Administration Guide – Core Components
First Edition (February 1998)

This edition applies to Version 2.2 of IBM Distributed Computing Environment for AIX and to all subsequent releases and modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address below.

IBM welcomes your comments. Send your comments to the following address:

International Business Machines Corporation
Department VLXA
11400 Burnet Road
Austin, Texas
78758

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

Copyright © 1995, 1996 Open Software Foundation, Inc.
Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG
Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology
Copyright © 1995, 1996 Hitachi, Ltd.

Licensee agrees that it will comply with and will require its Distributors to comply with all then applicable laws, rules and regulations (i) relating to the export or re-export of technical data when exporting or re-exporting a Licensed Program or Documentation, and (ii) required to limit a governmental agency’s rights in the Licensed Program, Documentation or associated technical data by affixing a Restricted Rights notice to the Licensed Program, Documentation and/or technical data equivalent to or substantially as follows: “Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in DFARS 52.227-7013(c)(1)(i)-(ii); FAR 52.227-19; and FAR 52.227-14, Alternate III, as applicable or in the equivalent clause of any other applicable Federal government regulations.”

© Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
Contents

Figures .. xvi
Tables ... xix

About This Book ... xx

- Audience ... xx
- Applicability .. xx
- Purpose ... xx
- Document Usage .. xx
- Related Documents .. xxii
- Typographic and Keying Conventions ... xxii
- Problem Reporting ... xxiii
- Pathnames of Directories and Files in DCE Documentation xxiii

Part 1. The DCE Control Program ... 1

Chapter 1. DCE Control Program Introduction .. 3

- Flexible, Portable, and Extensible Administration 3
- DCE Administration Objects ... 4
- Using the DCE Control Program ... 5
 - Starting and Stopping dcecp ... 5
 - Invoking dcecp Operations .. 5
- Doing More with dcecp ... 7
- When to Use an Interactive Command or Script 9
- Editing Command Lines ... 9
 - Editing the Current Command Line .. 10
 - Editing Command Lines with the history Command 12
- Using the dcecp Help Facilities ... 14
- Customizing dcecp Sessions ... 16
 - Adding Scripts to dcecp Sessions ... 16
 - Adding New Objects to the DCE Control Program 18
- Environment Variables .. 18

Chapter 2. Using the DCE Control Program Command Language 19

- Chapter Preview ... 19
- Variable Substitution ... 20
- Command Substitution ... 21
- Grouping Elements and Controlling Interpretation 21
 - Grouping Elements with Braces .. 22
 - Grouping Elements with Double Quotes .. 22
 - Including Special Characters with Backslashes 23
- Documenting Scripts with Comments ... 24
- Convenience Variables .. 24
 - Current Principal (User) Name (_u) .. 25
 - Current Cell Name (_c) .. 25
 - Current Host Name (_h) .. 26
 - Most Recent Operation Argument Name (_n) 26
 - Parent of _n (_p) ... 27
 - Last dcecp Object Name (_o) .. 27
 - Last Operation’s Return Value (_r) .. 27
 - DCE Servers to Use (_s(xxx)) .. 28
 - Last Security Server Used (_b(sec)) .. 29
 - Most Recent Error Code (_e) .. 30

© Copyright IBM Corp. 1997
CDS Confidence Level (_conf) ... 30
Measuring and Counting with Expressions 30
Operating on Lists ... 31
Controlling Scripts ... 32
 Conditionalizing with if Statements 33
 Controlling Script Execution with Loops 33
 Terminating Loops with continue and break 35
 Testing with Patterns Before Execution with case 35
Creating Commands Dynamically 36
Reading Other Files as dcecp Scripts 37
Creating New Commands ... 37
String Manipulation ... 39
 Constructing Strings ... 40
 Parsing Strings .. 40
 Other String Handling Operations 41
Dealing with Errors and Exceptions 42
 Using Global Error Information Variables 42
 Using catch to Trap Errors and Exceptions 43
 Reissuing Complex Errors ... 44
Working with Files ... 44
 Specifying Filenames .. 45
 Reading and Writing Files ... 45
Spawning Subprocesses ... 46
 Running Operating System Commands from a Script 46

