Copyright © 1985-2000 by the Massachusetts Institute of Technology.

Export of software employing encryption from the United States of America may require
a specific license from the United States Government. It is the responsibility of any
person or organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of M.I.T. not be used in advertising
or publicity pertaining to distribution of the software without specific, written prior permission.
Furthermore if you modify this software you must label your software as modified software and not
distribute it in such a fashion that it might be confused with the original MIT software. M.I.T.
makes no representations about the suitability of this software for any purpose. It is provided “as
is” without express or implied warranty.

The following copyright and permission notice applies to the OpenVision Kerberos Administration
system located in kadmin/create, kadmin/dbutil, kadmin/passwd, kadmin/server, lib/kadm5, and
portions of lib/rpc:

Copyright, OpenVision Technologies, Inc., 1996, All Rights Reserved

WARNING: Retrieving the OpenVision Kerberos Administration system source code,
as described below, indicates your acceptance of the following terms. If you do not
agree to the following terms, do not retrieve the OpenVision Kerberos administration
system.

You may freely use and distribute the Source Code and Object Code compiled from it,
with or without modification, but this Source Code is provided to you "AS IS" EX-
CLUSIVE OF ANY WARRANTY, INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE, OR ANY OTHER WARRANTY, WHETHER EXPRESS OR IMPLIED.
IN NO EVENT WILL OPENVISION HAVE ANY LIABILITY FOR ANY LOST
PROFITS, LOSS OF DATA OR COSTS OF PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES, OR FOR ANY SPECIAL, INDIRECT, OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THIS AGREEMENT, INCLUDING, WITH-
OUT LIMITATION, THOSE RESULTING FROM THE USE OF THE SOURCE
CODE, OR THE FAILURE OF THE SOURCE CODE TO PERFORM, OR FOR
ANY OTHER REASON.

OpenVision retains all copyrights in the donated Source Code. OpenVision also retains
copyright to derivative works of the Source Code, whether created by OpenVision or by
a third party. The OpenVision copyright notice must be preserved if derivative works
are made based on the donated Source Code.

OpenVision Technologies, Inc. has donated this Kerberos Administration system to
MIT for inclusion in the standard Kerberos 5 distribution. This donation underscores
our commitment to continuing Kerberos technology development and our gratitude for
the valuable work which has been performed by MIT and the Kerberos community.

Kerberos V5 includes documentation and software developed at the University of California at
Berkeley, which includes this copyright notice:

Copyright © 1983 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
 and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 and the following disclaimer in the documentation and/or other materials provided with the
distribution.
3. All advertising materials mentioning features or use of this software must display the following
 acknowledgement:
 This product includes software developed by the University of California, Berkeley
 and its contributors.
4. Neither the name of the University nor the names of its contributors may be used to endorse
 or promote products derived from this software without specific prior written permission.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notices and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.
Table of Contents

1 **Introduction** ... 1
 1.1 Why Should I use Kerberos? ... 1
 1.2 Documentation for Kerberos V5 1
 1.3 Overview of This Guide ... 1

2 **How Kerberos Works** .. 3
 2.1 Network Services and Their Client Programs 3
 2.2 Kerberos Tickets ... 3
 2.3 The Kerberos Database ... 3
 2.4 Kerberos Realms ... 4
 2.5 The Ticket-Granting Ticket ... 4
 2.6 Network Services and the Master Database 4
 2.6.1 The Keytab File ... 5
 2.7 The User/Kerberos Interaction 5
 2.8 Definitions ... 6

3 **Configuration Files** .. 7
 3.1 krb5.conf ... 7
 3.1.1 [libdefaults] ... 8
 3.1.2 [appdefaults] .. 9
 3.1.3 [realms] ... 10
 3.1.4 [domain.realm] .. 10
 3.1.5 [logging] ... 10
 3.1.6 [capaths] ... 12
 3.1.7 Sample krb5.conf File 13
 3.2 kdc.conf ... 15
 3.2.1 [kdcdefaults] .. 15
 3.2.2 [realms] ... 15
 3.2.3 Sample kdc.conf File ... 17

4 **Administrating the Kerberos Database** 19
 4.1 Kadmin Options ... 19
 4.2 Date Format .. 20
 4.3 Principals .. 21
 4.3.1 Retrieving Information About a Principal 21
 4.3.1.1 Attributes .. 21
 4.3.1.2 Retrieving a List of Principals 22
4.3.2 Privileges .. 23
4.3.3 Adding or Modifying Principals 23
4.3.4 Deleting Principals 27
4.3.5 Changing Passwords 27
4.4 Policies ... 28
 4.4.1 Retrieving Policies 28
 4.4.2 Retrieving the List of Policies 29
 4.4.3 Adding or Modifying Policies 29
 4.4.4 Deleting Policies 30
4.5 Dumping a Kerberos Database to a File 31
4.6 Restoring a Kerberos Database from a Dump File 32
4.7 Creating a Stash File 32
4.8 Creating and Destroying a Kerberos Database 33

5 Application Servers ... 35
 5.1 Keytabs ... 35
 5.1.1 Adding Principals to Keytabs 35
 5.1.2 Removing Principals from Keytabs 36
 5.2 Clock Skew .. 37
 5.3 Getting DNS Information Correct 37
 5.4 Configuring Your Firewall to Work With Kerberos V5 38

6 Backups of Secure Hosts 41
 6.1 Backing Up the Kerberos Database 41

7 Bug Reporting .. 43

Appendix A Appendix ... 47
 A.1 Kerberos Error Messages 47
 A.1.1 Kerberos V5 Library Error Codes 47
 A.1.2 Kerberos V5 Database Library Error Codes ... 54
 A.1.3 Kerberos V5 Magic Numbers Error Codes 54
 A.1.4 ASN.1 Error Codes 56
 A.1.5 GSSAPI Error Codes 57
 A.2 kadmin Time Zones 57
1 Introduction

1.1 Why Should I use Kerberos?

Since Kerberos negotiates authenticated, and optionally encrypted, communications between two points anywhere on the internet, it provides a layer of security that is not dependent on which side of a firewall either client is on. Since studies have shown that half of the computer security breaches in industry happen from inside firewalls, Kerberos V5 from MIT will play a vital role in the security of your network.

1.2 Documentation for Kerberos V5

This document is one piece of the document set for Kerberos V5. The documents, and their intended audiences, are:

- **Kerberos V5 Installation Guide**: a concise guide for installing Kerberos V5. Kerberos administrators (particularly whoever will be making site-wide decisions about the installation) and the system administrators who will be installing the software should read this guide.

- **Kerberos V5 System Administrator’s Guide**: a sysadmin’s guide to administering a Kerberos installation. The System Administrator’s Guide describes the administration software and suggests policies and procedures for administering a Kerberos installation. Anyone who will have administrative access to your Kerberos database should read this guide.

- **Kerberos V5 UNIX User’s Guide**: a guide to using the Kerberos UNIX client programs. All users on UNIX systems should read this guide, particularly the “Tutorial” section.

1.3 Overview of This Guide

The next chapter describes how Kerberos works.

Chapter three describes administration of the principals in the Kerberos database.

Chapter four describes administrative programs for manipulating the Kerberos database as a whole.

Chapter five describes issues to consider when adding an application server to the database.

Chapter six describes our problem reporting system.

The appendices include sample configuration files, the list of Kerberos error messages, and a complete list of the time zones understood by kadmin.
2 How Kerberos Works

This section provides a simplified description of a general user's interaction with the Kerberos system. This interaction happens transparently—users don’t need to know and probably don’t care about what’s going on—but Kerberos administrators might find a schematic description of the process useful. This description glosses over a lot of details; for more information, see Kerberos: An Authentication Service for Open Network Systems, a paper presented at Winter USENIX 1988, in Dallas, Texas. This paper can be retrieved by FTP from athena-dist.mit.edu, in the location: /pub/ATHENA/kerberos/doc/USENIX.ps.

2.1 Network Services and Their Client Programs

In an environment that provides network services, you use client programs to request services from server programs that are somewhere on the network. Suppose you have logged in to a workstation and you want to ‘rlogin’ to a typical UNIX host. You use the local ‘rlogin’ client program to contact the remote machine's ‘rlogind’ daemon.

2.2 Kerberos Tickets

Under Kerberos, the ‘klogind’ daemon allows you to login to a remote machine if you can provide ‘klogind’ a Kerberos ticket which proves your identity. In addition to the ticket, you must also have possession of the corresponding ticket session key. The combination of a ticket and the ticket’s session key is known as a credential.

Typically, a client program automatically obtains credentials identifying the person using the client program. The credentials are obtained from a Kerberos server that resides somewhere on the network. A Kerberos server maintains a database of user, server, and password information.

2.3 The Kerberos Database

Kerberos will give you credentials only if you have an entry in the Kerberos server’s Kerberos database. Your database entry includes your Kerberos principal (an identifying string, which is often just your username), and your Kerberos password. Every Kerberos user must have an entry in this database.
2.4 Kerberos Realms

Each administrative domain will have its own Kerberos database, which contains information about the users and services for that particular site or administrative domain. This administrative domain is the Kerberos realm.

Each Kerberos realm will have at least one Kerberos server, where the master Kerberos database for that site or administrative domain is stored. A Kerberos realm may also have one or more slave servers, which have read-only copies of the Kerberos database that are periodically propagated from the master server. For more details on how this is done, see the “Set Up the Slave KDCs for Database Propagation” and “Propagate the Database to Each Slave KDC” sections of the Kerberos V5 Installation Guide.

2.5 The Ticket-Granting Ticket

The ‘kinit’ command prompts for your password. If you enter it successfully, you will obtain a ticket-granting ticket and a ticket session key which gives you the right to use the ticket. This combination of the ticket and its associated key is known as your credentials. As illustrated below, client programs use your ticket-granting ticket credentials in order to obtain client-specific credentials as needed.

Your credentials are stored in a credentials cache, which is often just a file in /tmp. The credentials cache is also called the ticket file, especially in Kerberos V4 documentation. Note, however, that a credentials cache does not have to be stored in a file.

2.6 Network Services and the Master Database

The master database also contains entries for all network services that require Kerberos authentication. Suppose that your site has a machine, ‘laughter.mit.edu’, that requires Kerberos authentication from anyone who wants to ‘rlogin’ to it. The host’s Kerberos realm is ‘ATHENA.MIT.EDU’.

This service must be registered in the Kerberos database, using the proper service name, which in this case is the principal:

 host/laughter.mit.edu@ATHENA.MIT.EDU

The ‘/’ character separates the Kerberos primary (in this case, ‘host’) from the instance (in this case, ‘laughter.mit.edu’); the ‘@’ character separates the realm name (in this case, ‘ATHENA.MIT.EDU’) from the rest of the principal. The primary, ‘host’, denotes the name or type of the service that is being offered: generic host-level access to the machine. The instance, ‘laughter.mit.edu’, names the specific machine that is offering this service. There will generally be many different machines, each offering one particular type of service, and the instance serves to give each one of these servers a different Kerberos principal.
2.6.1 The Keytab File

For each service, there must also be a service key known only by Kerberos and the service. On the Kerberos server, the service key is stored in the Kerberos database.

On the server host, these service keys are stored in key tables, which are files known as keytabs.\(^1\) For example, the service keys used by services that run as root are usually stored in the keytab file `/etc/kgb5.keytab`. N.B.: This service key is the equivalent of the service's password, and must be kept secure. Data which is meant to be read only by the service is encrypted using this key.

2.7 The User/Kerberos Interaction

Suppose that you walk up to a host intending to login to it, and then `rlogin` to the machine `laugther`. Here's what happens:

1. You login to the workstation and use the `kinit` command to get a ticket-granting ticket. This command prompts you for your Kerberos password. (On systems running the Kerberos V5 `login` program, this may be done as part of the login process, not requiring the user to run a separate program.)
 A. The `kinit` command sends your request to the Kerberos master server machine. The server software looks for your principal name's entry in the Kerberos database.
 B. If this entry exists, the Kerberos server creates and returns a ticket-granting ticket and the key which allows you to use it, encrypted by your password. If `kinit` can decrypt the Kerberos reply using the password you provide, it stores this ticket in a credentials cache on your local machine for later use. The name of the credentials cache can be specified in the `KERB5CCNAME` environment variable. If this variable is not set, the name of the file will be `'/tmp/krb5cc_<uid>'`, where `<uid>` is your UNIX user-id, represented in decimal format.

2. Now you use the `rlogin` client to access the machine `laugther`.

 host% rlogin laughter

 A. The `rlogin` client checks your ticket file to see if you have a ticket for the `host` service for `laugther`. You don't, so `rlogin` uses the credential cache's ticket-granting ticket to make a request to the master server's ticket-granting service.
 B. This ticket-granting service receives the request for a ticket for `host/laugther.mit.edu`, and looks in the master database for an entry for `host/laugther.mit.edu`. If the entry exists, the ticket-granting service issues you a ticket for that service. That ticket is also cached in your credentials cache.

