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Summary

 

• Ecological and biological processes can change from one state to another once a
threshold has been crossed in space or time. Threshold responses to incremental
changes in underlying variables can characterize diverse processes from climate
change to the desertification of arid lands from overgrazing.
• Simultaneously estimating the location of thresholds and associated ecological
parameters can be difficult: ecological data are often ‘noisy’, which can make the
identification of the locations of ecological thresholds challenging.
• We illustrate this problem using two ecological examples and apply a class of
statistical models well-suited to addressing this problem. We first consider the case
of estimating allometric relationships between tree diameter and height when
the trees have distinctly different growth modes across life-history stages. We next
estimate the effects of canopy gaps and dense understory vegetation on tree
recruitment in transects that transverse both canopy and gap conditions.
• The Bayesian change-point models that we present estimate both threshold loca-
tions and the slope or level of ecological quantities of interest, while incorporating
uncertainty in the change-point location into these estimates. This class of models
is suitable for problems with multiple thresholds and can account for spatial or
temporal autocorrelation.
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Introduction

 

Anthropogenic climate change is likely to transform many
ecological communities over the next century. The mean global
temperature has risen by 

 

c

 

. 0.6

 

°

 

C over the past century, and
the rate of warming since 1976 has been greater than any
other period during the last 1000 yr (Mann 

 

et al

 

., 1998;
Easterling 

 

et al

 

., 2000; IPCC, 2001). Anthropogenic climate
change is likely to continue at the same or an accelerated rate
for the foreseeable future (Hansen 

 

et al

 

., 2005; Meehl 

 

et al

 

.,
2005), with global temperatures predicted to rise by another
1.4–5.8

 

°

 

C by the year 2100 (IPCC, 2001; Wigley, 2005).

Climate is an important determinant of species’ ranges: rising
temperatures associated with anthropogenic greenhouse gas
emissions are predicted to lead to species migration poleward
or upward in elevation (Krajick, 2004). Forest composition
will shift as populations of some species decline and new
species become established as regional climates respond to
global warming. Climate-linked range shifts have already been
observed in a variety of taxa (Walther 

 

et al

 

., 2002; Parmesan
& Yohe, 2003).

Ecological systems may transition rapidly to altered states
as climatic conditions cross critical thresholds, rather than
slowly responding to changes in climate. Threshold responses
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are characteristic of diverse processes from climate change to
the desertification of lands from overgrazing (van de Koppel

 

et al

 

., 1997; Higgins 

 

et al

 

., 2002; Walker & Meyers, 2004).
Threshold behaviors can result from nonlinear responses to
incremental changes in underlying processes in which a
gradual change in a process causes a disproportionate response
once a critical threshold is reached (Maslin, 2004), such as
might be caused by a positive feedback loop between an
underlying driver and the system response (Hoffman 

 

et al

 

.,
2002; Crespi, 2004). Transitions between ecological states
may also occur along spatial gradients in resource availability
or disturbance frequency. Similarly, patterns of growth or
allocation within individuals can shift once a critical age or
size has been reached (LaDeau & Clark, 2001). In these cases,
the systems display a threshold response in which the system
switches states once a boundary region has been crossed in the
underlying driver (e.g. resource level or age of individual). In
this paper, we distinguish two threshold responses: an abrupt
change in a rate of a process (Fig. 1a) or a jump in the level of
a process (Fig. 1b).

Estimating the location of thresholds in space or time and
corresponding ecosystem responses (e.g. change in rate or level
of an ecological process; e.g. Figure 1) can be a challenging
problem that is likely to become increasingly important as
ecosystems respond to anthropogenic climate change. The
noisy nature of ecological data tends to obscure the identifi-
cation of thresholds, introducing potentially large uncertainty

into estimates of their location. The subsequent estimation of
ecological quantities depends on the location of the under-
lying spatial or temporal threshold. A modeling approach is
needed that simultaneously estimates the location of the
threshold and the state of the system on either side of
the threshold boundary, and that incorporates uncertainty in
the threshold location into estimates of the state variables.