Chapter 3. Writing Scripts and dcecp Objects 49
Informal Administration Scripts .. 49
Formal Task Objects ... 51
 A Model for Task Objects .. 51
 Using the parseargs Procedure 57
 Invoking Task Objects ... 59

Part 2. DCE Administration Tasks .. 61

Chapter 4. DCE Administration Task Objects 63
Using Task Objects to Simplify DCE Administration 63
Looking Beyond the Tools ... 64

Chapter 5. Managing a DCE Cell .. 65
Showing All Configured DCE Servers and DCE Hosts 65
Testing Cell Operation ... 66
Back Up the Security Service Registry and CDS 67
Changing the IP Address of a DCE Server 68
 Server Updates ... 68
 Client Updates .. 70
Changing the IP Address of a DCE Client 70
Changing the IP Address of a DFS Server 71
Modifying or Extending the Cell Object 71

Chapter 6. Managing DCE Hosts .. 73
Listing the DCE Hosts in a Cell ... 73
Showing All Servers Configured for a DCE Host 74
Testing Whether a DCE Host is Running 74
Starting Configured DCE Processes on a Host 75
Stopping DCE Processes Running on a Host 75
Configuring a DCE Host in a Cell 75
Removing a DCE Host from a Cell ... 76
Modifying or Extending the Host Object 77

Chapter 7. Managing DCE Users ... 79
Creating a New User ... 79
Showing User Information ... 80
Deleting a User ... 81
Modifying or Extending the User Object 82

Chapter 8. Event Management Service (EMS) 83
Starting the EMS Server ... 84
Logging EMS Events .. 84
Managing EMS Consumers .. 85
Managing EMS Event Filters ... 86
Managing EMS Event Queues ... 87
Managing the EMS Daemon .. 88
Setting Permission for the EMS Server 88
 Event Type Security Management 89
 Event Filter Security Management 90
 Consumer Security Management 90
 EMS Security Initialization ... 91

Part 3. DCE Host and Application Administration 93

Chapter 9. Managing DCE Host Services and Host Data 95
DCE Host Services .. 95
Starting and Stopping DCE Host Services 96
Managing Host Data .. 97
 Permissions for Accessing Host Data 97
 Modifying Host Cell Name Information 99
 Manipulating Data in Other Host Files 100
Routing Serviceability Messages ... 101
 Serviceability Message Severity Levels 101
 How to Route Serviceability Messages 102

Chapter 10. DCE Application Administration 107
Controlling Server Operation ... 107
 Common Server Configuration Needs 108
Configuring Servers .. 113
Listing and Retrieving Server Configuration Information 114
Unconfiguring Servers ... 115
Starting and Stopping Servers ... 115
Disabling and Enabling Services 115
Extending Server Configurations 116
Changing Server Configurations 118
Checking Whether Servers Are Running 118
Managing Client/Server Binding Information 119
Using the Endpoint Map for Easy Application Development and Administration .. 121
 Automatic Endpoint Map Administration 121
 Restricting Endpoints .. 122
 Viewing Information in the Endpoint Map 123
Managing Server Entries, Groups, and Profiles in CDS 123
 Using Unique Server Entry Names to Identify Individual Servers and Objects .. 124
 Using Group Entries to Help Balance Server Workloads 128
 Using Profiles to Direct Client Searches for Servers 132
Client Administration .. 136
External Time-Provider Support ... 238
Manageability ... 239
Quantitative Inaccuracy Measurement 239
Basic DTS Concepts .. 240
Time Measurement Factors .. 240
Inaccuracy Values ... 241
Synchronizing System Clocks ... 242
How DTS Adjusts System Clocks ... 243
DTS Time Representation .. 244
How DTS Works .. 247
Clerks .. 247
Servers ... 248

