
xisoftware

Xi-Text Release 23
API Reference Manual

Table of Contents

1 Introduction to Xi-Text API 4

2 Installation and access to API 5

3 The API file descriptor 6
3.1 Error return codes . 6

4 Slot numbers 8

5 Sequence numbers 9

6 API Functions 10
6.1 Sign-on and off . 10

6.1.1 xt_open . 10
6.1.1.1 Return values . 12
6.1.1.2 Example . 12

6.1.2 xt_close . 12
6.2 Job operations . 12

6.2.1 xt_joblist . 12
6.2.2 xt_jobread . 13
6.2.3 xt_jobfind . 17
6.2.4 xt_jobdata(Unix and Linux) . 17
6.2.5 xt_jobdata (Windows version) . 18
6.2.6 xt_jobpbrk(Unix and Linux versions) . 19
6.2.7 xt_jobpbrk(Windows version) . 20
6.2.8 xt_jobadd (Unix and Linux versions) . 20
6.2.9 xt_jobadd (Windows version) . 22
6.2.10 xt_jobdel . 23
6.2.11 xt_jobupd . 23
6.2.12 xt_jobmon (Unix and Linux versions) . 24
6.2.13 xt_jobmon (Windows version) . 25

6.3 Printer operations . 25
6.3.1 xt_ptrlist . 25
6.3.2 xt_ptrread . 26
6.3.3 xt_ptrfind . 28
6.3.4 xt_ptradd . 29
6.3.5 xt_ptrdel . 30

2

Xi-Text API Reference Manual 3

6.3.6 xt_ptrupd . 30
6.3.7 xt_ptrop . 31
6.3.8 xt_ptrmon . 32

6.4 User permissions . 33
6.4.1 xt_getspu . 33
6.4.2 xt_getspd . 35
6.4.3 xt_putspu . 36
6.4.4 xt_putspd . 37

7 Example API program 39

Chapter 1

Introduction to Xi-Text API

The Xi-Text API enables a C or C++ programmer to access Xi-Text facilities directly from within an appli-
cation. The application may be on a Unix host or on a Windows workstation.

Communication takes place using a TCP connection between the API running on a Windows or Unix
machine and the server process xtnetserv running on the Unix host in question. The same application may
safely make several simultaneous conversations with the same or different host.

The user may submit, change, delete and alter the state of jobs or printers to which he or she has access,
and may receive notification about changes which may require attention. In addition, the user access
control parameters may be viewed and if permitted, changed.

4

Chapter 2

Installation and access to API

The API is provided as two files, a header file xtapi.h and a library file.

The header file should be copied to a suitable location for ready access. On Unix systems we suggest that
the header file is copied to the directory /usr/include/xi so that it may be included in C programs via
the directive:

#include <xi/xtapi.h>

The library file is supplied in the form libxtapi.a or as a shared library libxtapi.so on Unix sys-
tems. This should be copied to /lib or /usr/lib so that it may be linked with the option -lxtapi
when the program is compiled. On some systems you may have to include a socket handling library as
well. The shared library is usually placed in /usr/lib/xi.

On Windows systems the library is supplied as xtapi.dll. Again we suggest that it be placed in the
default search path.

5

Chapter 3

The API file descriptor

Each routine in the API uses a file descriptor to identify the instance in progress. This is an integer value,
and is returned by a successful call to the xt_open or one of the equivalent routines.

All other routines, apart from job string manipulation routines, take this value as a first parameter. As
mentioned before, more than one session may be in progress at once with different xt_open parameters.

Each session with the API should be commenced with a call to xt_open or one of the variant routines and
terminated with a call to xt_close.

3.1 Error return codes

Nearly all the routines return an integer response code. This is usually zero to indicate success (except
for xt_open which returns a positive or zero file descriptor). The error codes are described below.

Those routines which return a pointer to a FILE structure return NULL on error and put the error code in
xtapi_dataerror.

6

Xi-Text API Reference Manual 7

Code Name Meaning

0 XTAPI_OK No error, successful completion

-1 XTAPI_INVALID_FD The file descriptor argument is invalid.

-2 XTAPI_NOMEM Run out of memory allocation within API library.

-3 XTAPI_INVALID_HOSTNAME Invalid host name in xt_open

-4 XTAPI_INVALID_SERVICE Invalid service name in xt_open

-5 XTAPI_NODEFAULT_SERVICE Default service relied upon no default API service set up

-6 XTAPI_NOSOCKET Cannot create socket

-7 XTAPI_NOBIND Cannot bind address to socket

-8 XTAPI_NOCONNECT Connection refused by server

-9 XTAPI_BADREAD Read error on socket

-10 XTAPI_BADWRITE Write error on socket

-11 XTAPI_CHILDPROC Cannot fork to make child process

-23 XTAPI_UNKNOWN_USER User invoking API is unknown on server

-24 XTAPI_ZERO_CLASS Class code is effectively zero

-25 XTAPI_BAD_PRIORITY Invalid priority (outside permitted range)

-26 XTAPI_BAD_COPIES Invalid number of copies (above limit)

-27 XTAPI_BAD_FORM Invalid form type (user is restricted)

-28 XTAPI_NOMEM_QF No memory for queue file on server

-29 XTAPI_BAD_PF Cannot open page file

-30 XTAPI_NOMEM_PF No memory for page file on server

-31 XTAPI_CC_PAGEFILE Cannot create page file

-32 XTAPI_FILE_FULL Server file system is full

-33 XTAPI_QFULL Server message queue full

-34 XTAPI_EMPTYFILE Job file is empty

-35 XTAPI_BAD_PTR Invalid printer name (user restricted)

-36 XTAPI_WARN_LIMIT Job exceeds limit, truncated

-37 XTAPI_PAST_LIMIT Job exceeds limit, not queued

-38 XTAPI_NO_PASSWD Password required and not given

-39 XTAPI_PASSWD_INVALID Invalid password

-40 XTAPI_UNKNOWN_COMMAND Unknown API operation (error in library)

-41 XTAPI_SEQUENCE Sequence error, operation(s) since last read

-42 XTAPI_UNKNOWN_JOB Job not found

-43 XTAPI_UNKNOWN_PTR Printer not found

-44 XTAPI_NOPERM No privilege for operation

-45 XTAPI_NOTPRINTED Job has not been printed

-46 XTAPI_PTR_NOTRUNNING Printer not running

-47 XTAPI_PTR_RUNNING Printer is running

-48 XTAPI_PTR_NULL Null printer name

-49 XTAPI_PTR_CDEV No permission to change device

-50 XTAPI_INVALIDSLOT Invalid slot number

Chapter 4

Slot numbers

Each job or printer is identified to Xi-Text by means of two numbers:

1. The host or network identifier. This is a long corresponding to the internet address in network byte
order. The host identifier is given the type netid_t.

2. The shared memory offset, or slot number. This is the offset in shared memory on the relevant host
of the job or printer and stays constant during the lifetime of the job or printer. The type for this is
slotno_t.

These two quantities uniquely identify any job or printer.

It might be worth noting that there are two slot numbers relating to a remote job or printer.

1. The slot number of the record of the job or printer held in local shared memory. This is the slot
number which will in all cases be manipulated directly by the API.

2. The slot number of the job on the owning host. This is in fact available in the job structures as the
field apispq_rslot and in the printer structure as the field apispp_rslot.

These fields usually have the same value as the slot number in local memory for local jobs or printers, but
this should not be relied upon.

8

Chapter 5

Sequence numbers

These quantities are not available directly, but are held to determine how out-of-date the user’s record of
jobs or printers may be.

