lattices of rank r in C with the set of Drinfeld modules of rank r over C. On the

side of lattices, we say that Λ and Λ′ are homothetic if there exists λ ∈ C∗ such that

Λ′ = λ · Λ. On the side of Drinfeld modules, we say that two modules φ and ψ are

isogenous if there exists an element u ∈ EndC(Ga) such that u ◦ φa = ψa ◦ u for all

a ∈ A. If u ∈ C∗, then we say that the two modules are isomorphic. Then we also have

that homothety classes of rank r lattices correspond to isomorphism classes of Drinfeld

modules of rank r.

More generally, let L be a field over A, for example L = K, or L = A/p, for p a prime

ideal of A. As before, we may write L{τ} for the subalgebra of EndL(Ga) generated by

τ . Then a ring homomorphism φ : A→ L{τ}, satisfying

φa
def
= φ(a) =

∑
0≤i≤rd

aiτ
i,

with l0 = a and lrd 6= 0 for a ∈ A of degree d, is called a Drinfeld module of rank r over

L. Even more generally, Drinfeld modules may be defined over any A-scheme S, and we

refer the reader to Drinfeld’s work [14] for the details.

2.1.1 Drinfeld modules of rank 2

We shall be especially interested in Drinfeld modules of rank 2 over a field L, which

behave analogously to elliptic curves in the classical case. Such an object is defined by

φT = Tτ 0 + gτ + ∆τ 2 (2.4)
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with g ∈ L, ∆ ∈ L, ∆ 6= 0. Writing a · x = φa(x), φ gives Ga(L) a new structure as an

A-module. We say that an element x in some field extension of L such that φa(x) = 0

is an a-torsion point of φ. In general the a-torsion points of a Drinfeld module of rank

2 form a finite A-submodule scheme of Ga of degree q2 deg a.

Consider for a moment the case where the module is defined over C, i.e. g and

∆ ∈ C. Then this module corresponds to a rank 2 lattice Λω1,ω2 = Aω1 ⊕ Aω2. If

λ ∈ C∗, then eλ·Λ(λz) = λeΛ(z), so that replacing Λ by a homothetic lattice λ · Λ

will send (g,∆) to (λ1−qg, λ1−q2∆). For this reason we define the quantity j = gq+1

∆
,

which remains invariant under isomorphism, and call it the j-invariant of the Drinfeld

module. Furthermore, replacing Λ by a homothetic lattice, we may restrict our attention

to lattices of the form Λz = A⊕ Az. The condition that Λ is an A-lattice translates to

having z ∈ Ω, the Drinfeld upper half-plane. Thus we may view g, ∆ and j as functions

on Ω, and they will turn out to be Drinfeld modular forms.

Two elements z and z′ of Ω define homothetic lattices, and thus isomorphic Drinfeld

modules, if and only if there is ( a bc d ) ∈ GL2(A) such that z′ = az+b
cz+d

. Thus we have that

j induces a bijection

GL2(A)\Ω→ C.

Thus C is a (coarse) moduli space for Drinfeld modules of rank 2 over C. This point of

view will be discussed further when Drinfeld modular curves are introduced.

We note here that we may and will define the j-invariant as gq+1

∆
for a Drinfeld

module over an arbitrary field L over A. In general, the j-invariant of a Drinfeld module

determines the isomorphism class of the module only over an algebraically closed field.

Let us now consider the case of a Drinfeld module of rank 2 φ defined over a finite

extension of Fp = A/p, for p a prime ideal generated by a monic polynomial π(T ) of
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degree d. We have that

φπ = ldτ
d + . . .+ l2dτ

2d,

i.e. l0, . . . , ld−1 vanish [16]. As remarked above, the π-torsion points of φ form a finite

A-submodule scheme of Ga of degree q2d. In the particular case at hand, because of

the vanishing of the coefficients l0, . . . , ld−1, this group scheme is never reduced, and

the group of π-torsion points defined over Fp is either 0 or isomorphic to Fp. In the

case where there are no non-trivial π-torsion points, we say that φ, or sometimes its

j-invariant, is supersingular.

It is known that for a given prime ideal p, there are only finitely many supersingular

j-invariants “in characteristic p” [16], and that if d, the degree of π, is odd, then j = 0

is always supersingular.

Finally, consider a Drinfeld module φ defined over K, defined by φT = Tτ 0+gτ+∆τ 2.

When g and ∆ are p-integral, we can talk about the reduction of φ modulo p, which is

the module defined by φ̃T = T̃ τ 0 + g̃τ + ∆̃τ 2 over Fp, where ˜ denotes the reduction

modulo p. If φ̃ is supersingular, we say that φ is supersingular at p.

2.1.2 The parameter at ∞

An important Drinfeld module is Carlitz’s module ρ of rank 1, first studied by Carlitz

in [36], and defined by:

ρT = Tτ 0 + τ. (2.5)

Under the correspondence between Drinfeld modules and lattices mentioned above, this

Drinfeld module corresponds to a certain rank 1 A-lattice L = π̃A, where the Carlitz

period π̃ ∈ K∞( q−1
√
−T ) is defined up to a (q − 1)th root of unity. We choose one such
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π̃ and fix it for the remainder of this work.

Consider now the function

u(z)
def
=

1

eL(π̃z)
(2.6)

for L = π̃A and π̃ the Carlitz period. Then we have that for any c > 1, u induces an

isomorphism of the set

A\{z ∈ Ω | infx∈K∞ |z − x| ≥ c}

with a pointed ball Br\{0} for r small. Thus u(z) can be used as a “parameter at

infinity”, analogously to q = e2πiz in the classical case. This in fact is not quite correct

from a rigid analytic perspective, and the subtleties involved here will be discussed in

much more detail when we discuss the analytic structure of the Drinfeld modular curves

in Chapter 3.

2.2 Drinfeld modular forms

For an ideal a of A, define the principal congruence subgroup Γ(a) to be ker(GL2(A)→

GL2(A/a)). Then a congruence subgroup of GL2(A) is a subgroup Γ such that Γ(a) ⊂

Γ ⊂ GL2(A) for some ideal a of A. We also note that any such Γ acts on the Drinfeld

upper half plane via γ · z = az+b
cz+d

for γ = ( a bc d ).

For a congruence subgroup Γ, we define its cusps to be the finite set Γ\P1(K). We

will see in Chapter 3 that these equivalence classes are in one-to-one correspondence

with the points needed to compactify the open Drinfeld modular curve Γ\Ω. By a

local parameter or uniformizer at a cusp, we will mean (a root of) a uniformizer for

the compactified modular curve at such a point (see Chapter 3), and denote such a

uniformizer by t.
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Definition 2.1. Let Γ be a congruence subgroup of GL2(A). A function f : Ω → C is

called a Drinfeld modular form of weight k and type l for Γ, where k ≥ 0 is an integer

and l is a class in Z/(# det Γ), if

1. for γ = ( a bc d ) ∈ Γ, f(γz) = (det γ)−l(cz + d)kf(z);

2. f is rigid analytic on Ω (see Section 3.1.1);

3. f is analytic at the cusps of Γ: at each cusp f has an expansion f(z) = F (t(z))

where F is a power series with a positive radius of convergence and t is a local

parameter at this cusp.

Remark 2.2. There are no non-trivial modular forms of weight k and type l if k 6≡ 2l

(mod #(Γ ∩ Z(K))), where Z(K) is the center of GL2(K).

Remark 2.3. If at a given cusp f has an expansion f(z) = F (t(z)) and F =
∑

i≥i0 ait
i

with ai0 6= 0, we say that f vanishes to order i0 at this cusp. If f is a modular form for

Γ, we say that f is a cusp form if it vanishes to order at least 1 at each of the cusps of

Γ, and that f is a double cusp form if it vanishes to order at least 2 at each of the cusps

of Γ. We will see in Chapter 3 that these notions are well-defined if not quite correct

from a rigid analytic perspective.

We will denote the (finite dimensional) vector space of modular forms of weight k

and type l for a congruence group Γ by Mk,l(Γ), the subspace of cusp forms by M1
k,l(Γ),

and the subspace of double cusp forms by M2
k,l(Γ).

For γ ∈ GL2(K) we have that det γ ∈ K∗. By (2.1), we can write

det γ = ζdet γ

(
1

T

)v∞(det γ)

udet γ.
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For simplicity we write

ζdet γ = ζγ.

We define a slash operator for γ = ( a bc d ) ∈ GL2(K) on a modular form of weight k

and type l by

f |k,l[γ] = ζ lγ

(
det γ

ζγ

)k/2
(cz + d)−kf(γz). (2.7)

Note that for γ ∈ GL2(A) we have that det γ = ζγ; thus if f is modular of weight k and

type l for Γ and γ ∈ Γ, then f |k,l[γ] = f . We also record for future reference that since

for x, y and z ∈ K∗ such that z = xy, we have ζz = ζxζy, it follows that for α, β and

γ ∈ GL2(K) such that γ = αβ, we have:

f |k,l[γ] = f |k,l[α]f |k,l[β].

.

2.3 Drinfeld modular forms for GL2(A)

In this section we will consider the case Γ = GL2(A), and present some fundamental

results. In this case the modular curve only has one cusp, ∞, and the function u(z)

constructed in Section 2.1.2 can and will be used as a parameter at ∞.

For k a positive integer and z ∈ Ω, Goss defines in [28] an Eisenstein series of weight

qk − 1 by:

gk
def
= (−1)k+1π̃1−qkLk

∑
a,b∈A

(a,b)6=(0,0)

1

(az + b)qk−1
, (2.8)

where Lk is the least common multiple of all monics of degree k, so that

Lk = (T q − T ) . . . (T q
k − T ),
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and π̃ is the Carlitz period fixed above. These series converge and thus define rigid ana-

lytic functions on Ω. They should be considered the analogues of the classical Eisenstein

series, and they can be shown to be modular of weight qk − 1 and type 0 for GL2(A).

Furthermore, it is shown in [20] that with this normalization each gk has integral u-series

coefficients.

Another modular form for GL2(A) which will be important in this paper is the

Poincaré series of weight q + 1 and type 1, first defined by Gerritzen and van der Put

in [24, page 304]. Let H be the subgroup
∗ ∗

0 1


 ⊂ GL2(A)

and as usual

γ =

a b

c d

 ∈ GL2(A).

Then we may define a series

h
def
=

∑
γ∈H\GL2(A)

det γ · u(γz)

(cz + d)q+1
. (2.9)

Using the properties of the function u(z), this series can be shown to in fact define a

Drinfeld modular form of weight q + 1 and type 1. It is shown in [20] that h also has

integral u-series coefficients. As remarked above, the coefficient ∆ of a Drinfeld module

of rank 2 as in (2.4) can be considered a function on Ω, and is a Drinfeld modular form.

In fact, we have π̃1−q2∆ = −hq−1, but this will not be used here.

We also note that g1 is a multiple of the modular form g which appears in equation

(2.4). More precisely, g1 = π̃1−qg. From now on, to simplify notation we will denote g1

simply by g, or alternatively we will replace the old g by its normalization. Since we shall
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not need to think of g as the coefficient of a Drinfeld module again, this normalization

should create no confusion.

It is a well-known fact (see for example [20]) that the graded C-algebra of Drinfeld

modular forms of all weights and all types for GL2(A) is the polynomial ring C[g, h]

(where each Drinfeld modular form corresponds to a unique isobaric polynomial). The

first few terms of the u-series expansion of g and h are:

g = 1− (T q − T )uq−1 − (T q − T )u(q−1)(q2−q+1) + (T q − T )u(q−1)q2 + . . . (2.10)

and

h = −u− u1+(q−1)2 + (T q − T )u1+(q−1)q − u1+(q−1)(2q−2) + . . . . (2.11)

We thus note that g is not a cusp form, and h has a single zero at ∞. Furthermore,

since the u-series expansions of g and h both have integral coefficients, every space of

modular forms for GL2(A) has a basis of forms with integral coefficients.

In [13], the authors remark that the fact that the algebra of Drinfeld modular forms

is generated by g and h implies the following: For k a positive integer and l a class in

Z/(# det GL2(A)) = Z/(q − 1), define the unique functions µ(k, l) and γ(k, l) such that

µ(k, l) ≡ l (mod q − 1), 0 ≤ γ(k, l) ≤ q, and k = µ(k, l)(q + 1) + γ(k, l)(q − 1). Then

to every Drinfeld modular form of weight k and type l for GL2(A) one can associate a

unique polynomial F (f, x) ∈ C[x] such that

f = gγ(k,l)hµ(k,l)F (f, j) (2.12)

where j is the (normalized) j-invariant, j = gq+1

−hq−1 .

Finally, we will need the following computation:
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Proposition 2.4. For q ≥ 3, the dimension of the space of modular forms of weight

qd + 1 and type 1 for GL2(A) is equal to gp + 1, and the dimension of its subspace of

double cusp forms is gp, where

gp
def
=


q(qd−1−1)
q2−1

if d is odd,

q2(qd−2−1)
q2−1

if d is even.

(2.13)

Remark 2.5. The use of gp for the quantity above will be explained later: it will turn

out to be the genus of the modular curve X0(p).

Proof. We simply use the fact that for a Drinfeld modular form of weight k and type l

for GL2(A), there are constants cn ∈ C such that

f =

bµ(k,l)
q−1 c∑
n=0

cng
γ(k,l)+n(q+1)hµ(k,l)−n(q−1), (2.14)

where γ(k, l) and µ(k, l) are the integers defined immediately before this Proposition.

In the case k = qd + 1 and l = 1, we have

µ(qd + 1, 1) = 1 +
q(qd−1 − 1)

q + 1
and γ(qd + 1, 1) = 0

if d is odd, and

µ(qd + 1, 1) = 1 +
q2(qd−2 − 1)

q + 1
and γ(qd + 1, 1) = q

if d is even.

In any case the dimension of the space is given by⌊
µ(qd + 1, 1)

q − 1

⌋
+ 1,

which is equal to

q(qd−1 − 1)

q2 − 1
+ 1 if d is odd,
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and

q(qd−2 − 1)

q2 − 1
+ 1 if d is even.

To obtain only double cusp forms, we restrict sum (2.14) to n <
⌊
µ(k,l)
q−1

⌋
.

2.4 Modular forms modulo p

In this Section we fix a monic prime polynomial π(T ) ∈ A of degree d and denote by

p the principal ideal that it generates. For x ∈ K, we write vp(x) for the valuation

of x at p. As a general rule, we will continue to denote the reduction homomorphism

A→ Fp
def
= A/p and everything derived from it by a tilde a 7→ ã.