We illustrate this problem using two examples from our
own research in forest dynamics and apply a class of models
for addressing these challenges. In the first example, we estimate
the allometric relationship between tree diameter and tree
height in longleaf pine (

 

Pinus palustris

 

 Mill.) for use in a forest
simulation growth model. Longleaf pine shifts its allometric
patterns as a function of life-history stage, producing a
distinctly different relationship between tree height and
diameter as a function of tree size. Our objective is to estimate
the relationship between tree diameter and height across life-
history stages, which may necessitate estimating the location
of change-points (i.e. thresholds, abrupt changes or disconti-
nuities in this relationship). In the second example, we estimate
tree seedling recruitment along a transect from closed canopy
forest through gaps in the forest canopy created by the death
of overstory trees. Light is often a limiting resource in forest
understories (Canham, 1988; Pacala 

 

et al

 

., 1994) and its avail-
ability plays a central role in tree regeneration (Platt & Strong,
1989). Estimating changes in seeding densities associated
with canopy and gap conditions requires identification of
the transition from low to elevated light levels in the forest
understory. The identification of this transition can be diffi-
cult in the absence of spatially extensive measurements of light
levels because: (1) light gaps are offset towards the north in the
northern hemisphere, with the degree of offset dependent
on latitude, slope, and canopy height (Canham 

 

et al

 

., 1990);
and (2) the canopies of bordering trees are irregular and
change with time as they grow into the light gap (Valverde &
Silvertown, 1997). Our objective is to estimate the locations of
the canopy to gap transition in light levels, and corresponding
levels of seedling recruitment of red maple (

 

Acer rubrum

 

 L.)
associated with gap and closed canopy conditions. In this
example, the analysis is further complicated by consideration
of spatial correlation between adjacent measurements of
seedling recruitment. Spatial correlation in seedling counts
in adjacent quadrats can result from patchy soils, local seed
sources or other spatially variable processes that effect seedling
establishment.

We address these estimation problems using a class of
statistical models referred to as change-point models. We first
use a simple change-point model to estimate the allometric
relationship between tree height and diameter. We next
employ a hierarchical change-point model to estimate the
probable transitions from canopy to gap conditions with a
hierarchical dependence between multiple transects and
associated seedling densities in closed canopy and gap envi-
ronments. Finally, we extend this model to allow for spatial

Fig. 1 Conceptual model of abrupt climate change. An abrupt 
change can occur in the rate (a) or level (b) of a process once a 
threshold is crossed. An abrupt change in both the rate and level of 
a process could also occur. We do not specifically consider this case, 
but the models we present could be easily generalized to this case.
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correlation between adjacent seedling counts. We fit these
models using Bayesian methods.

 

Data and model description

 

Tree allometry

 

Platt 

 

et al

 

. (1988) collected extensive data on the demography
of longleaf pine in an old-growth stand in southern Georgia.
The sampling of longleaf pine was stratified into two general
size classes; stems with a diameter at breast height (d.b.h.)

 

>

 

 2 cm and stems with a d.b.h. 

 

<

 

 2 cm. For the larger size class
(referred to as ‘trees’ or ‘adults’), a random sample of 399
individuals was selected across the 40 ha study site, and the
height and d.b.h. of each sampled stem was recorded. Individual
trees ranged up to 75.4 cm d.b.h and 244 yr of age. For the
smaller size class, four 1-ha plots were randomly selected out of
a total of 40 1-ha plots. All stems 

 

<

 

 2 cm d.b.h. were censused
in the four selected plots, resulting in a total of 222 juveniles.
These juveniles consisted of individuals that had not yet
reached breast height, 

 

c

 

. 1.4 m, and so the diameter at the base
and the height of their terminal bud were measured.

Our objective is to predict the height of longleaf pine trees
as a function of their diameter. Previous studies have used
power relationships or other nonlinear model forms to relate
tree height to diameter and usually estimate model parameters
through linear regression on log transformed scales (O’Brien

 

et al

 

., 1995; Colbert 

 

et al

 

., 2002), but we model tree height
using a linear model on untransformed tree height and diameter.
While a single linear relationship is unlikely to be appropriate
across life-history stages (e.g. seedling, sapling, adults), the
relationship may be piecewise linear, meaning linear over
restricted ranges of tree diameters where the transitions
between these linear regions are change-points. Both the slope
and the residual variance of the linear model are expected
to vary among these different regions. Finally, we expect a
discontinuity between the juvenile and adult size classes that
reflects the offset introduced by measuring the diameter
of these two size classes at different locations on the stem–
juveniles are measured at their base while adults are measured
at breast height. Our model must account for all these aspects
of the data.