Every time you read a job or printer record, the sequence number of the job or printer list is checked, and
if out-of-date, you will receive the error XTAPI_SEQUENCE. This is not so much of an error as a warning.
If you re-read the job or printer required, then you will not receive this error.

If you want to bypass this, you can access the job or printer without worrying about the sequence using
the flag XTAPI_FLAG_IGNORESEQ, however you might receive an error about unknown job or printer if
the job or printer has disappeared.

9

Chapter 6

API Functions

The following sub-sections describe the Xi-Text API C routines including each function's purpose, syntax,
parameters and possible return values.

The function descriptions also contain additional information that illustrate how the function can be used to
carry out tasks.

In some cases there are slight differences between the Unix and Windows variants, these are noted where
appropriate.

6.1 Sign-on and off

6.1.1 xt_open

int xt_open(const char *hostname,
const char *servname,
const classcode_t classcode)

int xt_open(const char *hostname,
const char *servname,
const char *username,
const classcode_t classcode) /* Windows */

int xt_login(const char *hostname,
const char *servname,
const char *username,
char *passwd,
const classcode_t classcode)

int xt_wlogin(const char *hostname,
const char *servname,
const char *username,
char *passwd,
const classcode_t classcode)

int xt_locallogin(const char *servname,

10

Xi-Text API Reference Manual 11

const char *username,
const classcode_t classcode)

int xt_locallogin_byid(const char *servname,
const int ugid_t uid,
const classcode_t classcode)

The function xt_open is used to open a connection to the Xi-Text API. There are some variations in the
semantics depending upon whether the caller is known to be a Unix host or a Windows or other client.
This can be controlled by settings in the servers host file, typically /etc/Xitext-hosts and the user
map file /etc/xi-user.map.

The server will know that the caller is a Unix host if it appears in the hosts file as a potential server, maybe
with a manual keyword to denote that it shouldn’t be connected unless requested (with spconn). In such
cases user names will be taken as Unix user names.

In other cases the user names will be taken as Windows Client user names to be mapped appropriately.

Windows user names are mapped on the server to Unix user names using the user map file and constructs
in the host file, with the latter taking priority.

Note that it is possible to use a different set of passwords on the server from the users’ login passwords,
setting them up with xipasswd. This is desirable in preference to people’s login passwords appearing in
various interface programs.

All of these functions return non-negative (possibly zero) on success, this should be quoted in all other
calls.

In the event of an error, then a negative error code is returned as described on page ??.

xt_open may be used to open a connection with the current effective user id on Unix systems, or (using the
extra username parameter a predefined connection for the given user on Windows systems.

No check takes place of passwords for Unix connections, but the call will only succeed on Windows sys-
tems if the client has a fixed user name assigned to it.

This happens if the client matches entries in /etc/Xitext-hosts of the forms:

mypc - client(unixuser)
unixuser winuser clienthost(mypc)

The call will succeed in the first instance if the user is mapped to unixuser and running on mypc.

In the second case it will succeed if it is running on mypc and winuser is given in the call, whereupon it
will be mapped to unixuser.

This is over-complicated, potentially insecure, and preserved for compatibility only, and xt_open should
only really be used on Unix hosts to log in with the effective user id.

xt_login should normally be used to open a connection to the API with a username and password. If
the client is not registered as a Unix client, then the user name is mapped to a user name on the server
as specified in the user map file or the hosts file. The password should be that for the user mapped to
(possibly as set by xipasswd rather than the login password).

xt_wlogin is similar to xt_login, but guarantees that the user name will be looked up as if the caller were
not registered as Unix client so that there are no surprises if this is changed.

Xi-Text API Reference Manual 12

xt_locallogin and xt_locallogin_byid may be used to set up an API connection on the same machine as
the server without a password. The username, if not null, may be used to specify a user other than that
of the effective user id. To use a user other than the effective user id, Write Admin permission is required.

In all cases, hostname is the name of the host being connected to or null to use the loopback interface.
servname may be NULL to use a standard service name, otherwise an alternative service may be spec-
ified. Note that more than one connection can be open at any time with various combinations of user
names and hosts.

All functions take a classcode which is “anded” with the calling user’s classcode unless the user has
override class permission. The resulting classcode must not be all zeroes, however an argument of zero
will be replaced by the user’s default classcode. This may be used to limit the list of jobs or printers
reported by xt_joblist and xt_ptrlist.

When finished, close the conection with a call to xt_close.

6.1.1.1 Return values

The function returns a positive value if successful, which is the file descriptor used in various other calls,
otherwise one of the error codes listed on page ?? onwards, all of which are negative.

6.1.1.2 Example

int fd;
fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* handle error */

...
}

...
xt_close(fd)

6.1.2 xt_close

int xt_close(const int fd)

The xt_close function is used to close a connection to Xi-Text. Fd is a file descriptor previously returned
by a successful call to xt_open or variant routines.

xt_close returns 0 if successful or XTAPI_INVALID_FD (Invalid File descriptor, a constant defined in
xtapi.h) if the passed file descriptor was not valid, perhaps because it was never opened successfully.

6.2 Job operations

6.2.1 xt_joblist

Xi-Text API Reference Manual 13

int xt_joblist(const int fd,
const unsigned flags,
int *numjobs,
slotno_t **slots)

The xt_joblist function is used to obtain a list of jobs.

Fd is a file descriptor previously returned by a successful call to xt_open or the parallel routines to open a
connection.

Flags is zero, or a bitwise OR of one or more of the following values

XTAPI_FLAG_LOCALONLY Ignore remote printers/hosts, i.e. not local to the server, not the client.

XTAPI_FLAG_USERONLY Ignore other users jobs

Numjobs is a pointer to an integer value which, on successful completion, will contain the number of job
slots returned.

Slots is a pointer to to an array of slot numbers. These slot numbers can be used to access individual
jobs. The memory used by this vector is owned by the API, therefore no attempt should be made by the
user to free it. This contrasts, for example, with X library routines. Also note that certain other calls to the
API, notably xt_ptrlist, with the same value of fd, may reuse the space, so the contents should be copied
if required before other API calls are made.

The function returns 0 if successful otherwise one of the error codes as listed in chapter 3.

An example to list all jobs:

int fd, ret, nj, i;
slotno_t *slots;
fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}
ret = xt_joblist(fd, 0, &nj, &slots);
if (ret < 0) { /* error handling */

...
}
for (i = 0; i < nj; i++) {

slotno_t this_slot = slots[i];
/* process this_slot */
...

}
xt_close(fd);

6.2.2 xt_jobread

int xt_jobread(const int fd,
const unsigned flags,
const slotno_t slot,
struct apispq *jobd)

The xt_jobread function is used to retrieve the details of a job from a given slot number.

Xi-Text API Reference Manual 14

fd is a file descriptor previously returned by xt_open or the equivalent routines.

flags is zero, or a bitwise OR of one or more of the following values

XTAPI_FLAG_LOCALONLY
Ignore remote printers/hosts, (from the point of view of the server, not the
client).

XTAPI_FLAG_USERONLY Ignore other users jobs

XTAPI_FLAG_IGNORESEQ Ignore changes since the list was last read

slot is the slot number corresponding to the job as returned by xt_joblist or xt_jobfindslot.