Definition 2.6. Let f =
∑∞

i=0 ciu
i be a formal series with ci ∈ K. Then we define the

valuation of f at p to be

vp(f) = inf
i
vp(ci).

For two formal series f =
∑
aiu

i and g =
∑
biu

i, we write f ≡ g (mod pm) if vp(f −

g) ≥ m.

An important fact first proved in [20] which we will need later is that if p is an ideal

generated by a prime polynomial of degree d, we have gd ≡ 1 (mod p). In addition,

this is the only relation upon reducing modulo p. To make this more precise, recall

that Fp = A/p, and write Mp for the ring of modular forms of all weights and types for

GL2(A) having u-series coefficients in K with denominators prime to p and

M̃
def
= {f̃ ∈ Fp[[u]] | ∃f ∈Mp such that f ≡ f̃ (mod p)}

for the Fp-algebra of Drinfeld modular forms modulo p. Finally, write Ad[X, Y ] for the
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unique isobaric polynomial such that gd = Ad[g, h]; we have that Ad ∈ A[X, Y ] [20].

Then we have:

Theorem 2.7 ([20]). Let ˜ denote reduction modulo p. Assuming the notation and

hypotheses above,

M̃ ∼= Fp[X, Y ]/(Ãd(X, Y )− 1).

Remark 2.8. It follows from this that if f is of weight k and f ′ is of weight k′ with

f ≡ f ′ (mod p), then k ≡ k′ (mod qd − 1).

In fact we have more: For f any u-series with rational p-integral coefficients, define

its filtration modulo p, denoted wp(f), to be the smallest integer k such that there exists

a modular form f ′ of weight k for GL2(A) such that f ≡ f ′ (mod p). We write wp(f) =

−∞ if f ≡ 0 (mod p). As in the classical case, there is a deep connection between

supersingular Drinfeld modules in characteristic p and forms with lower filtration than

weight.

To make this more precise, define the Drinfeld supersingular locus to be the following

polynomial:

Sp(x) =
∏

φ defined over Fp

φ supersingular

(x− j(φ)).

Recall from equation (2.12) the polynomial F (gd, x) attached to the Eisenstein series

of weight qd − 1 and the integers γ(qd − 1, 0) defined in the paragraph immediately

preceding equation (2.12). Then Gekeler shows [20]

Sp(x) ≡ xγ(qd−1,0)F (gd, x) (mod p),

where γ(qd − 1, 0) is 0 if d is even and 1 if d is odd. This result can be refined:
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Proposition 2.9 ([13]). Assuming the notation above, let f be a Drinfeld modular form

for GL2(A) of weight k and type l with rational p-integral u-series coefficients and finite

filtration wp(f). Define α = k−wp(f)

qd−1
and a =

⌊
αγ(qd−1,0)q+γ(wp(f),l)

q+1

⌋
. Then the polynomial

xaF (f, x) is divisible by Sp(x)α in Fp[x].
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Chapter 3

Drinfeld modular curves

We now turn our attention to Drinfeld modular curves, and more specifically to the

family X0(p). The facts contained in the first Section of this Chapter are true with

appropriate modifications more generally for affine rings A, [18]. For facts on rigid

analytic spaces, again the first chapter of [15] provides much of what will be needed

here.

3.1 General facts

Set-theoretically, the set of C-points of a Drinfeld modular curve is simply the set of

equivalence classes of points of Γ\(Ω ∪ P1(K)) for Γ a congruence subgroup of GL2(A).

In this Section we quickly go over the results presented in [21] describing the algebraic

and analytic structures on this set.

3.1.1 Analytic structure on Ω

It is clear that the Drinfeld upper half-plane Ω has the structure of a rigid analytic space,

since it is obtained by removing the compact set P1(K∞) from the space P1(C). In fact,

a pure covering of Ω can be given explicitly:

Recall that throughout we have had a distinguished valuation v∞(x) = − deg(x) on
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K with local parameter T−1. The completion of K at this place is the field K∞ which

we have encountered already, and we will denote the ring of integers of K∞ by O∞. The

valuation gives rise to an absolute value normalized so that |x| = qdeg x. To give a rigid

analytic structure to Ω we will construct a pure covering for it. Consider the sets {Dn}

(not to be confused with the Hasse derivative given in Chapter 4) where for n an integer

we write Dn for the set of z ∈ C such that

q−n−1 ≤ |z| ≤ q−n

and

|z − cT−n| ≥ q−n, |z − cT−n−1| ≥ q−n−1 for all c ∈ F∗q.

It can be shown that Dn ⊂ Ω. Further, each Dn is an affinoid space over K∞.

Write now

D(n,x) = x+Dn, for x ∈ K∞

and define the set of indices

I = {(n, x) | for n ∈ Z, x runs through a set of representatives of K∞/T
−n−1O∞}.

Then Ω = ∪(n,x)∈ID(n,x), and {D(n,x)} is a pure covering of Ω.

Remark 3.1. The rigid analytic functions on D(n,x) are the functions of the form:

f(z) =
∞∑
i=0

ai(T
n(z − x))i +

∞∑
i=1

bi(T
n+1(z − x))−i

+
∑
c∈F∗q

∞∑
i=1

di,c(T
n(z − x)− c)−i +

∑
c∈F∗q

∞∑
i=1

ei,c(T
n+1(z − x)− c)−i

with ai, bi, di,c, ei,c in C and

lim
i→∞

ai = lim
i→∞

bi = lim
i→∞

di,c = lim
i→∞

ei,c = 0.
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Let

R : Ω→ Ω̃

be the analytic reduction associated to this covering. Then Ω̃ is a scheme over Fq

which is locally of finite type. Each irreducible component L of Ω̃ is isomorphic with

P1(Fq), and meets exactly q + 1 other components L′. The intersections are ordinary

double points which are rational over Fq, and conversely each Fq-rational point s of L

determines a component L′ that meets L exactly at s. We say that two components

that meet non-trivially are adjacent. The intersection graph of Ω̃ is the graph T whose

vertices are given by the components L of Ω̃, and whose (oriented) edges are (L,L′), for

L, L′ adjacent components; this graph is a (q+ 1)-regular tree. The action of the group

GL2(K∞) on Ω by fractional linear transformations gives rises to an action on the sets

D(n,x), and thus on this tree.

Changing our focus for a moment, one may define the Bruhat-Tits tree T of the

group PGL2(K∞) in the following manner: Define an O∞-lattice in K2
∞ to be a rank

two O∞-submodule of K2
∞. As usual, two lattices L and L′ are homothetic if there is

x ∈ K∗∞ such that L′ = xL. Homothety is an equivalence relation and we write [L]

for the class of lattice equivalent to L. Two classes [L] and [L′] are adjacent if there

exists L′′ ∈ [L′] such that L′′ ⊂ L and L/L′′ has length 1 as an O∞-module. Then the

Bruhat-Tits tree T of PGL2(K∞) is the graph whose vertices are the classes [L] and

whose edges are ([L], [L′]) for two adjacent classes [L] and [L′], and T is a (q+1)-regular

tree. Finally, GL2(K∞) acts on the left on the set of equivalence classes of lattices by

γ · L = Lγ−1, and this action gives rise to a left action on the Bruhat-Tits tree.

In fact, there exists a canonical GL2(K∞)-equivariant identification between the two

graphs described above. We refer the reader to [21] for a precise description of this map,
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which relies on the construction of a building map λ : Ω → T (R) whose description

would take us too far afield. The importance of this identification is that it will allow

us to give a precise analytic description of the cusps of the modular curves which we

will discuss. To this end, we need a few more definitions: define a half-line in T to be a

subgraph isomorphic to the regular tree of degree 2 with a single terminal vertex. Then

an end of T is an equivalence class of half-lines where two half-lines are equivalent if

they differ at most by a finite graph. There is a bijection between the set of ends of

T and P1(K∞), which again is made precise in [21]. It is this correspondence which

allows for the construction of a rigid analytic space Ω∗ = Ω∪ P1(K) which will give the

compactification of the curves discussed here.

3.1.2 Algebraic structure on Drinfeld modular curves

Denoting as always by Γ a congruence subgroup of GL2(A), the action of Γ on the

Drinfeld upper half-plane Ω by fractional linear transformations has finite stabilizer for

each z ∈ Ω. It follows thus from basic facts that the quotient Γ\Ω is in fact a rigid

analytic space. Moreover, it is smooth of dimension one. In fact, the curve Γ\Ω can be

shown to arise from an algebraic curve:

Theorem 3.2 (Drinfeld [14]). There exists a smooth irreducible affine algebraic curve YΓ

defined over C such that Γ\Ω and the underlying analytic space Y an
Γ of YΓ are canonically

isomorphic as analytic spaces over C.

We note further that the curve YΓ is unique up to isomorphism, and in fact defined

over a finite abelian extension of K.

This result can be obtained by considering the moduli scheme associated to a certain
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moduli problem which we now describe: As remarked in Chapter 2, for a ∈ A and a the

ideal generated by a, the a-torsion points of a Drinfeld module of rank 2 φ form a finite

A-submodule scheme of Ga of degree q2 deg a. If φ is defined over an algebraically closed

field L containing K, then the a-torsion defined over L, which we will denote by φ[a](L),

is in fact free of rank 2 over A/p. Therefore an a-level structure may be defined for φ

by specifying an A-module isomorphism between (a−1A/A)2 and φ[a](L).

These notions may be extended to work for an arbitrary A-scheme S, see [14], or [33]

where the authors develop Drinfeld’s idea in the classical case. As a result, there is a

moduli functor

M2(a) : S 7→

{
isomorphism classes of Drinfeld modules of

rank 2 over S with a-level structure

}

on the category of A-schemes. When a is divisible by at least two distinct primes, M2(a)

can be represented by an affine flat A-scheme M(a) which is smooth of finite type over Fq

and of dimension 1 over SpecA. Furthermore, the fibers of M(a) over SpecA are smooth

away from a. By taking quotients by finite groups, one may construct a scheme M(a)

for arbitrary a (including a = 1) which is a coarse moduli scheme for M2(a). Again by

taking finite quotients, one may also construct coarse moduli schemes for more general

moduli problems than that of classifying Drinfeld modules with full a-level structure.

We will discuss one such problem in the next Section.

Then the content of Theorem 3.2 is that for every congruence subgroup Γ the curve

Γ\Ω can be identified with the set of C points of the coarse moduli scheme of some

moduli problem, thus producing the algebraic curve we seek. For example, as described

in Section 2.1.1, the set of isomorphism classes of Drinfeld modules of rank 2 over

C is given by GL2(A)\Ω, which gives an isomorphism GL2(A)\Ω ∼= M(1)(C). Thus
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GL2(A)\Ω is algebraically the affine curve A1.

3.1.3 Analytic structure on Drinfeld modular curves

Since the curves YΓ are affine and smooth over C, from algebraic geometry we know

that for each YΓ there exists a smooth projective model which we will denote XΓ. As

mentioned above, we will use the Bruhat-Tits tree T to give an analytic description of

XΓ.

Considering the action of Γ on T , Serre shows in [47] that Γ\T is the edge-disjoint

union of a finite graph and a finite number of half-lines. In fact, an end of T gives rise

to an end of Γ\T if and only if it K-rational (recall that the ends of T are in bijection

with P1(K∞)). Thus the ends in Γ\T correspond bijectively to the elements of the finite

set Γ\P1(K).

Using the building map λ, one can make precise the notion that compactifying Γ\Ω

can be done by filling in the missing points

XΓ(C)− YΓ(C) ∼= {ends of Γ\T } ∼= Γ\P1(K).

As before, we call the elements of this finite set the cusps of Γ. Filling in these points is

done analytically by specifying a uniformizer at each cusp.

3.1.4 u-series expansions of Drinfeld modular forms

As promised in Chapter 2, we are now prepared to discuss the role of the function u(z)

as a parameter at ∞. We tackle here the case where Γ = GL2(A), leaving the case of

Γ0(p) for later and the general discussion to [21] or [18].



31

The set GL2(A)\P1(K) consists of a single element, and we choose∞ as the represen-

tative of this element. The stabilizer Γ∞ of∞ in GL2(A) is the set of all upper-triangular

matrices. This set contains a maximal subgroup Γu∞:

Γu∞ =


1 a

0 1

 | a ∈ A
 ,

and also cyclic transformations ( a 0
0 d ) for a, d ∈ F∗q. The size of the group of these cyclic

transformations is q − 1, the size of F∗q.

Now writing

Ωc = {z ∈ Ω | infx∈K∞ |z − x| ≥ c},

we recall that u(z) identifies A\Ωc with a pointed ball Br\{0} of radius r for some small

r. It can be shown that there is a constant c0 such that for c ≥ c0 and γ ∈ GL2(A),

Ωc ∩ γ(Ωc) 6= ∅ implies that γ ∈ Γ∞. Thus for such a c,

Brq−1\{0} ∼= Γ∞\Ωc ↪→ GL2(A)\Ω

uq−1(z)← z → z

is an open immersion of analytic spaces. Thus u(z)q−1 is a uniformizer at ∞ for

GL2(A)\Ω.

The subtlety involved in defining the u-series expansion of a Drinfeld modular form

is that we allow them to have a non-trivial type l, and thus they are not invariant under

the full Γ∞, but rather only under Γu∞. This is why in general a Drinfeld modular form

of non-trivial type will have a u-series expansion rather than a uq−1-series expansion. A

similar phenomenon may happen for any congruence subgroup for which Γu∞ is strictly

contained in Γ∞. Thus our definition of the order of vanishing of a Drinfeld modular



32

form at ∞ is not strictly correct, even though it is convenient. This will not cause any

problems in this work until Chapter 7, where we shall have to be more careful.

There is also a second subtlety that comes into play. For a general congruence

subgroup Γ, to discuss the behavior of a function f at a cusp s ∈ Γ\P1(K), one first

fixes an element γ ∈ GL2(K) such that γ · ∞ = s. Then the holomorphy properties

and order of vanishing of f at s are the properties of f ◦ γ at ∞, and do not depend on

the choice of s in its equivalence class modulo Γ and on the choice of γ sending ∞ to s.

However, for t a parameter at ∞ for the group Γ, one might wish to define the t-series

expansion of f at s as that of f ◦ γ at ∞. This is not well-defined, as the coefficients of

the expansion will depend on the choice of s and γ.