\(^1\) Keytabs were called `srvtabs` in Kerberos V4.
C. The `rlogin` client now sends that ticket to the `laugher` `klogind` service program. The service program checks the ticket by using its own service key. If the ticket is valid, it now knows your identity. If you are allowed to login to `laugher` (because your username matches one in `/etc/passwd`, or your Kerberos principal is in the appropriate `.k5login` file), `klogind` will let you login.

2.8 Definitions

Following are definitions of some of the Kerberos terminology.

- **client** an entity that can obtain a ticket. This entity is usually either a user or a host.
- **host** a computer that can be accessed over a network.
- **Kerberos** in Greek mythology, the three-headed dog that guards the entrance to the underworld. In the computing world, Kerberos is a network security package that was developed at MIT.
- **KDC** Key Distribution Center. A machine that issues Kerberos tickets.
- **keytab** a key table file containing one or more keys. A host or service uses a keytab file in much the same way as a user uses his/her password.
- **principal** a string that names a specific entity to which a set of credentials may be assigned. It generally has three parts:
 - **primary** the first part of a Kerberos principal. In the case of a user, it is the username. In the case of a service, it is the name of the service.
 - **instance** the second part of a Kerberos principal. It gives information that qualifies the primary. The instance may be null. In the case of a user, the instance is often used to describe the intended use of the corresponding credentials. In the case of a host, the instance is the fully qualified hostname.
 - **realm** the logical network served by a single Kerberos database and a set of Key Distribution Centers. By convention, realm names are generally all uppercase letters, to differentiate the realm from the internet domain.

The typical format of a typical Kerberos principal is primary/instance@REALM.

- **service** any program or computer you access over a network. Examples of services include “host” (a host, e.g., when you use `telnet` and `rsh`), “ftp” (FTP), “krbtgt” (authentication; cf. `ticket-granting ticket`), and “pop” (email).

- **ticket** a temporary set of electronic credentials that verify the identity of a client for a particular service.

- **TGT** Ticket-Granting Ticket. A special Kerberos ticket that permits the client to obtain additional Kerberos tickets within the same Kerberos realm.
3 Configuration Files

3.1 krb5.conf

The **krb5.conf** file contains Kerberos configuration information, including the locations of KDCs and admin servers for the Kerberos realms of interest, defaults for the current realm and for Kerberos applications, and mappings of hostnames onto Kerberos realms. Normally, you should install your **krb5.conf** file in the directory `/etc`. You can override the default location by setting the environment variable `KRB5_CONFIG`.

The **krb5.conf** file is set up in the style of a Windows INI file. Sections are headed by the section name, in square brackets. Each section may contain zero or more relations, of the form:

```plaintext
foo = bar
```

or

```plaintext
fubar = {
    foo = bar
    baz = quux
}
```

The **krb5.conf** file may contain any or all of the following seven sections:

- **libdefaults** Contains default values used by the Kerberos V5 library.
- **appdefaults** Contains default values used by Kerberos V5 applications.
- **realms** Contains subsections keyed by Kerberos realm names. Each subsection describes realm-specific information, including where to find the Kerberos servers for that realm.
- **domain_realm** Contains relations which map domain names and subdomains onto Kerberos realm names. This is used by programs to determine what realm a host should be in, given its fully qualified domain name.
- **logging** Contains relations which determine how Kerberos programs are to perform logging.
- **capaths** Contains the authentication paths used with direct (nonhierarchical) cross-realm authentication. Entries in this section are used by the client to determine the intermediate realms which may be used in cross-realm authentication. It is also used by the end-service when checking the transited field for trusted intermediate realms.
- **kdc** For a KDC, may contain the location of the kdc.conf file.
3.1.1 [libdefaults]

The **libdefaults** section may contain any of the following relations:

default.realm
Identifies the default Kerberos realm for the client. Set its value to your Kerberos realm.

default_tgs_enctypes
Identifies the supported list of session key encryption types that should be returned by the KDC. The list may be delimited with commas or whitespace. Currently, the supported encryption types are "des3-hmac-sha1" and "des-cbc-crc". Support for other encryption types is planned in the future.

default_tkt_enctypes
Identifies the supported list of session key encryption types that should be requested by the client. The format is the same as for **default_tkt_enctypes**. Again, the only supported encryption types are "des3-hmac-sha1" and "des-cbc-crc".

clockskew
Sets the maximum allowable amount of clockskew in seconds that the library will tolerate before assuming that a Kerberos message is invalid. The default value is 300 seconds, or five minutes.

checksum_type
Used for compatibility with DCE security servers which do not support the default CKSUMTYPE_RSA_MD5 used by this version of Kerberos. A value of 1 indicates the default checksum type. Use a value of 2 to use the CKSUMTYPE_RSA_MD4 instead. This applies to DCE 1.1 and earlier.

ccache_type
Use this parameter on systems which are DCE clients, to specify the type of cache to be created by knit, or when forwarded tickets are received. DCE and Kerberos can share the cache, but some versions of DCE do not support the default cache as created by this version of Kerberos. Use a value of 1 on DCE 1.0.3a systems, and a value of 2 on DCE 1.1 systems.

dns_lookup_kdc
Indicate whether DNS SRV records should be used to locate the KDCs and other servers for a realm, if they are not listed in the information for the realm. (Note that the `admin_server` entry must be in the file, because the DNS implementation for it is incomplete.)

Enabling this option does open up a type of denial-of-service attack, if someone spoofs the DNS records and redirects you to another server. However, it’s no worse than a denial of service, because that fake KDC will be unable to decode anything you send it (besides the initial ticket request, which has no encrypted data), and anything the
fake KDC sends will not be trusted without verification using some secret that it won't know.

If this option is not specified but `dns_fallback` is, that value will be used instead. If neither option is specified, the behavior depends on configure-time options; if none were given, the default is to enable this option. If the DNS support is not compiled in, this entry has no effect.

dns_lookup_realm

Indicate whether DNS TXT records should be used to determine the Kerberos realm of a host.

Enabling this option may permit a redirection attack, where spoofed DNS replies persuade a client to authenticate to the wrong realm, when talking to the wrong host (either by spoofing yet more DNS records or by intercepting the net traffic). Depending on how the client software manages hostnames, however, it could already be vulnerable to such attacks. We are looking at possible ways to minimize or eliminate this exposure. For now, we encourage more adventurous sites to try using Secure DNS.

If this option is not specified but `dns_fallback` is, that value will be used instead. If neither option is specified, the behavior depends on configure-time options; if none were given, the default is to disable this option. If the DNS support is not compiled in, this entry has no effect.

dns_fallback

General flag controlling the use of DNS for Kerberos information. If both of the preceding options are specified, this option has no effect.

3.1.2 [appdefaults]

Each tag in the [appdefaults] section names a Kerberos V5 application. The value of the tag is a subsection with relations that define the default behaviors for that application.

For example:

```ini
[appdefaults]
kinit = {
    forwardable = true
}
telnet = {
    forward = true
    encrypt = true
    autologin = true
}
```

The list of specifiable options for each application may be found in that application’s man pages. The application defaults specified here are overridden by those specified in the [realms] section.
3.1.3 [realms]

Each tag in the [realms] section of the file is the name of a Kerberos realm. The value of the tag is a subsection with relations that define the properties of that particular realm. For each realm, the following tags may be specified in the realm's subsection:

kdc The name of a host running a KDC for that realm. An optional port number (separated from the hostname by a colon) may be included.

admin_server Identifies the host where the administration server is running. Typically, this is the master Kerberos server.

application defaults Application defaults that are specific to a particular realm may be specified within that realm’s tag. Realm-specific application defaults override the global defaults specified in the [appdefaults] section.

3.1.4 [domain_realms]

The [domain_realms] section provides a translation from a domain name or hostname to a Kerberos realm name. The tag name can be a host name, or a domain name, where domain names are indicated by a prefix of a period (‘.’). The value of the relation is the Kerberos realm name for that particular host or domain. Host names and domain names should be in lower case.

If no translation entry applies, the host’s realm is considered to be the hostname’s domain portion converted to upper case. For example, the following [domain_realms] section:

[domain_realms]
.mit.edu = ATHENA/MIT.EDU
mit.edu = ATHENA/MIT.EDU
crash.mit.edu = TEST.ATHENA/MIT.EDU
fubar.org = FUBAR.ORG

maps crash.mit.edu into the TEST.ATHENA/MIT.EDU realm. All other hosts in the mit.edu domain will map by default to the ATHENA/MIT.EDU realm, and all hosts in the fubar.org domain will map by default into the FUBAR.ORG realm. Note the entries for the hosts mit.edu and fubar.org. Without these entries, these hosts would be mapped into the Kerberos realms ‘EDU’ and ‘ORG’, respectively.

3.1.5 [logging]

The [logging] section indicates how a particular entity is to perform its logging. The relations in this section assign one or more values to the entity name. Currently, the following entities are used:
admin_server

These entries specify how the administrative server is to perform its logging.

default

These entries specify how to perform logging in the absence of explicit specifications otherwise.

Values are of the following forms:

FILE=<filename>
FILE:<filename>
This value causes the entity’s logging messages to go to the specified file. If the ‘=’ form is used, the file is overwritten. If the ‘: ’ form is used, the file is appended to.

STDOUT

This value causes the entity’s logging messages to go to its standard error stream.

CONSOLE

This value causes the entity’s logging messages to go to the console, if the system supports it.

DEVICE=<devicename>

This causes the entity’s logging messages to go to the specified device.

SYSLOG[:<severity>[:<facility>]]

This causes the entity’s logging messages to go to the system log.

The severity argument specifies the default severity of system log messages. This may be any of the following severities supported by the syslog(3) call, minus the LOG_prefix: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING, LOG_NOTICE, LOG_INFO, and LOG_DEBUG. For example, a value of ‘CRIT’ would specify LOG_CRIT severity.

The facility argument specifies the facility under which the messages are logged. This may be any of the following facilities supported by the syslog(3) call minus the LOG_prefix: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH, LOG_LPR, LOG_NEWS, LOG_UUCP, LOG_CRON, and LOG_LOCAL0 through LOG_LOCAL7.

If no severity is specified, the default is ERR. If no facility is specified, the default is AUTH.

In the following example, the logging messages from the KDC will go to the console and to the system log under the facility LOG_DAEMON with default severity of LOG_INFO; and the logging messages from the administrative server will be appended to the file /var/adm/kadmin.log and sent to the device /dev/tty04.

[logging]
 kdc = CONSOLE
 kdc = SYSLOG:INFO:DAEMON
 admin_server = FILE:/var/adm/kadmin.log
 admin_server = DEVICE=/dev/tty04
3.1.6 [capaths]

In order to perform direct (non-hierarchical) cross-realm authentication, a database is needed to construct the authentication paths between the realms. This section defines that database.

A client will use this section to find the authentication path between its realm and the realm of the server. The server will use this section to verify the authentication path used by the client, by checking the transited field of the received ticket.

There is a tag for each participating realm, and each tag has subtags for each of the realms. The value of the subtags is an intermediate realm which may participate in the cross-realm authentication. The subtags may be repeated if there is more than one intermediate realm. A value of "." means that the two realms share keys directly, and no intermediate realms should be allowed to participate.

There are \(n^{**2} \) possible entries in this table, but only those entries which will be needed on the client or the server need to be present. The client needs a tag for its local realm, with subtags for all the realms of servers it will need to authenticate with. A server needs a tag for each realm of the clients it will serve.

For example, ANL.GOV, PNL.GOV, and NERSC.GOV all wish to use the ES.NET realm as an intermediate realm. ANL has a sub realm of TEST.ANL.GOV which will authenticate with NERSC.GOV but not PNL.GOV. The [capath] section for ANL.GOV systems would look like this:

```plaintext
[capaths]
ANL.GOV = {
    TEST.ANL.GOV = .,
    PNL.GOV = ES.NET
    NERSC.GOV = ES.NET
    ES.NET = .
}
TEST.ANL.GOV = {
    ANL.GOV = .
}
PNL.GOV = {
    ANL.GOV = ES.NET
}
NERSC.GOV = {
    ANL.GOV = ES.NET
}
ES.NET = {
    ANL.GOV = .
}
```

The [capath] section of the configuration file used on NERSC.GOV systems would look like this:
[capaths]
 NERSC.GOV = {
 ANL.GOV = ES.NET
 TEST.ANL.GOV = ES.NET
 TEST.ANL.GOV = ANL.GOV
 PNL.GOV = ES.NET
 ES.NET = .
 }
 ANL.GOV = {
 NERSC.GOV = ES.NET
 }
 PNL.GOV = {
 NERSC.GOV = ES.NET
 }
 ES.NET = {
 NERSC.GOV = .
 }
 TEST.ANL.GOV = {
 NERSC.GOV = ANL.GOV
 NERSC.GOV = ES.NET
 }

In the above examples, the ordering is not important, except when the same subtag name is used more than once. The client will use this to determine the path. (It is not important to the server, since the transited field is not sorted.)