Jobd is a descriptor, which on return will contain the details of the job in a struct apispq as defined
in xtapi.h and containing the following elements:

Xi-Text API Reference Manual 15

Type Field Description

jobno_t apispq_job Job number

netid_t apispq_netid Host address (network byte order)

netid_t apispq_orighost Originating host address

slotno_t apispq_rslot Slot number on owning machine

time_t apispq_time Time job was submitted

time_t apispq_starttime Time job was started (if applicable)

time_t apispq_hold Time job held to, 0 if not held

unsigned short apispq_nptimeout Time after to delete job if not printed (hours)

unsigned short apispq_ptimeout Time after to delete job if printed (hours)

unsigned short apispq_extrn External job type index

unsigned short apispq_pglim Job size limit applies

long apispq_size Size of job in bytes

long apispq_posn Offset reached if currently being printed

long apispq_pagec Currently-reached page if being printed

char[] apispq_uname User name of job owner

char[] apispq_puname User name of posting user

unsigned char apispq_cps Copies

unsigned char apispq_pri Priority

classcode_t apispq_class Class code bits 1=A 2=B 4=C etc

unsigned short apispq_jflags Job flags

unsigned char apispq_dflags Despooler flags

slotno_t apispq_pslot Printer slot assigned to if printing

unsigned long apispq_start Start page 0=first page

unsigned long apispq_end End page

unsigned long apispq_npages Number of pages

unsigned long apispq_haltat “Halted at” page

char [] apispq_file Job title

char [] apispq_form Job form type

char [] apispq_ptr Printer pattern assigned to job

char [] apispq_flags Post-processing flags

The following bits are set in the apispq_jflags field to indicate job parameters:

Xi-Text API Reference Manual 16

Bit (#define) Meaning

APISPQ_NOH Suppress header

APISPQ_WRT Write result

APISPQ_MAIL Mail result

APISPQ_RETN Retain on queue after printing

APISPQ_ODDP Suppress odd pages

APISPQ_EVENP Suppress even pages

APISPQ_REVOE Invert APISPQ_ODDP and API_EVENP after printing

APISPQ_MATTN Mail attention

APISPQ_WATTN Write attention

APISPQ_LOCALONLY Handle job on local machine only

APISPQ_CLIENTJOB Job originated with windows client

APISPQ_ROAMUSER Job originated with DHCP windows client

The apispq_dflags field contains the following bits:

Bit (#define) Description

APISPQ_PQ Job being printed

APISPQ_PRINTED Job has been printed

APISPQ_STARTED Job has been started

APISPQ_PAGEFILE Job has a page file

APISPQ_ERRLIMIT Error if size limit exceeded

APISPQ_PGLIMIT Size limit in pages not KB

Note that the field apispq_pglim and the field bits APISPQ_ERRLIMIT and APISPQ_PGLIMIT will
always be zero when read, but the description is included for completeness. The fields are only used when
creating jobs.

The function returns 0 if successful otherwise one of the error codes as error codes as listed in chapter 3.

An example to read the names of all jobs

int fd, ret, nj, i;
struct apispq job;
slotno_t *slots;

fd = xt_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */

...
}

ret = xt_joblist(fd, 0, &nj, &slots);
if (ret < 0) { /* error handling */

...
}

for (i = 0; i < nj, i++) {

Xi-Text API Reference Manual 17

ret = xt_jobread(fd, 0, slots[i], &job);
if (ret < 0) { /* error handling */

...
}
printf("%s\n", job.apispq_file);

}

xt_close(fd);

6.2.3 xt_jobfind

int xt_jobfind(const int fd,
const unsigned flags,
const jobno_t jobnum,
const netid_t nid,
slotno_t *slot,
struct apispq *jobd)

int xt_jobfindslot(const int fd,
const unsigned flags,
const jobno_t jobnum,
const netid_t nid,
slotno_t *slot)

The xt_jobfind and xt_jobfindslot functions may be used to find a job from a given job number rather than
by the slot number. xt_jobfind retrieves the job descriptor, xt_jobfindslot just retrieves the slot number.

fd is a file descriptor previously returned by xt_open or the equivalent routines.

flags is zero, or a bitwise OR of one or more of the following values

XTAPI_FLAG_LOCALONLY Ignore remote printers/hosts, (from the point of view of the server, not the client).

XTAPI_FLAG_USERONLY Ignore other users jobs

jobnum is the job number to be searched for.

nid is the network-byte order IP address of the host of the machine whose job is to be searched for. This
should be correct even if XTAPI_FLAG_LOCALONLY is specified.

slot is a pointer to a location in which the slot number of the job is placed if the search is successful. It
may be NULL if this is not required (but this would be almost pointless for xt_jobfindslot).

jobd is a descriptor containing the job descriptor as defined in xtapi.h.

The fields in struct apispq are defined in the xt_jobread documentation on page 14.

The functions return 0 if successful otherwise one of the error codes as listed in chapter 3.

6.2.4 xt_jobdata(Unix and Linux)

FILE *xt_jobdata(const int fd,
const unsigned flags,

Xi-Text API Reference Manual 18

const slotno_t slotno)

The function xt_jobdata is used to retrieve the job file of a job.

fd is a file descriptor previously returned by xt_open or the equivalent routines.

flags is zero, or XTAPI_FLAG_IGNORESEQ to ignore changes since the job list was last read.

slotno is the slot number corresponding to the job previously returned by functions such as xt_joblist or
xt_jobfindslot.

The result is a FILE pointer which can be used with all standard I/O input functions such as fgets(3),
getc(3) etc. At the end of the data fclose(3) must be called. For reasons of synchronisation the file should
be read to the end before other operations are attempted.

If an error is detected, xt_jobdata returns NULL and an error code is placed in the external variable
xtapi_dataerror. This will be one of the error codes as listed in chapter 3.

An example to retrieve the data for a job:

int fd, ret, ch;
slotno_t slot, *list;
FILE *inf;
fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}
/* Select a job slot and assign this to "slot" */

.......
inf = xt_jobdata(fd, 0, slot);
if (!inf) { /* handle errors */

...
}
while ((ch = getc(inf)) != EOF)

putchar(ch);
fclose(inf);
xt_close(fd);

6.2.5 xt_jobdata (Windows version)

int xt_jobdata(const int fd,
const int outfile,
int (*func)(int, void*, unsigned),
const unsigned flags,
const slotno_t slotno)

This format of the xt_jobdata function is for use by Windows programs, as there is no acceptable equivalent
of the pipe(2) construct.

The second argument outfile is (possibly) a file handle to the file to which the job data is passed as the
first argument to func.

Xi-Text API Reference Manual 19

The third argument func is a function with the same specifications as write, indeed it may very well be
write. The main reason for doing it this way is that some versions of Windows do strange things if write is
invoked from within a DLL.

Other aspects of the interface are similar to the Unix routine, apart from the routine returning zero for
success and an error code for failure rather than a FILE* or NULL. For consistency with the Unix version,
the external variable xtapi_dataerror is also assigned any error code returned. This will be one of
the error codes as listed in chapter 3.

6.2.6 xt_jobpbrk(Unix and Linux versions)

FILE *xt_jobpbrk(const int fd,
const unsigned flags,
const slotno_t slotno)

The function xt_jobpbrk is used to retrieve the page break offset file of a job.

fd is a file descriptor previously returned by xt_open or the equivalent routines. Flags is zero, or
XTAPI_FLAG_IGNORESEQ to changes since the job list was last read.

slotno is the slot number corresponding to the job previously returned by functions such as xt_joblist or
xt_jobfindslot.

The result is a FILE pointer which can be used with all standard I/O input functions such as fread(3),
fgets(3), getc(3) etc. At the end of the data fclose(3) must be called. For reasons of synchronisation the file
should be read to the end before other operations are attempted.