To remove any ambiguity, in the case of GL2(A) we once and for all declare that the

expansion of f at ∞ is its u-series expansion, with u as described above.

3.1.5 Drinfeld modular forms as geometric objects

As in the classical case, we have that for γ = ( a bc d ) ∈ Γ,

d(γz)

dz
= det γ(cz + d)−2,

so that for f a modular form for Γ of weight 2 and type 1, the differential form f(z)dz

is Γ-invariant. A short computation, presented in [21], shows that it descends to a

holomorphic differential form on XΓ if f is a double cusp form, or in other words if f

has at least a double zero at each cusp. The need for a double zero is explained by the

fact that if t is a parameter at a cusp, we have

dz = −t−2dt.

Since GAGA theorems hold for rigid analytic curves, we have the following theorem:
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Theorem 3.3. The map f 7→ f(z)dz identifies the space of double cusp forms of weight

2 and type 1 for Γ to the space of regular differential forms on XΓ.

From this theorem it follows that the dimension of the space of double cusp forms

of weight 2 and type 1 for Γ is gΓ, where gΓ is the genus of the curve XΓ. Furthermore,

it follows by a standard argument that all spaces of Drinfeld modular forms of a fixed

weight and type for a congruence group Γ are finite-dimensional.

3.2 The Drinfeld modular curves X0(p)

We fix again a monic prime polynomial π(T ) ∈ A of degree d and denote by p the

principal ideal that it generates. In this Section we restrict our attention to the family

of Drinfeld modular curves attached to the congruence subgroups

Γ = Γ0(p)
def
=


a b

c d

 ∈ GL2(A) | c ≡ 0 (mod p)

 .

In this case, # det Γ0(p) = q− 1. From now on, we will denote the affine curve YΓ0(p) by

Y0(p) and the projective curve XΓ0(p) by X0(p) to coincide with classical notation.

3.2.1 The moduli problem

As remarked above, every congruence subgroup corresponds to a certain moduli prob-

lem for Drinfeld modules of rank 2. The problem attached to Γ0(p) classifies Drinfeld

modules of rank 2 with a distinguished A-submodule scheme of degree qd contained

in the p-torsion. Writing M(p) again for the moduli scheme associated to the full p-

level structure, we can obtain a (coarse) moduli scheme for our problem by considering



34

M0(p) = B\M(p), for

B =


∗ ∗

0 ∗


 ⊂ GL2(A/p).

We have the following theorem from [19], where j is the j-invariant and jp(z) = j(πz):

Theorem 3.4. • M0(p)→ SpecA is smooth away from p.

• M0(p) is the normalization of SpecA[j] in its function field K(j, jp).

• M0(p)×A K = Y0(p).

• If d is even, M0(p) is regular. If d is odd, M0(p) has a singularity on the fiber above

p at the supersingular j-invariant j = 0, and is otherwise regular. The singularity

is of type Aq.

Remark 3.5. In fact, one may consider this moduli problem for “generalized Drinfeld

modules” to obtain the same results for M̄0(p), a scheme over SpecA whose generic fiber

is X0(p).

The last part of the Theorem requires a careful study of the moduli problem “in

characteristic p”. To obtain it, Gekeler [19] shows that the special fiber of X0(p) is

given by two copies of X0(1) intersecting transversally at the supersingular points and

interchanged by the Fricke involution Wp. At the level of Drinfeld modules, if φ is a

Drinfeld module and H is a A-submodule scheme of degree qd contained in the p-torsion

of φ, so that (φ,H) is a point of M0(p), then Wp(φ,H) = (φ/H, φ[p]/H), where φ[p]

denotes the p-torsion of φ.
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3.2.2 Main properties of X0(p)

We gather in this Section the various facts we will need about the curve X0(p).

From Theorem 3.4 above, we have that X0(p) is defined over K with function field

K(j, jp). In fact, because the moduli problem associated to Γ0(p) is defined over A, the

space of holomorphic differentials on X0(p) has a basis that is defined over A. Therefore,

the space of Drinfeld double cusp forms of weight 2 and type 1 for Γ0(p) has a basis of

forms with integral coefficients. It also follows from such considerations that Drinfeld

modular forms on Γ0(p) with rational u-series coefficients have bounded denominators.

From its action on pairs (φ,H), we can also see that the Fricke involution Wp is

K-rational. We note here that the analytic avatar of Wp is the action of the matrix

( 0 −1
π 0 ) on Ω.

We have that the genus of X0(p), which we denote by gp, is given by

gp =


q(qd−1−1)
q2−1

if d is odd,

q2(qd−2−1)
q2−1

if d is even.

(As promised, this is the same gp that appears in Proposition 2.4.) This fact can be

obtained either by relating gp to h1(Γ0(p))\T ) as in [23], or by working directly on the

Drinfeld modular curve as in [22].

From [22], we also note that X0(p) has two cusps, given for example by 0 and∞, and

that both of these cusps are K-rational. From the same source, we have that X0(p)(C)

has qd+1
q+1

elliptic points, all of which have ramification index q + 1 over X(1). For an

elliptic point P such that τ ∈ Ω is a representative of P in the Drinfeld upper-half plane

we write e for the order of the stabilizer of τ in Γ̃0(p). Then e is a divisor of q + 1 [21].

Finally, we have from [19] that when d = 3, X0(p) is hyperelliptic with involution
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Wp.

3.2.3 Expansions at the cusps

For our results we will need to speak of the behavior of Drinfeld modular forms for Γ0(p)

at its cusps. Considering first the cusp ∞, its stabilizer Γ∞ in Γ0(p) is again the set

of all-upper triangular matrices in GL2(A). Because of this, the same argument as in

Section 3.1.4 shows that uq−1 is a parameter at ∞, and that modular forms for Γ0(p)

have a u-series expansion at ∞. As in the case of GL2(A), we fix once and for all that

the expansion of f at ∞ is its u-series expansion.

To fix a well-defined choice of u-series expansion at the other cusp, we fix 0 as the

representative of the other equivalence class, and the matrix

Wp =

0 −1

π 0


as the matrix sending ∞ to 0. Thus the u-series expansion of a Drinfeld modular form

of weight k and type l at 0 is defined to be that of the form

f |k,l[Wp] = πk/2(πz)−kf

(
−1

πz

)
at ∞.
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Chapter 4

Hyperderivatives and Quasimodular

forms

In this Chapter we present the theory necessary to study the action of differential op-

erators on the algebra of Drinfeld modular forms. These operators will not preserve

modularity, which naturally leads us to consider a larger set of functions on Ω, the Drin-

feld quasimodular forms. Throughout we will use “analytic” to mean “rigid analytic”.

We will say that a function f on Ω is “analytic at ∞” to mean that there are constants

ai such that f(z) =
∑∞

i=0 aiu(z)i for |z|i large. In this case we write ord∞(f) for the

least i ≥ 0 such that ai 6= 0.

4.1 Drinfeld quasimodular forms

Definition 4.1. An analytic function f : Ω → C is called a Drinfeld quasimodular

form of weight k, type l, and depth m for GL2(A), where k ≥ 0 and m ≥ 0 are integers

and l is a class in Z/(q − 1), if there exist analytic functions f1, f2, . . . , fm which are

A-periodic and analytic at infinity such that for γ = ( a bc d ) ∈ GL2(A), we have

f(γz) = (det γ)−l(cz + d)k
m∑
j=0

fj(z)

(
c

cz + d

)j
.
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For a given quasimodular form f 6= 0, the weight, type and polynomial
∑m

j=0 fj(z)Xj

are uniquely determined by f as shown in [10]. Furthermore, as can be seen by choosing

γ to be the identity matrix, we necessarily have f = f0. Finally, every modular form is

a quasimodular form of depth 0, and vice-versa.

An important example of a Drinfeld quasimodular form is the function E introduced

in [20]:

E
def
=

1

π̃

∑
a∈Fq [T ]
a monic

 ∑
b∈Fq [T ]

a

az + b

 ,

which can be shown to be of weight 2, type 1 and depth 1. Its importance is reflected in

the fact that the graded C-algebra of Drinfeld quasimodular forms of all weights, types

and depths is the polynomial ring C[g, h, E], where each form corresponds to a unique

isobaric polynomial.

For a more in depth discussion of Drinfeld quasimodular forms, we refer the interested

reader to the seminal papers [10] and [11] by Bosser and Pellarin.

4.2 Higher derivatives

In [50], Uchino and Satoh consider the action of the Hasse derivatives on analytic func-

tions on Ω. We present here the results we need from their paper without proof.

We will use the fact that C is a complete field with a non-Archimedean dense valua-

tion (which we recall is the unique extension of v∞(x) = − deg(x) from K to C) and that

Ω is an open set. We will work in this section with analytic functions on Ω and denote

the space of these functions by An(Ω). For f ∈ An(Ω) such that f =
∑∞

i=0 ci,w(z − w)i
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in a neighborhood of w, we define the nth hyperderivative of f at w ∈ Ω to be

Dn(f)(w) = cn,w. (4.1)

As remarked above, this is simply the Hasse derivative.

For our purposes, it will be important that our differential operator preserves K-

rationality of the u-series coefficients, which Dn does not. However, the operator

Dn
def
=

1

(−π̃)n
Dn (4.2)

does [10], and so we will use this normalized operator.

Remark 4.2. The operator −D1 was also studied by Gekeler in [20], where it was

denoted by Θ, in analogy with Ramanujan’s Θ-operator in the classical setting. This is

also the notation we adopted in [51], but for consistency throughout this work we will

use D1. This explains the discrepancy in sign between this work and the cited paper in

our statement of Proposition 4.5 below.

We have the following facts, all shown in [50]:

Proposition 4.3. For f ∈ An(Ω) and w ∈ Ω as above, we have:

1. Formally, in a neighborhood around w,

Dnf(z) =
1

(−π̃)n

∞∑
i=0

(
i

n

)
ci,w(z − w)i−n (4.3)

and this has the same radius of convergence as
∑∞

i=0 ci,w(z−w)i at w. In addition,

one may also show that Dnf is analytic.

2. The system of derivatives {Dn} is a higher derivation; in other words it satisfies:
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(a) D0f = f ,

(b) Dn is C-linear,

(c) for f and g in An(Ω), Dn(fg) =
∑n

i=0 DifDn−ig.

3. This higher derivation is iterative: for all integers i ≥ 0 and j ≥ 0, we have:

Di ◦Dj = Dj ◦Di =

(
i+ j

i

)
Di+j. (4.4)

4. This higher derivation has a chain rule property: For each n ≥ 1 and each 1 ≤

i ≤ n, there exist maps Fn,i from An(Ω)n+1−i to An(Ω) such that:

(a) for f and g in An(Ω) such that the composition f ◦ g is defined, we have

Dn(f ◦ g) =
n∑
i=1

Fn,i(D1g, . . . , Dn+1−ig)(Dif) ◦ g, (4.5)

(b) and if n ≥ 2, then Fn,1 is a C-linear map.

We note here that since the Dn’s are iterative and using Lucas’ theorem, we have

that

Dn =
1

n0! . . . ns!
Dns
ps ◦ . . . ◦Dn1

p ◦D
n0
1 , (4.6)

for n = nsp
s + · · ·+ n1p+ n0 the representation of n in base p, with 0 ≤ nj ≤ p− 1 for

each j, and where the exponent of nj on Dpj denotes the nj-fold composition.

As remarked at the beginning of this Chapter, the Dn’s do not preserve modularity,

but they do preserve quasimodularity, as shown in [10]. For our purposes we shall only

need this weaker version of their more general theorem:

Proposition 4.4. Let f be a modular form of weight k and type l for GL2(A). Then

for all n ≥ 0 and γ = ( a bc d ) ∈ GL2(A), we have

Dnf(γz) = (cz + d)k(det γ)−l
n∑
j=0

(
n+ k − 1

j

)
Dn−jf

(−π̃)j

(
c

cz + d

)j
. (4.7)
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In other words, the function Dnf is a quasi-modular form of weight k, type l and depth

n.

4.3 Computational tools

The action of Dn quickly becomes difficult to compute explicitly as n grows. A better-

behaved operator was defined by Serre in the classical case (see [32]), and we will use its

analogue in the Drinfeld setting. Let n and d be non-negative integers. The nth Serre’s

operator of degree d is defined by the formula:

∂(d)
n f = Dnf +

n∑
i=1

(−1)i
(
d+ n− 1

i

)
(Dn−if)(Di−1E). (4.8)

In [11], the authors show that ∂
(k)
n sends modular forms of weight k and type l to modular

forms of weight k + 2n and type l + n.

Because of the difficulty of the computations, we will be especially interested in Dn

and ∂
(d)
n for 1 ≤ n < p. We first observe that

D1 = − 1

π̃

d

dz
= u2 d

du
,

where u is the parameter at ∞ defined in Chapter 2, and for 1 ≤ n < p, Dn
1 = n!Dn,

where the exponent on D1 denotes n-fold composition.

For simplicity we will denote the operator ∂
(k)
1 by ∂, considering it as a differential

operator of weight 2 on the graded algebra of Drinfeld modular forms. Then

∂(f) = D1(f)− kEf,

where k is the weight of f .

We have the following:
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Proposition 4.5 ([20]).

1. Let fi be Drinfeld modular forms of weight ki, then ∂(f1f2) = ∂(f1)f2 + f1∂(f2).

2. ∂(g) = −h and ∂(h) = 0.

This proposition allows us to compute the action of ∂ on all Drinfeld modular forms,

since g and h generate the algebra of Drinfeld modular forms. Furthermore, since

Dn(E) = En+1 for 1 ≤ n < p, a tedious but easy computation shows that for a Drinfeld

modular form f of weight k, we have

∂nf = n!∂(k)
n f (4.9)

for 1 ≤ n < p, where again the exponent on ∂ on the lefthand side denotes n-fold

composition of the ∂ operator. This relation in fact holds for p ≤ n < q as well,

which simply implies that the n-fold composition of ∂ beyond ∂p−1 is identically zero,

as expected in characteristic p.

4.4 Integrality results

For i ∈ N, write [i] = T q
i − T , the product of all monic prime polynomials of degree

dividing i, di = [1]q
i−1 · · · [i − 1]q[i], the product of all monics of degree i, and d0 = 1.