 

Model description

 

Our change-point model is a piecewise
linear regression with the transition points between adjacent
linear regions unknown (Fig. 2). We allow for separate slopes
and variances within each linear region, and estimate the
offset introduced by measurement of stem diameter at
different points on the stem. All parameters were estimated
simultaneously using Bayesian methodology, allowing us to
quantify both the uncertainty in the change point locations
and the parameters defining the species abundance by means
of probability distributions. In the Bayesian paradigm, before
seeing the current data, our knowledge of the model parameters,

including change-points, is described by a joint prior prob-
ability distribution. Once we have collected and modeled the
current data through the change-point model’s likelihood
function, we revise our previous distributions to posterior
distributions in light of this new information. These posterior
distributions may then be used to make updated probability
statements (i.e. inferences) about the parameters describing
the species abundance as well as the change-point locations.

We modeled the height, 

 

h

 

i

 

, of individual 

 

i

 

 as:

(

 

d

 

i

 

 is the diameter at the stem base; 

 

dbh

 

i

 

 is the stem diameter
at breast height; 

 

k

 

 is the offset that converts diameter at breast
height to basal diameter for adult data, 

 

cp

 

1

 

 and 

 

cp

 

2

 

 are the first
and second change-points; and the 

 

β

 

 parameters are
regression coefficients). The precision parameter 

 

τ

 

i

 

, which is
the inverse of variance, is given by the conditional:

Fig. 2 Graphical illustration of our change-point model for tree 
allometry. The model is piecewise linear with the change-point (cp) 
locations defining the separate linear regions. Within these regions, 
β1–β3 are the slopes, σ1–σ3 represent the standard deviations, and 
β0 represents the intercept. We estimate a separate variance for 
each linear region. In addition, we estimate an ‘offset’ that represents 
the difference in stem diameter at the base and at breast height 
since stems were measured at alternative locations depending 
on stem height.

P( Normal where is defined by the
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The posterior distribution of the model parameters is
proportional to

(1)

where 

 

X

 

 represents the observed data and 

  

ΘΘΘΘ

 

 represents the
prior parameter vector. The likelihood function is normal
conditional on the mean and precision as indicated above.
Bayesian analyses require a prior distribution over all
unknown parameters. The parametric form of the prior
probability distributions for the model components are:

The form of these prior probability distributions was chosen
both to facilitate computations and to represent beliefs
regarding model parameters. Our general strategy was to employ
diffuse or noninformative prior distributions, so that final
inferences will depend solely or almost solely on the data.
The exception to this was the uniform prior on 

 

k

 

, which was
constrained to lie between 

 

−

 

 1 and 5 (cm). The prior parameter
vector that we used, and that was assigned a priori, was:

The normal prior on the 

 

β

 

j

 

 coefficients, for example, is
centered at 0 with a small precision (equivalent to a large
variance), which allows the 

 

β

 

j

 

’s to be primarily determined by
the data. Nevertheless, it is sometimes possible that even
‘noninformative’ prior distributions will have some influence
on the posterior distributions, so that the sensitivity of the
model to the priors is assessed. We varied both the form of the
prior distributions (for example, replacing the gamma priors
on 

 

cp

 

1

 

 and 

 

cp

 

2

 

 with uniform priors over the range (0,80)) as
well as the parameterization of the prior distributions to assess

model sensitivity. Our inferences were insensitive to variation
in our diffuse priors. Of course, the priors may be selected to
reflect results from previous studies or one’s knowledge of
the system and be allowed to drive the inference to a greater
degree than in the current analysis.

While expression (1) above is proportional to the posterior
distribution of the model parameters, normalizing the post-
erior distribution requires integration of the expression over
its entire parameter space. Although this is intractable, an
alternative approach is to simulate a large number of random
samples from the posterior distribution of model parameters,
represented by a vector 

  

θθθθ

 

, and to use these random samples to
make inferences about 

  

θθθθ

 

. We did this using Markov Chain
Monte Carlo (MCMC) methods (Gelman 

 

et al

 

., 2003). With
a large number of vectors of 

  

θθθθ

 

, drawn from the joint posterior
distribution of 

  

θθθθ

 

, we can abstract any component parameter
of interest and use the large number of simulated values to
approximate the marginal posterior distribution of the parameter.
We programmed our MCMC sampler in the open source
language R and the code is available from the author.

 

Seedling recruitment

 

Beckage 

 

et al

 

. (2000) studied tree recruitment with respect to
canopy gaps and presence of the understory shrub 

 

Rhodo-
dendron maximum

 

 L. The research was conducted in mixed-
oak forests at the Coweeta Hydrologic Laboratory located
near Franklin, NC, USA (in the Southern Appalachians). The
mixed oak forests are dominated by 

 

Quercus prinus

 

 L., 

 

Quercus
coccinea

 

 Muenchh., 

 

Quercus rubra

 

 L., and 

 

Quercus velutina

 

Lam., but 

 

Acer rubrum

 

 dominates the seedling bank. Much
of the forest understory is dominated by 

 

R. maximum

 

, an
ericaceous, evergreen shrub that occurs at all elevations in
the Coweeta basin (Swank & Crossley, 1988). 

