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Abstract. Predicting the future trajectories of ecological systems is increasingly important as the

magnitude of anthropogenic perturbation of the earth systems grows. We distinguish between two types of

predictability: the intrinsic or theoretical predictability of a system and the realized predictability that is

achieved using available models and parameterizations. We contend that there are strong limits on the

intrinsic predictability of ecological systems that arise from inherent characteristics of biological systems.

While the realized predictability of ecological systems can be limited by process and parameter

misspecification or uncertainty, we argue that the intrinsic predictability of ecological systems is widely

and strongly limited by computational irreducibility. When realized predictability is low relative to

intrinsic predictability, prediction can be improved through improved model structure or specification of

parameters. Computational irreducibility, however, asserts that future states of the system cannot be

derived except through computation of all of the intervening states, imposing a strong limit on the intrinsic

or theoretical predictability. We argue that ecological systems are likely to be computationally irreducible

because of the difficulty of pre-stating the relevant features of ecological niches, the complexity of

ecological systems and because the biosphere can enable its own novel system states or adjacent possible.

We argue that computational irreducibility is likely to be pervasive and to impose strong limits on the

potential for prediction in ecology.
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INTRODUCTION

Ecological systems are strongly impacted by
anthropogenically induced perturbations such as
global climate change and the spread of non-
native species (Beckage et al. 2008, Stevens and
Beckage 2009). Predicting the effects of these
perturbations on natural systems is increasingly
important as the magnitude and severity of

anthropogenic perturbations intensify (e.g., Clark
et al. 2001, Tang and Beckage 2010). But are
ecological systems fundamentally predictable?
What are the limits to prediction in ecological
systems? The assumption underlying efforts to
predict ecological responses to anthropogenic
perturbations is that their responses are, in fact,
predictable. We examine this assumption and
provide a framework for understanding the
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potential for and limits to prediction in biological
systems generally and in ecological systems in
particular. We begin by defining predictability,
and then outline two processes, chaos and
computational irreducibility, that can limit pre-
dictability in biological systems but in very
different ways.

Prediction.—We use ‘prediction’ to refer to the
use of a computational or mathematical model to
forecast the future state of a system to some
specified level of accuracy (e.g., mismatch be-
tween predicted and actual state) before the
system reaches its future state. We distinguish
between two kinds of predictability following
Lorenz (2006): intrinsic and realized predictabil-
ity. The intrinsic predictability of an ecological
system refers to the predictability of the system
when the optimum model and parameters are
used. This is the greatest predictive capacity that
can theoretically be achieved for a given metric
across all possible models of the system. In
contrast, the realized predictability is the pre-
dictability that is actually achieved using avail-
able models and parameterizations. The
difference between the realized and intrinsic
predictability represents the potential for model
improvement.

Failures to accurately predict the behavior of
any given system, such as identifying a priori
non-native species that will be invasive, is often
assumed to reflect a low realized predictability
rather than low intrinsic predictability. The lack
of success is perceived to result from model
misspecification rather than to be a fundamental
characteristic of the ecological system. In the
former case, the clear course of action is to
improve the model formulation and parameter-
ization, including potentially obtaining new
observations on the system, to increase the
realized predictability of the system. There is a
long history, for example, of adding more
realistic components to ecological models to
account for temporal and spatial heterogeneity
(Levin 1976). But what if low predictability
results not from misspecification of the model
but instead reflects the inherently low intrinsic
predictability of the system?

Determinism and predictability.—Achieving an
understanding of process or underlying mecha-
nism has become a central objective of ecological
research (Schoener 1986). An understanding of

process can allow for prediction outside of the
range of conditions for which the process has
been directly observed, which is generally not
feasible when utilizing purely statistical models.
Vegetation models that are physiologically
based, for instance, are more likely to be useful
in understanding ecological responses to climate
change than purely statistical models that map
vegetation to current climates because future
climates are likely to be novel (Kaplan et al. 2003,
Sitch et al. 2003, Williams et al. 2007, Tang and
Beckage 2010). We typically cannot model all of
the relevant processes in ecological systems,
however, so our consideration is limited to a
select subset of processes. The processes not
included in the model are then often treated
stochastically as unstructured noise. Seed dis-
persal, for example, is often modeled probabilis-
tically (Clark et al. 1998) as it is difficult to
completely account for the physical basis of wind
dispersal (e.g., Nathan et al. 2002) or the details
of animal-mediated dispersal without incorpo-
rating a model for the dispersal agents. The
implication is that increased understanding and
broader inclusion of relevant processes will
reduce stochasticity and increase the quality of
predictions of ecological dynamics, i.e., that the
problem of poor prediction is one of low realized
rather than low intrinsic predictability.