This feature is not currently supported by DCE. DCE security servers can be used with Kerberized clients and servers, but versions prior to DCE 1.1 did not fill in the transited field, and should be used with caution.

3.1.7 Sample krb5.conf File

Here is an example of a generic krb5.conf file:
[libdefaults]
ticket_lifetime = 600
default_realm = ATHENA.MIT.EDU
default_tkt_enctypes = des3-hmac-shal des-cbc-crc
default_tgs_enctypes = des3-hmac-shal des-cbc-crc

[realms]
ATHENA.MIT.EDU = {
kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
kdc = kerberos-2.mit.edu
admin_server = kerberos.mit.edu
default_domain = mit.edu
}
FUBAR.ORG = {
kdc = kerberos.fubar.org
kdc = kerberos-1.fubar.org
admin_server = kerberos.fubar.org
}

[domain_realm]
.mit.edu = ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU
3.2 kdc.conf

The kdc.conf file contains KDC configuration information, including defaults used when issuing Kerberos tickets. Normally, you should install your kdc.conf file in the directory /usr/local/var/krb5kdc. You can override the default location by setting the environment variable ‘KR5_KDC_PROFILE’.

The kdc.conf file is set up in the same format as the krb5.conf file. (See Section 3.1 [krb5.conf], page 7.) The kdc.conf file may contain any or all of the following three sections:

kdcdefaults
 Contains default values for overall behavior of the KDC.

realms
 Contains subsections keyed by Kerberos realm names. Each subsection describes realm-specific information, including where to find the Kerberos servers for that realm.

logging
 Contains relations which determine how Kerberos programs are to perform logging.

3.2.1 [kdcdefaults]

The following relation is defined in the [kdcdefaults] section:

kdc ports
 This relation lists the ports on which the Kerberos server should listen by default. This list is a comma separated list of integers. If this relation is not specified, the compiled-in default is usually port 88 (the assigned Kerberos port) and port 750 (the port used by Kerberos V4).

3.2.2 [realms]

Each tag in the [realms] section of the file names a Kerberos realm. The value of the tag is a subsection where the relations in that subsection define KDC parameters for that particular realm.

For each realm, the following tags may be specified in the [realms] subsection:

acl_file
 (String.) Location of the access control list (acl) file that kadmin uses to determine which principals are allowed which permissions on the database. The default is /usr/local/var/krb5kdc/kadm5.acl.
admin_keytab
(String.) Location of the keytab file that kadmin uses to authenticate to the database. The default is /usr/local/var/krb5kdc/kadm5.keytab.
database_name
(String.) Location of the Kerberos database for this realm. The default is /usr/local/var/krb5kdc/principal.
default_principal_expiration
(Absolute time string.) Specifies the default expiration date of principals created in this realm.
default_principal_flags
(Flag string.) Specifies the default attributes of principals created in this realm.
dict_file
(String.) Location of the dictionary file containing strings that are not allowed as passwords. The default is /usr/local/var/krb5kdc/kadm5.dict.
kadmind_port
(Port number.) Specifies the port that the kadmind daemon is to listen for this realm. The assigned port for kadmind is 749.
key_stash_file
(String.) Specifies the location where the master key has been stored (via kdb5_util stash). The default is /usr/local/var/krb5kdc/.k5.REALM, where REALM is the Kerberos realm.
kdc_ports
(String.) Specifies the list of ports that the KDC is to listen to for this realm. By default, the value of kdc_ports as specified in the [kdcdefaults] section is used.
master_key_name
(String.) Specifies the name of the master key.
master_key_type
(Key type string.) Specifies the master key’s key type. Either "des3-hmac-sha1" or "des-cbc-crc" may be used at this time.
max_life
(Delta time string.) Specifies the maximum time period for which a ticket may be valid in this realm.
max_renewable_life
(Delta time string.) Specifies the maximum time period during which a valid ticket may be renewed in this realm.
supported_enctypes
List of keysalt strings. Specifies the default key/salt combinations of principals for this realm. Any principals created through kadmin will have keys of these types. If you do not yet wish to enable triple-DES support, you should set this tag to

kdc_supported_enctypes

List of key:salt strings. Specifies the permitted key/salt combinations of principals for this realm. You should set this tag to ‘des3-hmac-sha1:normal des-cbc-crc:normal des-cbc-crc:v4’.

3.2.3 Sample kdc.conf File

Here’s an example of a kdc.conf file:

```ini
[kdcdefaults]
kdc_ports = 88

[realms]
ATHENA/MIT.EDU = {
kadmind_port = 749
max_life = 10h 0m 0s
max_renewable_life = 7d 0h 0m 0s
master_key_type = des3-hmac-sha1
supported_enctypes = des3-hmac-sha1:normal des-cbc-crc:normal des-cbc-crc:v4
dcSupported_enctypes = des3-hmac-sha1:normal des-cbc-crc:normal des-cbc-crc:v4
}

[logging]
kdc = FILE:/usr/local/var/krb5kdc/kdc.log
admin_server = FILE:/usr/local/var/krb5kdc/admin.log
```
4 Administrating the Kerberos Database

Your Kerberos database contains all of your realm's Kerberos principals, their passwords, and other administrative information about each principal. For the most part, you will use the kdb5_util program to manipulate the Kerberos database as a whole, and the kadmin program to make changes to the entries in the database. (One notable exception is that users will use the kpasswd program to change their own passwords.) The kadmin program has its own command-line interface, to which you type the database administrating commands.

Kdb5_util provides a means to create, delete, load, or dump a Kerberos database. It also includes a command to stash a copy of the master database key in a file on a KDC, so that the KDC can authenticate itself to the kadmind and krb5kdc daemons at boot time.

Kadmin provides for the maintenance of Kerberos principals, KADM5 policies, and service key tables (keytabs). It exists as both a Kerberos client, kadmin, using Kerberos authentication and an RPC, to operate securely from anywhere on the network, and as a local client, kadmin.local, intended to run directly on the KDC without Kerberos authentication. Other than the fact that the remote client uses Kerberos to authenticate the person using it, the functionalities of the two versions are identical. The local version is necessary to enable you to set up enough of the database to be able to use the remote version. It replaces the now obsolete kdb5_edit (except for database dump and load, which are provided by kdb5_util).

The remote version authenticates to the KADM5 server using the service principal kadmin/admin. If the credentials cache contains a ticket for the kadmin/admin principal, and the ‘-c ccache’ option is specified, that ticket is used to authenticate to KADM5. Otherwise, the ‘-p’ and ‘-k’ options are used to specify the client Kerberos principal name used to authenticate. Once kadmin has determined the principal name, it requests a kadmin/admin Kerberos service ticket from the KDC, and uses that service ticket to authenticate to KADM5.

4.1 Kadmin Options

You can invoke kadmin with any of the following options:

-x REALM
Use REALM as the default Kerberos realm for the database.

-p principal
Use the Kerberos principal principal to authenticate to Kerberos. If this option is not given, kadmin will append admin to either the primary principal name, the environment variable USER, or to the username obtained from getpwuid, in order of preference.

-k keytab Use the keytab keytab to decrypt the KDC response instead of prompting for a password on the TTY. In this case, the principal will be 'host/hostname'.
-c credentials cache
 Use credentials_cache as the credentials cache. The credentials cache should contain a service ticket for the kadmin/admin service, which can be acquired with the kinit program. If this option is not specified, kadmin requests a new service ticket from the KDC, and stores it in its own temporary cache.

-w password
 Use password as the password instead of prompting for one on the TTY. Note: placing the password for a Kerberos principal with administration access into a shell script can be dangerous if unauthorized users gain read access to the script.

-q query
 Pass query directly to kadmin. This is useful for writing scripts that pass specific queries to kadmin.

-e "enctypes ..."
 (For kadmin.local only.) Sets the list of cryptosystem and salt types to be used for any new keys created. Available types include ‘des3-cbc-sha1: normal’, ‘des-cbc-crc: normal’, and ‘des-cbc-crc: v4’.

4.2 Date Format

Many of the kadmin commands take a duration or time as an argument. The date can appear in a wide variety of formats, such as:

"15 minutes"
"7 days"
"1 month"
"2 hours"
"400000 seconds"
"next year"
"this Monday"
"next Monday"
yesterday
tomorrow
now
"second Monday"
fortnight
"3/31/1992 10:00:07 PST"
"January 23, 2007 10:05pm"
"22:00 GMT"

Two-digit years are allowed in places, but the use of this form is not recommended.

Note that if the date specification contains spaces, you must enclose it in double quotes. Note also that you cannot use a number without a unit. (I.e., “60 seconds” is correct, but “60” is incorrect.) All keywords are case-insensitive. The following is a list of all of the allowable keywords.
Chapter 4: Administrating the Kerberos Database

Months
january, jan, february, feb, march, mar, april, apr, may, june, jun, july, jul, august, aug, september, sept, sep, october, oct, november, nov, december, dec

Days
sunday, sun, monday, mon, tuesday, tue, wednesday, wednes, wed, thursday, thurs, thur, thu, friday, fri, saturday, sat

Units
year, month, fortnight, week, day, hour, minute, min, second, sec

Relative
tomorrow, yesterday, today, now, last, this, next, first, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, ago

Time Zones

Kadmin recognizes abbreviations for most of the world’s time zones. A complete listing appears in Section A.2 [kadmin Time Zones], page 57.

12-hour Time Delimiters

am, pm

4.3 Principals

Each entry in the Kerberos database contains a Kerberos principal (see Section 2.8 [Definitions], page 6) and the attributes and policies associated with that principal.

4.3.1 Retrieving Information About a Principal

4.3.1.1 Attributes

To retrieve a listing of the attributes and/or policies associated with a principal, use the kadmin get_principal command, which requires the “inquire” administrative privilege. The syntax is:

```
get_principal principal
```

The get_principal command has the alias getprinc.

For example, suppose you wanted to view the attributes of the principals jennifer/root@ATHENA.MIT.EDU and systest@ATHENA.MIT.EDU. You would type:
shell% kadmin
kadmin: getprinc jennifer/root
Principal: jennifer/root@ATHENA.MIT.EDU
Key version: 3
Maximum life: 1 day 00:00:00
Maximum renewable life: 7 days 00:00:00
Master key version: 1
Expires: Mon Jan 18 22:14:07 EDT 2038
Password expires: Mon Sep 19 14:40:00 EDT 1996
Password last changed: Mon Jan 31 02:06:40 EDT 1996
Last modified: by joadmin/admin@ATHENA.MIT.EDU
on Wed Jul 13 18:27:08 EDT 1996
Attributes: DISALLOW_FORWARDABLE, DISALLOW_PROXIABLE,
REQUIRES_HW_AUTH
Salt type: DEFAULT
kadmin:

The get_principal command has a -terse option, which lists the fields as a quoted, tab-separated string. For example:

 kadmin: getprinc -terse systest
systest@ATHENA.MIT.EDU 3 86400 604800 1
785926535 753241234 785900000
joadmin/admin@ATHENA.MIT.EDU 786100034 0
0
kadmin:

4.3.1.2 Retrieving a List of Principals

To generate a listing of principals, use the kadmin list_principals command, which requires the “list” privilege. The syntax is:

 list_principals [expression]

where expression is a shell-style glob expression that can contain the characters ‘*’, ‘?’, ‘[’, and ‘]’. All policy names matching the expression are displayed. The list_principals command has the alias listprincs. For example:

 kadmin: listprincs test*
test3@mit.edu
test2@mit.edu
test1@mit.edu
testuser@mit.edu
kadmin:

If no expression is provided, all principals are printed.
4.3.2 Privileges

Administrative privileges for the Kerberos database are stored in the file `kadm5.acl`. Each line of the file contains a principal, the privileges that principal has, and optionally the target to which those permissions apply. The privileges are represented by single letters; UPPER-CASE letters represent negative permissions. The permissions are:

- **a** allows the addition of principals or policies in the database.
- **A** disallows the addition of principals or policies in the database.
- **d** allows the deletion of principals or policies in the database.
- **D** disallows the deletion of principals or policies in the database.
- **m** allows the modification of principals or policies in the database.
- **M** disallows the modification of principals or policies in the database.
- **c** allows the changing of passwords for principals in the database.
- **C** disallows the changing of passwords for principals in the database.
- **i** allows inquiries to the database.
- **I** disallows inquiries to the database.
- **l** allows the listing of principals or policies in the database.
- **L** disallows the listing of principals or policies in the database.
- **x** All privileges (admcil).