 

Rhododendron

 

forms a dense subcanopy layer 3–7 m in height. Stem
densities range from 5000 to 17 000 ha

 

−

 

1

 

 (Baker & van Lear,
1998) and leaf area indices (LAI) range from approximately
4.8 to 6.6. Stem densities in our plots were approx. 8900 ha

 

−

 

1

 

with diameters most frequently ranging from 4 to 7 cm d.b.h.,
but sometimes 

 

>

 

 10 cm d.b.h.
Beckage 

 

et al

 

. (2000) created a series of 12 artificial gaps
under two understory conditions: half of the plots had a dense

 

Rhododendron

 

 understory, while the remaining plots lacked

 

Rhododendron

 

. 

 

Rhododendron

 

 has a patchy distribution at
these sites, permitting experimental gaps (with and without

 

Rhododendron

 

) to be located in close proximity, thus allowing
for consistent overstory composition, slope, soils and micro-
climate. Up to five canopy trees were girdled to create each
gap. Gaps were approx. 20 m in diameter (for expanded gap
definition see Runkle, 1981) with standing dead trees and,
thus, resulted in minimal disturbance to the understory.

A transect comprised of 40 contiguous 1-m

 

2

 

 quadrats
was established across each planned gap before its creation.
Transects included 20 central quadrats spanning the diameter
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of the gap and 20 outer quadrats beneath the surrounding
canopy. However, the border between gap and canopy con-
ditions is irregular, reflecting the canopy shapes of bordering
trees so that all 20 central quadrats might not subtend the
canopy gap (Fig. 3). Consistency of transect orientation is
an important consideration in the present analysis because
elevated light levels, offset toward the north side of canopy
gaps in the northern hemisphere (Canham et al., 1990), affect
the expected distribution of change-point locations. Seven of
the twelve transects were oriented in a general north–south
direction and these were the focus of our analysis. Only three
of these transects contained Rhododendron in their understory.
Beckage et al. (2000) conducted annual surveys of tree
seedlings in the transects in mid to late summer. Recruits that
germinated in the year in which the census was conducted
(i.e. seedlings) were distinguished from older recruits by the
presence of cotyledons and a lack of terminal bud scale scars.
Acer rubrum was the only species with abundant seedlings that
was widely distributed across transects. In the current analysis,
we focus on seedlings of A. rubrum that occurred in the seven
transects, identified above, in a single year (1997).

Model description The Bayesian change-point model for
seedling counts has two components: a model describing
seedling abundance and a model describing change-point
locations. The seedling model is a hierarchical Bayesian
model, so that similar transects or portions of transects
(e.g. with Rhododendron, gap conditions, etc.) were united by
higher levels of the model. This is the Bayesian analogue to
classical random effects models.

The hierarchical model can be described in three stages or
levels. We represent the seedling counts in quadrats by a

vector Xi,j, with subscript i designating the transect and j
representing the quadrat within transect i. At the first level of
the hierarchy, seedling counts in transect i are assumed to be
independent and to follow Poisson distributions with respective
rate parameters  and  depending on whether the portion
of the transect occurs under gap or canopy conditions (Fig. 3).
The second level of the hierarchy links the λi’s for similar
conditions (e.g. gap vs canopy and Rhododendron vs non-
Rhododendron) across transects and assumes that the λi’s follow
a Gamma distribution. We choose the Gamma distribution
because it is commonly used to represent variability in the
means of Poisson random variates. This level allows for the
‘borrowing of strength’ or the use of information from separate
sampling units at a lower level in the hierarchy to estimate a
higher level parameter that spans across sampling units, which
is an important advantage of hierarchical models. While the
seedling counts in individual quadrats are independent Poisson
variates, the means of these Poisson variables are assumed
to be similar, but not identical, across transects. In general, if
only a small amount of data are available for a particular Xi,j,
then the parameter value for the mean level in the gap or
canopy portion of the transect will be close to the mean level
of the other similar transects, there being little evidence to the
contrary. Conversely, if many data are available, the estimated
mean will be close to the mean of the data. With moderate
amounts of data, the estimated mean will be a data-based
compromise between the observed mean level and the overall
mean levels of all similar transects. At the top level of the
hierarchy, the b−1 parameter of the Gamma distribution is
itself distributed as an Inverse Gamma. The hierarchical
random effects model structure allows global inferences to
be made on the two recruitment rate parameters for similar