Chapter 24. Planning Your DTS Implementation 251
General Planning Guidelines .. 251
Configuring DTS for a LAN .. 252
Configuring DTS for an Extended LAN 252
Configuring DTS for WANs and WAN Links 253
LANs with WAN Links to Remote Sites 253
LANs Connected by WAN Links ... 254
WAN Cells ... 254
Planning for External Time-Providers 256

Chapter 25. Managing the DCE DTS ... 257
Using the DCE Control Program ... 257
DTS Objects .. 257
dcecp Operations for DTS .. 258
DTS Object Attributes and Counters 258
DTS Timestamp Format .. 259
Reconfiguring DTS on Nodes ... 260
Stopping an Existing Clerk or Server 260
Creating a New Clerk or Server ... 261
Setting Clerk and Server Attribute Values 261
Temporarily Reconfiguring DTS ... 262
Modifying Clerk and Server Attributes 263
The minservers Attribute ... 264
Use of minservers Attribute with Global Servers 265
Use of minservers Attribute with Systems on Point-to-Point Lines 266
The maxinaccuracy Attribute ... 266
The syncinterval Attribute ... 267
The tolerance Attribute ... 268
The localtimeout, globaltimeout, and queryattempts Attributes 269
The serverentry and serverprincipal Attributes 270
Management Tasks Specific to Servers 270
Designating Global and Courier Servers 270
Matching Server Epochs .. 272
Setting the checkinterval Attribute for Connection to a Time-Provider 272
Changing the System Time .. 273
Updating the Time Monotonically ... 273
Updating the Time Nonmonotonically 274
Forcing System Synchronization .. 275
Controlling Access to DTS ... 275

Chapter 26. Interoperation with Network Time Protocol 277
Getting the Time from NTP Time Sources 277
Getting the Time from Local NTP Time Sources 277
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal, Group, and Organization Names</td>
<td>319</td>
</tr>
<tr>
<td>Primary Names</td>
<td>319</td>
</tr>
<tr>
<td>Full Names</td>
<td>319</td>
</tr>
<tr>
<td>Aliases</td>
<td>319</td>
</tr>
<tr>
<td>Name Formats</td>
<td>320</td>
</tr>
<tr>
<td>Reserved Principals and Accounts</td>
<td>320</td>
</tr>
<tr>
<td>Object Creation Quotas</td>
<td>321</td>
</tr>
<tr>
<td>Universal Unique Identifiers and UNIX IDs</td>
<td>321</td>
</tr>
<tr>
<td>Adding and Maintaining Principals</td>
<td>322</td>
</tr>
<tr>
<td>Adding Principals</td>
<td>322</td>
</tr>
<tr>
<td>Changing Principals</td>
<td>323</td>
</tr>
<tr>
<td>Deleting Principals and Aliases</td>
<td>324</td>
</tr>
<tr>
<td>Extended Security Attributes for Principals</td>
<td>324</td>
</tr>
<tr>
<td>DCE Authentication</td>
<td>324</td>
</tr>
<tr>
<td>Managing Invalid Login Handling</td>
<td>328</td>
</tr>
<tr>
<td>Managing Password Strength and Password Generation</td>
<td>329</td>
</tr>
<tr>
<td>Managing Password Expiration</td>
<td>331</td>
</tr>
<tr>
<td>Adding and Maintaining Groups and Organizations</td>
<td>332</td>
</tr>
<tr>
<td>Project Lists</td>
<td>332</td>
</tr>
<tr>
<td>Adding Groups and Organizations</td>
<td>333</td>
</tr>
<tr>
<td>Changing Groups and Organizations</td>
<td>334</td>
</tr>
<tr>
<td>Deleting Groups and Organizations</td>
<td>335</td>
</tr>
<tr>
<td>Maintaining Membership Lists</td>
<td>335</td>
</tr>
<tr>
<td>Effects of Account Creation on Membership Lists</td>
<td>335</td>
</tr>
<tr>
<td>Adding and Deleting Group Members</td>
<td>335</td>
</tr>
<tr>
<td>Creating and Maintaining Aliases for Principals or Groups</td>
<td>336</td>
</tr>
<tr>
<td>Creating Aliases</td>
<td>336</td>
</tr>
<tr>
<td>Changing Primary Names to Aliases and Vice Versa</td>
<td>337</td>
</tr>
</tbody>
</table>