Principals in this file can include the * wildcard. Here is an example of a `kadm5.acl` file. Note that order is important; permissions are determined by the first matching entry.

```plaintext
*/admin@ATHENA.MIT.EDU *
joeadmin@ATHENA.MIT.EDU  ADMCIL
joeadmin/*/ATHENA.MIT.EDU  il
jennifer/root@ATHENA.MIT.EDU  cil */root@ATHENA.MIT.EDU
*/@ATHENA.MIT.EDU  i
```

In the above file, any principal with an `admin` instance has all administrative privileges. The user `joeadmin` has all permissions with his `admin` instance, `joeadmin/admin@ATHENA.MIT.EDU` (matches the first line). He has no permissions at all with his `null` instance, `joeadmin@ATHENA.MIT.EDU` (matches the second line). He has `inquire` and `list` permissions with any other instance (matches the third line). When `jennifer` is using her `root` instance, `jennifer/root@ATHENA.MIT.EDU`, she has `change password`, `inquire`, and `list` privileges for any other principal that has the instance `root`. Finally, any principal in the realm `ATHENA.MIT.EDU` (except for `joeadmin@ATHENA.MIT.EDU`, as mentioned above) has `inquire` privileges.

4.3.3 Adding or Modifying Principals

To add a principal to the database, use the kadmin `add_principal` command, which requires the “add” administrative privilege. This function creates the new principal and, if neither the
-policy nor -clearpolicy options are specified and the policy “default” exists, assigns it that policy. The syntax is:

 kadmin: add_principal [options] principal

To modify attributes of a principal, use the kadmin modify_principal command, which requires the “modify” administrative privilege. The syntax is:

 kadmin: modify_principal [options] principal

add_principal has the aliases addprinc and ank\(^1\)

The add_principal and modify_principal commands take the following switches:

-salt saltype
 Uses the specified salt for generating the key. The valid salt types are:
 - full_name (aliases “v5_salt” and “normal”; this is the default)
 - name_only
 - realm_only
 - no_salt (alias “v4_salt”)

-clearpolicy
 For modify_principal, removes the current policy from a principal. For add_principal, suppresses the automatic assignment of the policy “default”.

-expire date
 Sets the expiration date of the principal to date.

-pwexpire date
 Sets the expiration date of the password to date.

-maxlife maxlife
 Sets the maximum ticket life of the principal to maxlife.

-kvno number
 Explicitly sets the key version number to number. MIT does not recommend doing this unless there is a specific reason.

-policy policy
 Sets the policy used by this principal. (See Section 4.4 [Policies], page 28.) With modify_principal, the current policy assigned to the principal is set or changed. With add_principal, if this option is not supplied, the -clearpolicy is not specified, and the policy “default” exists, that policy is assigned. If a principal is created with no policy, kadmin will print a warning message.

\(^1\) ank was the short form of the equivalent command using the deprecated kadmin5 database administrative tool. It has been kept. modify_principal has the alias modprinc.
Chapter 4: Administrating the Kerberos Database

{-}+allow_postdated

The "allow_postdated" option prohibits this principal from obtaining postdated tickets. "+allow_postdated" clears this flag. In effect, "allow_postdated" sets the KRB5.KDB.DISALLOW_POSTDATED flag on the principal in the database.

{-}+allow_forwardable

The "allow_forwardable" option prohibits this principal from obtaining forwardable tickets. "+allow_forwardable" clears this flag. In effect, "allow_forwardable" sets the KRB5.KDB.DISALLOW_FORWARDABLE flag on the principal in the database.

{-}+allow_renewable

The "allow_renewable" option prohibits this principal from obtaining renewable tickets. "+allow_renewable" clears this flag. In effect, "allow_renewable" sets the KRB5.KDB.DISALLOW_RENEWABLE flag on the principal in the database.

{-}+allow_proxiable

The "allow_proxiable" option prohibits this principal from obtaining proxiable tickets. "+allow_proxiable" clears this flag. In effect, "allow_proxiable" sets the KRB5.KDB.DISALLOW_PROXIALBE flag on the principal in the database.

{-}+allow_dup_skey

The "allow_dup_skey" option disables user-to-user authentication for this principal by prohibiting this principal from obtaining a session key for another user. "+allow_dup_skey" clears this flag. In effect, "allow_dup_skey" sets the KRB5.KDB.DISALLOW_DUP_SKEY flag on the principal in the database.

{-}+requires_preauth

The "requires_preauth" option requires this principal to preauthenticate before being allowed to kinit. -requires_preauth clears this flag. In effect, +requires_preauth sets the KRB5.KDB.REQUIRES_PRE_AUTH flag on the principal in the database.

{-}+requires_hwauth

The "requires_hwauth" flag requires the principal to preauthenticate using a hardware device before being allowed to kinit. "requires_hwauth" clears this flag. In effect, +requires_hwauth sets the KRB5.KDB.REQUIRES_HW_AUTH flag on the principal in the database.

{-}+allow_svr

The "allow_svr" flag prohibits the issuance of service tickets for this principal. "+allow_svr" clears this flag. In effect, "allow_svr" sets the KRB5.KDB.DISALLOW_SVR flag on the principal in the database.

{-}+allow_tgs_req

The "allow_tgs_req" option specifies that a Ticket-Granting Service (TGS) request for a service ticket for this principal is not permitted. You will probably never need to use this option. "+allow_tgs_req" clears this flag. The default is "+allow_tgs_req". In effect,
“-allow_tgs_req” sets the KRB5.KDB_DISALLOW_TGT_BASED flag on the principal in the database.

{--}+allow_tix

The “--allow_tix” option forbids the issuance of any tickets for this principal. “--allow_tix” clears this flag. The default is “--allow_tix”. In effect, “--allow_tix” sets the KRB5.KDB_DISALLOW_ALL_TIX flag on the principal in the database.

{--}+needchange

The “+needchange” option sets a flag in attributes field to force a password change; “-needchange” clears it. The default is “-needchange”. In effect, “+needchange” sets the KRB5.KDB_REQUIRES_PWCHANGE flag on the principal in the database.

{--}+password_changing_service

The “+password_changing_service” option sets a flag in the attributes field marking this principal as a password change service. (Again, you will probably never need to use this option.) “-password_changing_service” clears the flag. The default is “-password_changing_service”. In effect, the “+password_changing_service” option sets the KRB5.KDB_PWCHANGING_SERVICE flag on the principal in the database.

-clearpolicy policymake

Removes the policy policymake from the principal (modify_principal only).

-randkey

Sets the key for the principal to a random value (add_principal only). MIT recommends using this option for host keys.

-pw password

Sets the key of the principal to the specified string and does not prompt for a password (add_principal only). MIT does not recommend using this option.

-e encsalt...

Uses the specified list of enctype-salttype pairs for setting the key of the principal. The quotes are necessary if there are multiple enctype-salttype pairs. This will not function against kadm5 daemons earlier than krb5-1.2.

If you want to just use the default values, all you need to do is:

 kadmin: addprinc jennifer
 WARNING: no policy specified for "jennifer@ATHENA.MIT.EDU";
 defaulting to no policy.

 Enter password for principal jennifer@ATHENA.MIT.EDU: ≈ Type the password.
 Re-enter password for principal jennifer@ATHENA.MIT.EDU: ≈ Type it again.

 Principal "jennifer@ATHENA.MIT.EDU" created.
 kadmin:

If, on the other hand, you want to set up an account that expires on January 1, 2000, that uses a policy called “stduser”, with a temporary password (which you want the user to change
immediately), you would type the following. (Note: each line beginning with \(\Rightarrow \) is a continuation of the previous line.)

```
   kadmin: addprinc david -expire "1/1/2000 12:01am EST" -policy stduser
             \( \Rightarrow \) +needchange

   Enter password for principal david@ATHENA.MIT.EDU: \( \Leftarrow \) Type the password.
   Re-enter password for principal
david@ATHENA.MIT.EDU: \( \Leftarrow \) Type it again.

   Principal "david@ATHENA.MIT.EDU" created.
   kadmin:
```

If you will need cross-realm authentication, you need to add principals for the other realm's TGT to each realm. For example, if you need to do cross-realm authentication between the realms ATHENA.MIT.EDU and FUBAR.ORG, you would need to add the principals ‘krbtgt/FUBAR.ORG@ATHENA.MIT.EDU’ and ‘krbtgt/ATHENA.MIT.EDU@FUBAR.ORG’ to both databases. You need to be sure the passwords and the key version numbers (kvno) are the same in both databases. This may require explicitly setting the kvno with the ‘-kvno’ option.

4.3.4 Deleting Principals

To delete a principal, use the kadmin delete_principal command, which requires the “delete” administrative privilege. The syntax is:

```
delete_principal [-force] principal
```

delete_principal has the alias delprinc. The -force option causes delete_principal not to ask if you're sure. For example:

```
kadmin: delprinc jennifer
Are you sure you want to delete the principal
"jennifer@ATHENA.MIT.EDU"? (yes/no): yes
Principal "jennifer@ATHENA.MIT.EDU" deleted.
Make sure that you have removed this principal from
all ACLs before reusing.
kadmin:
```

4.3.5 Changing Passwords

To change a principal’s password use the kadmin change_password command, which requires the “modify” administrative privilege (unless the principal is changing his/her own password). The syntax is:
change_password [options] principal

The change_password option has the alias cpw. change_password takes the following options:

-salt salttype
 Uses the specified salt for generating the key. Salt types are the same as for the add_principal command (see Section 4.3.3 [Adding or Modifying Principals], page 23).

-randkey Sets the key of the principal to a random value.

-pw password
 Sets the password to the string password. MIT does not recommend using this option.

-e "enc:salt..."
 Uses the specified list of enctype-salttype pairs for setting the key of the principal. The quotes are necessary if there are multiple enctype-salttype pairs. This will not function against kadmin daemons earlier than krb5-1.2.

For example:

 kadmin: cpw david

 Enter password for principal david@ATHENA/MIT.EDU: ⇐ Type the new password.
 Re-enter password for principal david@ATHENA/MIT.EDU: ⇐ Type it again.

 Password for david@ATHENA/MIT.EDU changed.
 kadmin:

 Note that change_password will not let you change the password to one that is in the principal’s password history.

4.4 Policies

A policy is a set of rules governing passwords. Policies can dictate minimum and maximum password lifetimes, minimum number of characters and character classes a password must contain, and the number of old passwords kept in the database.

4.4.1 Retrieving Policies

To retrieve a policy, use the kadmin get_policy command, which requires the “inquire” administrative privilege. The syntax is:

 get_policy [-terse] policy

The get_policy command has the alias getpol. For example:
Chapter 4: Administrating the Kerberos Database

```
  kadmin: get_policy admin
  Policy: admin
  Maximum password life: 180 days 00:00:00
  Minimum password life: 00:00:00
  Minimum password length: 6
  Minimum number of password character classes: 2
  Number of old keys kept: 5
  Reference count: 17
  kadmin:
```

The reference count is the number of principals using that policy.

The `get_policy` command has a `-terse` option, which lists each field as a quoted, tab-separated string. For example:

```
  kadmin: get_policy -terse admin
  admin 1552000 0 6 2 5 17
  kadmin:
```

4.4.2 Retrieving the List of Policies

You can retrieve the list of policies with the `kadmin list_policies` command, which requires the “list” privilege. The syntax is:

```
  list_policies [expression]
```

where `expression` is a shell-style glob expression that can contain the characters `*`, `?`, and `[]`. All policy names matching the expression are displayed. The `list_policies` command has the alias `listpols`. For example:

```
  kadmin: listpols
test-pol
dict-only
once-a-min
test-pol-nopw

  kadmin: listpols t*
test-pol
test-pol-nopw
  kadmin:
```

4.4.3 Adding or Modifying Policies

To add a new policy, use the `kadmin add_policy` command, which requires the “add” administrative privilege. The syntax is:
add_policy [options] policy_name

To modify attributes of a principal, use the kadmin modify_policy command, which requires the “modify” administrative privilege. The syntax is:

modify_policy [options] policy_name

add_policy has the alias addpol. modify_policy has the alias modpol.

The add_policy and modify_policy commands take the following switches:

-maxlife time
 Sets the maximum lifetime of a password to time.

-minlife time
 Sets the minimum lifetime of a password to time.

-minlength length
 Sets the minimum length of a password to length characters.

-minclasses number
 Requires at least number of character classes in a password.

-history number
 Sets the number of past keys kept for a principal to number.

4.4.4 Deleting Policies

To delete a policy, use the kadmin delete_policy command, which requires the “delete” administrative privilege. The syntax is:

delete_policy policy_name

The delete_policy command has the alias delpol. It prompts for confirmation before deletion. For example:

 kadmin: delete_policy guests
 Are you sure you want to delete the policy "guests"?
 (yes/no): yes
 Policy "guests" deleted.
 kadmin:

Note that you must cancel the policy from all principals before deleting it. The delete_policy command will fail if it is in use by any principals.
4.5 Dumping a Kerberos Database to a File

To dump a Kerberos database into a file, use the `kdb5_util dump` command on one of the KDCs. The syntax is:

```
[filename [principals...]]
```

The `kdb5_util dump` command takes the following options:

- `-old` causes the dump to be in the Kerberos 5 Beta 5 and earlier dump format (“`kdb5_edit load_dump version 2.0`”).
- `-b6` causes the dump to be in the Kerberos 5 Beta 6 format (“`kdb5_edit load_dump version 3.0`”).
- `-b7` causes the dump to be in the Kerberos 5 Beta 7 format (“`kdb5_util load_dump version 4`”). This was the dump format produced on releases prior to 1.2.2.
- `-ov` causes the dump to be in `ovsecadm_export` format.
- `-verbose` causes the name of each principal and policy to be printed as it is dumped.