Fig. 3 (a) Layout of a typical experimental 
gap. The long axis of the transect was 
oriented in a north–south direction. The 
experimental gaps were designed so that 
the central 20 quadrats should subtend the 
canopy opening but the irregular shapes of 
the surrounding canopies make this unlikely. 
(b). The change-point model for a single 
transect. The first change-point occurs at 
quadrat Si for transect i while the second 
change occurs at quadrat Ti.  is the rate 
parameter of a Poisson distribution describing 
the seedling counts in canopy conditions 
while  describes the rates in gap conditions.

λi
c

λi
g

λi
g λi

c
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transects while still allowing for individual transect parameters
to vary. Within groups of similar transects, inferences are
made through lambda stars, λ*’s, which are the expected value
of a randomly selected lambda in that treatment combination
group. Our seedling model is then

where the subscripts g or c indicate gap or canopy conditions,
respectively.

The parameters αc, αg, γc, γg, ςc, and ςg were assigned values
a priori and determined the prior distributions of the seedling
portion of the model. We used the same priors for both canopy
and gap portions of transects allowing the prior parameter
vector to be written as θp = (α, γ, ς). Our set, θp, of prior
parameters was (1.05, 0.01, 0.01). We explored the sensitivity
of our inferences using two other prior sets: alternative prior
set 1 (1.0, 0.01, 0.01) and alternative prior set 2 (12.0, 0.5,
0.5). The prior specification was diffuse for all three prior
sets, allowing the current data to play a dominant role in the
final inference (i.e. the posterior predominately reflects the
data with the prior exerting little influence). In fact, the prior
sets carry the equivalent weight of 0.05, 0 and 11 seedlings,
respectively. In the present case, the results from the three
prior sets were very similar, indicating that they had little
influence on the posterior distribution.

We modeled each transect as having two change-points. In
transect i, the first change-point occurs in quadrat Si and
represents the unknown point where canopy conditions end
and gap conditions begin (Fig. 3). Similarly, Ti is the quadrat
where the second change-point occurs and represents the
transition back from gap to canopy conditions. S i was modeled
as following a multinomial distribution (psj, j = 1… 20) where
psj is the probability of the change occurring in quadrat j. The
prior probabilities for the vector ps were given a Dirichlet
(asj, j = 1 … 20) distribution: the Dirichlet distribution is
conjugate to the multinomial distribution, which facilities
computation of the posterior distribution (Gelman et al.,
2003). The second change-point, Ti, was modeled in a similar
manner. We set, a priori, the components of the vectors a s and
a t to 1/200 so that these priors were diffuse; their influence on
the posterior distribution was equivalent to only 1/10 of a
transect. It is apparent from our model description that we
have constrained the first change-point to occur in the first
half of each transect and the second change point to occur in
the second half of the transect. Furthermore, we have, a priori,
said that the change-point is equally likely to occur in any
quadrat within this region. The change-point of our model is
given by

(S i and T i refer to the first and second change-points in
transect i; aj and a ′j are the Dirichlet priors on the
probabilities, p and p′, of the multinomial distribution for the
first and second change-points).

We combined the Poisson and multinomial portions of our
model to estimate the posterior distribution of all model
parameters. The posterior distribution is proportional to

We again estimated model parameters using MCMC, but in
this case we sampled the posterior distribution using the freely
distributed WINBUGS software that generates samples from the
posterior distribution of a user-specified model (Spiegelhalter
et al., 1995, http://www.mrc-bsu.cam.ac.uk/bugs).

Spatial correlation The model in the preceding section
assumes conditional independence between adjacent quadrats
within each transect. This assumption may be reasonable,
since, given the mean values that apply to a pair of adjacent
quadrats, the actual seedling recruitment within each quadrat
may be independent from neighboring quadrats. Nevertheless,
it is also possible that, for example, soils are more similar in
adjacent areas within a transect compared with quadrats
further away, so that some correlations may appear across
adjacent quadrats, even given the overall mean level. There-
fore, we extended our model to account for potential corre-
lation in adjacent quadrats. The change-point model remains
identical to that above, but we now allow correlations between
seedling counts in adjacent quadrats by including a Gaussian
Markov random field (GMRF) prior for random effects on
the λ across quadrats within a transect (Besag & Kooperberg,
1995; Besag & Higdon, 1999).