In [10], Bosser and Pellarin obtain the following result on the action of the Dn’s on the

u-series coefficients of quasimodular forms:

Proposition 4.6. Let f ∈ An(Ω) be analytic at ∞ with u-series expansion f(z) =
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∑
i≥0 aiu

i. Then for all n ≥ 0 we have Dn(f(z)) =
∑

i≥2 bn,iu
i, where

bn,i =
i−1∑
r=1

(−1)n+r

(
i− 1

r

) ∑
n1,...,nr≥0

qn1+···+qnr=n

1

dn1 · · · dnr

 ai−r.

From this explicit formula we can clearly see that

Corollary 4.7. For n < qe, the operator Dn preserves p-integrality of the u-series

coefficients for all p generated by a prime polynomial of degree ≥ e.

Proof. If n < qe, then we have nj < e for each nj appearing in the sum defining the bn,i’s

above. Since dnj is only divisible by primes of degree ≤ nj, for n < qe Dn introduces

only denominators of degree < e.

From this it easily follows that

Corollary 4.8. Suppose that f ≡ f ′ (mod p) for p generated by a prime of degree d.

Then Dn(f) ≡ Dn(f ′) (mod p) for n < qd.

4.5 Vanishing results

Proposition 4.9. Let w ∈ Ω and f be analytic on Ω. Then ordwDn(f) ≥ ordw(f)− n,

with equality if and only if
(

ordw(f)
n

)
6≡ 0 (mod p) when n ≤ ordw(f).

Proof. Locally around w, f can be written as
∑∞

i=ordw(f) ai(z − w)i, with aordw(f) 6= 0.

As remarked before, locally around w we have

Dn(f) =
∞∑

i=ordw(f)

(
i

n

)
ai(z − w)i−n.
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Thus if n ≤ ordw(f), we have that ordwDn(f) ≥ ordw(f) − n with equality if and

only if
(

ordw(f)
n

)
6≡ 0 (mod p), as claimed. If n > ordw(f), then all we can say is that

ordwDn(f) ≥ 0, which in any case ensures that ordwDn(f) ≥ ordw(f)− n.

Proposition 4.10. Let f be analytic at ∞, then ord∞Dn(f) ≥ max(ord∞(f) + 1, 2). If

ord∞(f) ≥ 1, we have ord∞Dn(f) = ord∞(f) + 1 if and only if ord∞(f) 6≡ 0 (mod p).

Proof. This follows easily from Proposition 4.6.
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Chapter 5

Drinfeld modular forms modulo p

In this Chapter we continue to write π(T ) for a fixed monic prime polynomial in A of

degree d and we denote by p the principal ideal that it generates. We will also write

Fp = A/p, and Mp for the graded algebra of modular forms of all weights and types for

GL2(A) having u-series coefficients in K with denominators prime to p

Following [49], in this Chapter we find it convenient to adopt the following notations:

Throughout, we will use ˜ to denote the reduction modulo p. For Ap the localization

of the ring A at p, if f is a function which has a u-series expansion
∑∞

i=0 aiu
i such

that every ai is in Ap, then f̃ will denote the formal power series
∑∞

i=0 ãiu
i. Similarly,

if φ(X, Y ) is a polynomial in Ap[X, Y ], then φ̃(X, Y ) will denote the polynomial in

Fp[X, Y ] obtained from φ by reducing its coefficients modulo p. Naturally we will wish to

evaluate these polynomials at the formal power series in u corresponding to g̃ and h̃, and

denote by φ̃(g̃, h̃) the element of Fp[[u]] obtained from this polynomial by substitution.

As a consequence of this notation, if f is a Drinfeld modular form in Mp, there is a

unique polynomial φ such that f = φ(g, h), and f̃ = φ̃(g̃, h̃). Finally, motivated by the

derivation ∂ defined in Chapter 4, we define a derivation, also denoted ∂, on Ap[X, Y ]

and Fp[X, Y ] by setting ∂(X) = −Y and ∂(Y ) = 0. The operator D1 described earlier

analogously extends from Ap[[u]] to Fp[[u]].
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Since Mp contains the elements g and h, we have the following composition of ho-

momorphisms:

Ap[X, Y ]
∼−→ Fp[X, Y ]

ε−→ Fp[[u]] (5.1)

(X, Y ) 7→ (g̃, h̃)

(where we recall that the tilde denotes the “reduction modulo p” homomorphism). Con-

sequently we will assign weight q − 1 to X and weight q + 1 to Y . Here we repeat a

theorem from [20] that was stated in Chapter 2 in order to make more precise a result

about the reduction of gd modulo p:

Theorem 5.1. Let Ad ∈ A[X, Y ] be the polynomial defined by Ad(g, h) = gd. Assuming

the notation and hypotheses above, the following are true:

1. Ãd(X, Y ) is square-free.

2. M̃ ∼= Fp[X, Y ]/(Ãd(X, Y )− 1).

We recall that as a consequence of this Theorem, if fi ∈Mp is of weight ki for i = 1,

2 and f1 ≡ f2 (mod p), then k1 ≡ k2 (mod qd − 1). Thus M̃ has a natural grading

by Z/(qd − 1)Z. As in Chapter 2 we will denote by wp(f) the filtration of f , which is

defined to be the smallest integer k such that there exists a Drinfeld modular form of

weight k congruent to f modulo p, with as before the convention that the form 0 has

weight −∞.

5.1 Derivatives and reduction modulo p

Theorem 5.2. Let Bd ∈ A[X, Y ] be the polynomial defined by Bd(g, h) = ∂(gd). As-

suming the notation and hypotheses above, the following are true:
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1. B̃d(X, Y ) shares no common factor with Ãd(X, Y ).

2. We have E ≡ ∂(gd) (mod p).

Proof. For the proof of the first fact, let a be an irreducible factor of Ãd over Fp[X, Y ]

and write Ãd = a · b. Since Ãd is square-free, a does not divide b. We have:

B̃d = ∂(Ãd) = ∂(a)b+ a∂(b)

and a divides B̃d if and only if a divides ∂(a). Since a must be isobaric, we can have

either a = X, a = Xq+1 + cY q−1 for some nonzero c in the algebraic closure of Fp, or

a = Y . In the first two cases, we have respectively that ∂(a) = Y and ∂(a) = XqY , so

a does not divide ∂(a).

The third possibility (in which case a divides ∂(a)) does not happen. In other words,

Y does not divide Ãd for any d. This can be shown using induction on d and the recursive

formula, proven in [20],

Ãd = Ãd−1X
qd−1

+ (T q
d−1 − T )Ãd−2Y

qd−2(q−1) (5.2)

with Ã0 = 1 and Ã1 = X. By (5.2), if Y does not divide Ãd−1, then Y does not divide

Ãd. Obviously Y does not divide Ã1, so Y does not divide Ãd for any d.

For the proof of the second fact, it suffices to note that since gd ≡ 1 (mod p),

D1(gd) ≡ 0 (mod p) and ∂(gd) = D1(gd)− (qd − 1)Egd ≡ E (mod p).

We will also need a result on modular forms that have lower filtration than weight:

Proposition 5.3. Let f be a Drinfeld modular form in Mp of weight k and type l with

f̃ 6= 0, and write f = φ(g, h). Then wp(f) < k if and only if Ãd|φ̃.
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Proof. Suppose that f ′ is of weight strictly less than f and f ≡ f ′ (mod p). Write

f ′ = ψ(g, h) with ψ ∈ Ap[X, Y ]. Then

φ̃ = c(Ãd − 1) + ψ̃

for some polynomial c ∈ Fp[X, Y ]. Writing c =
∑n

i=0 ci as a sum of its isobaric compo-

nents with ci of weight strictly less than ci+1, we have that

φ̃ = cnÃd, c0 = ψ̃ and ci = ci−1Ãd for i = 1, ...n,

and Ãd divides φ̃.

Suppose now that φ̃ = Ãdψ̃ for some polynomial ψ̃ ∈ Fp[X, Y ] which must be isobaric

of weight k − qd + 1. Lifting ψ̃ to ψ ∈ A[X, Y ], we have that f ′ = ψ(g, h) is of weight

strictly less than k and f ≡ f ′ (mod p).

5.2 Derivatives and filtration

Theorem 5.4. Let f be a Drinfeld modular form of weight k and type l, and p be an

ideal generated by a monic prime polynomial π of degree d. If f has rational p-integral

u-series coefficients and is not identically zero modulo p, then the following are true:

1. D1(f) is the reduction of a modular form modulo p.

2. We have wp(D1(f)) ≡ wp(f) + 2 (mod qd− 1) (where we take this to be vacuously

true if wp(D1(f)) = −∞). Furthermore wp(D1(f)) ≤ wp(f) + qd + 1 with equality

if and only if wp(f) 6≡ 0 (mod p).

Proof. By Theorem 5.2, D1(f) ≡ ∂(f)gd + k∂(gd)f (mod p), which is a form of weight

k + qd + 1 and type l + 1. Now without loss of generality assume that f is of weight
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wp(f). Since D1(f) is congruent to a form of weight wp(f) + qd + 1 it follows that

wp(D1(f)) ≡ wp(f) + 2 (mod qd − 1).

Furthermore, since f is of weight wp(f), then Ãd does not divide φ̃. We have that

D1(f̃) = ∂(φ̃(g̃, h̃))Ãd(g̃, h̃) + wp(f)B̃d(g̃, h̃)φ̃(g̃, h̃)

so that D1(f̃) is the image in Fp[[u]] of the polynomial

∂(φ̃)(X, Y )Ãd(X, Y ) + wp(f)B̃d(X, Y )φ̃(X, Y )

under the map ε given in (5.1). Since Ãd and B̃d have no common factors, Ãd divides

∂(φ̃)Ãd + wp(f)B̃dφ̃ if and only if wp(f) ≡ 0 (mod p).

We are now interested in characterizing the action of Dn for 1 ≤ n < p on the

filtration of modular forms. As remarked in Chapter 4, in this range we have Dn
1 = n!Dn,

and n! is a unit in Fq[T ]. Since multiplying by a unit does not change the filtration,

for simplicity we will consider the n-fold composition of D1 in place of Dn. To simplify

notation we will write D for D1 and Dn for the n-fold composition of the operator D1.

For every positive integer k and for p the characteristic of Fq[T ], we define the integer

n(k, p) to be the unique integer 0 ≤ n(k, p) < p such that k + n(k, p) ≡ 0 (mod p).

Theorem 5.5. Let f be a Drinfeld modular form of weight k and type l and p be an

ideal generated by a monic prime polynomial π of degree d. If f has rational p-integral

u-series coefficients and is not identically zero modulo p, then

wp(D
i(f)) = wp(f) + i(qd + 1) for 0 ≤ i ≤ n(wp(f), p).

Upon another iteration of D, we have:

Dn(wp(f),p)+1(f) ≡ ∂n(wp(f),p)+1(f ′) (mod p),
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for f ′ of weight wp(f) such that f ≡ f ′ (mod p).

Proof. If n(wp(f), p) = 0, the theorem is trivial and we have

D(f) ≡ D(f ′) ≡ ∂(f ′)gd + wp(f)∂(gd)f
′ ≡ ∂(f ′) (mod p)

thus proving the additional assertion.

Suppose now that 0 < n(wp(f), p) < p. We define a sequence of modular forms in

the following manner, for 0 ≤ i ≤ n(wp(f), p) + 1:

f0 = f ′

f1 = ∂(f ′)gd + wp(f)∂(gd)f
′

f2 = ∂(f1)gd + (wp(f) + 1)∂(gd)f1

...

fi = ∂(fi−1)gd + (wp(f) + i− 1)∂(gd)fi−1

...

We first claim that

fi ≡ Di(f) (mod p) for all 0 ≤ i ≤ n(wp(f), p) + 1.

This follows easily since for any Drinfeld modular form of weight k,

D(f) ≡ ∂(f)gd + k∂(gd)f (mod p).

From this fact, since the weight of each fi is

wp(f) + i(qd + 1) ≡ wp(f) + i (mod p)

it follows that D(fi) ≡ fi+1 (mod p). To complete the proof of our first claim it suffices

now to note that f1 ≡ f2 (mod p) implies D(f1) ≡ D(f2) (mod p).
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Now since fi ≡ Di(f), of course wp(D
i(f)) = wp(fi). For 1 ≤ i ≤ n(wp(f), p), a

simple induction shows that

wp(fi−1) = wp(f) + (i− 1)(qd + 1)

is not zero modulo p so that wp(fi) = wp(f)+ i(qd+1), as required by part 2 of Theorem

5.4.

Secondly we claim that for each 1 ≤ i ≤ n(wp(f), p) and for each 1 ≤ j ≤ i+ 1,

∂j(fi−j+1) = (wp(f) + i)∂j(fi−j)∂(gd) + ∂j+1(fi−j)gd. (5.3)

The proof is done by induction on j. For any i in the range and j = 1, (5.3) follows by

applying ∂ to both sides of the equality defining fi and remembering that ∂2(gd) = 0.

As an induction step, we suppose that (5.3) is true for i − 1 and j − 1, and again by

simply applying ∂ we obtain (5.3) for i and j.

Now fix i = n(wp(f), p). Then (5.3) becomes

∂j(fn(wp(f),p)−j+1) = ∂j+1(fn(wp(f),p)−j)gd (5.4)

for 1 ≤ j ≤ n(wp(f), p). Using equation (5.4) recursively we obtain that

fn(wp(f),p)+1 = ∂n(wp(f),p)+1(f ′)g
n(wp(f),p)+1
d

Since Dn(wp(f),p)+1(f) ≡ fn(wp(f),p)+1 (mod p) and gd ≡ 1 (mod p), our second claim

follows.

5.3 Some applications

5.3.1 Forms of lower filtration than weight

We have the following clear corollary to Theorem 5.5:
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Corollary 5.6. Let f be a Drinfeld modular form in Mp for p an ideal of A generated

by a monic prime polynomial, and assume that f is not identically zero modulo p. Then

Di(f) 6≡ 0 (mod p) for 1 ≤ i ≤ n(wp(f), p).

This corollary can be used to detect forms that have lower filtration than weight. For

example, consider any Drinfeld modular form over F25[T ] of weight 1376 and an ideal p

of A generated by a monic prime of degree 2. Suppose further that it can be shown that

D3(f) ≡ 0 (mod p). Then it must be the case that f has lower filtration modulo p than

weight, since a form of filtration 1376 would have Di(f) 6≡ 0 (mod p) for 0 ≤ i ≤ 4.

One can in fact determine that wp(f) = 128 in the following manner: As a consequence

of Theorem 5.1, we know that the filtration of f must be congruent to 1376 modulo 624.