For example:

```
shell% kdb5_util dump dumpfile
shell%

shell% kdb5_util dump -verbose dumpfile
kadmin/admin@ATHENA.MIT.EDU
krbtgt/ATHENA.MIT.EDU@ATHENA.MIT.EDU
kadmin/history@ATHENA.MIT.EDU
K/M@ATHENA.MIT.EDU
kadmin/changepw@ATHENA.MIT.EDU
shell%
```

If you specify which principals to dump, you must use the full principal, as in the following example. (The line beginning with `⇒` is a continuation of the previous line.):

```
shell% kdb5_util dump -verbose dumpfile K/M@ATHENA.MIT.EDU
⇒ kadmin/admin@ATHENA.MIT.EDU
⇒ kadmin/admin@ATHENA.MIT.EDU
⇒ K/M@ATHENA.MIT.EDU
shell%
```

Otherwise, the principals will not match those in the database and will not be dumped:

```
shell% kdb5_util dump -verbose dumpfile K/M kadmin/admin
shell%
```

If you do not specify a dump file, `kdb5_util` will dump the database to the standard output.
4.6 Restoring a Kerberos Database from a Dump File

To restore a Kerberos database dump from a file, use the `kdb5_util load` command on one of the KDCs. The syntax is:

```
[ -update] dumpfilename dbname [admin dbname]
```

The `kdb5_util load` command takes the following options:

- `-old` requires the dump to be in the Kerberos 5 Beta 5 and earlier dump format (“kdb5_util dump version 2.0”).
- `-b6` requires the dump to be in the Kerberos 5 Beta 6 format (“kdb5_util dump version 3.0”).
- `-b7` requires the dump to be in the Kerberos 5 Beta 7 format (“kdb5_util dump version 4”).
- `-ov` requires the dump to be in ovsec_adm_export format.
- `-verbose` causes the name of each principal and policy to be printed as it is dumped.
- `-update` causes records from the dump file to be updated in or added to the existing database.

For example:

```
shell% kdb5_util load dumpfile principal
shell%
shell% kdb5_util load -update dumpfile principal
shell%
```

If the database file exists, and the `-update` flag was not given, `kdb5_util` will overwrite the existing database.

4.7 Creating a Stash File

A stash file allows a KDC to authenticate itself to the database utilities, such as `kadmin`, `kadmin`, `krb5kdc`, and `kdb5_util`.

To create a stash file, use the `kdb5_util stash` command. The syntax is:

```
kdb5_util stash [-f keyfile]
```

For example:

```
shell% kdb5_util stash
kdb5_util: Cannot find/read stored master key while reading master key
kdb5_util: Warning: proceeding without master key

Enter KDC database master key:  ⇐ Type the KDC database master password.
shell%
```
If you do not specify a stash file, kdb5_util will stash the key in the file specified in your kdc.conf file.

4.8 Creating and Destroying a Kerberos Database

If you need to create a new Kerberos database, use the kdb5_util create command. The syntax is:

 kdb5_util create [-s]

If you specify the ‘-s’ option, kdb5_util will stash a copy of the master key in a stash file. (See Section 4.7 [Creating a Stash File], page 32.) For example:

 shell% /usr/local/sbin/kdb5_util -r ATHENA.MIT.EDU create -s
 kdb5_util: No such file or directory while setting active database to
 ⇒ '/usr/local/var/krb5kdc/principal'
 Initializing database '/usr/local/var/krb5kdc/principal' for
 ⇒ realm 'ATHENA.MIT.EDU',
 master key name 'K/M@ATHENA.MIT.EDU'
 You will be prompted for the database Master Password.
 It is important that you NOT FORGET this password.

 Enter KDC database master key: ⇐ Type the master password.
 Re-enter KDC database master key to verify: ⇐ Type it again.

 shell%
5 Application Servers

If you need to install the Kerberos V5 programs on an application server, please refer to the Kerberos V5 Installation Guide. Once you have installed the software, you need to add that host to the Kerberos database (see Section 4.3.3 [Adding or Modifying Principals], page 23), and generate a keytab for that host, that contains the host’s key. You also need to make sure the host’s clock is within your maximum clock skew of the KDCs.

5.1 Keytabs

A keytab is a host’s copy of its own keylist, which is analogous to a user’s password. An application server that needs to authenticate itself to the KDC has to have a keytab that contains its own principal and key. Just as it is important for users to protect their passwords, it is equally important for hosts to protect their keytabs. You should always store keytab files on local disk, and make them readable only by root, and you should never send a keytab file over a network in the clear. Ideally, you should run the kadmin command to extract a keytab on the host on which the keytab is to reside.

5.1.1 Adding Principals to Keytabs

To generate a keytab, or to add a principal to an existing keytab, use the ktadd command from kadmin, which requires the “inquire” administrative privilege. (If you use the -glob princ.exp option, it also requires the “list” administrative privilege.) The syntax is:

 ktadd [-k keytab] [-q] [principal | -glob princ.exp] [...]

The ktadd command takes the following switches:

-k keytab use keytab as the keytab file. Otherwise, ktadd will use the default keytab file (/etc/krb5.keytab).

-e "enc:salt..."
 Uses the specified list of enctype-salttype pairs for setting the key of the principal. The quotes are necessary if there are multiple enctype-salttype pairs. This will not function against kadmin daemons earlier than krb5-1.2.

-q run in quiet mode. This causes ktadd to display less verbose information.

principal | -glob principal expression
 add principal, or all principals matching principal expression to the keytab. The rules for principal expression are the same as for the kadmin list_principals (see Section 4.3.1.2 [Retrieving a List of Principals], page 22) command.
Here is a sample session, using configuration files that enable only ‘des-cbc-crc’ encryption.
(The line beginning with ⇒ is a continuation of the previous line.)

```bash
kadmin: ktadd host/daffodil.mit.edu@ATHENA.MIT.EDU
kadmin: Entry for principal host/daffodil.mit.edu@ATHENA.MIT.EDU with
ekvno 2, encryption type DES-CBC-CRC added to keytab
  WRFILE:/etc/krb5.keytab.
kadmin:

kadmin: ktadd -k /usr/local/var/krb5kdc/kadmin.keytab
  ⇒ kadmin/admin kadmin/changepw
kadmin: Entry for principal kadmin/admin@ATHENA.MIT.EDU with
  kvno 3, encryption type DES-CBC-CRC added to keytab
  WRFILE:/usr/local/var/krb5kdc/kadmin.keytab.
kadmin:
```

5.1.2 Removing Principals from Keytabs

To remove a principal to an existing keytab, use the kadmin `ktremove` command. The syntax is:

```
ktremove [-k keytab] [-q] principal [kvno | all | old]
```

The `ktremove` command takes the following switches:

- **-k keytab** use `keytab` as the keytab file. Otherwise, `ktremove` will use the default keytab file (`/etc/krb5.keytab`).
- **-q** run in quiet mode. This causes `ktremove` to display less verbose information.

principal the principal to remove from the keytab. (Required.)

kvno remove all entries for the specified principal whose Key Version Numbers match `kvno`.

all remove all entries for the specified principal

old remove all entries for the specified principal except those with the highest `kvno`.

For example:

```bash
kadmin: ktremove -k /usr/local/var/krb5kdc/kadmin.keytab kadmin/admin
kadmin: Entry for principal kadmin/admin with kvno 3 removed
  from keytab WRFILE:/usr/local/var/krb5kdc/kadmin.keytab.
kadmin:
```
5.2 Clock Skew

In order to prevent intruders from resetting their system clocks in order to continue to use expired tickets, Kerberos V5 is set up to reject ticket requests from any host whose clock is not within the specified maximum clock skew of the KDC (as specified in the kdc.conf file). Similarly, hosts are configured to reject responses from any KDC whose clock is not within the specified maximum clock skew of the host (as specified in the krb5.conf file). The default value for maximum clock skew is 300 seconds (five minutes).

MIT suggests that you add a line to client machines’ /etc/rc files to synchronize the machine’s clock to your KDC at boot time. On UNIX hosts, assuming you had a kdc called kerberos in your realm, this would be:

```bash
gettime -s kerberos
```

If the host is not likely to be rebooted frequently, you may also want to set up a cron job that adjusts the time on a regular basis.

5.3 Getting DNS Information Correct

Several aspects of Kerberos rely on name service. In order for Kerberos to provide its high level of security, it is less forgiving of name service problems than some other parts of your network. It is important that your Domain Name System (DNS) entries and your hosts have the correct information.

Each host’s canonical name must be the fully-qualified host name (including the domain), and each host’s IP address must reverse-resolve to the canonical name.

Other than the localhost entry, make all entries in each machine’s /etc/hosts file in the following form:

```plaintext
IP address   fully-qualified hostname   aliases
```

Here is a sample /etc/hosts file:

```plaintext
# this is a comment
127.0.0.1   localhost localhost@mit.edu
10.0.0.6     daffodil.mit.edu trillium wake-robin
```

Additionally, on Solaris machines, you need to be sure the “hosts” entry in the file /etc/nsswitch.conf includes the source “dns” as well as “file”.

Finally, each host’s keytab file must include a host/key pair for the host’s canonical name. You can list the keys in a keytab file by issuing the command klist -k. For example:
viola# klist -k
Keytab name: /etc/krb5.keytab
KVNO Principal

1 host/daffodil.mit.edu@ATHENA.MIT.EDU

If you telnet to the host with a fresh credentials cache (ticket file), and then klist, the host’s service principal should be host/fully-qualified-hostname@REALM_NAME.

5.4 Configuring Your Firewall to Work With Kerberos V5

If you need off-site users to be able to get Kerberos tickets in your realm, they must be able to get to your KDC. This requires either that you have a slave KDC outside your firewall, or you configure your firewall to allow UDP requests into to at least one of your KDCs, on whichever port the KDC is running. (The default is port 88; other ports may be specified in the KDC’s kdc.conf file.) Similarly, if you need off-site users to be able to change their passwords in your realm, they must be able to get to your Kerberos admin server. The default port for the admin server is 749.

If your on-site users inside your firewall will need to get to KDCs in other realms, you will also need to configure your firewall to allow outgoing TCP and UDP requests to port 88. Additionally, if they will need to get to any Kerberos V4 KDCs, you may also need to allow TCP and UDP requests to port 750. If your on-site users inside your firewall will need to get to Kerberos admin servers in other realms, you will also need to allow outgoing TCP and UDP requests to port 749.

If any of your KDCs is outside your firewall, you will need to allow kprop requests to get through to the remote KDC. Kprop uses the krb5_prop service on port 754 (tcp).

If you need your off-site users to have access to machines inside your firewall, you need to allow TCP connections from their off-site hosts on the appropriate ports for the programs they will be using. The following lines from /etc/services show the default port numbers for the Kerberos V5 programs:

<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp</td>
<td>21/tcp</td>
<td>Kerberos ftp and telnet use the default ports</td>
</tr>
<tr>
<td>telnet</td>
<td>23/tcp</td>
<td>Kerberos V5 KDC</td>
</tr>
<tr>
<td>kerberos</td>
<td>88/udp</td>
<td>Kerberos V5 KDC</td>
</tr>
<tr>
<td>klogin</td>
<td>543/tcp</td>
<td>Kerberos authenticated rlogin</td>
</tr>
<tr>
<td>kshell</td>
<td>544/tcp</td>
<td>Kerberos 5 admin/changepw</td>
</tr>
<tr>
<td>krb5_prop</td>
<td>754/tcp</td>
<td>Kerberos slave propagation</td>
</tr>
<tr>
<td>eklogin</td>
<td>2105/tcp</td>
<td>Kerberos auth. & encrypted rlogin</td>
</tr>
<tr>
<td>krb524</td>
<td>4444/tcp</td>
<td>Kerberos 5 to 4 ticket translator</td>
</tr>
</tbody>
</table>

By default, Kerberos V5 telnet and ftp use the same ports as the standard telnet and ftp programs, so if you already allow telnet and ftp connections through your firewall, the Kerberos V5
versions will get through as well. If you do not already allow telnet and ftp connections through your firewall, but need your users to be able to use Kerberos V5 telnet and ftp, you can either allow ftp and telnet connections on the standard ports, or switch these programs to non-default port numbers and allow ftp and telnet connections on those ports to get through.

Kerberos V5 \texttt{rlogin} uses the \texttt{klogin} service, which by default uses port 543. Encrypted Kerberos V5 \texttt{rlogin} uses the \texttt{eklogin} service, which by default uses port 2105.