Determinism, however, should not be equated
with high intrinsic predictability. Attributes of
physical and biotic systems can impose strong
limits on the intrinsic predictability of ecological
systems even in the absence of real stochasticity,
i.e., stochasticity that does not just stand in for
unidentified process. These system attributes
include chaotic dynamics and computational
irreducibility. These processes are not stochastic,
but nevertheless can severely limit the intrinsic
predictability of ecological systems. While chaot-
ic dynamics are well known to ecologists,
computational irreducibility may be less familiar.
We discuss these processes below.

CHAOS

The predictability of a system defined by a
known deterministic process is related to how
errors in the specification of initial conditions
grow or dampen over time (Lorenz 2006). Chaos
refers to the apparent unpredictability of com-
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pletely deterministic systems, where the unpre-
dictability is driven by exponential growth of
errors in the specification of the initial state.
Ecologists have long been aware that nonlinear-
ities and feedbacks from time delays can lead to
chaos in population models (May 1974, Levin
and May 1976). Systems that exhibit chaotic
behavior can be very simple, and, in fact, chaos
was first widely recognized in ecology in notably
uncomplicated population models (May 1974).
Chaos demonstrates that even when the exact
representation of the underlying deterministic
process is known, which is usually not the case in
ecology, accurate predictions of the future state of
the system still may not be possible. Precise
specification of the initial conditions is also
necessary to predict the future state of the
system, and arbitrarily small errors can result in
large departures from the actual future system
state. Chaos was first widely recognized in
meteorology (Lorenz 1963), where explosive
growth of errors in the specification of initial
conditions limits prediction of many aspects of
weather to no more than about two weeks into
the future.

Chaos in ecological systems.—Chaos may be
commonplace in ecological systems (Hastings et
al. 1993). Chaotic dynamics have been identified
in some experimental manipulations of popula-
tions (Constantino et al. 1997), but most evidence
of chaos has come from models of ecological
processes (e.g., Maquet et al. 2007, Upadhyay
2009, Gassmann et al. 2005). The presence of
chaos in models of ecological systems, however,
does not necessarily mean that the ecological
systems themselves are, in reality, chaotic (Rai
2009), and chaos is likely to be difficult to
definitely detect in ecological data (e.g., Dennis
et al. 2003, Ellner and Turchin 2005, Scheuring
and Domokos 2007, Upadhyay 2009). But if
chaos is common in ecological systems, then
ecologists have two problems in prediction: First,
identifying the precise form of the dynamical
process governing the evolution of a given
ecological system and, second, establishing with
arbitrary precision the system state at some
initial time. These are difficult challenges that
are likely to impose strong limits on the realized
predictability of ecological systems that are
chaotic—greater challenges than faced by, for
example, meteorologists who at least have well-

understood physical equations that govern the
evolution of the climate system. Thus, while the
intrinsic predictability of chaotic systems might
be high, the realized predictability is expected to
be low and difficult to substantially improve.

If chaos does not widely occur in ecological
systems, then errors arising from misspecification
of the initial system state may only be linearly
related to errors in model projection. In this case,
neither initial states nor the formulation of the
governing process need to be known exactly, but
only approximately: the predictive error should
scale with the precision of this approximation.
We suggest that even in these cases, however,
there is another barrier to prediction: computa-
tional irreducibility.

COMPUTATIONAL IRREDUCIBILITY

An ecological system changes through time,
updating its state continuously, and the process
of system evolution can be thought of as
computation (Wolfram 2002). Our use of the
term ‘system evolution’ is much broader in
meaning than biological evolution, and also
includes changes in abundance, location and
interactions between individuals irrespective of
species, and the interface between the biotic and
abiotic components of the system, e.g., flux of
nutrients, water, etc. Predictive models, then, are
able to forecast the future state of the system
before the system performs the intermediate
computations to reach its updated state. An
astronomical model, for example, might predict
the earth’s position and orientation relative to the
sun millions of years into the future, without the
need for the solar system to perform the
intervening computations. The intervening com-
putations that the system performs can be
circumvented to predict its future state. The
astronomical model might, for example, be used
to predict the latitudinal and seasonal distribu-
tion of insolation on earth, which describes the
past orbital forcing of the climate system, for
comparison with paleoclimatic data (e.g., EPICA
community members 2004).