Thus since f has lower filtration than weight, it must have filtration 752 or 128. But if

it had filtration 752, the corollary above would say that D3(f) 6≡ 0 (mod p).

5.3.2 Vanishing modulo p of coefficients

One can turn the above idea on its head by constructing forms that have lower filtration

than weight and using the theory to deduce the vanishing modulo p of some of their

coefficients. Consider as a toy example the Drinfeld modular form

f = (T q − T )ghq+2 + gq+2h3 =
∞∑
i=3

aiu
i

over Fq[T ]. It has weight q2 + 4q + 1. If one considers a monic prime polynomial of

degree greater than or equal to 3, it is clear that this form has filtration equal to its

weight. Thus for such primes we have n(wp(f), p) = p − 1, from which we may deduce

that there is i ≡ 1 (mod p) such that ai 6= 0, because Dp−1(f) 6= 0 and Dp−1 annihilates
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all coefficients but those ai’s that have i ≡ 1 (mod p). However, for an ideal p generated

by a prime polynomial of degree 2, the form is congruent to gh3 modulo p. (By (5.2),

g2 = (T q − T )hq−1 + gq+1, and g2 ≡ 1 (mod p) if p is generated by a prime polynomial

of degree 2.) We will show in Proposition 5.7 that Dp−1(gh3) = 0, which implies that

Dp−1(f) ≡ 0 (mod p). Thus for each i ≡ 1 (mod p), ai ≡ 0 (mod p) if p is generated

by a monic prime polynomial of degree 2.

5.3.3 Support of non-zero coefficients of monomials

Since D = u2 d
du

, the operator Dn annihilates the u-series coefficients ai such that i ≡

p − i + 1, . . . p − 1, p (mod p), for p the characteristic of Fq. Thus the vanishing or

non-vanishing of Dnf is related to the indices on which the u-series expansion of f is

supported. As a final application of the theorems collected here, we will show a result

on the vanishing of coefficients of monomials.

Proposition 5.7. Let α and β be non-negative integers, and consider the monomial

gαhβ which has weight k = α(q− 1) +β(q+ 1). Write a for the unique integer such that

0 ≤ a < p and a ≡ α (mod p) and similarly write b for the unique integer such that

0 ≤ b < p and b ≡ β (mod p). Then either 0 < b− a < p or b = 0, in which case

Dn(k,p)+1(gαhβ) = 0 and Di(gαhβ) 6= 0 for 1 ≤ i ≤ n(k, p),

or −p < b− a ≤ 0 but b 6= 0, in which case

Di(gαhβ) 6= 0 for 1 ≤ i < p.

Proof. First suppose that p is an ideal of A generated by a monic prime polynomial of

degree 1. Then

gαhβ ≡ hβ (mod p)
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and so

wp(g
αhβ) = β(q + 1) ≡ b (mod p).

If b 6= 0, then n(wp(g
αhβ), p) = p− b and by the proof of Theorem 5.5,

Dp−b+1(gαhβ) ≡ ∂p−b+1(hβ) = 0 (mod p).

Finally, if b = 0 then n(wp(g
αhβ), p) = 0 and by Theorem 5.5 we have D(gαhβ) ≡

∂(hβ) = 0 (mod p).

Now suppose that p is an ideal of A generated by a monic prime polynomial of degree

d, where d > 1. Then

wp(g
αhβ) = k ≡ b− a (mod p).

We consider two cases:

First suppose that 0 < b− a < p. Then n(k, p) = p− b+ a, and

Dp−b+a+1(gαhβ) ≡ ∂p−b+a+1(gαhβ) = 0 (mod p).

But then since p− b+ a+ 1 ≥ p− b+ 1, Dp−b+a+1(gαhβ) ≡ 0 modulo every prime ideal

in A, and we conclude that Dn(k,p)+1(gαhβ) = 0. We also have that for 1 ≤ i ≤ p− b+a,

Di(gαhβ) 6= 0 since it is not zero modulo p for any ideal generated by a prime of degree

greater than 1.

Now suppose that −p < b− a ≤ 0. Then n(k, p) = a− b. As above we have that

Di(gαhβ) 6= 0 for 1 ≤ i ≤ a− b (5.5)

and

Da−b+1(gαhβ) ≡ ∂a−b+1(gαhβ) (mod p).
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If b = 0, then ∂a+1(gαhβ) = 0, and the result follows since Dn(k,p)+1(gαhβ) ≡ 0 modulo

every prime ideal of A. If b 6= 0, we have

Da−b+1(gαhβ) ≡ ∂a−b+1(gαhβ) 6= 0 (mod p). (5.6)

If a = p− 1 and b = 1, then a− b+ 1 = p− 1, and so by combining (5.5) and (5.6) the

result follows.

Notice now that since b 6= 0 and we have already considered the case a = p − 1 and

b = 1, it only remains to consider the cases where −p + 3 ≤ b − a ≤ 0. In any case we

have:

wp(∂
a−b+1(gαhβ)) = (α− a+ b− 1)(q− 1) + (β+ a− b+ 1)(q+ 1) ≡ a− b+ 2 (mod p).

We now would like to apply Theorem 5.5 to ∂a−b+1(gαhβ). Since −p + 3 ≤ b − a ≤ 0,

we have 2 ≤ a− b+ 2 ≤ p− 1. Then

n(wp(∂
a−b+1(gαhβ)), p) = p− a+ b− 2.

Applying Theorem 5.5 to ∂a−b+1(gαhβ), we find that

Da−b+1+i(gαhβ) ≡ Di(∂a−b+1(gαhβ)) 6= 0 (mod p)

for 1 ≤ i ≤ p− a+ b− 2, or combining with (5.5),

Di(gαhβ) 6= 0 for 1 ≤ i ≤ p− 1

which is the result we sought.
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Chapter 6

A correspondence

In this Chapter we establish the following:

Theorem 6.1. Let q ≥ 3. There is a one-to-one correspondence between forms of weight

2 and type 1 for Γ0(p) with rational p-integral u-series coefficients and forms of weight

qd + 1 and type 1 for GL2(A) with rational p-integral u-series coefficients.

This is an analogue of Serre’s result [46] that establishes a bijection modulo ` between

modular forms of weight 2 on Γ0(`) with rational, `-integral Fourier series coefficients at

∞, and modular forms of weight `+ 1 on SL2(Z) with rational, `-integral Fourier series

coefficients. As with Serre’s result, this theorem is a direct corollary of a more general

result:

Theorem 6.2. Let f be a modular form of weight k and type l for Γ0(p), with rational

u-series coefficients. Then f is a “p-adic Drinfeld modular form” for GL2(A).

6.1 Operators and integrality

We begin by introducing two operators relevant to the theory of p-adic Drinfeld modular

forms. As before p is a prime ideal generated by a monic prime polynomial π(T ) of A

of degree d. For any analytic function f on Ω that is analytic at ∞ with expansion
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f =
∑∞

i=0 aiu
i we define:

f |Up =
1

π

∑
λ∈A

deg λ<d

f

(
z + λ

π

)
,

and

f |Vp = f(πz).

We will show that if the coefficients ai are integral, then the u-series coefficients of

f |Up and f |Vp are also integral and moreover that

vp(f |Up) ≥ vp(f)

and

vp(f |Vp) ≥ vp(f).

We first recall some facts about the Carlitz module and fix some notation: Recall

equation (2.5), in which we defined the Carlitz module as the rank 1 Drinfeld module

given by

ρT = Tτ 0 + τ.

Putting τ = Xq, we have

ρπ = πτ 0 +
∑

1≤i≤d−1

αiτ
i + τ d

= πX +
∑

1≤i≤d−1

αiX
qi +Xqd

with each αi in A, and αd = 1 since π is monic. We define the πth inverse cyclotomic

polynomial

fπ(X) = Xqdρπ(X−1).

Obviously fπ is a polynomial with integral coefficients.
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Remark 6.3. We call fπ the πth inverse cyclotomic polynomial because of its connection

to the class field theory of the field K. In short, the roots of fπ generate an abelian

extension of K with Galois group (A/p)∗, and an explicit subfield of this field is the ray

class field of p. These results are due to Hayes [31], who developed ideas first presented

by Carlitz [37].

We first consider the operator Up. This operator was already studied in [9], where

the author determines that the Up operator acts in the following manner on the u-series

coefficients of analytic functions on Ω (we note that Bosser’s result is more general and

applies to meromorphic functions with a pole of order less than qd at infinity, but we

will only need the version stated here):

Proposition 6.4. Let p be a prime ideal in A generated by a monic prime polynomial

π of degree d, and let f be an analytic function on Ω. Assume that f is analytic at ∞

with a u-series expansion of the form

f =
∞∑
i=0

ciu
i, ci ∈ C.

As before we write the Carlitz module at π as ρπ = πτ 0 +
∑

1≤i≤d αiτ
i. Then f |Up has

a u-series expansion

f |Up =
∞∑
j=1

aju
j

with

aj =
∑

j≤n≤1+(j−1)qd

∑
i∈Nd+1

i0+i1+...+id=j−1
i0+i1q+...+idq

d=n−1

(
j − 1

i

)
cnα

i1
1 . . . α

id
d π

i0 .

From this explicit result we deduce that Up indeed preserves integrality of the u-series

coefficients, since each αi is integral, and furthermore we have:
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Corollary 6.5. With the same hypotheses as above, we have that

vp(f |Up) ≥ vp(f).

Proof. This follows from the properties of a non-archimedean valuation, which imply

that for each j

vp(aj) ≥ min
j≤n≤1+(j−1)qd

{vp(cn)}.

We now establish the same properties for the Vp operator:

Proposition 6.6. Let p be a prime ideal in A generated by a monic prime polynomial

π of degree d, and let f be an analytic function on Ω that is analytic at ∞ with u-series

expansion of the form

f =
∞∑
i=0

ciu
i, ci ∈ C.

Then if each ci is integral, then so are the u-series coefficients of f |Vp. In addition,

vp(f |Vp) ≥ vp(f).

Proof. We have:

f |Vp =
∞∑
i=0

ciu(πz)i,

and so we first investigate the u-series expansion of u(πz).

By definition, if L = π̃A is the lattice associated to the Carlitz module and eL(z) is

the exponential function associated to it,

eL(πz) = ρπ(eL(z)).
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Thus we have the straightforward computation:

u(πz) =
1

eL(π(π̃z))

=
1

ρπ(eL(π̃z))

=
1

ρπ

(
1

u(z)

)
=

u(z)q
d

fπ(u(z))
.

Since fπ(0) = 1, the formal expansion in X for

Xqd

fπ(X)
= Xqd + higher order terms

has integer coefficients, and u(πz) has a formal series expansion in u(z) with integral

coefficients.

Thus we have

f |Vp =
∞∑
i=0

ci

(
u(z)q

d

fπ(u(z))

)i

.

We note that for j fixed, only a finite number of terms of the right hand side contribute

to the coefficient of uj on the left hand side, and they are all integral. We conclude that

f |Vp has integral u-series expansion.

We also observe that if vp(f) = m, which implies that vp(ci) ≥ m for each i, we have

that each of the summands in the coefficient of uj for fixed j on the left hand side has

valuation ≥ m. We conclude that the coefficient of uj also has valuation ≥ m, which in

turns implies that vp(f |Vp) ≥ m = vp(f) and completes the proof.

We end this section by relating the Vp operator to the operator |k,l[Wp] defined by

f |k,l[Wp] = πk/2(πz)−kf

(
−1

πz

)
,
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as before. We have:

Lemma 6.7. Let f be a modular form for GL2(A) of weight k and type l. Then

f |k,l[Wp] = πk/2f |Vp.

Proof. We have that

Wp =

0 −1

π 0

 =

0 −1

1 0


π 0

0 1

 .

So that if we let

S =

0 −1

1 0

 ∈ GL2(A), and [π] =

π 0

0 1

 ,

we have

f |k,l[Wp] = f |k,l[S]|k,l[π]

= f |k,l[π]

= πk/2f |Vp,

where the invariance of f under the action of |k,l[S] follows from the fact that f is

modular for the full GL2(A).

Remark 6.8. From this fact, it follows that the action of |k,l[Wp] preserves integrality

of the u-series coefficients if f is modular for GL2(A). There is no reason for this to be

true in general.
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6.2 Additive trace of a Drinfeld modular form

Definition 6.9. For f a modular form of weight k and type l for Γ a congruence subgroup

of GL2(A), define its (additive) trace as

Tr(f) =
∑

γ∈Γ\GL2(A)

f |k,l[γ].

It is clear that Tr(f) is independent of the choice of coset representatives for Γ\GL2(A),

and that it is a modular form of weight k and type l for GL2(A).

We restrict our attention to the case Γ = Γ0(p), where we have:

Lemma 6.10. Let p be an ideal generated by π(T ), a monic prime ideal. The set
0 −1

1 λ

 | deg λ < deg π

 ,

along with the identity, is a complete set of representatives for Γ0(p)\GL2(A).

Proof. Consider

M =

a b

c d

 ∈ GL2(A).

Suppose that π does not divide c, so that M /∈ Γ0(p). Write λ ≡ c−1d (mod p), picking

λ such that deg λ < deg π if c−1d 6≡ 0 (mod p) and λ = 0 if d ≡ 0 (mod p). Thenaλ− b a

cλ− d c

 ∈ Γ0(p)

and aλ− b a

cλ− d c


0 −1

1 λ

 =

a b

c d

 .

Furthermore, since the choice of λ was uniquely determined by the matrix M given, any

two elements in the set exhibited above are Γ0(p)-inequivalent.
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With this explicit set of coset representatives, we have the following formula for

Tr(f):

Proposition 6.11. Let f be a modular form of weight k and type l for Γ0(p). Then

Tr(f) = f + π1−k/2 (f |k,l[Wp]) |Up.

Proof. Write as before

f0(z)
def
= f |k,l[Wp] = πk/2(πz)−kf

(
−1

πz

)
.

Since ζ1/π = 1, we have that

f0|k,l


1/π λ/π

0 1


 =

(
1

π

)k/2
f0

(
z + λ

π

)

=

(
1

π

)k/2
πk/2(z + λ)−kf

(
−1

z + λ

)
= (z + λ)−kf

(
−1

z + λ

)

= f |k,l


0 −1

1 λ


 .