Kerberos V5 \texttt{rsh} uses the \texttt{kshell} service, which by default uses port 544. However, the server must be able to make a TCP connection from the kshell port to an arbitrary port on the client, so if your users are to be able to use \texttt{rsh} from outside your firewall, the server they connect to must be able to send outgoing packets to arbitrary port numbers. Similarly, if your users need to run \texttt{rsh} from inside your firewall to hosts outside your firewall, the outside server needs to be able to connect to an arbitrary port on the machine inside your firewall. Because Kerberos V5 \texttt{rcp} uses \texttt{rsh}, the same issues apply. If you need to use \texttt{rsh} (or \texttt{rcp}) through your firewall and are concerned with the security implications of allowing connections to arbitrary ports, MIT suggests that you have rules that specifically name these applications and, if possible, list the allowed hosts.

A reasonably good cookbook for configuring firewalls is available by FTP from \texttt{ftp.livingston.com}, in the location: /pub/firewall/firewall-1.1.ps.Z. The book \textit{UNIX System Security}, by David Curry, is also a good starting point.
6 Backups of Secure Hosts

When you back up a secure host, you should exclude the host’s keytab file from the backup. If someone obtained a copy of the keytab from a backup, that person could make any host masquerade as the host whose keytab was compromised. This could be particularly dangerous if the compromised keytab was from one of your KDCs. If the machine has a disk crash and the keytab file is lost, it is easy to generate another keytab file. (See Section 5.1.1 [Adding Principals to Keytabs], page 35.) If you are unable to exclude particular files from backups, you should ensure that the backups are kept as secure as the host’s root password.

6.1 Backing Up the Kerberos Database

As with any file, it is possible that your Kerberos database could become corrupted. If this happens on one of the slave KDCs, you might never notice, since the next automatic propagation of the database would install a fresh copy. However, if it happens to the master KDC, the corrupted database would be propagated to all of the slaves during the next propagation. For this reason, MIT recommends that you back up your Kerberos database regularly. Because the master KDC is continuously dumping the database to a file in order to propagate it to the slave KDCs, it is a simple matter to have a cron job periodically copy the dump file to a secure machine elsewhere on your network. (Of course, it is important to make the host where these backups are stored as secure as your KDCs, and to encrypt its transmission across your network.) Then if your database becomes corrupted, you can load the most recent dump onto the master KDC. (See Section 4.6 [Restoring a Kerberos Database from a Dump File], page 32.)
7 Bug Reporting

In any complex software, there will be bugs. If you have successfully built and installed Kerberos V5, please use the `krb5-send-pr` program to fill out a Problem Report.

Bug reports that include proposed fixes are especially welcome. If you do include fixes, please send them using either context diffs or unified diffs (using `diff -c` or `diff --unified`, respectively). Please be careful when using “cut and paste” or other such means to copy a patch into a bug report; depending on the system being used, that can result in converting TAB characters into spaces, which makes applying the patches more difficult.

The `krb5-send-pr` program is installed in the directory `/usr/local/sbin`.

The `krb5-send-pr` program enters the problem report into our Problem Report Management System (PRMS), which automatically assigns it to the engineer best able to help you with problems in the assigned category.

The `krb5-send-pr` program will try to intelligently fill in as many fields as it can. You need to choose the category, class, severity, and priority of the problem, as well as giving us as much information as you can about its exact nature.

The PR category will be one of:

```
krb5-admin  krb5-appl  krb5-build  krb5-clients
krb5-doc    krb5-kdc   krb5-libs   krb5-misc
pty         telnet     test
```

Choose the category that best describes the area under which your problem falls.

The class can be sw-bug, doc-bug, change-request, or support. The first two are exactly as their names imply. Use change-request when the software is behaving according to specifications, but you want to request changes in some feature or behavior. The support class is intended for more general questions about building or using Kerberos V5.

The severity of the problem indicates the problem’s impact on the usability of Kerberos V5. If a problem is critical, that means the product, component or concept is completely non-operational, or some essential functionality is missing, and no workaround is known. A serious problem is one in which the product, component or concept is not working properly or significant functionality is missing. Problems that would otherwise be considered critical are rated serious when a workaround is known. A non-critical problem is one that is indeed a problem, but one that is having a minimal effect on your ability to use Kerberos V5. E.g., The product, component or concept is working in general, but lacks features, has irritating behavior, does something wrong, or doesn’t match its documentation. The default severity is serious.

The priority indicates how urgent this particular problem is in relation to your work. Note that low priority does not imply low importance. A priority of high means a solution is needed as soon as possible. A priority of medium means the problem should be solved no later than the
next release. A priority of low means the problem should be solved in a future release, but it is not important to your work how soon this happens. The default priority is medium.

Note that a given severity does not necessarily imply a given priority. For example, a non-critical problem might still have a high priority if you are faced with a hard deadline. Conversely, a serious problem might have a low priority if the feature it is disabling is one that you do not need.

It is important that you fill in the release field and tell us what changes you have made, if any.

Bug reports that include proposed fixes are especially welcome. If you include proposed fixes, please send them using either context diffs (‘diff -c’) or unified diffs (‘diff -u’).
A sample filled-out form from a company named “Toasters, Inc.” might look like this:

To: krb5-bugs@mit.edu
Subject: misspelled "Kerberos" in title of installation guide
From: jcb
Reply-To: jcb
Cc:
X-send-pr-version: 3.99

>Submitter-Id: mit
>Originator: Jeffrey C. Gilman Bigler
>Organization: mit
>Confidential: no
>Synopsis: Misspelled "Kerberos" in title of installation guide
>Severity: non-critical
>Priority: low
>Category: krb5-doc
>Class: doc-bug
>Release: 1.0-development
>Environment:
<machine, os, target, libraries (multiple lines)>
System: ULTRIX imbrum 4.2 0 RISC
Machine: mips
>Description:
Misspelled "Kerberos" in title of "Kerberos V5 Installation Guide"
>How-To-Repeat:
N/A
>Fix:
Correct the spelling.

If the krb5-send-pr program does not work for you, or if you did not get far enough in the process to have an installed and working krb5-send-pr, you can generate your own form, using the above as an example.
Appendix A Appendix

A.1 Kerberos Error Messages

A.1.1 Kerberos V5 Library Error Codes

This is the Kerberos v5 library error code table. Protocol error codes are
ERROR_TABLE_BASE krb5 + the protocol error code number; other error codes start at
ERROR_TABLE_BASE krb5 + 128.