If an error is detected, xt_jobpbrk returns NULL and an error code is placed in the external variable
xtapi_dataerror. This will be one of the error codes as listed in chapter 3.

If there is no page offset file, probably because the delimiter is set to formfeed, then this isn’t really an
error, but an error report of XTAPI_BAD_PF will be returned. You can tell whether there is a page file from
the struct apispq job structure returned by xt_jobread or xt_jobfind. The field apispq_dflags has
the bit designated by APISPQ_PAGEFILE set if there is a page file.

The data is returned in three parts.

1. struct apipages This is an instance of the following structure, defined in xtapi.h, and de-
scribed below.

2. delimiter string This is the delimiter string itself,

3. A vector of longs giving the offsets of the start of each page, including the first page, which is always
zero, within the job data (as read by xt_jobdata).

The struct apipages structure is as follows:

struct apipages {
long delimnum; /* Number of delimiters */
long deliml; /* Length of delimiter string */
long lastpage; /* Number of delimiters remaining on last page */

};

Xi-Text API Reference Manual 20

6.2.7 xt_jobpbrk(Windows version)

int xt_jobpbrk(const int fd,
const int outfile,
int (*func)(int, void*, unsigned),
const unsigned flags,
const slotno_t slotno)

This second format of the xt_jobpbrk function is for use by Windows programs, as there is no acceptable
equivalent of the pipe(2) construct.

The second argument outfile is (possibly) a file handle to the file from to which the job data is passed
as the first argument to func.

The third argument func is a function with the same specifications as write, indeed it may very well be
write. The main reason for doing it this way is that some versions of Windows do strange things if write is
invoked from within a DLL.

Other aspects of the interface are similar to the Unix routine, apart from the routine returning zero for
success and an error code for failure rather than a FILE* or NULL. For consistency with the Unix version,
the external variable xtapi_dataerror is also assigned any error code returned.

6.2.8 xt_jobadd (Unix and Linux versions)

FILE *xt_jobadd(const int fd,
struct apispq *jobd,
const char *delim,
const unsigned deliml,
const unsigned delimnum)

int xt_jobres(const int fd,
jobno_t *jobno)

The functions xt_jobadd and xt_jobres are used to add a job under Unix and Linux.

fd is a file descriptor previously returned byxt_open or the equivalent routines.

jobd is a pointer to a struct apispq, as defined in xtapi.h and on page 14 containing all the details
of the job. The fields in struct apispq are defined in there.

Note that we recommend that the whole structure be cleared to zeroes initially and then required fields
added; this approach will cover any future extensions with additional fields which will behave as at present
if zero.

Also note that from release 23 an additional field is provided in the structure. If this is non-zero, then the
size of the job is limited. If the bit APISPQ_PGLIMIT in apispq_dflags is zero, then the size is limited
to the given number of kilobytes. If this bit is set, then the size is limited to the given number of pages. If a
job exceeds the given limit, then its treatment depends upon the setting of the bit APISPQ_ERRLIMIT in
apispq_dflags. If this is zero, then the job is truncated to the given number of kilobytes or pages and
still proceeds (although a warning code is returned by xt_jobres. If it is set, then it is rejected altogether.

Xi-Text API Reference Manual 21

delim is a pointer to a string containing the page delimiter string, or NULL if the user is content with the
single formfeed character. deliml is the length of the delimiter string delim. This is necessary because
delim is not necessarily null-terminated.

delimnum in the number of instances of the delimiter string/character to be counted to make up a page.

The result is either a standard I/O stream, which can be used as output for putc(3), fprintf(3), fwrite(3)
etc, or NULL to indicate an error has been detected. The I/O stream connection should be closed, when
complete, with fclose(3). Finally a call should be made to xt_jobres.

For reasons of synchronisation you must call xt_jobres immediately after fclose(3) even if you are not
interested in the answer. Apart from that several calls to xt_jobadd may be in progress at once to submit
several jobs simultaneously.

xt_jobres returns zero on successful completion (or XTAPI_WARN_LIMIT if the job was truncated but
still submitted). The parameter jobno is assigned the job number of the job created. This value is also
assigned to the field apispq_job in the passed structure jobd to xt_jobadd.

Note that you should not call xt_jobres if xt_jobadd returns NULL for error. Most errors are detected at the
xt_jobadd stage and before any data is passed across, but this should not in general be relied upon.

An example to add a job called readme from standard input:

int fd, ret, ch;
struct apispq outj;
jobno_t jn;
FILE *f;

fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}

/* It is safest to clear the structure first */
memset((void *) &outj, '\0', sizeof(outj));

/* set defaults */

outj.apispq_nptimeout = 24 * 7;
outj.apispq_ptimeout = 24;
outj.apispq_cps = 1;
outj.apispq_pri = 150;

/* The class code specified in xt_open is not used here. However the
user's class code will be &ed with this unless the user has
override class privilege. */

outj.apispq_class = 0xffffffff;

/* set a large page range to to ensure all pages are printed */

outj.apispq_end = 4000;

/* Only the form type is compulsory here. The others may
be set to NULL */

Xi-Text API Reference Manual 22

strcpy(outj.apispq_file, "readme");
strcpy(outj.apispq_form, "a4");
strcpy(outj.apispq_ptr, "laser");

/* add the job with the default page delimiter */

f = xt_jobadd(fd, &outj, (char *) 0, 1, 1);
if (!f) { /* error handling error in xtapi_dataerror */

...
}

/* now send the data */

while ((ch = getchar()) != EOF)
putc(ch, f);

fclose(f);

ret = xt_jobres(fd, &jn);
if (ret < 0) { /* error handling */

...
} else

printf("success the job number is %ld\n", jn);
xt_close(fd);

6.2.9 xt_jobadd (Windows version)

int xt_jobadd(const int fd,
const int infile,
int (*func)(int, void*, unsigned).
struct apispq *jobd,
const char *delim,
const unsigned deliml.
const unsigned delimnum)

This second format of the xt_jobadd function is for use by Windows programs, as there is no acceptable
equivalent of the pipe(2) construct.

The second argument infile is (possibly) a file handle to the file from which the job is created and is
passed as the first argument to func.

The third argument func is a function with the same specifications as read, indeed it may very well be
read. The main reason for doing it this way is that some versions of Windows do strange things if read is
invoked from within a DLL.

Other aspects of the interface are similar to the Unix routine, apart from the routine returning zero for
success and an error code for failure rather than a FILE* or NULL.

There is no xt_jobres in the windows version, the job number is placed in the field apispq_job in
the passed structure jobd to xt_jobadd. For consistency with the Unix version, the external variable
xtapi_dataerror is also assigned any error code returned.

Xi-Text API Reference Manual 23

6.2.10 xt_jobdel

int xt_jobdel(const int fd,
const unsigned flags,
const slotno_t slot)

The xt_jobdel function is used to delete a job, aborting it if it is currently printing.

fd is a file descriptor previously returned by xt_open or the equivalent routines.

flags is zero, or the bitwise OR of one or both of the following:

XTAPI_FLAG_IGNORESEQ Ignore changes since the list was last read

XTAPI_FLAG_FORCE Ignore “not printed” flag

Slot is the slot number corresponding to the job as previously returned by xt_joblist or xt_jobfindslot.

If the job has not been printed, and flags does not contain XTAPI_FLAG_FORCE, then the job will not
be deleted, but the error XTAPI_NOT_PRINTED will be reported. You can tell whether the job has
been printed from the struct apispq job structure returned by xt_jobread or xt_jobfind. The field
apispq_dflags has the bit designated by APISPQ_PRINTED set if it has been printed.