We modified the structure of the seedling model to
incorporate the GMRF prior by incorporating a linear model
for treatment effects that allowed for modeling of spatial
effects, i.e. the , of being in quadrat j :
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(Y is the design matrix that codes for gap and canopy
conditions as well as for transects; ββββ is the vector of regression
parameters describing canopy, gap and transect effects).
The transect effect is assumed to be random with mean 0
and precision τ0, where τ0 has a Gamma prior distribution (a
hierarchical model structure). Our design matrix is not full
rank but is nevertheless estimable using Bayesian methods.
The prior vectors were given values of (a0, b0) = (0.1,0.1) and
(τc, τg) = (1.0 × 10−5,1.0 × 10−5). We placed a locally linear
GMRF prior on :

where the spatial effect of being in quadrat j depends on only
quadrats immediately adjacent to the focal quadrat j. The
spatial effects (z’s) model spatially structured residual variance
in seedling abundance that remains after the main effects (e.g.
gaps, Rhododendron, transects) have been estimated. The prior
on the precision parameter  is

with (az, bz) = (0.001,0.001). The diffuse specification of the
prior on means that its estimated value will be primarily
determined by the data. We fit this spatial model using the
‘car.normal’ functionality within the GeoBUGS module of
WINBUGS.

Results

Tree allometry

Our two change-point model fit the observed data well,
with the regression line and change-point locations bisecting
the cloud of observed data points (Fig. 4b). The discontinuity
created by the diameter measurements being taken alterna-
tively at the stem base or breast height has been accounted
for through estimation of an offset (i.e. ‘k’ in Table 1): The
data points in Fig. 4b have been adjusted by k. The estimates
of variance among the three change-point regions were very
different, confirming the need to allow for separate variances
(Table 1). Summary statistics for all model parameter estimates
are presented in Table 1. We also fit a three change-point
model to these data but there was no strong support for a
third change-point, as shown by a flat likelihood and
subsequent strong correlation between change-point locations
and k in this model.

Seedling recruitment

Our models captured the observed variability in seedling
counts across transects (Figs 5 and 6). Three of the four

nonRhododendron transects showed evidence of a strong gap
effect (e.g. higher recruitment rates in the center portion of
the transect) with a much weaker effect in the remaining
transect (Fig. 5). All three of the Rhododendron transects
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Fig. 4 Allometry of longleaf pine in an old growth forest. (a) Heights 
and diameters of individual trees. Stem diameter is measured at the 
base for stems < 1.4 m in height and at 1.4 m for all other stems. 
Note the discontinuity this imposes on the plots of raw data. (b) 
Model fit with location of change-points (vertical dotted lines) and 
estimated tree height (solid line). Note that the discontinuity has been 
adjusted for in the model fit (data points have been adjusted by the 
parameter ‘k’ that estimates the difference in diameter between stem 
base and breast height).

Table 1 Parameter estimates for the two change-point model of tree 
allometry

Parameter

Quantile

Mean 0.025 0.975

β0 −0.0169 −0.0257 −0.00803
β1 0.0553 0.0493 0.0612
β2 1.23 1.11 1.35
β3 0.399 0.337 0.444
k 2.20 1.79 2.75
cp1 2.58 2.52 2.61
cp2 13.8 11.7 17.5

0.000552 0.000442 0.000688
1.15 0.793 1.59

11.5 9.51 13.9

Estimates are based on 40 000 samples following a burn in of 10 000 
samples. ‘Burn in’ is the practice of discarding early Markov Chain 
Monte Carlo (MCMC) iterations to allow convergence to the target 
distribution before using samples to learn about model parameters 
(Gelman et al., 2003). Although our model was parameterized in 
terms of precisions (inverse of variance), we report results in terms of 
variances for ease of interpretation.

σ1
2

σ2
2

σ3
2
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Fig. 5 The mean λ’s or ‘seedling recruitment 
rates’ (solid lines) along with 95% credible 
interval (broken lines) for each 1 m2 quadrat 
(1–40) in the four transects that lack 
Rhododendron. The four transects are 
displayed in separate vertical panels. The 
open circles represent the observed seedling 
counts. The left column (a) display results for 
the nonspatial model while the right column 
(b) displays results for the spatial model.