0. KRB5KDC_ERR_NONE: No error
1. KRB5KDC_ERR_NAME_EXP: Client’s entry in database has expired
2. KRB5KDC_ERR_SERVICE_EXP: Server’s entry in database has expired
3. KRB5KDC_ERR_BAD_PVNO: Requested protocol version not supported
4. KRB5KDC_ERR_C_OLD_MAST_KVNO: Client’s key is encrypted in an old master key
5. KRB5KDC_ERR_S_OLD_MAST_KVNO: Server’s key is encrypted in an old master key
6. KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN: Client not found in Kerberos database
7. KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN: Server not found in Kerberos database
8. KRB5KDC_ERR_PRINCIPAL_NOT_UNIQUE: Principal has multiple entries in Kerberos
database
9. KRB5KDC_ERR_NULL_KEY: Client or server has a null key
10. KRB5KDC_ERR_CANNOT_POSTDATE: Ticket is ineligible for postdating
11. KRB5KDC_ERR_NEVER_VALID: Requested effective lifetime is negative or too short
12. KRB5KDC_ERR_POLICY: KDC policy rejects request
13. KRB5KDC_ERR_BADOPTION: KDC can’t fulfill requested option
14. KRB5KDC_ERRETYPE_NOSUPP: KDC has no support for encryption type
15. KRB5KDC_ERRSUMTYPE_NOSUPP: KDC has no support for checksum type
16. KRB5KDC_ERR_PADATA_TYPE_NOSUPP: KDC has no support for padata type
17. KRB5KDC_ERR_TRTYPE_NOSUPP: KDC has no support for transited type
18. KRB5KDC_ERR_CLIENT_REVOKED: Clients credentials have been revoked
19. KRB5KDC_ERRSERVICE_REVOKED: Credentials for server have been revoked
20. KRB5KDC_ERR_TGT_REVOKED: TGT has been revoked
21. KRB5KDC_ERR_CLIENT_NOTYET: Client not yet valid - try again later
22. KRB5KDC_ERR_SERVICE_NOTYET: Server not yet valid - try again later
23. KRB5KDC_ERR_KEY_EXP: Password has expired
21. KRB5KDC_ERR_PREAUTH_FAILED: Preauthentication failed
22. KRB5KDC_ERR_PREAUTH_REQUIRED: Additional pre-authentication required
23. KRB5KDC_ERR_SERVER_NOMATCH: Requested server and ticket don’t match
24. KRB5PLACEHOLDER_27: KRB5 error code 27
25. KRB5PLACEHOLDER_28: KRB5 error code 28
26. KRB5PLACEHOLDER_29: KRB5 error code 29
27. KRB5PLACEHOLDER_30: KRB5 error code 30
28. KRB5KRBAP_ERR_BAD_INTEGRITY: Decrypt integrity check failed
29. KRB5KRBAP_ERR_TKT_EXPIRED: Ticket expired
30. KRB5KRBAP_ERR_TKT_NY: Ticket not yet valid
31. KRB5KRBAP_ERR_REPEAT: Request is a replay
32. KRB5KRBAP_ERR_NOT_US: The ticket isn’t for us
33. KRB5KRBAP_ERR_BADMATCH: Ticket/authenticator don’t match
34. KRB5KRBAP_ERR_SKEW: Clock skew too great
35. KRB5KRBAP_ERR_BADADDR: Incorrect net address
36. KRB5KRBAP_ERR_BADVERSION: Protocol version mismatch
37. KRB5KRBAP_ERR_MSG_TYPE: Invalid message type
38. KRB5KRBAP_ERR_MODIFIED: Message stream modified
39. KRB5KRBAP_ERR_BADORDER: Message out of order
40. KRB5KRBAP_ERR_JILL_CRTKT: Illegal cross-realm ticket
41. KRB5KRBAP_ERR_BADKEYVER: Key version is not available
42. KRB5KRBAP_ERR_NOKEY: Service key not available
43. KRB5KRBAP_ERR_MUT_FAIL: Mutual authentication failed
44. KRB5KRBAP_ERR_BADDIRECTION: Incorrect message direction
45. KRB5KRBAP_ERR_METHOD: Alternative authentication method required
46. KRB5KRBAP_ERR_BADSEQ: Incorrect sequence number in message
47. KRB5KRBAP_ERR_INAPP_CKSUM: Inappropriate type of checksum in message
48. KRB5PLACEHOLDER_51: KRB5 error code 51
49. KRB5PLACEHOLDER_52: KRB5 error code 52
50. KRB5PLACEHOLDER_53: KRB5 error code 53
51. KRB5PLACEHOLDER_54: KRB5 error code 54
52. KRB5PLACEHOLDER_55: KRB5 error code 55
53. KRB5PLACEHOLDER_56: KRB5 error code 56
54. KRB5PLACEHOLDER_57: KRB5 error code 57
58. KRB5PLACEHOLD_58: KRB5 error code 58
59. KRB5PLACEHOLD_59: KRB5 error code 59
60. KRB5_ERROR_GENERIC: Generic error (see e-text)
61. KRB5_ERROR_FIELD_TOO_LONG: Field is too long for this implementation
62. KRB5PLACEHOLD_62: KRB5 error code 62
63. KRB5PLACEHOLD_63: KRB5 error code 63
64. KRB5PLACEHOLD_64: KRB5 error code 64
65. KRB5PLACEHOLD_65: KRB5 error code 65
66. KRB5PLACEHOLD_66: KRB5 error code 66
67. KRB5PLACEHOLD_67: KRB5 error code 67
68. KRB5PLACEHOLD_68: KRB5 error code 68
69. KRB5PLACEHOLD_69: KRB5 error code 69
70. KRB5PLACEHOLD_70: KRB5 error code 70
71. KRB5PLACEHOLD_71: KRB5 error code 71
72. KRB5PLACEHOLD_72: KRB5 error code 72
73. KRB5PLACEHOLD_73: KRB5 error code 73
74. KRB5PLACEHOLD_74: KRB5 error code 74
75. KRB5PLACEHOLD_75: KRB5 error code 75
76. KRB5PLACEHOLD_76: KRB5 error code 76
77. KRB5PLACEHOLD_77: KRB5 error code 77
78. KRB5PLACEHOLD_78: KRB5 error code 78
79. KRB5PLACEHOLD_79: KRB5 error code 79
80. KRB5PLACEHOLD_80: KRB5 error code 80
81. KRB5PLACEHOLD_81: KRB5 error code 81
82. KRB5PLACEHOLD_82: KRB5 error code 82
83. KRB5PLACEHOLD_83: KRB5 error code 83
84. KRB5PLACEHOLD_84: KRB5 error code 84
85. KRB5PLACEHOLD_85: KRB5 error code 85
86. KRB5PLACEHOLD_86: KRB5 error code 86
87. KRB5PLACEHOLD_87: KRB5 error code 87
88. KRB5PLACEHOLD_88: KRB5 error code 88
89. KRB5PLACEHOLD_89: KRB5 error code 89
90. KRB5PLACEHOLD_90: KRB5 error code 90
91. KRB5PLACEHOLD_91: KRB5 error code 91
92. KR5PLACEHOLD_92: KR5 error code 92
93. KR5PLACEHOLD_93: KR5 error code 93
94. KR5PLACEHOLD_94: KR5 error code 94
95. KR5PLACEHOLD_95: KR5 error code 95
96. KR5PLACEHOLD_96: KR5 error code 96
97. KR5PLACEHOLD_97: KR5 error code 97
98. KR5PLACEHOLD_98: KR5 error code 98
100. KR5PLACEHOLD_100: KR5 error code 100
101. KR5PLACEHOLD_101: KR5 error code 101
102. KR5PLACEHOLD_102: KR5 error code 102
103. KR5PLACEHOLD_103: KR5 error code 103
104. KR5PLACEHOLD_104: KR5 error code 104
105. KR5PLACEHOLD_105: KR5 error code 105
106. KR5PLACEHOLD_106: KR5 error code 106
110. KR5PLACEHOLD_110: KR5 error code 110
111. KR5PLACEHOLD_111: KR5 error code 111
112. KR5PLACEHOLD_112: KR5 error code 112
113. KR5PLACEHOLD_113: KR5 error code 113
114. KR5PLACEHOLD_114: KR5 error code 114
115. KR5PLACEHOLD_115: KR5 error code 115
117. KR5PLACEHOLD_117: KR5 error code 117
118. KR5PLACEHOLD_118: KR5 error code 118
119. KR5PLACEHOLD_119: KR5 error code 119
120. KR5PLACEHOLD_120: KR5 error code 120
121. KR5PLACEHOLD_121: KR5 error code 121
122. KR5PLACEHOLD_122: KR5 error code 122
123. KR5PLACEHOLD_123: KR5 error code 123
124. KR5PLACEHOLD_124: KR5 error code 124
125. KR5PLACEHOLD_125: KR5 error code 125
126. KRB5PLACEHOLD._126: KRB5 error code 126
127. KRB5PLACEHOLD._127: KRB5 error code 127
128. KRB5.ERR_RCSID: $Id: admin.txtinfo,v 1.12.2.6 2001/02/23 00:31:34 tlyu Exp $
129. KRB5_LIBOS_BADLOCKFLAG: Invalid flag for file lock mode
130. KRB5_LIBOS_CANTREADPWD: Cannot read password
131. KRB5_LIBOS_BADPWDMATCH: Password mismatch
132. KRB5_LIBOS_PWDMINTR: Password read interrupted
133. KRB5_PARSE_ILCHAR: Illegal character in component name
134. KRB5_PARSE_MALFORMED: Malformed representation of principal
135. KRB5_CONFIG_CANTOPEN: Can't open/find configuration file
136. KRB5_CONFIG_BADFORMAT: Improper format of configuration file
137. KRB5_CONFIG_NOTENUSPACE: Insufficient space to return complete information
138. KRB5_BADMSGTYPE: Invalid message type specified for encoding
139. KRB5_CC_BADNAME: Credential cache name malformed
140. KRB5_CC_UNKNOWN_TYPE: Unknown credential cache type
141. KRB5_CC_NOTFOUND: Matching credential not found
142. KRB5_CC_END: End of credential cache reached
143. KRB5_NO_TKT_SUPPLIED: Request did not supply a ticket
144. KRB5_KRB_AP_WRONG_PRINC: Wrong principal in request
145. KRB5_KRB_AP_ERR_TKT_INVAILD: Ticket has invalid flag set
146. KRB5_PRINC_NOMATCH: Requested principal and ticket don't match
147. KRB5_KDCREP_MODIFIED: KDC reply did not match expectations
148. KRB5_KDCREP_SKEW: Clock skew too great in KDC reply
149. KRB5_IN_TKT_REALM_MISMATCH: Client/server realm mismatch in initial ticket request
150. KRB5_PROG_ETYPE_NOSUPP: Program lacks support for encryption type
151. KRB5_PROG_KEYTYPE_NOSUPP: Program lacks support for key type
152. KRB5_WRONG_ETYPE: Requested encryption type not used in message
153. KRB5_PROG_SUMTYPE_NOSUPP: Program lacks support for checksum type
154. KRB5_REALM_UNKNOWN: Cannot find KDC for requested realm
155. KRB5_SERVICE_UNKNOWN: Kerberos service unknown
156. KRB5_KDC_UNREACH: Cannot contact any KDC for requested realm
157. KRB5_NO_LOCALNAME: No local name found for principal name
158. KRB5_MUTUAL_FAILED: Mutual authentication failed
159. KRB5_RC_TYPE_EXISTS: Replay cache type is already registered
160. KRB5_RC_MALLOC: No more memory to allocate (in replay cache code)
161. KRB5_RC_TYPE_NOTFOUND: Replay cache type is unknown
162. KRB5_RC_UNKNOWN: Generic unknown RC error
163. KRB5_RC_REPLAY: Message is a replay
164. KRB5_RC_IO: Replay I/O operation failed XXX
165. KRB5_RC_NOIO: Replay cache type does not support non-volatile storage
166. KRB5_RC_PARSE: Replay cache name parse/format error
167. KRB5_RC_IO_EOF: End-of-file on replay cache I/O
168. KRB5_RC_IO_MALLOC: No more memory to allocate (in replay cache I/O code)
169. KRB5_RC_IO_PERM: Permission denied in replay cache code
170. KRB5_RC_IO_IO: I/O error in replay cache i/o code
171. KRB5_RC_IO_UNKNOWN: Generic unknown RC/IO error
172. KRB5_RC_IO_SPACE: Insufficient system space to store replay information
173. KRB5_TRANS_CANTOPEN: Can’t open/find realm translation file
174. KRB5_TRANS_BADFORMAT: Improper format of realm translation file
175. KRB5_LNAME_CANTOPEN: Can’t open/find lname translation database
176. KRB5_LNAME_NOTTRANS: No translation available for requested principal
177. KRB5_LNAME_BADFORMAT: Improper format of translation database entry
178. KRB5_CRYPTO_INTERNAL: Cryptosystem internal error
179. KRB5_KT_BADNAME: Key table name malformed
180. KRB5_KT_UNKNOWN_TYPE: Unknown Key table type
181. KRB5_KT_NOTFOUND: Key table entry not found
182. KRB5_KT_END: End of key table reached
183. KRB5_KT_NOWRITE: Cannot write to specified key table
184. KRB5_KT_IOERR: Error writing to key table
185. KRB5_NO_TKT_N_RLM: Cannot find ticket for requested realm
186. KRB5DES_BAD_KEYPAR: DES key has bad parity
187. KRB5DES_WEAK_KEY: DES key is a weak key
188. KRB5_BAD_ENCTYPE: Bad encryption type
189. KRB5_BAD_KEYSIZE: Key size is incompatible with encryption type
190. KRB5_BAD_MSIZE: Message size is incompatible with encryption type
191. KRB5_CC_TYPE_EXISTS: Credentials cache type is already registered.
192. KRB5_KT_TYPE_EXISTS: Key table type is already registered.
193. KRB5_CC_IO: Credentials cache I/O operation failed XXX
194. KRB5_FCC_PERM: Credentials cache file permissions incorrect
195. KRB5_FCC_NOFILE: No credentials cache file found
196. KRB5_FCC_INTERNAL: Internal file credentials cache error
197. KRB5_CC_WRITE: Error writing to credentials cache file
198. KRB5_CC_NOMEM: No more memory to allocate (in credentials cache code)
199. KRB5_CC_FORMAT: Bad format in credentials cache
200. KRB5_INVALID_FLAGS: Invalid KDC option combination (library internal error) [for dual
tgt library calls]
201. KRB5_NO_2ND_TKT: Request missing second ticket [for dual tgt library calls]
202. KRB5_NOCREDSSUPPLIED: No credentials supplied to library routine
203. KRB5_SENDAUTH_BADAUTHVERS: Bad sendauth version was sent
204. KRB5_SENDAUTH.BADAPPLVERS: Bad application version was sent (via sendauth)
205. KRB5_SENDAUTH_BADRESPONSE: Bad response (during sendauth exchange)
206. KRB5_SENDAUTH_REJECTED: Server rejected authentication (during sendauth exchange)
207. KRB5_PREAUTH_BAD.TYPE: Unsupported preauthentication type
208. KRB5_PREAUTH_NO_KEY: Required preauthentication key not supplied
209. KRB5_PREAUTH_FAILED: Generic preauthentication failure
210. KRB5_RCACHE_BADVNO: Unsupported replay cache format version number
211. KRB5_CCACHE_BADVNO: Unsupported credentials cache format version number
212. KRB5_KEYTAB_BADVNO: Unsupported key table format version number
213. KRB5_PROGATYPE.NOSUPP: Program lacks support for address type
214. KRB5_RC_REQUIRED: Message replay detection requires rcache parameter
215. KRB5_ERR_BAD_HOSTNAME: Hostname cannot be canonicalized
216. KRB5_ERR_HOST_REALM_UNKNOWN: Cannot determine realm for host
217. KRB5_SNAME_UNSUPP_NAMETYPE: Conversion to service principal undefined for name
type
218. KRB5KRB.AP.ERR_V4_REPLY: Initial Ticket response appears to be Version 4 error
219. KRB5_REALM.CANT.RESOLVE: Cannot resolve KDC for requested realm
220. KRB5_TKT.NOT.FORWARDABLE: Requesting ticket can’t get forwardable tickets
221. KRB5_FWD.BAD.PRINCIPAL: Bad principal name while trying to forward credentials
222. KRB5_GET_JN_TKT_LOOP: Looping detected inside krb5_get_jn_tkt
223. KRB5_CONFIG_NODE_DEFAULT_REALM: Configuration file does not specify default realm
224. KRB5_SAM_UNSUPPORTED: Bad SAM flags in obtain_sam_data
A.1.2 Kerberos V5 Database Library Error Codes

This is the Kerberos v5 database library error code table.

0. KRBF5_KDB_RCSID: $Id: admin_texinfo,v 1.12.2.6 2001/02/23 00:31:34 tlyu Exp $
1. KRBF5_KDB_INUSE: Entry already exists in database
2. KRBF5_KDB_UK_SEVEROR: Database store error
3. KRBF5_KDB_UK-_ERROR: Database read error
4. KRBF5_KDB_UNAUTH: Insufficient access to perform requested operation
5. KRBF5_KDB_NOENTRY: No such entry in the database
6. KRBF5_KDB_ILL_WILDCARD: Illegal use of wildcard
7. KRBF5_KDB_DB_INUSE: Database is locked or in use-try again later
8. KRBF5_KDB_DB_CHANGED: Database was modified during read
9. KRBF5_KDB_TRUNCATED_RECORD: Database record is incomplete or corrupted
10. KRBF5_KDB_RECURSIVELOCK: Attempt to lock database twice
11. KRBF5_KDB_NOTLOCKED: Attempt to unlock database when not locked
12. KRBF5_KDB_BADLOCKMODE: Invalid kdb lock mode
13. KRBF5_KDB_DBNOTINITITED: Database has not been initialized
14. KRBF5_KDB_DBINITITED: Database has already been initialized
15. KRBF5_KDB_ILLDIRECTION: Bad direction for converting keys
16. KRBF5_KDB_NOMASTERKEY: Cannot find master key record in database
17. KRBF5_KDB_BADMMASTERKEY: Master key does not match database
18. KRBF5_KDB_INVALIDEKEYSIZE: Key size in database is invalid
19. KRBF5_KDB_CANTREAD_STORED: Cannot find/read stored master key
20. KRBF5_KDB_BADSTORED_MKEY: Stored master key is corrupted
21. KRBF5_KDB_CANTLOCK_DB: Insufficient access to lock database
22. KRBF5_KDB_DB_CORRUPT: Database format error
23. KRBF5_KDB_BAD_VERSION: Unsupported version in database entry
24. KRBF5_KDB_BAD_SALTTYPE: Unsupported salt type
25. KRBF5_KDB_BAD_ENCTYPE: Unsupported encryption type

A.1.3 Kerberos V5 Magic Numbers Error Codes

This is the Kerberos v5 magic numbers error code table.