Computational irreducibility refers to systems
where the intervening computations cannot be
bypassed using a simplified model. The dynam-
ics of a system that is computationally irreducible
cannot be predicted without allowing for the

v www.esajournals.org 3 November 2011 v Volume 2(11) v Article 125

CONCEPTS & THEORY BECKAGE ET AL.



Fig. 1. Computational irreducibility can occur in even simple cellular automata (CA). Predicting the state of the

system can be challenging without actually allowing the system to evolve by performing its intrinsic calculations.

(a) The set of rules governing the evolution of the system state. Three states are possible: A cell may be while, black,

or gray. The state of the focal cell in the next time step depends on its current state and its bordering neighbors (a 3-

tuple). The top row of each 3-tuple of cells represents the initial state of the neighborhood, while the middle cell

beneath the 3-tuple represents the state of the focal cell at the next time step. There are 27 possible configurations

(i.e., rules governing the dynamics) in this case. In general, there are nn configurations for an n-tuple, which could

correspond, for example, to spatial effects extending beyond nearest neighbors. We show the evolution of this

cellular automaton for 100 time steps starting from three different initial conditions in panels (b), (c), and (d).
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actual evolution of the system (Fig. 1). A
simplified model that can predict the future state
of the system does not exist. Thus, the only way
to ascertain the future state of the system is to
allow the system to evolve on its own character-
istic time scale. Computational irreducibility
does not imply that the underlying processes
are stochastic or chaotic, but that they are
complex. The complexity can be manifested
through high levels of contingency, interactions
among system components, and nonlinearity. In
fact, systems that evolve according to simple
deterministic processes with exactly-known ini-
tial conditions can give rise to a complex state
evolution that cannot be exactly predicted except
by allowing the system to evolve in real time
(Wolfram 2002) (Fig. 2). Computational irreduc-
ibility, furthermore, may be a fundamental
characteristic of some systems and does not
merely reflect a shortcoming of proposed models
or modeling techniques. This implies that the
intrinsic predictability of these systems is inher-
ently low.

Computational irreducibility in ecological sys-
tems.—We argue that the dynamics of many
ecological systems are computationally irreduc-
ible. We base this assertion on three attributes: (1)
the difficulty of pre-stating the relevant features
of the niche, (2) the complexity of ecological
communities, and (3) their potential to enable
novel system states (e.g., niche creation) through
the adjacent possible.

Relevant niche features.—The relationship be-
tween species and their environment can be
characterized by a high-dimensional niche space
(Clark et al. 2007). Ecological models are chal-
lenged to account for the myriad effects of
diverse environmental variables on species. The
difficulty stems from the challenge of pre-stating
the relevant features of the niche in any given
environment. Modeling the responses of species
to environmental change, for instance, requires
selecting the dimensional subset of the niche
space most relevant to mapping a species to its

environment. If environmental forcing moves the
system into a novel area of environmental space
(Williams et al. 2007), then species responses to
this forcing, by definition, have not been previ-
ously observed and there is little basis for a priori
selecting the relevant niche features. Further-
more, the most relevant features of the niche
space are likely to be contextually sensitive to
and vary with both the abiotic and biotic (e.g.,
presence of competitors, predators, etc.) environ-
ment.