Fig. 6 The mean λ’s or ‘seedling recruitment 
rates’ (solid lines) along with 95% credible 
interval (broken lines) for each 1 m2 quadrat 
(1–40) in three transects with Rhododendron. 
The three transects are displayed in separate 
vertical panels. The left column (a) display 
results for the non-spatial model while the 
right column (b) displays results for the spatial 
model.
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had higher recruitment rates in the central region of the
transect where the gap was located (Fig. 6). The region of
elevated seedling density was offset to the north in the
Rhododendron transects, as expected in the northern hemisp-
here. The seedling model that included spatial correlation
captured much of the local variation in seedling density
within transects outside of the main gap-canopy effects
(Figs 5b and 6b).

The expected seedling recruitment rate λ* was greater in
gaps compared with closed canopy conditions, with a pro-
bability between 0.92 and 1.00 depending on model and
Rhododendron presence (Table 2). The spatial model resulted
in a higher probability of a gap effect than the nonspatial
model: 0.99 compared with 0.92, and 0.97 compared with
1.00 for nonRhododendron and Rhododendron conditions,
respectively (Table 2). The number of seedlings was 2.8 times
greater in gaps without Rhododendron compared with adja-
cent canopy, but 5.4–7.4 times greater in gaps with Rhodo-
dendron. Despite the larger gap effect with Rhododendron,
seedling density was greater without Rhododendron by a factor
of 2.6 (gap conditions) to 5.1 (canopy conditions). Seedling
density was greater without Rhododendron regardless of
canopy condition with probabilities ranging from 0.90 to
0.98 (Table 2).

Our estimates of seedling recruitment rate integrated across
the uncertainty in change-point locations (Fig. 7). The
change-point locations were better defined in the Rhododen-
dron compared with the nonRhododendron transects (Fig. 7a,c
vs 7b,d). Most of the probability was distributed in narrow
regions for both the first and second change-points in the
Rhododendron plots but was more diffusely distributed in
the nonRhododendron plots. This result is consistent with the
larger gap effect estimated in the Rhododendron plots (Table 2).

Discussion

Change-point models provide a methodology for concurrently
estimating the location of thresholds in ecological or

biological processes, while also estimating parameters that
describe that process on either side of the threshold. We
were able to incorporate the uncertainty in our change-point
locations into estimates of parameters of interest (e.g. slopes
and variance of an allometric relationship, and recruitment
rates of seedlings). We anticipate that this methodology will
be particularly appropriate for modeling ecological responses
to current and past global climate change. Anthropogenic
forcing of the climate system is increasingly expected to result
in large nonlinear system responses as thresholds are crossed
(CACC, 2002): increasing evidence suggests that ecological
systems will display similar threshold responses (Higgins
et al., 2002; Maslin, 2004). The change-point methodology
presented here provides a technique for modeling these
threshold processes.

Tree allometry

Our two change-point model captured the relationship
between tree height and diameter for longleaf pine (Fig. 4b).
We believe that the piecewise linear formulation of our
change-point model is a biologically appropriate model for
this process since the change-points reflect significant
life-history events in longleaf pine. The first change-point, for
example, represents the transition from the ‘grass’ stage during
which longleaf pine juveniles experience growth in stem
diameter and in their root system but little growth in stem
height. This is an adaptation to frequent fires: the juveniles
have dense tufts of needles (superficially resembling a grass
clump) that protect their apical meristems from fire damage
until they have stored sufficient energy reserves for rapid
height growth. This ‘bolting’ strategy safely removes the apical
meristem from the region in the understory where fire damage
is most likely (Platt et al., 1988; Platt & Rathbun, 1993). The
second change-point reflects the entry of the longleaf into
the canopy, after which height growth slows with respect to
diameter growth. Once the stem transitions into the canopy,
height growth is less important as competition for light is

Table 2 Results for seedling counts in gap and canopy conditions in the presence or absence of the understory shrub Rhododendron

NonRhododendron (R–) Rhododendron (R+)

Nonspatial model Spatial model Nonspatial model Spatial model

0.92 0.99 0.97 1.00
4.82 (1.65,12.9) – 1.83 (0.50,5.89) –
1.73 (0.60,4.69) – 0.34 (0.08,1.13) –

Multiplicative factor  – 2.84 (1.68,4.11) – 7.45 (2.48,21.5)
Canopy Gap

P(R– > R+) 0.98 0.97 0.90 0.91

 and  refer to the expected recruitment rate of seedlings in gap or closed canopy conditions, while R– and R+ refer to the absence or presence 
of Rhododendron, respectively. The estimates presented are means while the values in the parentheses given the 95% credible intervals, based 
on 40 000 samples following a burn in of 10 000 samples. The ‘Multiplicative Factor’ represents the factor by which the number of seedlings 
found in quadrats is increased in gap relative to closed canopy conditions.