0. KV5M_NONE: Kerberos V5 magic number table
1. KV5M_PRINCIPAL: Bad magic number for krb5_principal structure
2. KV5M_DATA: Bad magic number for krb5_data structure
3. KV5M_KEYBLOCK: Bad magic number for krb5_keyblock structure
4. KV5M_CHECKSUM: Bad magic number for krb5_checksum structure
5. KV5M_ENCRYPT_BLOCK: Bad magic number for krb5_encrypt_block structure
6. KV5M_ENC_DATA: Bad magic number for krb5_enc_data structure
7. KV5M_CRYPTOSYSTEM_ENTRY: Bad magic number for krb5_cryptosystem_entry structure
8. KV5M_CS_TABLE_ENTRY: Bad magic number for krb5_cs_table_entry structure
9. KV5M_CHECKSUM_ENTRY: Bad magic number for krb5_checksum_entry structure
10. KV5M_AUTHDATA: Bad magic number for krb5_authdata structure
11. KV5M_TRANSITED: Bad magic number for krb5_transited structure
12. KV5M_ENC_TKT_PART: Bad magic number for krb5_enc_tkt_part structure
13. KV5M_TICKET: Bad magic number for krb5_ticket structure
14. KV5M_AUTHENTICATOR: Bad magic number for krb5_authenticator structure
15. KV5M_TKT_AUTHENT: Bad magic number for krb5_tkt_authent structure
16. KV5M_CREDS: Bad magic number for krb5_creds structure
17. KV5M_LAST_REQ_ENTRY: Bad magic number for krb5_last_req_entry structure
18. KV5M_PA_DATA: Bad magic number for krb5_pa_data structure
19. KV5M_KDC_REQ: Bad magic number for krb5_kdc_req structure
20. KV5M_ENC_KDC_REP_PART: Bad magic number for krb5_enc_kdc_rep_part structure
21. KV5M_KDC_REP: Bad magic number for krb5_kdc_rep structure
22. KV5M_ERROR: Bad magic number for krb5_error structure
23. KV5M_AP_REQ: Bad magic number for krb5_ap_req structure
24. KV5M_AP_REP: Bad magic number for krb5_ap_rep structure
25. KV5M_AP_REP_ENC_PART: Bad magic number for krb5_ap_rep_enc_part structure
26. KV5M_RESPONSE: Bad magic number for krb5_response structure
27. KV5M_SAFE: Bad magic number for krb5_safe structure
28. KV5M_PRIV: Bad magic number for krb5_priv structure
29. KV5M_PRIV_ENC_PART: Bad magic number for krb5_priv_enc_part structure
30. KV5M_CRED: Bad magic number for krb5_cred structure
31. KV5M_CRED_INFO: Bad magic number for krb5_cred_info structure
32. KV5M_CRED_ENC_PART: Bad magic number for krb5_cred_enc_part structure
33. KV5M_PWD_DATA: Bad magic number for krb5_pwd_data structure
34. KV5M_ADDRESS: Bad magic number for krb5_address structure
35. KV5M_KEYTAB_ENTRY: Bad magic number for krb5_keytab_entry structure
36. KV5M_CONTEXT: Bad magic number for krb5_context structure
37. KV5M_OS_CONTEXT: Bad magic number for krb5_os_context structure
38. KV5M_ALT_METHOD: Bad magic number for krb5_alt_method structure
39. KV5METYPEINFO_ENTRY: Bad magic number for krb5_typeinfo_entry structure
40. KV5M_DB_CONTEXT: Bad magic number for krb5_db_context structure
41. KV5M_AUTH_CONTEXT: Bad magic number for krb5_auth_context structure
42. KV5M_KEYTAB: Bad magic number for krb5_keytab structure
43. KV5M_RCACHE: Bad magic number for krb5_rcache structure
44. KV5M_CCACHE: Bad magic number for krb5_ccache structure
45. KV5M_PREAUTH_OPS: Bad magic number for krb5_preauth_ops
46. KV5M_SAM_CHALLENGE: Bad magic number for krb5_sam_challenge
47. KV5M_SAM_KEY: Bad magic number for krb5_sam_key
48. KV5M_ENC_SAM_RESPONSE_ENC: Bad magic number for krb5_enc_sam_response_enc
49. KV5M_SAM_RESPONSE: Bad magic number for krb5_sam_response
50. KV5M_PREDICTED_SAM_RESPONSE: Bad magic number for krb5_predicted_sam_response
51. KV5M_PASSWD_PHRASE_ELEMENT: Bad magic number for passwd_phrase_element

A.1.4 ASN.1 Error Codes

0. ASN1_BAD_TIMEFORMAT: ASN.1 failed call to system time library
1. ASN1_MISSING_FIELD: ASN.1 structure is missing a required field
2. ASN1_MISPLACED_FIELD: ASN.1 unexpected field number
3. ASN1_TYPE_MISMATCH: ASN.1 type numbers are inconsistent
4. ASN1_OVERFLOW: ASN.1 value too large
5. ASN1_OVERRUN: ASN.1 encoding ended unexpectedly
6. ASN1_BAD_ID: ASN.1 identifier doesn’t match expected value
7. ASN1_BAD_LENGTH: ASN.1 length doesn’t match expected value
8. ASN1_BAD_FORMAT: ASN.1 badly-formatted encoding
9. ASN1_PARSE_ERROR: ASN.1 parse error
A.1.5 GSSAPI Error Codes

Generic GSSAPI Errors:
0. G_BAD_SERVICE_NAME: No in SERVICE-NAME name string
1. G_BAD_STRING_UID: STRING-UID-NAME contains nondigits
2. G_NOUSER: UID does not resolve to username
3. G_VALIDATE_FAILED: Validation error
4. G_BUFFER_ALLOC: Couldn’t allocate gss_buffer_t data
5. G_BAD_MSG_CTX: Message context invalid
6. G_WRONG_SIZE: Buffer is the wrong size
7. G_BAD_USAGE: Credential usage type is unknown
8. G_UNKNOWN_QOP: Unknown quality of protection specified
9. G_BAD_HOSTNAME: Hostname in SERVICE-NAME string could not be canonicalized

Kerberos 5 GSSAPI Errors:
0. KG_CCACHE_NOMATCH: Principal in credential cache does not match desired name
1. KG_KEYTAB_NOMATCH: No principal in keytab matches desired name
2. KG_TGT_MISSING: Credential cache has no TGT
3. KG_NO_SUBKEY: Authenticator has no subkey
4. KG_CONTEXT_ESTABLISHED: Context is already fully established
5. KG_BAD_SIGN_TYPE: Unknown signature type in token
6. KG_BAD_LENGTH: Invalid field length in token
7. KG_CTX_INCOMPLETE: Attempt to use incomplete security context
8. KG_CTX: Bad magic number for krb5_gss_ctx_id_t
9. KG_CRED: Bad magic number for krb5_gss_cred_id_t
10. KG_ENC_DESC: Bad magic number for krb5_gss_enc_desc

A.2 kadmin Time Zones

This is a complete listing of the time zones recognized by the kadmin command.

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Time Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>gmt</td>
<td>Greenwich Mean Time</td>
</tr>
<tr>
<td>ut, utc</td>
<td>Universal Time (Coordinated).</td>
</tr>
<tr>
<td>wet</td>
<td>Western European Time. (Same as GMT.)</td>
</tr>
<tr>
<td>bst</td>
<td>British Summer Time. (1 hour ahead of GMT.)</td>
</tr>
<tr>
<td>wat</td>
<td>West Africa Time. (1 hour behind GMT.)</td>
</tr>
<tr>
<td>at</td>
<td>Azores Time. (2 hours behind GMT.)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Time Zone Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>bst</td>
<td>Brazil Standard Time. (3 hours behind GMT.) Note that the abbreviation BST also stands for British Summer Time.</td>
</tr>
<tr>
<td>gst</td>
<td>Greenland Standard Time. (3 hours behind GMT.) Note that the abbreviation GST also stands for Guam Standard Time.</td>
</tr>
<tr>
<td>nft</td>
<td>Newfoundland Time. (3.5 hours behind GMT.)</td>
</tr>
<tr>
<td>nst</td>
<td>Newfoundland Standard Time. (3.5 hours behind GMT.)</td>
</tr>
<tr>
<td>ndt</td>
<td>Newfoundland Daylight Time. (2.5 hours behind GMT.)</td>
</tr>
<tr>
<td>ast</td>
<td>Atlantic Standard Time. (4 hours behind GMT.)</td>
</tr>
<tr>
<td>adt</td>
<td>Atlantic Daylight Time. (3 hours behind GMT.)</td>
</tr>
<tr>
<td>est</td>
<td>Eastern Standard Time. (5 hours behind GMT.)</td>
</tr>
<tr>
<td>edt</td>
<td>Eastern Daylight Time. (4 hours behind GMT.)</td>
</tr>
<tr>
<td>cst</td>
<td>Central Standard Time. (6 hours behind GMT.)</td>
</tr>
<tr>
<td>cdt</td>
<td>Central Daylight Time. (5 hours behind GMT.)</td>
</tr>
<tr>
<td>mst</td>
<td>Mountain Standard Time. (7 hours behind GMT.)</td>
</tr>
<tr>
<td>mdt</td>
<td>Mountain Daylight Time. (6 hours behind GMT.)</td>
</tr>
<tr>
<td>pst</td>
<td>Pacific Standard Time. (8 hours behind GMT.)</td>
</tr>
<tr>
<td>pdt</td>
<td>Pacific Daylight Time. (7 hours behind GMT.)</td>
</tr>
<tr>
<td>yst</td>
<td>Yukon Standard Time. (9 hours behind GMT.)</td>
</tr>
<tr>
<td>ydt</td>
<td>Yukon Daylight Time. (8 hours behind GMT.)</td>
</tr>
<tr>
<td>hst</td>
<td>Hawaii Standard Time. (10 hours behind GMT.)</td>
</tr>
<tr>
<td>hdt</td>
<td>Hawaii Daylight Time. (9 hours behind GMT.)</td>
</tr>
<tr>
<td>cat</td>
<td>Central Alaska Time. (10 hours behind GMT.)</td>
</tr>
<tr>
<td>ahst</td>
<td>Alaska-Hawaii Standard Time. (10 hours behind GMT.)</td>
</tr>
<tr>
<td>nt</td>
<td>Nome Time. (11 hours behind GMT.)</td>
</tr>
<tr>
<td>idlw</td>
<td>International Date Line West Time. (12 hours behind GMT.)</td>
</tr>
<tr>
<td>cet</td>
<td>Central European Time. (1 hour ahead of GMT.)</td>
</tr>
<tr>
<td>met</td>
<td>Middle European Time. (1 hour ahead of GMT.)</td>
</tr>
<tr>
<td>mewt</td>
<td>Middle European Winter Time. (1 hour ahead of GMT.)</td>
</tr>
<tr>
<td>mest</td>
<td>Middle European Summer Time. (2 hours ahead of GMT.)</td>
</tr>
<tr>
<td>swt</td>
<td>Swedish Winter Time. (1 hour ahead of GMT.)</td>
</tr>
<tr>
<td>sst</td>
<td>Swedish Summer Time. (1 hours ahead of GMT.)</td>
</tr>
<tr>
<td>fwt</td>
<td>French Winter Time. (1 hour ahead of GMT.)</td>
</tr>
<tr>
<td>fst</td>
<td>French Summer Time. (2 hours ahead of GMT.)</td>
</tr>
<tr>
<td>cet</td>
<td>Eastern Europe Time; Russia Zone 1. (2 hours ahead of GMT.)</td>
</tr>
<tr>
<td>bt</td>
<td>Baghdad Time; Russia Zone 2. (3 hours ahead of GMT.)</td>
</tr>
<tr>
<td>it</td>
<td>Iran Time. (3.5 hours ahead of GMT.)</td>
</tr>
<tr>
<td>zp4</td>
<td>Russia Zone 3. (4 hours ahead of GMT.)</td>
</tr>
<tr>
<td>zp5</td>
<td>Russia Zone 4. (5 hours ahead of GMT.)</td>
</tr>
<tr>
<td>ist</td>
<td>Indian Standard Time. (5.5 hours ahead of GMT.)</td>
</tr>
<tr>
<td>zp6</td>
<td>Russia Zone 5. (6 hours ahead of GMT.)</td>
</tr>
</tbody>
</table>
nst North Sumatra Time. (6.5 hours ahead of GMT.) Note that the abbreviation NST is
also used for Newfoundland Stanard Time.
sst South Sumatra Time; Russia Zone 6. (7 hours ahead of GMT.) Note that SST is also
Swedish Summer Time.
wast West Australian Standard Time. (7 hours ahead of GMT.)
wadt West Australian Daylight Time. (8 hours ahead of GMT.)
jt Java Time. (7.5 hours ahead of GMT.)
cct China Coast Time; Russia Zone 7. (8 hours ahead of GMT.)
jst Japan Standard time; Russia Zone 8. (9 hours ahead of GMT.)
kst Korean Standard Time. (9 hours ahead of GMT.)
cast Central Australian Standard Time. (9.5 hours ahead of GMT.)
cadt Central Australian Daylight Time. (10.5 hours ahead of GMT.)
east Eastern Australian Standard Time. (10 hours ahead of GMT.)
eadt Eastern Australian Daylight Time. (11 hours ahead of GMT.)
gst Guam Standard Time; Russia Zone 9. (10 hours ahead of GMT.)
kdt Korean Daylight Time. (10 hours ahead of GMT.)
nzt New Zealand Time. (12 hours ahead of GMT.)
nzst New Zealand Standard Time. (12 hours ahead of GMT.)
nzdt New Zealand Daylight Time. (13 hours ahead of GMT.)
idle International Date Line East. (12 hours ahead of GMT.)