Using the coset representatives from Lemma 6.10 we have thus

Tr(f) = f +
∑
λ∈A
<d

f |k,l


0 −1

1 λ




= f +
∑
λ∈A
<d

f0|k,l


1/π λ/π

0 1




= f +
∑
λ∈A
<d

(
1

π

)k/2
f0

(
z + λ

π

)
= f + π1−k/2f0|Up.

And the result follows from the definition of f0.
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6.3 Correspondence

We are now in a position to prove the theorems stated at the beginning of this Chapter.

Theorem 6.2. Let f be a modular form of weight k and type l for Γ0(p), with rational

u-series coefficients. Then f is a “p-adic Drinfeld modular form” for GL2(A).

Remark 6.12. We use here the term “p-adic Drinfeld modular form” simply to mean a

formal u-series
∑
aju

j such that there exists a sequence {fi} of Drinfeld modular forms

on GL2(A) such that vp(fi − f) → ∞ as i → ∞. We do not know as yet the extent

to which the coefficients of these p-adic Drinfeld modular forms have nice arithmetic

properties.

Proof. For any positive integer n and gd the Eisenstein series of weight qd − 1 and type

0 for GL2(A), define

g(0)
def
= (gd)

n − πn(qd−1)/2 (gd)
n |n(qd−1),0[Wp]

= (gd)
n − πn(qd−1) (gd)

n |Vp.

It is a modular form of weight n(qd−1) and type 0 for Γ0(p). Since (gd)
n |Vp has integral

coefficients by Proposition 6.6, we see that g(0) is congruent to 1 modulo p. Furthermore,

g(0)|n(qd−1),0[Wp] = (gd)
n |n(qd−1),0[Wp]− πn(qd−1)/2 (gd)

n

= πn(qd−1)/2 (gd)
n |Vp − π(qd−1)/2(gd)

n

= πn(qd−1)/2((gd)
n |Vp − (gd)

n)

≡ 0 (mod pn(qd−1)/2+1).

The last congruence follows from noticing that (gd)
n |Vp = ((gd)

n − 1) |Vp + 1 and
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applying Proposition 6.6 to the u-series (gd)
n−1, which has valuation at least 1, so that

(gd)
n |Vp ≡ (gd)

n (mod p).

With n fixed as before, define g(r) = (g(0))
pr . Since g(0) ≡ 1 (mod p), we have that

g(r) = (g(0))
pr ≡ 1 (mod pp

r
). Similarly, because g(0)|n(qd−1),0[Wp] ≡ 0 (mod pn(qd−1)/2+1)

and g(r)|prn(qd−1),0[Wp] = (g(0)|n(qd−1),0[Wp])
pr ≡ 0 (mod pnp

r(qd−1)/2+pr).

The function fg(r) is a Drinfeld modular form of weight k + npr(qd − 1) and type

l for Γ0(p) with rational coefficients. Thus by Proposition 6.11, Tr(fg(r)) is of weight

k + npr(qd − 1) and type l for GL2(A) and we have

Tr(fg(r))− f = (Tr(fg(r))− fg(r)) + f(g(r) − 1).

We first bound the valuation at p of the term f(g(r) − 1) from below, using the fact

that g(r) ≡ 1 (mod pp
r
):

vp(f(g(r) − 1)) ≥ pr + vp(f).

We consider now

Tr(fg(r))− fg(r) = π1−(k+npr(qd−1))/2
(
(fg(r))|k+npr(qd−1),l[Wp]

)
|Up.

Since we have vp(f |Up) ≥ vp(f), it follows that:

vp(Tr(fg(r))−fg(r))) ≥ 1− (k + npr(qd − 1))/2 + vp

(
(fg(r))|k+npr(qd−1),l[Wp]

)
= 1− (k + npr(qd − 1))/2 + vp (f |k,l[Wp]) + vp

(
g(r)|npr(qd−1),0[Wp]

)
= 1− (k + npr(qd − 1))/2 + vp (f |k,l[Wp]) + npr(qd − 1)/2 + pr

= 1− k/2 + vp (f |k,l[Wp]) + pr.

We conclude that

vp(Tr(fg(r))− f) ≥ inf{pr + vp(f), pr + 1− k/2 + vp (f |k,l[Wp])}.
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Now since f has rational u-series coefficients, then so does f |k,l[Wp], since the Fricke

involution of X0(p) is defined over the rationals. Thus both vp(f) and vp (f |k,l[Wp]) are

finite.

Therefore we have that vp(Tr(fg(r)) − f) → ∞ as r → ∞, and {Tr(fg(r))} is the

sequence of Drinfeld modular forms satisfying the requirements of the definition of a

“p-adic Drinfeld modular form.”

From this follows the second main theorem of this Chapter:

Theorem 6.1. Let q ≥ 3. There is a one-to-one correspondence between forms of weight

2 and type 1 for Γ0(p) with rational p-integral u-series coefficients and forms of weight

qd + 1 and type 1 for GL2(A) with rational p-integral u-series coefficients.

Proof. We begin by noting that for f modular of weight 2 and type 1 on Γ0(p), we have

that

Tr(f |2,1[Wp]) = f |2,1[Wp] + f |Up

is a modular form of weight 2 and type 1 on GL2(A). However, for all q 6= 2 this space

contains no non-zero modular forms: In any case the full algebra of modular forms for

GL2(A) is generated by g and h. If q ≥ 4, then g is of weight q− 1 ≥ 3, and so there are

no forms of weight 2. When q = 3, the forms of weight 2 are multiples of g, which have

type 0, and so there are no non-zero forms of weight 2 and type 1. We conclude that

f |2,1[Wp] = −f |Up. Therefore using Corollary 6.5 and the fact that the Fricke involution

is rational, we have that f |2,1[Wp] has rational p-integral u-series coefficients.

When q = 2, there are no non-trivial types, and the space of forms of weight 2 for

GL2(A) is spanned by g2. Thus we cannot guarantee that Tr(f |2,1[Wp]) = 0, or even that

f |2,1[Wp] has p-integral coefficients. In the classical case the forms on Γ0(`) such that
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Tr(f) = Tr(f |[W`]) = 0 are exactly linear combinations of newforms. It is reasonable to

conjecture that a similar result holds here and that the existence of oldforms of weight

2 for Γ0(p) is exactly the obstruction to the result we seek.

Going back to the case q ≥ 3, writing g(0) = gd − π(qd−1)/2gd|qd−1,0[Wp] as before, we

consider the map f → Tr(fg(0)). This map takes an element of the space of forms of

weight 2 and type 1 for Γ0(p) to a form of weight qd+1 and type 1 for GL2(A). We have

that gd has integral coefficients, and since it is a form for GL2(A) so does gd|qd−1,0[Wp]

by Lemma 6.7. Thus g(0) and g(0)|qd−1,0[Wp] have integral u-series coefficients. Now from

the formula

Tr(fg(0)) = fg(0) +
(
f |2,1[Wp]g(0)|qd−1,0[Wp]

)
|Up.

we conclude that Tr(fg(0)) also has rational, p-integral u-series coefficients. Thus the

map f → Tr(fg(0)) preserves rationality and p-integrality of the u-series expansion

coefficients.

From the computations in the proof of Theorem 6.2, we have

vp(Tr(fg(0))− f) ≥ inf{1 + vp(f), 1 + vp (f |2,1[Wp])} ≥ 1,

so that f ≡ Tr(fg(0)) (mod p).

Now consider N the set of f̃ ∈ Fp[[u]] such that there is f of weight 2 and type 1

for Γ0(p) with rational, p-integral coefficients with f ≡ f̃ (mod p). As mentioned in

Chapter 3, the space of forms of weight 2 and type 1 for Γ0(p) is of dimension gp + 1

and has a basis of forms with integral u-series coefficients, and from this it follows that

N has dimension gp + 1 as an Fp-vector space.

Since f ≡ Tr(fg(0)) (mod p), N is a subspace of the Fp-vector space M̃qd+1,1, the

space that contains the reductions modulo p of all of the forms of weight qd+1 and type
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1 for GL2(A) with rational, p-integral u-series coefficients. However, the space M̃qd+1,1

also has dimension gp + 1, since Mqd+1,1(GL2(A)) has a basis of forms with integral

u-series coefficients. Thus N = M̃qd+1,1, and the trace map establishes a one-to-one

correspondence between the spaces, as claimed.
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Chapter 7

Weierstrass points

In this Chapter we will investigate the Weierstrass points of the curve X0(p), for p as

always a prime ideal generated by a monic polynomial π(T ) of degree d.

7.1 Weierstrass points in characteristic p

Since the theory of Weierstrass points in characteristic p is much less well known than

the theory in characteristic 0, we begin with a short review of the facts we will need,

based on the treatment in [48] and [25]. In particular, proofs of all facts that are stated

without proof here can be found in [25].

For the duration of this section and the next, let k be an algebraically closed field and

X a smooth complete projective irreducible curve over k of genus g ≥ 2 with function

field k(X). A natural question to ask about X is the following: For P a point of X and

n a positive integer, does there exist a function F on X such that F has a pole of order

exactly n at P and F is regular elsewhere? If the answer to this question is negative,

we say that n is a gap at P ; otherwise n is a pole number at P . It is a fact that there

are exactly g gaps at P , and if n1, . . . , ng are the gaps at P , indexed such that ni < nj

if i < j, we say that (n1, . . . , ng) is the gap sequence at P .

For a fixed curve X, it can be shown that there exists a sequence of positive integers
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(n1, . . . , ng) with ni < nj if i < j such that (n1, . . . , ng) is the gap sequence for all but

finitely many points of X. We call this sequence the canonical gap sequence of X. The

finitely many points that have a different gap sequence are called the Weierstrass points

of X. If (n1, . . . , ng) is the canonical gap sequence of X and (n′1, . . . , n
′
g) is the gap

sequence at P for any point P of X, then ni ≤ n′i for each i.

For any point P on X, we define its Weierstrass weight to be:

wt(P ) =

g∑
i=1

n′i − ni.

Thus a point is a Weierstrass point if and only if it has positive Weierstrass weight.

Remark 7.1. This is not the usual definition of the Weierstrass weight; the literature

uses the quantity vP (w(φ, s)) which we will define in the next section. Often (an im-

portant example is when k is of characteristic 0) the two definitions agree. When they

do not, we feel that the quantity that we define as the Weierstrass weight, while possibly

harder to compute, is much more natural.

If X is defined over a field of characteristic 0, then the canonical gap sequence is

always (1, . . . , g). When k is of characteristic p > 0 and X has canonical gap sequence

(1, . . . , g), we say that X has a classical canonical gap sequence, or a classical canonical

linear system (this designation will be justified shortly when we define the canonical

orders of X).

Example 7.2. Let X be a hyperelliptic curve of genus g ≥ 2, then its canonical gap

sequence is (1, . . . , g). (In characteristic p > 0 this is a theorem that was implicit in

[30] and stated explicitly in the seminal work of Schmidt [44] defining Weierstrass points

in positive characteristic.) Furthermore, the Weierstrass points of X are exactly the
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branch points of f , where f : X → P1 is any degree 2 morphism. At such a branch point

P the function F = 1
f−f(P )

has a double pole at P and is regular elsewhere, and so at

the Weierstrass points the gap sequence is (1, 3, . . . , 2g − 1).

Example 7.3. The projective curve of genus 3 given by X4
0 +X4

1 +X4
2 = 0 over F̄3 does

not have a classical gap sequence. On this curve, for each point P one can construct a

function having a pole of order ≤ 3 at P and regular elsewhere.

In practice, it is often more convenient to consider a related sequence of strictly

increasing positive integers (j1, . . . , jg−1) called the canonical orders of X, which we now

describe. For any element x ∈ k(X), we will write [x] for the divisor of x,
∑

P vP (x)P ,

where the sum is taken over all points P of X. As usual, for any divisor D on X, we

may define the linear system

L(D) = {x ∈ k(X)∗ : [x] ≥ −D} ∪ {0}.

We further denote by ΩX the space of (algebraic) meromorphic differential forms

on X. Because X is defined over an algebraically closed field, we have a canonical iso-

morphism between ΩX and the space of Weil differentials WX (in fact, to obtain this

isomorphism it would suffice here to require that k′⊗k(X) be a field for all finite exten-

sions k′ of k). This allows us to define the divisor [ω] for ω a meromorphic differential

on X. We do this in the following manner: Let Ak(X) denote the ring of adèles of k(X)

and for D a divisor on X, write

Ak(X)(D)
def
= {α = (αP ) ∈ Ak(X) | vP (αP ) ≥ −vP (D) for all points P of X}.

Then a Weil differential on X is a k-linear functional with domain Ak(X) that vanishes

on Ak(X)(D) + k(X) for some divisor D. For each Weil differential ω∗, there is a unique
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divisor D of maximum degree such that ω∗ vanishes on Ak(X)(D) + k(X), and we define

[ω∗]
def
= D. Then if ω corresponds to ω∗ under the canonical isomorphism between Weil

differentials and meromorphic differentials, we simply write [ω] = [ω∗] and vP (ω) =

vP ([ω]). One pleasant consequence of this definition is that for x ∈ k(X) and ω ∈ ΩX

we have [xω] = [x]+ [ω]. If ω is a meromorphic differential on X, its divisor C is called a

canonical divisor on X, and since any two meromorphic differentials differ by a function,

any two canonical divisors are linearly equivalent.

For a point P of X, consider the following sequence of spaces:

k = L(0) ⊆ L(P ) ⊆ L(2P ) ⊆ L(3P ) ⊆ . . .

Then we have that n is a gap at P if and only if L((n − 1)P ) = L(nP ). By the

Riemann-Roch theorem, we have that for any positive integer n and any point P ,

dimL(nP ) = n− g + 1 + dimL(C − nP ),

from which it follows that

dimL((n+ 1)P )/L(nP ) = 1− dimL(C − nP )/L(C − (n+ 1)P ).

Writing LC(nP ) = L(C−nP ), this last equation justifies our interest in the (canonical)

osculating filtration at P :

L(C) = LC(0) ⊇ LC(P ) ⊇ LC(2P ) ⊇ LC(3P ) ⊇ . . .

Indeed, for a positive integer n, n+1 is a gap at P if and only if LC(nP ) ) LC((n+1)P ).

In turn, this implies the existence of a function F ∈ L(C) such that vP (F ) = n− vP (C).