P g c( *  *)λ λ>
λg*
λc*

λg* λc*
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reduced (i.e. the stem has captured a region of the canopy with
unrestricted exposure to sunlight). We note that inspection
of Fig. 4b suggests that an additional change-point may be
justified in the diameter range of 60–70 cm, where height
growth appears to cease (perhaps as a result of recurrent hurri-
cane damage; Platt & Rathbun, 1993). There are currently
insufficient data to support definitively calling this a change-
point: the likelihood is flat and a third change-point tends to
be placed at smaller diameters. One advantage of Bayesian
methods is that we can use our own judgment to place a
strong prior distribution on the location of the change-point
in the region of 60–70 cm, forcing a change-point in this
region.

Seedling recruitment

Our change-point analysis found strong evidence for an effect
of both gaps and Rhododendron on seedling recruitment. The
density of seedlings was greater in gaps compared with closed
canopy regardless of the presence of Rhododendron (Table 2).
Seedling density was greater in areas outside of Rhododendron

in both gap and canopy conditions compared with areas
lacking the shrub (Table 2). The change-point locations were
more clearly identified in the Rhododendron transects than in
transects without Rhododendron (Fig. 7), which was consistent
with a stronger gap effect, relative to canopy conditions,
within Rhododendron transects (Table 2). Light levels are
generally much lower beneath Rhododendron than in forests
lacking the shrub (Beckage et al., 2000); our results suggest
that even modest increases in light levels associated with small
overstory gaps can increase seedling recruitment under very
low light conditions, such as occur beneath Rhododendron.
The more equivocal identification of the change-point
locations in areas without Rhododendron may be because
background light levels beneath the intact canopy in areas
lacking Rhododendron were relatively high (Beckage et al.,
2000), which would tend to obscure the gap/canopy
boundary when the gap effect on light levels is not large. Our
canopy gaps produced only modest increases in light levels
because of their relatively small size and because of the
presence of standing dead trees, which would tend to reduce
increases in insolation (Beckage et al., 2000).

Fig. 7 The probable locations of the first and 
second change-points for new (first-year) 
seedlings along transects in 1997 estimated 
for (a) nonRhododendron plots using 
nonspatial model, (b) Rhododendron 
plots using nonspatial model, (c) 
nonRhododendron plots using spatial model 
and (d) Rhododendron plots using spatial 
model. The first change-point is constrained 
to occur in the first half of each transect (left 
of broken line) while the second change-point 
must occur in the second half of the transect. 
The height of the bars represents the 
probability of the change point occurring in 
a given quadrat.
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Bayesian models

We fit out change-point models using Bayesian methodology
because of advantages associated with the Bayesian approach
compared with classical approaches. The Bayesian analysis
easily allows inclusion of information from previous studies
through the prior distribution (Gelman et al., 2003). This
provides a simple way of building on the results of previous
work rather than basing all inferences on the current data only.
Furthermore, while some change-point models are estimable
using classical statistical methodology, extending these methods
to more complex problems that are hierarchical or that incor-
porate spatial autocorrelation can be problematic. Bayesian
methods can easily accommodate a large class of complex
models (Clark, 2005). Finally, the types of inferences available
from Bayesian models are better able to address questions of
direct scientific interest (Ellison, 2004). The results of Bayesian
analyses are straightforward to interpret (i.e. they are pro-
bability statements about model parameters conditional on
the data and any available prior information, which is not the
case in classical statistics).

Change-points models have been used extensively in the
statistical literature, but have not been commonly used in
ecology. Edge detection methods have been used by ecologists
to identify regions of rapid change; this is a similar objective
to change-point analyses (Fortin & Drapeau, 1995). Ver Hoef
(1996) presented a change-point model for vertical cover in a
single transect through a grassland, and fitted the model using
an empirical Bayes procedure. The methodology used here
differs from this application in several aspects. Our transect
model accommodates multiple transects by combining them
into several similar groups and using a hierarchical model to
combine information from across groups. Our Bayesian
approach also avoids the practice of using the current data to
estimate parameters of the prior distribution, advocated in
empirical Bayes methods, but generally not accepted by
Bayesians (Ver Hoef, 1996). Finally, we explicitly model spatial
dependence between adjacent quadrats: these methods could
also be used to model temporal dependence in time series data.
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