The function returns 0 if successful otherwise one of the error codes as listed in chapter 3.

An example to delete all jobs:

int fd, ret, nj, i;
slotno_t *slots;
fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}
ret = xt_joblist(fd, 0, &nj, &slots);
if (ret < 0) { /* error handling */

...
}
for (i = 0; i < nj; i++) {

ret = xt_jobdel(fd, XTAPI_FLAG_FORCE, slots[i]);
if (ret < 0) { /* error handling */

...
}

}
xt_close(fd);

6.2.11 xt_jobupd

int xt_jobupd(const int fd,
const unsigned flags,
const slotno_t slot,
struct apispq * jobd)

The xt_jobupd function is used to update the details of a job.

Xi-Text API Reference Manual 24

fd is a file descriptor previously returned by xt_open or equivalent routines.

flags is zero, or XTAPI_FLAG_IGNORESEQ to ignore changes since the list was last read.

slot is the slot number corresponding to the job as previously returned by xt_joblist or xt_jobfindslot.

jobd is a descriptor containing the job descriptor as defined in xtapi.h.

The fields in struct apispq are defined in the xt_jobread documentation (see page 14).

Note that we recommend that the whole structure be first read in with xt_jobread or xt_jobfind and then
required fields updated; this approach will cover any future extensions with additional fields.

The function returns 0 if successful otherwise one of the error codes as listed in chapter 3.

An example to change the name of job readme.txt to myfile.

int fd, ret, nj, i;
struct apispq job;
slotno_t *slots;

fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}

/* make a list of jobs */

ret = xt_joblist(fd, 0, &nj, &slots);
if (ret < 0) { /* error handling */

...
}

for (i = 0; i < nj; i++) {
ret = xt_jobread(fd, 0, list[i], &job);
if (ret < 0)

continue;
if (strcmp(job.apispq_file, "readme.txt"))

continue;
strcpy(job.apispq_file, "myfile");
ret = xt_jobupd(fd, 0, list[i], &job);
if (ret < 0) { /* error handling */

...
}
break;

}
xt_close(fd);

6.2.12 xt_jobmon (Unix and Linux versions)

int xt_jobmon(const int fd,
void (*fn)(const int))

The xt_jobmon function is used to set the function fn to be called upon notification of any changes to the
jobs list.

Xi-Text API Reference Manual 25

fd is a file descriptor previously returned by xt_open or equivalent routines.

fn is a function which must be declared as returning void and taking one const int argument. Alter-
natively, this may be NULL to cancel monitoring.

The function fn will be called upon each change to the job list. The argument passed will be fd. Note that
any changes to the job queue are reported (including changes on other hosts whose details are passed
through) as the API does not record which jobs the user is interested in.

The function xt_jobmon returns 0 if successful otherwise the error code XTAPI_INVALID_FD if the file
descriptor is invalid. Invalid fn parameters will not be detected and the application program will probably
crash.

6.2.13 xt_jobmon (Windows version)

int xt_setmon(const int fd,
HWND hWnd,
UINT wMsg)

int xt_procmon(const int fd)

void xt_unsetmon(const int fd)

The xt_setmon routine may be used to monitor changes to the job queue or printer list. Its parameters are
as follows.

fd is a file descriptor previously returned by xt_open or equivalent routines.

hWnd is a windows handle to which messages should be sent.

wMsg is the message id to be passed to the window (WM_USER or a constant based on this is suggested).

To decode the message, the xt_procmon is provided. This returns XTWINAPI_JOBPROD to indicate a
change or changes to the job queue and XTWINAPI_PTRPROD to indicate a change or changes to the
printer list. If there are changes to both, two or more messages will be sent, each of which should be
decoded via separate xt_procmon calls.

To cancel monitoring, invoke the routine

xt_unsetmon(const int fd)

If no monitoring is in progress, or the descriptor is invalid, this call is just ignored.

6.3 Printer operations

6.3.1 xt_ptrlist

int xt_ptrlist(const int fd,
const unsigned flags,
int *numptrs,

Xi-Text API Reference Manual 26

slotno_t **slots)

The xt_ptrlist function is used to obtain a list of printers.

fd is a file descriptor previously returned by xt_open or the equivalent routines.

flags is either zero, or XTAPI_FLAG_LOCALONLY to request that only printers local to the server be
listed.

numptrs is a pointer to an integer value which, on successful completion, will contain the number of
printer slots returned.

slots is a pointer to to an array of slot numbers. These slot numbers can be used to access individual
printers. The memory used by this vector is owned by the API, therefore no attempt should be made by
the user to free it. This contrasts, for example, with X library routines.

Also note that certain other calls to the API, notably xt_joblist, with the same fd, may reuse the space, so
the contents should be copied if required before other API calls are made.

The function returns 0 if successful otherwise one of the error codes as listed in chapter 3.

An example to list all printers

int fd, ret, np, i;
slotno_t *slots;
fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}
ret = xt_ptrlist(fd, 0, &np, &slots);
if (ret < 0) { /* error handling */

...
}
for (i = 0; i < np; i++) {

slotno_t this_slot = slots[i];
/* process this_slot */
...

}
xt_close(fd);

6.3.2 xt_ptrread

int xt_ptrread(const int fd,
const unsigned flags,
const slotno_t slot,
struct apispptr *ptrd)

The xt_ptrread function is used to retrieve the details of a printer from a given slot number.

Fd is a file descriptor previously returned by xt_open or the equivalent routines.

Flags is zero, or a bitwise OR of one of the following values

Xi-Text API Reference Manual 27

XTAPI_FLAG_LOCALONLY
Ignore remote printers/hosts (from the point of view of the server, not the
client).

XTAPI_FLAG_USERONLY Ignore other users jobs

XTAPI_FLAG_IGNORESEQ Ignore changes since the list was last read

slot is the slot number corresponding to the printer as previously returned by a call to xt_ptrlist or
xt_ptrfindslot.

ptrd is a descriptor, which on return will contain the details of the printer in a struct apispptr as defined in
xtapi.h and containing the following elements:

Type Field Description

jobno_t apispp_job Job number being printed

slotno_t apispp_jslot Slot number of job being printed

char apispp_state State of printer

char apispp_sflags Scheduler flags

unsigned char apispp_dflags Despooler flags

unsigned char apispp_netflags Network flags

unsigned short apispp_extrn External printer type 0=standard

classcode_t apispp_class Class code bits 1=A 2=B 4=C etc

int_pid_t apispp_pid Process id of despooler process

netid_t apispp_netid Host id of printer network byte order

slotno_t apispp_rslot Slot number on remote machine

unsigned long apispp_minsize Minimum size of acceptable job

unsigned long apispp_maxsize Maximum size of acceptable job

char [] apispp_dev Device name

char [] apispp_form Form type

char [] apispp_ptr Printer name

char [] apispp_feedback Feedback message

char [] apispp_comment Printer description

The following bits are set in the apispp_sflags field to indicate printer flags:

Bit (#define) Meaning

APISPP_INTER Had interrupt message, not yet acted on it.

APISPP_HEOJ Had halt at end of job

The following bits are set in the apispp_dflags field to indicate printer flags:

Bit (#define) Meaning

APISPP_HADAB Had “Abort” message

APISPP_REQALIGN Alignment required

Xi-Text API Reference Manual 28

The apispp_netflags field contains the following bits:

Bit (#define) Meaning

APISPP_LOCALONLY Printer is local only to host.