Complexity.—Ecological assemblages are net-
works of locally interacting individuals of di-
verse species both within and across trophic
levels. The complexity of ecological communities
increases rapidly with the addition of species as
the number of potential interconnections be-
tween system components grows nonlinearly:
The potential for diverse system responses
explodes with the number of species interactions.
The strength and sign of the interactions between
components of this ecological network can
change as species enter (or are lost from) the
community and as environmental conditions
change. Differential species responses to climate
change can result, for example, from phenolog-
ical mismatches between interacting species and
can lead to novel community assemblages
without analog (Møller et al. 2008, Williams
and Jackson 2007). If the environmental change is
large enough to allow new species to enter into
the community as others leave, resulting in novel
species assemblages, then the system connected-
ness is altered in a manner such that no
observations or experience exists to parameterize
a model or to guide prediction. The system
behavior is unknown. Furthermore, species are
likely to respond nonlinearly to forcings (envi-
ronmental variation) with responses expected to
vary within and across species. The interconnec-
tedness of the system components means that
responses or perturbations of individual compo-
nents cascade through the system, propagating
across the network of interactions within and

Fig. 1 (continued). The initial condition is shown at the top of each panel with subsequent time steps in the

evolution of the system shown in sequence below the initial state. The dramatic differences in the evolution of the

system in (b), (c), and (d) result from a change in the initial state of only one cell, emphasizing the difficulty of

predicting the state of the system without allowing the system to actually compute this state. This cellular

automaton rule corresponds to code 1599 in Wolfram (2002).
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across tropic levels. We suggest that the net effect

of these complex cascades on the system state are

unknowable a priori: The effect of these interac-

tions on the system cannot be known until these

computations are actually performed by the

system (e.g., Huisman and Weissing 2001). The

Fig. 2. The evolution of the cellular automaton in Fig. 1 for 9,000 time steps beginning from a single gray cell

with neighboring white cells (top of panel a). Each panel contains the initial condition þ 3000 iterations of the

cellular automaton; the initial condition for panels (b) and (c) are the final state of the cellular automaton in the

previous panel. The system appears to arrive at a stable state near the bottom of panel c but it is not clear that this

state could be predicted without allowing the actual system to evolve. This figure followsWolfram (2002: page 70).

v www.esajournals.org 6 November 2011 v Volume 2(11) v Article 125

CONCEPTS & THEORY BECKAGE ET AL.



system dynamics can only be understood as the
system evolves and thus is computationally
irreducible.

Niche creation and the adjacent possible.—Biolog-
ical systems are uniquely able to construct and
structure their own environments and to enable
their own opportunities for growth and evolu-
tion through the creation and modification of
niche space. The ‘adjacent possible’ represents
the potential for creation of or extension of that
niche space that is immediately adjacent to
current niche space. The evolution of plants, for
instance, allowed for the evolution of herbivores.
The emergence of trees created a diverse new set
of niches that formerly did not exist—everything
from spring ephemerals to epiphytes to arboreal
vertebrates. Biological change begets more bio-
logical change. The process of creation of new
biological opportunities allows for the emergence
of new organisms to fill these opportunities, and
new ecological networks and interactions
emerge. This process is intrinsically driven by
positive feedbacks that can potentially result in
an explosion of biological and ecological diver-
sity. The biosphere continuously creates and
moves into the adjacent possible. We assert that
this process is enormously creative and unpre-
dictable a priori.

Relationship to other conceptual frameworks.—
Holling and colleagues have developed a con-
ceptual framework (‘panarchy’) to describe the
dynamics of complex systems, including ecolog-
ical systems (Gunderson and Holling 2002). Their
framework views the complexity of ecological
systems as not stemming from the interactions of
a large number of components but from a small
number of controlling processes. System dynam-
ics are then characterized as continuing adaptive
cycles of growth, accumulation, release, and
reorganization that are hierarchically linked
across spatial and temporal scales. The release
and reorganization phases of the adaptive cycle
are inherently innovative and creative, so that
even minimally complex systems can be unpre-
dictable (Holling 2001). We suggest that the
source of the creativity and the process driving
the subsequent unpredictability are the adjacent
possible and computational irreducibility.