Chapter 31. Creating and Maintaining Accounts

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Accounts</td>
<td>339</td>
</tr>
<tr>
<td>Server Accounts</td>
<td>340</td>
</tr>
<tr>
<td>Passwords for Server Accounts</td>
<td>340</td>
</tr>
<tr>
<td>Steps for Creating Server Accounts</td>
<td>340</td>
</tr>
<tr>
<td>Machine Accounts</td>
<td>340</td>
</tr>
<tr>
<td>How Identities Represented by Accounts Are Authenticated</td>
<td>341</td>
</tr>
<tr>
<td>Privilege Attributes</td>
<td>341</td>
</tr>
<tr>
<td>Ticket-Granting Tickets and Tickets to Services.</td>
<td>342</td>
</tr>
<tr>
<td>Displaying Privilege Attributes and Tickets</td>
<td>342</td>
</tr>
<tr>
<td>Destroying a Principal’s Tickets</td>
<td>343</td>
</tr>
<tr>
<td>Adding Accounts</td>
<td>344</td>
</tr>
<tr>
<td>Setting Ticket Lifetimes</td>
<td>347</td>
</tr>
<tr>
<td>Ticket-Granting Ticket Lifetimes and Service Ticket Lifetimes</td>
<td>348</td>
</tr>
<tr>
<td>Adding Accounts Example</td>
<td>348</td>
</tr>
<tr>
<td>Modifying Accounts</td>
<td>349</td>
</tr>
<tr>
<td>Deleting Accounts</td>
<td>349</td>
</tr>
<tr>
<td>Creating, Maintaining, and Deleting Keytab Files</td>
<td>350</td>
</tr>
<tr>
<td>The Keytab File</td>
<td>350</td>
</tr>
<tr>
<td>Creating and Maintaining Keys and Keytab Files</td>
<td>351</td>
</tr>
<tr>
<td>Removing Keytab Files</td>
<td>354</td>
</tr>
<tr>
<td>Changing Server and Machine Passwords in the Keytab File</td>
<td>354</td>
</tr>
<tr>
<td>Handling Compromised Server or Machine Passwords in the Keytab File</td>
<td>355</td>
</tr>
<tr>
<td>Maintaining the Local Registry</td>
<td>355</td>
</tr>
<tr>
<td>The Registry Capacity Property</td>
<td>356</td>
</tr>
<tr>
<td>Setting the Capacity and Lifespan Properties</td>
<td>356</td>
</tr>
<tr>
<td>Purging Expired Entries</td>
<td>357</td>
</tr>
</tbody>
</table>
Chapter 32. Creating and Using Extended Registry Attributes ... 359
 The xattrschema Object .. 359
 Creating and Maintaining Attribute Types .. 359
 Creating Attribute Types .. 360
 Modifying Attribute Types .. 361
 Renaming Attribute Types .. 362
 Deleting Attribute Types ... 362
 Defining the ACL Managers for Attributes ... 362
 Defining Attribute Type Encoding ... 364
 Defining Attribute Trigger Servers .. 365
 The -trigtype Option .. 365
 The -trigbind Option ... 366
 Creating and Maintaining Attribute Instances ... 368
 Attaching Attribute Instances to Objects ... 368
 Modifying Attribute Instances .. 368
 Deleting Attribute Instances .. 369
 Using Attribute Sets ... 370