APISPP_LOCALHOST Printer uses network filter

The function returns 0 if successful otherwise one of the error codes as listed in chapter 3.

An example to read the names of all printers

int fd, ret, np, i;
struct apispptr ptr;
slotno_t *slots;
fd = xt_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */

...
}
ret = xt_ptrlist(fd, 0, &np, &slots);
if (ret < 0) { /* error handling */

...
}
for (i = 0; i < np, i++) {

ret = xt_ptrread(fd, XTAPI_FLAG_IGNORESEQ, slots[i], &ptr);
if (ret < 0) { /* error handling */

...
}
printf("%s\n", ptr.apispp_ptr);

}
xt_close(fd);

6.3.3 xt_ptrfind

int xt_ptrfind(const int fd,
const unsigned flags,
const char *name,
const netid_t nid,
slotno_t *slot,
struct apispptr *ptrd)

int xt_ptrfindslot(const int fd,
const unsigned flags,
const char *name,
const netid_t nid,
slotno_t *slot)

The xt_ptrfind and xt_ptrfindslot functions may be used to find a printer from a given printer name rather
than by the slot number. xt_ptrfind retrieves the printer description, xt_ptrfindslot just retrieves the slot
number.

fd is a file descriptor previously returned by xt_open or equivalent routines.

flags is zero, or XTAPI_FLAG_LOCALONLY to ignore remote printers/hosts, (from the point of view of
the server, not the client).

Xi-Text API Reference Manual 29

name is the printer name to be searched for.

nid is the network-byte order IP address of the host of the machine whose printer is to be searched for.
This should be correct even if XTAPI_FLAG_LOCALONLY is specified.

slot is a pointer to a location in which the slot number of the printer is placed if the search is successful.
It may be NULL if this is not required (but this would be almost pointless for xt_ptrfindslot).

ptrd is a pointer to a field to contain the printer name as defined in xtapi.h.

The fields in struct apispptr are defined in the xt_ptrread documentation on page 27.

The function returns 0 if successful otherwise one of the error codes as listed in chapter 3.

NB If two or more printers on the same host have the same name, then it is not defined which is
returned by xt_ptrfind and xt_ptrfindslot. In such cases, the whole printer list should be read and
the correct one selected.

6.3.4 xt_ptradd

int xt_ptradd(const int fd,
struct apispptr *ptrd)

The function xt_ptradd is used to install a printer.

fd is a file descriptor previously returned by xt_open.

ptrd is a struct apispptr describing the details of the printer. It is defined in the file xtapi.h and
as described in the xt_ptrread documentation on page 27.

Only values for the name, device, formtype, description, local flag, the minimum and maximum job sizes,
the network filter flag and the class code are accepted. All other parameters are ignored. We suggest
that you clear all fields to zero before starting. Future releases with additional fields will be guaranteed to
default to the existing behaviour if the additional fields are set to zero.

xt_ptradd returns zero if successful, otherwise error codes as listed in chapter 3.

An example to add a printer called hplj1 on device /dev/tty12 with form type a4.

int fd, ret;
struct apispptr ptr;
fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}
memset((void *) &ptr, '\0', sizeof(ptr));
ptr.apispp_class = 0xffffffff;
ptr.apispp_minsize = ptr.apispp_maxsize = 0;
strcpy(ptr.apispp_ptr, "hplj1");
strcpy(ptr.apispp_form, "a4");
strcpy(ptr.apispp_dev, "tty12");
strcpy(ptr.apispp_comment, "My new printer");
ret = xt_ptradd(fd, &ptr);
if (ret < 0) { /* error handling */

Xi-Text API Reference Manual 30

...
}
xt_close(fd);

6.3.5 xt_ptrdel

int xt_ptrdel(const int fd,
const unsigned flags,
const slotno_t slot)

The function xt_ptrdel is used to delete or “uninstall” a printer. Note that the definition of the printer, setup
files and similar in the printers directory on the server, by default /usr/spool/printers, is not altered,
the printer is only removed from the online list.

fd is a file descriptor previously returned by xt_open or similar routines.

Flags is either zero, or XTAPI_FLAG_IGNORESEQ to ignore changes since the list was last read.

slot is the slot number corresponding to the printer as previously returned by xt_ptrlist or xt_ptrfindslot.

xt_ptradd returns zero if successful, otherwise error codes as listed in chapter 3.

An example to delete all printers:

int fd, ret, np, i;
slotno_t *slots;

fd = xt_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */

...
}
ret = xt_ptrlist(fd, XTAPI_LOCALONLY, &np, &slots);
if (ret < 0) { /* error handling */

...
}

for (i = 0; i < np; i++) {
ret = xt_ptrdel(fd, 0, slots[i]);
if (ret < 0) { /* error handling */

...
}

}

xt_close(fd);

6.3.6 xt_ptrupd

int xt_ptrupd(const int fd,
const unsigned flags,
const slotno_t slot,
struct apispp *ptrd)

Xi-Text API Reference Manual 31

The xt_ptrupd function is used to update the details of a printer.

fd is a file descriptor previously returned by xt_open.

flags is zero, or XTAPI_FLAG_IGNORESEQ to ignore changes since the list was last read.

slot is the slot number corresponding to the printer as previously returned by xt_ptrlist or xt_ptrfindslot.

ptrd is a descriptor containing the printer descriptor as defined in xtapi.h.

The fields in struct apispptr are defined in the xt_ptrread documentation on page 27.

Note that we recommend that the whole structure be first read in with xt_ptrread or xt_ptrfind and then
required fields updaated; this approach will cover any future extensions with additional fields.

Only changes to the name device, description, form type, local flag, the minimun and maximum job sizes,
the network filter flag and the class code are accepted, and none at all if the printer is running.

The function returns 0 if successful otherwise one of the error codes as listed in chapter 3.

An example to change the form type on printer hplj1.

int fd, ret;
struct apispptr ptr;
slotno_t pslot;

fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}

/* Find printer */
ret = xt_ptrfind(fd, 0, "hplj1", servip, &pslot, &ptr);
if (ret < 0) { /* error handling */

...
}

strcpy(ptr.apispp_form, "a4.p10");
ret = xt_ptrupd(fd, 0, pslot, &ptr);

if (ret < 0) { /* error handling */
...

}

xt_close(fd);

6.3.7 xt_ptrop

int xt_ptrop(const int fd,
const unsigned flags,
const slotno_t slot,
const unsigned op)

The xt_ptrop function is used to perform an operation on a printer.

Xi-Text API Reference Manual 32

fd is a file descriptor previously returned by xt_open or the equivalent routines.

flags is zero, or XTAPI_FLAG_IGNORESEQ to ignore changes since the list was last read.

slot is the slot number corresponding to the printer as previously returned by a call to xt_ptrlist or
xt_ptrfindslot.

op is one of the following values:

Operation code Description

PRINOP_RSP Restart printer

PRINOP_PHLT Halt printer at the end of the current job

PRINOP_PSTP Halt printer at once

PRINOP_PGO Start printer

PRINOP_OYES Approve alignment page

PRINOP_ONO Disapprove alignment page

PRINOP_INTER Interrupt printer

PRINOP_PJAB Abort current job on printer

The function returns zero if successful, otherwise error codes as listed in chapter 3.

An example to halt all printers:

int fd, ret, np, i;
struct apispptr ptr;
slotno_t *slots;

fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}

/* make a list of all the printers */
ret = xt_ptrlist(fd, 0, &np, &slots);
if (ret < 0) { /* error handling */

...
}

for (i = 0; i < np; i++) {
ret = xt_ptrop(fd, XTAPI_FLAG_IGNORESEQ, slots[i], PRINOP_PHLT);
if (ret < 0 && ret != XTAPI_PTR_NOTRUNNING) {

/* error handling ignoring ones already stopped*/
...