The adjacent possible is also related but not
limited to two other concepts in ecology: ecolog-
ical engineering and niche construction. Niche

construction and ecological engineering describe
two ways that the biosphere creates and expands
into the adjacent possible. Ecological engineers
modulate the availability of resources while
creating or modifying habitats (Jones et al.
1994). Beavers, for example, create wetlands that
are then utilized by other organisms. Ecological
engineering does not imply any benefit to the
engineer and, in fact, other species can realize
most of the benefit. In niche construction, in
contrast, the organism modifies its environment
to increase its own fitness. Most of the benefit
must be realized by the organism constructing
the niche for niche construction to be evolution-
arily stable (Krakauer et al. 2009). The expansion
of the biosphere into the adjacent possible
includes both niche construction and ecological
engineering, but can also include other processes.
The process of evolution, for example, creates
organisms and life forms that intrinsically create
new opportunities for expansion of the bio-
sphere. The biosphere itself modifies the earth
system, e.g., high levels of oxygen in the
atmosphere, in a manner that is broader than
creation of a specific habitat. An analogy to
predicting the future state of a biological system
might be predicting the nature of the economy a
century in advance. The economy creates and
moves into its own adjacent possible as products
and services create the opportunities for other
products and services. A century ago, it would
have been difficult to predict the economic value
of a company providing an internet search
engine as neither the worldwide web nor
electronic computers existed. We argue that
predicting the future state of the biosphere is
similarly difficult.

ECOLOGICAL EXAMPLES

Climate change.—We contend that the respons-
es of ecological systems to anthropogenic climate
change are likely to be computational irreducible.
Current climate change represents a rapid and
complex multivariate shift in the environmental
conditions experienced by individual organisms.
Global temperatures are rapidly rising and
approaching a region of climate space not likely
experienced for the past 1 million years (Hansen
et al. 2006), implying that extant species have not
experienced the climatic conditions expected
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with anthropogenic forcing. Species are likely to
alter their ranges at differential rates with
idiosyncratic responses and unique shifts in
geographic range (e.g., Davis and Shaw 2001,
Moritz et al. 2008). Species that do not currently
co-occur may interact under future climatic
conditions, while other species that now co-occur
may become geographically separated; these
responses may collectively result in novel species
assemblages without current analogs (Williams
and Jackson 2007). We argue that the magnitude
and even the sign of these novel interactions are
unknown, cannot be predicted a priori, and
cannot be ascertained experimentally. There is
evidence that responses to climate change will
also vary across trophic levels (Voigt et al. 2003,
Winder and Schindler 2004), disrupting the
interactions of even currently co-occurring spe-
cies that could then cascade through the system.
Individualistic responses to climate change can
result in complex changes in highly linked
ecological systems. The dynamics of ecological
systems in response to climate change are thus
likely to be computationally irreducible: We will
only know future states once climate has
changed, and species and ecological communities
have responded.

Invasive species.—Predicting which introduced
non-native species will displace native species
and which ecological communities are vulnerable
to invasion are two principle goals of invasion
ecology that have not been achieved (Kolar and
Lodge 2001). Instead, invasion biology has
largely been an ad hoc, retrospective analysis of
why certain species have become invasive when
introduced into new habitats (e.g., Rosecchi et al.
2001, Roura-Pascual et al. 2009). We suggest that
the prediction of species invasions and commu-
nity invasibility has proven to be such an
intractable problem because it is computationally
irreducible for reasons similar to those outlined
above for climate change. The response of an
introduced species to the concurrent effects of
introduction into a novel high-dimensional envi-
ronmental space while also merging into an
existing network of interacting species is a
problem for which, by definition, we have little
empirical basis for prediction. Experience does
indicate, however, that the introduction of an
invasive species can cascade through a commu-
nity with complex and apparently random effects

on community structure (Sanders et al. 2003).
Thus, the only way to understand the potential
for an introduced species to be invasive in a
particular ecological community may be to
observe empirically whether it is invasive in that
ecological community. We assert that the predic-
tion of species invasion into ecological system is
computationally irreducible, and invasion ecolo-
gy is thus predominately comprised of retroac-
tive case studies of species invasion.

IMPLICATIONS FOR PREDICTION

Complex systems with extremely large num-
bers of components can sometimes become
predictable from a macro-level perspective due
to the averaging of a very large number of
separate interactions. In statistical physics, for
example, an approximate description of the mean
state of a gas is possible without an exact
description of the velocities and locations of each
molecule; the temperature and pressure of a gas
can be described using the ideal gas law. An
ecological analogy to the ideal gas law might be
the species composition of a forest. Forest
composition is ultimately an emergent property
that results from the local interactions of many
individuals and processes, i.e., seed production
and dispersal, competition, growth rates, trade-
offs, etc. While it may not be possible to
determine the outcome of all of these complex
interactions to predict the species identity of the
tree species that captures a given canopy gap, the
overall composition of the forest can be predict-
able to some approximation (e.g., Clark and
McLachlan 2003). While this statistical averaging
of interactions is the standard assumption in
many deterministic ecological models, it may be
more accurate to view most ecological systems as
small-to-middle-number systems because local
interactions are quite relevant in affecting system
behavior. In this case, there would be a general
lack of the homogeneous mixing necessary for a
purely statistical mechanics view to be applica-
ble.