Whenever such a function exists, we say that n is a canonical order at P ; the existence of

such a function does not depend on the choice of canonical divisor C. Thus for a positive
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integer n, n is a canonical order at P if and only if n + 1 is a gap at P . (We note that

since X is a curve over an algebraically closed field, the existence of a point P such that

1 is a pole number at P implies that X has genus zero, so that in our case 1 will always

be a gap for any point P on X.) As was the case for gap sequences, all but finitely many

points of X have the same canonical orders, and we call the strictly increasing sequence

of positive integers (j1, . . . , jg−1) formed by these integers the canonical orders of X.

If (j1, . . . , jg−1) are the canonical orders of X and (j′1, . . . , j
′
g−1) are the canonical

orders at P for any point P of X, then again ji ≤ j′i for each i, and the Weierstrass

weight of P can alternatively be computed as:

wt(P ) =

g−1∑
i=1

j′i − ji.

The point P is called an osculation point of X if j′g−1 > g − 1. In particular an

osculation point has at least one pole number that is less than or equal to g. If X

has a classical gap sequence, then the osculation points and the Weierstrass points of

X exactly coincide. Otherwise, every point of X is an osculation point. This simple

observation allows us, in joint work with Armana, to show that X0(p), for p generated

by an ideal of degree at least 3, has a classical gap sequence. We note that our argument

corrects a small inaccuracy in Armana’s original work.

Proposition 7.4. Let p be a prime ideal of degree at least 3 in Fq[T ]. Then X0(p) has

a classical gap sequence.

Proof. Using an argument analogous to Ogg’s argument in the classical case, Armana

shows the following [4]: Let P be a Fq(T )-rational point of X0(p) such that its unique

extension to a section of M0(p) (M0(p) is the moduli scheme associated to X0(p), see

Chapter 3) over Fq[T ] is not supersingular at p, and denote by c ≥ 1 be the smallest
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pole number at P . Then c ≥ 1 + gp, where as before gp is the genus of X0(p). Thus such

a point is not an osculation point of the curve.

Either one of the cusps of X0(p) satisfies the conditions on the point P above. Thus

X0(p) has a point that is not an osculation point, and the result follows.

This argument further implies that the Fq(T )-rational Weierstrass points of X0(p)

have supersingular reduction modulo p. This result can also be deduced in a completely

different way by using the following theorem proved by Baker [6]:

Theorem 7.5. Let R be a complete discrete valuation ring with algebraically closed

residue field k. Let X be a smooth, proper, geometrically connected curve defined over

the fraction field of R, and denote by X a proper model for X over R. (In other words,

X is a proper flat scheme over SpecR such that its generic fiber is X.) Suppose that the

special fiber of X consists of two genus 0 curves intersecting transversally at 3 or more

points. Then every Weierstrass point of X defined over the fraction field of R specializes

to a singular point of the special fiber of X.

The proof of this Theorem is a corollary of a Specialization Lemma proved in the

same paper, which roughly says that the dimension of a linear system can only increase

under specialization from the curve X to the dual graph of the model X.

It now follows easily that the Kun
p -rational Weierstrass points of X0(p) have super-

singular reduction modulo p, where Kp is the completion of K = Fq(T ) at p and Kun
p is

its maximal unramified extension: As remarked in Section 3.2.2, for X0(p) there exists

a proper model M̄0(p) over Rp, where Rp is the ring of integers of Kun
p . Furthermore,

the special fiber of M̄0(p) consists of two genus 0 curves intersecting transversally at

the supersingular points, of which there are at least 3 if d ≥ 3 and q ≥ 3 or if d ≥ 4
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and q = 2. Thus X0(p) satisfies the conditions of Theorem 7.5. We conclude that the

Weierstrass points of X0(p) that are defined over Kun
p reduce modulo p to the singular

points of the special fiber. But those are exactly the supersingular points.

7.2 The Wronskian function

It is natural to ask whether it is possible to say more about the connection between

the supersingular locus at p and the Weierstrass points of X0(p), as was done in the

classical case by Rohrlich [43], and Ahlgren and Ono [2]. An important tool to answer

this question is a function W on X, the Wronskian, such that vP (W ) = 0 if P is not

a Weierstrass point of X and such that vP (W ) ≥ wt(P ), whose construction is due to

Stöhr and Voloch [48].

A separating variable for k(X) is an element s ∈ k(X) transcendental over k such

that k(X) is a finite, separable extension of k(s). With the assumptions on X stated in

the previous Section, we have that s is a separating variable if and only if the differential

ds is not identically 0. Furthermore, s is a separating variable if s is a local parameter

at a separable point of X. Since in our case X is defined over an algebraically closed

field k, every point is separable.

On the polynomial ring k[s], we may define the nth Hasse derivative with respect to

s by putting

D(n)
s (sm) =


(
m
n

)
sm−n if m ≥ n,

0 otherwise,

and extending linearly to k[s]. It can be shown that if s is a separating variable for

k(X) over k, then this family of maps can be uniquely extended to a family of maps
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D
(n)
s : k(X)→ k(X).

Again let C be a canonical divisor on the curve X, and consider the linear system

L(C) associated to it. It is a basic fact that L(C) is a k-vector subspace of k(X) of

dimension g, and that replacing C by a different canonical divisor yields an isomorphic

subspace. Fix any basis φ = {φ1, . . . φg} of L(C), and define the matrix

H = H(φ, s) =
(
D(j)
s (φi)

)
for 1 ≤ i ≤ g and 0 ≤ j. Write further H(j) for the column of H whose ith entry is

D
(j)
s (φi).

We are interested in the indices j such that H(j) is not a k(X)-linear combination

of lower numbered columns. This is true for j = 0 since the φi’s are not all zero. It

is not hard to show that there are g − 1 more such indices, which we will denote by

j1, . . . , jg−1, and we will write J(φ, s) = (j1, . . . , jg−1). It can be shown that J(φ, s) in

fact does not depend on our choice of s a separating variable, C a canonical divisor or

φ a basis for the linear system associated to C, and in fact that the ji’s are exactly the

canonical orders of X defined earlier.

For any sequence J = (j1, j2, . . .) of positive integers, let HJ be the submatrix of H

whose first column is H(0) and whose (l + 1)st column is H(jl). Then we may define

W (φ, s) = detHJ(φ,s),

the Wronskian of φ with respect to s. While not independent of the choices made

above, this function behaves as well as well as can be expected. More precisely, put

φ′i =
∑

j aijφj for aij ∈ k such that φ′ = (φ′1, . . . , φ
′
g) is a different basis for L(C), and

let y ∈ k(X)∗ and t be another separating variable. Then

W (yφ′, t) = det(aij)y
g (ds/dt)j1+...+jg−1 W (φ, s). (7.1)
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In light of this equation, we define the following divisor:

w(φ, s) = [W (φ, s)] + gC + (j1 + . . .+ jg−1)[ds],

which by equation (7.1) is in fact independent of any choice we made. One can show

that the points in the support of w(φ, s) are exactly the Weierstrass points of X.

The divisor w(φ, s) is effective: Fixing a point P of X, one may choose a canonical

divisor C such that vP (C) = 0, which ensures that vP (φi) ≥ 0, so that vp([W (φ, s)]) ≥ 0

since taking Hasse derivatives does not lower the valuation. Furthermore, one can choose

s to be a local parameter at P , so that vP ([ds]) = 0. With these choices and because

of the invariance of w(φ, s), it follows that vP (w(φ, s)) ≥ 0 for each P . In addition, the

Wronskian W constructed with this choice of s has the property that vP (W ) = 0 if P is

not a Weierstrass point of X, and that vP (W ) = vP (w(φ, s)) ≥ wt(P ).

Remark 7.6. If X is defined over a field of characteristic 0, we have the equality

vP (w(φ, s)) = wt(P ). In finite characteristic, this equality holds if and only if det
(
J ′

J

)
6=

0, where J ′ = (j′1, . . . , j
′
g−1) is the sequence of canonical orders at P , J = (j1, . . . , jg−1) is

the sequence of canonical orders of X, and
(
J ′

J

)
is the (g−1)×(g−1) matrix of binomial

coefficients
(
j′r
js

)
, where

(
j′r
js

)
= 0 if j′r < js and each binomial coefficient is reduced modulo

p, the characteristic of k.

We will also need the following well-known fact: We have that dimk(X) ΩX = 1,

so that ΩX = k(X) · ω for any non-zero ω ∈ ΩX . If C is a canonical divisor of X,

by definition it is the divisor of some Weil differential ω∗ and thus of a meromorphic



78

differential ω. Then the map

ΩX → k(X)

xω 7→ x

is an isomorphism of k-vector spaces, and under this isomorphism the space L(C) ⊂ k(X)

corresponds to the space ΩX,alg of algebraic regular differentials.

7.3 The modular Wronskian

To refine the connection between Weierstrass points on X0(p) and the supersingular

locus in characteristic p, we now specialize the ideas of the previous two sections to the

curve X0(p) over C, as Rohrlich did in the classical setting. We will consider the rigid

analytic structure on X0(p), as it is particularly amenable to computations thanks to

the rich theory of Drinfeld modular forms. For ease of reading, we will write “analytic”

below to mean rigid analytic. An analytic function without poles will be a holomorphic

function, and an analytic function possibly with poles will be said to be meromorphic.

We first note that GAGA theorems hold for rigid analytic geometry [34], [35]. More

precisely, we will need the following: Let X be a smooth projective algebraic curve

defined over a complete non-archimedean field k of finite characteristic p, and let Xan

be the rigid analytic space associated to it (see for example [15] for the construction

of Xan). We note that the sets of points of X and Xan coincide, so that we will not

make a distinction between a divisor on X and a divisor on Xan. We denote by O the

sheaf of algebraic regular functions on X, and by O the sheaf of holomorphic functions

on Xan. Then there is an equivalence of category between the category of algebraic
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coherent sheaves on X and analytic coherent sheaves on Xan. In particular, to every

algebraic coherent sheaf F on X one may associate an analytic coherent sheaf F an on

Xan.

The linear space L(D) associated to a divisor D on X is in fact the space of global

sections of an algebraic sheaf which we will also denote by L(D). L(D) is a subsheaf of

the sheaf of rational functions M on X such that for S a Zariski open set of X,

L(D)(S) = {f ∈M(S) | [f ] ≥ −D|S} ∪ {0},

where −D|S is the restriction of the divisor −D to the set S. The sheaf L(D) is coherent

and thus corresponds to a sheaf L(D)an on Xan.

Because the operation ∗an commutes with duals and tensor products, L(D)an is none

other than L(D), the subsheaf of meromorphic functionsM on Xan such that for U an

open set of Xan we have

L(D)(U) = {f ∈M(U) | [f ] ≥ −D|U} ∪ {0}.

In particular, as a consequence of GAGA, the space of global sections of L(D) is

isomorphic to the space of global sections of L(D), and for a point P of Xan we may

instead consider the sequence of spaces

k = L(0)(Xan) ⊆ L(P )(Xan) ⊆ L(2P )(Xan) ⊆ L(3P )(Xan) ⊆ . . .

By GAGA L((n−1)P )(X) = L(nP )(X) if and only if L((n−1)P )(Xan) = L(nP )(Xan),

so that the gap sequence and the Weierstrass weight can be computed analytically.

Arguing as in the algebraic case, we obtain that if j′ is a canonical order at P , there

is F ∈ L(C)(Xan) such that vP (F ) = j′ − vP (C).
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We now start our work on X0(p) in earnest. Throughout, when we say that P is a

point on X0(p), we will always mean a C-valued point. We first work out the divisor of

dz: We have that 1
u2du = −π̃dz, but as discussed in Section 3.1.4, u is not actually an

analytic parameter at∞, t = uq−1 is. Substituting, we have 1
tq/(q−1)dt = π̃dz, and dz has

a pole of order
(

1 + 1
q−1

)
at ∞. Similarly, if P is not a cusp of X0(p), choose τ ∈ Ω to

be a representative of P in the Drinfeld upper half-plane, and write e for the order of the

stabilizer of τ in Γ̃0(p) = Γ0(p)/Γ0(p) ∩ Z(GL2(A)). Then we may choose t = (z − τ)e

as an analytic parameter at P . We have dz = 1
e
t(e−1)/edt (e is a divisor of q + 1 so it is

prime to the characteristic p of C [18]) and so dz has a pole of order
(
1− 1

e

)
at τ .

Proposition 7.7. Let P be a point on X0(p), and write j′0 = 0, and (j′1, . . . , j
′
gp−1) for

the canonical orders at P . If P is not a cusp, choose τ ∈ Ω to be a representative of P

in the Drinfeld upper-half plane, and write e for the order of the stabilizer of τ in Γ̃0(p).

If P is a cusp we write τ = 0 or τ = ∞. Then there is a basis {fi}gp−1
i=0 of M2

2,1(Γ0(p))

such that:

ordτ (fi) =


ej′i + e− 1 if τ ∈ Ω,

(q − 1)j′i + q if τ = 0,∞.

Proof. Fix a point P on X0(p), and let s be a parameter at P . We choose as our canonical

divisor the divisor [ds]. Let (j′1, . . . , j
′
gp−1) be the canonical orders at P . Then there is a

basis {F0, . . . , Fgp−1} of L([ds]) such that ordP (Fi) = j′i. Furthermore, {Fids} is a basis

for the space of regular differentials on X0(p). Because of the correspondence between

the space M2
2,1(Γ0(p)) of double cusp forms of weight 2 and type 1 for Γ0(p) and the

space of regular differentials on X0(p), we have that there is a basis {fi} for M2
2,1(Γ0(p))

such that fi(z)dz = Fids. In particular, ordP (fi(z)dz) = ordP (Fids) = ordP (Fi) = j′i.
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Suppose first that P is not a cusp, and choose τ ∈ Ω to be a representative of P in

the Drinfeld upper half-plane. Write e for the order of the stabilizer of τ in Γ̃0(p). Then

ordP (fi(z)dz) = ordτ (fi)
e
− e−1

e
. If P is a cusp, then ordP (fi(z)dz) = ord∞(fi(z))

q−1
− q

q−1
. The

result follows.

For any basis {f0, f1, . . . fgp−1} of M2
2,1(Γ0(p)), we are interested in the quantity

W (f0, . . . , fgp−1) =

∣∣∣∣∣∣∣∣∣∣
f0(z) D1(f0(z)) . . . Dgp−1(f0(z))

...
...

fgp−1(z) D1(fgp−1(z)) . . . Dgp−1(fgp−1(z))

∣∣∣∣∣∣∣∣∣∣
,

where Dn is the normalized Hasse derivative introduced in Chapter 4. This is a modular

form of weight gp(gp + 1) for Γ0(p). We denote by W (z) the normalization of this form

that has 1 as its leading coefficient for the u-series expansion at∞ and call it the modular

Wronskian on X0(p). We note that if {f0, . . . fgp−1} and {f ′0, . . . f ′gp−1} are two bases for

M2
2,1(Γ0(p)), then W (f0, . . . , fgp−1) = aW (f ′0, . . . , f

′
gp−1) for 0 6= a ∈ C.