}
}
xt_close(fd);

6.3.8 xt_ptrmon

int xt_ptrmon(const int fd,

Xi-Text API Reference Manual 33

void (*fn)(const int))

NB that this routine is not available in the Windows version, please see the section on xt_setmon in
section 25 which covers both jobs and printers.

The xt_ptrmon function is used to set the function fn to be called upon notification of any changes to the
printers list.

fd is a file descriptor previously returned by xt_open or the equivalent routines.

fn is a function which must be declared as returning void and taking one const int argument. Alterna-
tively, this may be NULL to cancel monitoring.

The function fn will be called with fd as an argument upon each change to the printer list.

Please note that any changes to the printer list is reported as the API does not record which printers the
user is interested in.

The function xt_ptrmon returns 0 if successful otherwise the error code XTAPI_INVALID_FD if the file
descriptor is invalid. Invalid fn parameters will not be detected and the application program will probably
crash.

6.4 User permissions

The following routines access user permissions (in most cases the user will need to have write administra-
tion file privilege).

6.4.1 xt_getspu

int xt_getspu(const int fd,
const char *user,
struct apispdet *res)

The function xt_getspu is used to retrieve the defaults for a particular user. Unless the calling user has
Write Administration File privilege, the user name must be the calling user.

fd is a file descriptor previously returned by xt_open or an equivalent routine.

user is a pointer to the username of the user details being retrieved.

res is a descriptor, which upon return will contain the details of user. The structure apispdet is defined
in the file xtapi.h, and contains the following fields:

Xi-Text API Reference Manual 34

Type Field Description

unsigned char spu_isvalid Valid user ID

char [] spu_resvd1 Reserved

int_ugid_t spu_user User ID

unsigned char spu_minp Minimum priority

unsigned char spu_maxp Maximum priority

unsigned char spu_defp Default priority

char [] spu_form Default form type

char [] spu_formallow Allowed form type pattern

char [] spu_ptr Default printer

char [] spu_ptrallow Allowed printer pattern

unsigned long spu_flgs Privilege flag

classcode_t spu_class Class of printers

unsigned char spu_cps Maximum copies allowed

unsigned char spu_version Release of Xi-Text

The spu_flgs field of res will contain a combination of the following:

PV_ADMIN Administrator (edit admin file)

PV_MASQ Masquerade as other users

PV_SSTOP Can run sstop (can stop scheduler)

PV_FORMS Can use other forms than default

PV_CPRIO Can change priority on queue

PV_OTHERJ Can change other users’ jobs

PV_PRINQ Can move to printer queue

PV_HALTGO Can halt, restart printer

PV_ANYPRIO Can set any priority on queue

PV_CDEFLT Can change own default priority

PV_ADDDEL Can add/delete printers

PV_COVER Can override class

PV_UNQUEUE Can unqueue jobs

PV_VOTHERJ Can view other jobs not neccesarily edit

PV_REMOTEJ Can access remote jobs

PV_REMOTEP Can access remote printers

PV_FREEZEOK Can save default options

PV_ACCESSOK Can access sub-screens

PV_OTHERP Can use other printers from default

ALLPRIVS A combination of all of the above

Xi-Text API Reference Manual 35

The function returns zero if successful, otherwise error codes as listed in chapter 3.

An example to view the privileges of user mark:

int fd, ret;
struct apispdet res;
fd = xt_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */

...
}
ret = xt_getspu(fd, "mark", &res);
if (ret < 0) { /* error handling */

...
}
if (res.spu_flags & PV_HALTGO)

printf("user mark cannot halt printers\n");

printf("marks maximim priority is %d\n", res.spu_maxp);
xt_close(fd);

6.4.2 xt_getspd

int xt_getspd(const int fd,
struct apisphdr *res)

The xt_getspd function is used to retrieve the defaults privileges, form types etc for new users on the host
with which the API is communicating. No particular privilege is required to perform this operation.

fd is a file descriptor previously returned by xt_open or the equivalent routines.

res is a descriptor which upon return will contain the the default user privileges. The structure apisphdr
is defined in xtapi.h and contains the following elements:

Type Field Description

long sph_lastp Time last read password file

unsigned char sph_minp Minimum priority

unsigned char sph_maxp Maximum priority

unsigned char sph_defp Default priority

char [] sph_form Default form type

char [] sph_formallow Allowed form type pattern

char [] sph_ptr Default printer

char [] sph_ptrallow Allowed printer pattern

unsigned long sph_flgs Privilege flag

classcode_t sph_class Class of printers

unsigned char sph_cps Maximum copies allowed

unsigned char sph_version Release of Xi-Text

The spu_flgs field will contain a combination of the following:

Xi-Text API Reference Manual 36

PV_ADMIN Administrator (edit admin file)

PV_MASQ Masquerade as other users

PV_SSTOP Can run sstop (can stop scheduler)

PV_FORMS Can use other forms than default

PV_CPRIO Can change priority on queue

PV_OTHERJ Can change other users’ jobs

PV_PRINQ Can move to printer queue

PV_HALTGO Can halt, restart printer

PV_ANYPRIO Can set any priority on queue

PV_CDEFLT Can change own default priority

PV_ADDDEL Can add/delete printers

PV_COVER Can override class

PV_UNQUEUE Can unqueue jobs

PV_VOTHERJ Can view other jobs not necessarily edit

PV_REMOTEJ Can access remote jobs

PV_REMOTEP Can access remote printers

PV_FREEZEOK Can save default options

PV_ACCESSOK Can access sub-screens

PV_OTHERP Can use other printers from default

ALLPRIVS A combination of all of the above

The function returns zero if successful, otherwise error codes as listed in chapter 3.

An example to view the default privileges on the host machine:

int fd, ret;
struct apisphdr res;

fd = xt_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */

...
}

ret = xt_getspd(fd, &res);
if (ret < 0) { /* error handling */

...
}

if (res.sph_flgs & PV_HALTGO)
printf("users cannot stop and start printers\n");

printf("the default maximum priority is %s\n", res);
xt_close(fd);

6.4.3 xt_putspu

Xi-Text API Reference Manual 37

int xt_putspu(const int fd,
const char *user,
struct apispdet *newp)

The xt_putspu function is used to set privileges for a user. The calling user must have write administration
file privilege, or must be the same as the specified user and be only trying to change the default form type
or priorities (with the appropriate privilege for that).

fd is a file descriptor previously returned by xt_open.

user is a pointer to the user name for which the details are being updated.

newp is a pointer to a structure containing the new user privileges.

The struct apispdet is defined int the file xtapi.h. The fields of the structure are as defined for
xt_getspu on page 33.

he function returns zero if successful, otherwise error codes as listed in chapter 3.

An example to give a user permission to add and delete printers

int fd, ret;
struct apispdet new_privs;

fd = xt_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */

...
}

ret = xt_getspu(fd, "helen", &new_privs);
if (ret < 0) { /* error handling */

...
}

new_privs.spu_flgs |= PV_ADDDEL;

xt_close(fd);

6.4.4 xt_putspd

int xt_putspd(const int fd,
struct apisphdr *ret)

The xt_putspd function is used to set the default user privileges on the local host.

