NR-103
Energy Equations

RADIATION

Total Energy Emitted = \(\varepsilon \sigma T^4 \)

where:

\(\varepsilon = \) object's emissivity (varies from approx. 0-1)

\(\sigma = \) Stephan-Boltzmann constant = \(\frac{8.132 \times 10^{-11} \text{Cal}}{\text{cm}^2 \times \text{min} \times \text{K}^4} \)

\(T = \) absolute temp (K) = \((^\circ\text{C} + 273)\)

2. Wavelength \(\lambda \) at which an object emits at its maximum intensity

\[\lambda = \frac{2897 \mu \text{K}}{T} \]

where: \(T = \) absolute temperature \((^\circ\text{K})\)

NOTE: The only variable in the equation above is "temperature", \(\mu \) is a "unit" not a variable.
3. Potential solar radiation received by any surface =

\[I_o \times \cos(\text{Effective Latitude}) \]

where:
\(I_o \) = intensity received by a surface perpendicular to the sun's rays.

Effective latitude = angle between the sun's rays and a line perpendicular to the surface.

4. Albedo (%) = \(\frac{\text{reflected shortwave radiation}}{\text{incoming incident shortwave radiation}} \times 100 \)

5. Rate of Conductance = \(K \times \Delta T \)

where: \(K \) = thermal conductivity of the media.
\(\Delta T \) = the difference in temperature between the two objects.

6. Latent Heat Transfer = \(LE \)

where:
\(L \) = latent heat of evaporation = \(\frac{590 \text{ cal}}{\text{cm}^3} \)
\(E \) = rate of evaporation expressed in \(\frac{\text{cm}}{\text{min}} \)