We are interested in W (z) because of its relation to the Weierstrass points of X0(p):

Proposition 7.8. For any point P of X0(p), we have

ordP (W (z)(dz)gp(gp+1)/2) ≥ wt(P ).

In addition, when P is not elliptic and is not a Weierstrass point, we have equality:

ordP (W (z)(dz)gp(gp+1)/2) = 0.

Proof. Let P be a point on X0(p), and choose a basis {fi} that satisfies the conclusion

of Proposition 7.7. Then

ordP (W (f0, . . . , fgp−1)(dz)gp(gp+1)/2) = ordP (W (z)(dz)gp(gp+1)/2),
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so we may work with W (f0, . . . , fgp−1) for convenience.

First, suppose that P is not a cusp of X0(p), and choose τ ∈ Ω to be a representative

of P in the Drinfeld upper half-plane. By Proposition 4.9, for k = 0, . . . , gp− 1, we have

that

ordτ (Dk(fl)) ≥ ej′l + e− 1− k

with equality if and only if
(
ej′l+e−1

k

)
6≡ 0 (mod p). When computing the determinant

W (f0, . . . , fgp−1), we will be adding terms all of whose order of vanishing at τ is ≥∑gp−1
i=0 (ej′i − i+ e− 1). Thus

ordτ W (f0, . . . , fgp−1) ≥
gp−1∑
i=0

(ej′i − i+ e− 1).

We have
gp−1∑
i=0

(ej′i − i+ e− 1) = ewt(P ) +
gp(gp + 1)

2
(e− 1).

Thus

ordP (W (f0, . . . , fgp−1)(dz)gp(gp+1)/2) ≥ wt(P ) +
gp(gp + 1)

2

e− 1

e
− gp(gp + 1)

2

e− 1

e

= wt(P ).

.

In the case where P is not elliptic and P is not a Weierstrass point, the terms on the

diagonal of W (f0, . . . , fgp−1) have order of vanishing 0, and all of the terms below the

diagonal have order of vanishing strictly greater than 0. Thus ordτ W (f0, . . . , fgp−1) =

0 = wt(P ).

Now suppose that P is a cusp of X0(p), and we write τ = 0 or τ =∞. By Proposition

4.10, for k = 0, . . . , gp − 1, we have that

ordτ (Dk(fl)) ≥ (q − 1)j′l + q + 1
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with equality if and only if ordτ (fl) 6≡ 0 (mod p). (Here ordτ (fl) ≥ 2.) Again, when

computing the determinant W (f0, . . . , fgp−1), we will be adding terms all of whose order

of vanishing at τ is ≥
∑gp−1

i=0 ((q − 1)j′i + q + 1). Thus

ordτ W (f0, . . . , fgp−1) ≥
gp−1∑
i=0

((q − 1)j′i + q + 1).

We have

gp−1∑
i=0

((q − 1)j′i + q + 1) = (q − 1) wt(P ) + gpq +
gp(gp − 1)

2
+ (q − 1)

gp(gp − 1)

2

= (q − 1) wt(P ) + gpq + q
gp(gp − 1)

2

= (q − 1) wt(P ) + q
gp(gp + 1)

2
.

And so

ordP (W (f0, . . . , fgp−1)(dz)gp(gp+1)/2) ≥ wt(P ) +
q

q − 1

gp(gp + 1)

2
− gp(gp + 1)

2

q

q − 1

= wt(P ).

Remark 7.9. Ideally, one would like to show equality for all points P that are not

Weierstrass points.

We will also need the following:

Proposition 7.10. The u-series coefficients of W (z) at ∞ are rational.

Proof. We will prove a slightly stronger statement, which we will need later. As remarked

before, there is a basis {f1, . . . , fgp} for the space M2
2,1(Γ0(p)) that has integral u-series

coefficients at ∞.
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When computing W (f1, . . . , fgp), we will compute Dn for n ≤ gp − 1. From the

explicit formula (2.13), we have easily that gp ≤ 2qd−2, so that n ≤ 2qd−2 − 1 < qd. In

this case, Proposition 4.7 says that Dn preserves p-integrality of the u-series coefficients,

so W (f1, . . . , fgp) has rational, p-integral u-series coefficients.

For a ∈ K the leading coefficient of W (f1, . . . , fgp), we have that

W (z) =
1

a
W (f1, . . . , fgp),

and so W (z) has rational u-series coefficients at ∞.

7.4 A computation

Because of its significance, it would be of great interest to compute the form W (z) ex-

plicitly, or in fact to compute its divisor. This task, however, seems extremely difficult.

In light of our goal of refining the connection between Weierstrass points and the super-

singular locus, an easier but important goal would be to compute its divisor modulo p.

This also seems out of reach at the moment, although some progress can be made in a

very specific case, which we describe here.

We will need some notation: For a system of derivatives {δn} which is a higher

derivation, we will write Wδ(f1, . . . , fg) for the quantity∣∣∣∣∣∣∣∣∣∣
f1 δ1(f1) . . . δg−1(f1)

...
...

fg δ1(fg) . . . δg−1(fg)

∣∣∣∣∣∣∣∣∣∣
.
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7.4.1 First steps

We first fix a basis {f1, . . . , fgp} of M2
2,1(Γ0(p) with integral u-series coefficients at ∞.

As we remarked before, when computing the form W (f1, . . . , fgp), one needs to compute

Dn for n < qd. Thus in all of the cases we will consider, we have that f ≡ f ′ (mod p)

implies that Dn(f) ≡ Dn(f ′) (mod p) by Corollary 4.8.

Now suppose that q ≥ 3. Under the correspondence exhibited in Chapter 6, we may

produce a basis for the space M2
qd+1,1

(GL2(A)) which we will denote by {F1, . . . , Fgp},

all of whose elements have integral u-series coefficients and such that fi ≡ Fi (mod p).

Thanks to the considerations of the previous paragraph, we have

W (f1, . . . , fgp) ≡ W (F1, . . . , Fgp) (mod p).

Recalling the Serre operator ∂
(d)
n from Chapter 4, we have that Dn(f) and ∂

(k)
n (f),

for k the weight of f , differ by the sum

n∑
i=1

(−1)i
(
k + n− 1

i

)
(Di−1E)(Dn−if).

We note that the quantity (−1)i
(
k+n−1

i

)
(Di−1E) depends on k and n, but not on f . To

ease notation, we write MD for the matrix appearing in W (F1, . . . , Fgp), and M∂ for the

matrix appearing in the definition of W∂(F1, . . . , Fgp). Then we have that the (n+ 1)st

column of M∂ is equal to the (n+1)st column of MD plus a linear combination of earlier

columns of MD. Since we are taking a determinant, we conclude that W (F1, . . . , Fgp) =

W∂(F1, . . . , Fgp).
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7.4.2 A special case

In order to proceed with a computation in a special case, we first restrict our attention to

the case where d = 3. In that case gp = q and the canonical orders are J = (1, . . . , q−1).

Since the algebra of Drinfeld modular forms for GL2(A) is generated by g and h, we

have that

gn(q+1)hq
2−q+1−n(q−1), 0 ≤ n ≤ q − 1

is a basis for the space M2
q3+1,1(GL2(A)) with integral u-series coefficients, and there is

a basis {f1, f2, ...fgp} of M2
2,1(Γ0(p)) that maps to this basis under the trace map. Thus

thanks to the work of the previous Section, we are interested in computing

W∂(h
q2−q+1, . . . , gq

2−1hq).

When 1 ≤ n < p for p odd, we have that ∂nf = n!∂
(k)
n f , where as before the exponent

of n on ∂ denotes the n-fold iteration. Therefore when q = p, the computation of

W∂(h
p2−p+1, . . . , gp

2−1hp) can be done easily using the fact that ∂(g) = −h and ∂(h) = 0,

and we get

W∂(h
p2−p+1, . . . , gp

2−1hp) = g
p2(p−1)

2 h
p2(p+1)

2 .

Tracing back through our steps, we have

aW (z) = W (f1, . . . , fp)

≡ W (hp
2−p+1, . . . , gp

2−1hp) (mod p)

= W∂(h
p2−p+1, . . . , gp

2−1hp)

= g
p2(p−1)

2 h
p2(p+1)

2 ,

for a rational and p-integral.
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Denote by n0 the index of the first non-zero u-series coefficient of W (z). Then analyt-

ically, W (z) vanishes to order n0

p−1
at ∞. Thus the order of vanishing of W (z)(dz)

p(p+1)
2 ,

is

n0

p− 1
− p

p− 1

(
p(p+ 1)

2

)
.

Since this quantity must be non-negative, we have that n0 ≥ p2(p+1)
2

. At the same

time, we have that the first non-zero u-series coefficient of g
p2(p−1)

2 h
p2(p+1)

2 has index

p2(p+1)
2

, so n0 = p2(p+1)
2

. Since the leading coefficient of h is −1, the leading coefficient of

g
p2(p−1)

2 h
p2(p+1)

2 is (−1)(p+1)/2. Thus we must have a ≡ (−1)(p+1)/2 (mod p), from which

we get our theorem:

Theorem 7.11. If p is odd, π ∈ Fp[T ] has degree 3, p is the ideal generated by π, and

the Wronskian on X0(p) is denoted by W (z), then we have

W (z) ≡ (−1)(p+1)/2g
p2(p−1)

2 h
p2(p+1)

2 (mod p).

7.5 Obstacles to moving forward

Theorem 7.11 is an analogue of the theorem obtained by Rohrlich in the classical case

(Theorem 1.1). As described in the Introduction, Ahlgren and Ono used this theorem

to obtain the formula

∏
Q∈X0(`)

(x− j(Q))wt(Q) ≡
∏
E/F`

E supersingular

(x− j(E))g`(g`−1) (mod `).

which precisely relates the Weierstrass points to the supersingular locus modulo `. Our

efforts to obtain a similar result met with some obstacles which we describe now.
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We first describe the key idea in Ahlgren and Ono’s work, omitting any discussion

of the elliptic points since this would needlessly confuse the issue. Let f be a form of

weight k and f ′ be a form of weight k′, both for SL2(Z), such that f ≡ f ′ (mod `) and

k′ < k. Then for every P on X0(1) such that its reduction is supersingular modulo `,

we must have that f vanishes to order k−k′
`−1

at P . This is a consequence of the fact that

the only relationship modulo ` in the algebra of modular forms for SL2(Z) is E`−1 ≡ 1

(mod `), where E`−1 is the Eisenstein series of weight ` − 1, and modulo `, the divisor

of E`−1 is precisely the set of supersingular points, each with multiplicity 1. In short, if

a form has lower filtration than weight, this must be explained by zeroes that belong to

the supersingular locus modulo `. The same facts, with appropriate modifications, are

true in the Drinfeld setting, by Theorem 2.9.

To use this idea, it is crucial that both f and f ′ be forms on SL2(Z). However, the

form W (z), which is defined by Ahlgren and Ono analogously to ours, is defined over

Γ0(`). While the additive trace from Γ0(`) to SL2(Z) (analogous to the additive trace

map presented in Chapter 6) does give us a map from forms on Γ0(`) to forms on SL2(Z),

this map does not preserve any nice properties of the divisor. It is thus necessary to

use the multiplicative trace, which for a form f of weight k and |k[γ] the classical slash

operator, is given by

Trm(f) =
∏

γ∈Γ\ SL2(Z)

f |k[γ].

This map has the property that for τ0 ∈ H, the complex upper half-plane, we have

ordτ0 Trm(f) =
∑

τ∈Γ0(`)\H
τ∼τ0

ordτ f,

where ∼ here denotes Γ0(`)-equivalence.
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In light of this, a key result obtained by Ahlgren and Ono is the following congruence:

Trm(W (z)) ≡ W (z)2 (mod `). (7.2)

Using Rohrlich’s result, they can then show that Trm(W (z)) is congruent modulo ` to a

form of lower weight whose divisor modulo ` is essentially trivial (again we ignore elliptic

points). The difference in weight is exactly (g2
` − g`)(`− 1), which explains the power of

the supersingular polynomial appearing in the formula.

In the Drinfeld setting, it seems extremely hard to obtain a formula such as formula

(7.2) at present. The first obstacle is the fact that product expansions of Drinfeld

modular forms are not known in general. It is encouraging that Gekeler obtains in [17] a

product expansion for the form ∆, and it is likely that such results could be generalized

to overcome this obstacle.

The more serious obstacle is that the proof of (7.2) relies on the fact that the classical

function q(z) = e2πiz is multiplicative, or more precisely on the fact that the new Z-

module structure given by the 1-dimensional lattice coincides with multiplication. We

reproduce here a key step of the proof given by Ahlgren and Ono, where g is the genus of

X0(`), W (z) = q
g(g+1)

2

∏∞
n=1(1− qn)c(n) is the product expansion of W (z) and ζ` = e

2πi
` .

We then have:

q
g(g+1)

2

∞∏
n=1

`−1∏
j=0

(1− q
n
` ζnj` )c(n) = q

g(g+1)
2

∏
`-n

(1− qn)c(n)
∏
`|n

(1− q
n
` )`c(n)

≡ q
g(g+1)

2

∞∏
n=1

(1− qn)c(n) (mod `).

In the Drinfeld setting, the A-module structure given by the Carlitz module does

not coincide with multiplication, which makes the analogue of the congruence exhibited

here difficult to prove. A completely different idea will be needed to address this issue.
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[15] J. Fresnel and M. van der Put. Géométrie Analytique Rigide et Application, vol-

ume 18 of Progress in Mathematics. Birkhäuser, 1981.

[16] E.-U. Gekeler. Zur Arithmetik von Drinfeld-Moduln. Math. Ann., 262:167–182,

1983.

[17] E.-U. Gekeler. A product expansion for the discriminant function of Drinfel’d mod-

ules of rank two. J. Number Theory, 21:135–140, 1985.

[18] E.-U. Gekeler. Drinfeld Modular Curves, volume 1231 of Lecture Notes in Mathe-

matics. Springer-Verlag, 1986.
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