Its parameters are as follows:

fd is a file descriptor previously returned by xt_open.

res points to a structure which contains the privileges. The struct apisphdr is defined in the file
xtapi.h as described for xt_getspd on page 35.

The function returns zero if successful, otherwise error codes as listed in chapter 3.

An example to give all users the permission to add and delete printers:

Xi-Text API Reference Manual 38

int fd, ret;
struct apisphdr new_privs;
fd = xt_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */

...
}
/* get the current permissions */
ret = xt_getspd(fd, &new_privs);
if (ret < 0) { /* error handling */

...
}
new_privs.sph_flgs |= PV_ADDDEL;
ret = xt_putspd(fd, &new_privs);
if (ret < 0) { /* error handling */

...
}
xt_close(fd);

The default permissions now apply to every user not “different“ in some way from the default. So
if you change the default permissions, say to have a different default form type, the users who in
some way differ from the default before will not be changed. You may want to run over all users
and make appropriate adjustments.

Chapter 7

Example API program

The following program is an example program to provide for an “alternative printer” to be activated when a
machine running the main printer is or goes offline. The program runs on the “secondary” machine:

/*
* altprin.c: created by John Collins.

*/

#include <stdio.h>
#include <sys/types.h>
#include "xtapi.h"
#include <unistd.h>
#include <netdb.h>
#include <string.h>

int had_prod;
char *primary, /* Primary host name */

secondary, / Secondary host name */

primary_prin, / Primary printer name */

secondary_prin; / Secondary printer name */

netid_t prim_hostid, sec_hostid;

int xtfd;

/*
* Routine to call when printer event occurs.

* Just set flag and let the main loop look at it

* when it is ready.

*/

void prodder(const int fd)
{

had_prod++;
}

void process(void)
{

39

Xi-Text API Reference Manual 40

/*
* Say we want to know about events affecting printers.

*/

xt_ptrmon(xtfd, prodder);

gotpri:
for (;;) {

int nump, cnt, ret;
slotno_t *slp;
struct apispptr res;

/*
* Wait until something interesting happens to a printer.

*/

pause();
if (!had_prod) /* Huh??? */

continue;
had_prod = 0;

/*
* Get list of printers "slot numbers" into "slp", number

* into "nump".

* We don't really need to do this on each loop if printer

* slot numbers don't change too much, which they don't

*/

if (xt_ptrlist(xtfd, 0, &nump, &slp) < 0)
exit(255);

/*
* Search list for primary printer.

* If found, all is ok, and we go back to sleep.

*/

for (cnt = 0; cnt < nump; cnt++) {
if (xt_ptrread(xtfd,

XTAPI_FLAG_IGNORESEQ,
slp[cnt],
&res) < 0)

exit(254);
if (res.apispp_netid != prim_hostid)

continue;
if (strcmp(res.apispp_ptr, primary_prin) == 0)

goto gotpri;
}

/*
* We didn't find primary printer, so we start up the

* secondary printer. First find the thing.

*/

for (cnt = 0; cnt < nump; cnt++) {

Xi-Text API Reference Manual 41

if (xt_ptrread(xtfd,
XTAPI_FLAG_IGNORESEQ,
slp[cnt],
&res) < 0)

exit(254);
if (res.apispp_netid != sec_hostid)

continue;
if (strcmp(res.apispp_ptr, secondary_prin) == 0)

goto gotsec;
}
fprintf(stderr, "Cannot find secondary printer, %s\n", secondary_prin);

exit(200);

/*
* Found secondary printer, print a warning message

* if already running.

*/

gotsec:
if (res.apispp_state >= API_PRPROC) {

fprintf(stderr,
"I think that the secondary printer is already running\n");

exit(0);
}

/*
* Tell the world, start it up, and exit

*/

fprintf(stderr, "Activating secondary printer
%s:%s\n", secondary, secondary_prin);

if ((ret = xt_ptrop(xtfd, XTAPI_FLAG_IGNORESEQ, slp[cnt], PRINOP_PGO))
< 0) {

printf("Error starting printer - %d\n", ret);
exit(0);

}
}

int main(int argc, char **argv)
{

extern intoptind;
extern char *optarg;
int ch;
struct hostent*hp;
char *cp;
static char myname[256];

/*
* Get "my" host name.

*/

myname[sizeof(myname) - 1] = '\0';
gethostname(myname, sizeof(myname) - 1);

Xi-Text API Reference Manual 42

if (!(hp = gethostbyname(myname))) {
fprintf(stderr, "Who am I???\n");
return 10;

}

/*
* Get arguments giving primary and secondary printers.

*/

while ((ch = getopt(argc, argv, "p:s:")) != EOF) {
switch (ch) {
default:

fprintf(stderr,
"Usage: altprin -p primary -s secondary\n");

return 1;
case 'p':

primary = optarg;
break;

case 's':
secondary = optarg;
break;

}
}

if (!primary) {
fprintf(stderr, "No primary host:printer name given\n");
return 2;

}
if (!secondary) {

fprintf(stderr, "No secondary host:printer name given\n");
return 3;

}

/*
* Split host:printer names into separate strings.

* If not host name, tack on "my" name.

*/

if (cp = strchr(primary, ':')) {

*cp = '\0';
primary_prin = cp+1;

}
else {

primary_prin = primary;
primary = myname;
fprintf(stderr, "Primary printer on local host?\n");

}
if (cp = strchr(secondary, ':')) {

*cp = '\0';
secondary_prin = cp+1;

}
else {

secondary_prin = secondary;
secondary = myname;

Xi-Text API Reference Manual 43

}

if (strcmp(primary, secondary) == 0) {
fprintf(stderr, "Sorry both printers on the same host\n");
return 4;

}

/*
* Get host ids, used in scanning printer list.

*/

if (!(hp = gethostbyname(primary))) {
fprintf(stderr, "Sorry, unknown primary host name %s\n",

primary);
return 5;

}
else

prim_hostid = *(netid_t *) hp->h_addr;

if (!(hp = gethostbyname(secondary))) {
fprintf(stderr, "Sorry, unknown secondary host name %s\n",

secondary);
return 6;

}
else

sec_hostid = *(netid_t *) hp->h_addr;

/*
* Open API link.

*/

if ((xtfd = xt_open(secondary, (char *) 0, 0)) < 0) {
fprintf(stderr,

"Sorry, cannot open connection to secondary host\n");
return 7;

}

/*
* Fork off to leave a daemon process.

* (You might want to set process group, ignore

* signals and/or reconnect

* stdout/stderr).

*/

if (fork() != 0)
return 0;

/*
* Do the business (no return).

*/

process();
}

	Introduction to Xi-Text API
	Installation and access to API
	The API file descriptor
	Error return codes

	Slot numbers
	Sequence numbers
	API Functions
	Sign-on and off
	xt_open
	Return values
	Example

	xt_close

	Job operations
	xt_joblist
	xt_jobread
	xt_jobfind
	xt_jobdata(Unix and Linux)
	xt_jobdata (Windows version)
	xt_jobpbrk(Unix and Linux versions)
	xt_jobpbrk(Windows version)
	xt_jobadd (Unix and Linux versions)
	xt_jobadd (Windows version)
	xt_jobdel
	xt_jobupd
	xt_jobmon (Unix and Linux versions)
	xt_jobmon (Windows version)

	Printer operations
	xt_ptrlist
	xt_ptrread
	xt_ptrfind
	xt_ptradd
	xt_ptrdel
	xt_ptrupd
	xt_ptrop
	xt_ptrmon

	User permissions
	xt_getspu
	xt_getspd
	xt_putspu
	xt_putspd

	Example API program