We conjecture that skill in predicting the future
states of ecological systems will decrease as
system complexity increases up to some thresh-
old level. Further increases in system complexity
beyond this threshold, for example, through
expanding interconnected components of the
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system or increasing potential for nonlinear

interactions, will not result in further losses in
predictability (Wolfram 2002). Furthermore, this

threshold may occur at relatively low system
complexity. We note, however, that the behavior
of complex ecological systems can often be

readily deconstructed and explained in hindsight
as the cascade of interactions and nonlinearities

is examined and understood. We emphasize that
this may not aid predictions of future system
states due to computational irreducibility.

Prediction in computationally irreducible sys-
tems.—The predictability achieved by this statis-

tical averaging approach is similar to coarse-

graining of computationally irreducible cellular

automata (Fig. 3) (Israeli and Goldenfeld 2004,

2006). In coarse-graining, some predictability of

computationally irreducible systems can be

gained through spatial aggregation of cells into
larger units with a new set of updating rules.

This allows some patterns of the system to be

predictable prior to the system actually comput-

ing its future state. The predictability results from

a spatial averaging, but comes at the cost of

information loss. In the context of landscape

metrics, however, Wu (2004) notes that some

Fig. 3. Some aspects of complex systems can be predictable. (a) A rule for coarse-graining cellular automaton

rule 146 using rule 128 (Israeli and Goldenfeld 2006). (b) Evolution of the original and coarse-grained cellular

automaton. Some aspects of the system can be predicted more quickly than the actual system evolves, but with

accompanying information loss. (c) Probabilistic statements can be made regarding the distribution of CA metrics

such as row sums. We show the distribution of row sums of rule 1599 (i.e., Fig. 1) at 100 time steps from 100,000

realizations with random initial conditions. White cells were assigned values of 0, gray cells 1, and black cells 2.
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metrics scale predictably with spatial aggrega-
tion but others do not. This indicates the capacity
for enhanced prediction of some metrics at
broader spatial extent, but not for others. It is
unclear whether it is possible to develop a
general theory for determining under what
circumstances and for what metrics coarse-
graining of ecological systems leads to enhanced
predictive capacity. In addition, it remains
uncertain how much predictability can be
achieved in biological systems through a
coarse-graining approach, because the future
probability space itself changes through niche
creation and the emergence of the adjacent
possible.

SUMMARY

We believe that it is important to create a
framework for understanding the potential for
and limits to prediction in ecological systems.
Poor model predictions can result from either
low realized predictability or low intrinsic
predictability, but very different responses are
merited in each case. Low realized predictability
can be improved through better estimation of
model parameters, improved model structure,
and more precise specification of initial condi-
tions. Accumulating data and additional exper-
iments would be expected to gradually and
incrementally improve model predictions (Elli-
son 2004, Lavine 2006). Systems with low
intrinsic predictability, however, have strong
inherent limitations on the potential for model
improvement. In these systems, prediction may
often not be possible and, when it is possible,
proceeds with information loss that results from
spatial or temporal coarse-graining. The chal-
lenges then are distinguishing between low
intrinsic and realized predictability, establishing
computational irreducibility, and determining
the potential predictability of ecological systems
including those that are computationally irre-
ducible. We do not suggest that attempts at
model development and prediction are useless,
even in the presence of computational irreduc-
ibility, but only that the processes limiting these
efforts should be understood as a potentially
fundamental characteristic of complex systems.
Predictive capacity might be gained by coarsen-
ing the temporal or spatial scale of the predic-

tions, e.g., the limitations of forecasting short-
term weather compared to successful prediction
of long-range climate (National Research Council
1999), although with information loss. The
widespread presence of computational irreduc-
ibility, however, would suggest that living
systems with their near infinitely rich behaviors,
interactions, and dynamics are not amenable to
long range prediction.
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