Chapter 33. Administering a Multicell Environment .. 371
 Trust Relationships .. 371
 Direct Trust Relationships .. 371
 Establishing Trust Relationships ... 372
 Constraints on Transitive Trust Relationships 372
 Creating Trust Relationships ... 377
 Command Options for the registry connect Command 378
 Creating Cross-Cell Authentication Accounts Example 379
 The Accounts Created by the registry connect Command.......................... 379
 Modifying Cross-Cell Authentication Accounts ... 380

Chapter 34. Viewing Registry Information ... 381
 Displaying Account Information ... 381
 Displaying Group and Organization Information ... 382
 Displaying Principal Information .. 384
 Displaying xattrschema Information .. 385
 Displaying ACL Information ... 386
 Displaying keytab Information ... 387

Chapter 35. Maintaining Policies and Properties ... 389
 Policies .. 389
 Standard Policy .. 389
 Authentication Policy ... 391
 Handling Conflicting Policies .. 392
 The Effects of Changes on Existing Policies .. 393
 Displaying and Setting Standard and Authentication Policies 393
 Properties .. 394
 Default Ticket Lifetime Property ... 394
 Hidden Password Property .. 394
 Minimum Group ID Property .. 394
 Minimum Organization ID Property ... 395
 Minimum UNIX ID Property .. 395
 Maximum UNIX ID Property .. 395
 Minimum Ticket Lifetime Property .. 395
 Displaying and Setting Properties ... 396

Chapter 36. Performing Routine Maintenance ... 397
 Adding Accounts ... 397
Chapter 40. Troubleshooting Procedures

Completing Processing ... 428
Chapter 40. Troubleshooting Procedures 429
Mapping of DCE Daemon Core Locations and How to Symlink to a Separate Filesystem ... 429
Restarting Security Servers .. 430
Back up and Recovery of the System after Failure in the Security Server ... 430
Backing up the registry ... 431
Restoring the registry .. 431
Restarting the Master Server in Locksmith Mode 432
Automatic Changes to the Locksmith Account 432
Starting a Security Server in Locksmith Mode 433
Restarting a Security Server in Locksmith Mode 433
Recovering the Master Replica 434
Determining the Most Current Database 434
Converting a Slave to a Master 434
Recovering Slave Replicas ... 435
Converting a Master to a Slave 435
Forcibly Deleting a Slave Replica 436
Restoring a Duplicate Master 436
Adopting Registry Orphans .. 437
Accessing a Server Registered with User to User Protocol 438
Designating a New Master Replica When the Current Master Replica Has Failed ... 439

Chapter 41. AIX/DCE Security Integration 441
More Detailed Information—Security Integration 441
Enabling DCE Access .. 441
The SYSTEM Attribute .. 441
The registry Attribute .. 442
Protecting Local Resources .. 442
Protecting Local Resources with the /etc/security/user File 443
Protecting Local Resources with the passwd_override and group_override Files ... 443
Configuring DCE Access on a Per-User Basis 444
Configuring and Protecting the Local Root User 444
Configuring and Protecting a Local-Only User 444
Configuring a Synchronized User 445
Supporting Wandering DCE Users 445
Access Method Identification 446
Changing Passwords .. 446
Troubleshooting .. 446
Steps—Security Integration ... 448
Restrictions—Security Integration 448
Examples—Security Integration 450
Intercell Considerations—Security Integration 451
Intercell Administration—Security Integration 451
UNIX IDs for shadow principals 451
Account Information .. 451
Shadow Groups .. 452
Manage UNIX IDs across cells. 452
Security Integration on a Slim Client Configuration 453
Security Integration with Multiple Dceunixd Daemons 454

Chapter 42. Accessing Registry Objects 455
The Registry Database ... 455
Chapter 43. DCE Audit Service

Features of the DCE Audit Service

Components of the DCE Audit Service

DCE Audit Service Concepts

Audit Clients

Code Points

Audit Events

Event Numbers

Event Classes

Filters

Audit Trail File

Administration and Programming in DCE Audit

Programmer Tasks

Administrator Tasks

Chapter 44. DCE Audit Service Administrative Tasks

Using DCE Auditing on AIX

Configure the auditd daemon

Stop and restart the DCE servers

Collect auditing records

Display audit trail

Setting DCE Audit Environment Variables

Starting the Audit Daemon

Controlling Access to the Audit Daemon

DCE Permissions Supported by the DCE Audit Service

Initial ACL of the Audit Daemon

Giving Permissions to Audit Clients and Administrators

Defining Event Classes
Steps in Defining an Event Class .. 486
Example Event Class File ... 486
Creating and Maintaining Filters 487
 Creating Filters .. 487
 Modifying Filters .. 488
 Deleting Filters .. 488
 Default Filters ... 488
 Enabling Audit Filters ... 489
Enabling and Disabling the Audit Logging Service 490
Modifying and Querying Audit Daemon Attributes 490
Controlling and Displaying Audit Trails 490
 Displaying Audit Trail Files .. 491
 Controlling the Audit Trail Size 491
 Changing the Audit Trail File Storage Option 492

Chapter 45. Kerberos Interoperability with DCE and Secure Remote Utilities ... 493
KDC Interoperability .. 493
Credential Cache and Keytab File Compatibility 493

Appendix A. Valid Characters and Naming Rules for CDS 495
Metacharacters ... 497
Additional Rules ... 497
Maximum Name Sizes .. 497

Appendix B. Object Identifier Files 499
Origin of Object Identifiers .. 499
The cds_attributes File ... 499
Modifying the Files .. 500
Modifying a CDS Entity’s Attributes 501
 Adding a New Attribute .. 501
 Modifying the Value of an Existing Attribute 501
 Removing an Attribute ... 502

Appendix C. Time-Providers and Time Services 503
Criteria for Selecting a Time Source 503
Sources of Coordinated Universal Time 504
 Telephone Services ... 504
 Radio Transmissions .. 504
 Network Time Protocol .. 504
 Satellite .. 505
World Time Zone Map .. 505

Appendix D. DTS Extended BNF .. 507

Appendix E. Notices ... 509
Trademarks .. 509

Index .. 511
Figures

1. Server Binding Information .. 120
2. Possible Information in a Server Entry 125
3. Possible Mappings of a Group .. 129
4. Possible Mappings of a Profile .. 133
5. Cell and Global Naming Environments 143
6. Interaction of CDSs, GDAs, and Global Directory Services 144
7. Sample CDS Namespace Hierarchy .. 148
8. RDNs and Distinguished Names .. 149
9. Comparison of CDS and X.500 Names 150
10. Sample Portion of the BIND Namespace 151
11. CDS Clerks and Servers on a LAN ... 154
12. A Sample CDS Lookup ... 155
13. Components of a CDS Server Node .. 158
14. Logical and Physical Views of a Namespace 162
15. Clearinghouse Object Entries and Clearinghouses 163
16. A Soft Link and Its Resolution .. 164
17. Child Pointers and Directories .. 165
18. How the Clerk Finds a Name ... 167
19. Example Namespace Hierarchy .. 208
20. Example Namespace Before and After the Merge Operation 210
21. Example Namespace Before and After the Append Operation 211
22. Example Replica Set ... 219
23. Example Replica Set After Master Redesignation 220
24. Example Replica Set After Replica Exclusion 221
25. How the CDS Clerk Finds a GDA .. 228
26. How the GDA Helps CDS Find a Name 229
27. Time and Inaccuracy ... 242
28. Computed Time ... 243
29. Adjustment of the Clock .. 244
30. ISO-Compliant Time Format .. 245
31. ISO-Compliant Time Format Variation 246
32. Relative Time Format ... 247
33. DTS Configuration—LAN .. 252
34. DTS Configuration—LAN with WAN Links 254
35. DTS Configuration—WAN Networks 255
36. DTS Timestamp Format ... 260
37. Local Fault ... 268
38. Local Time Source .. 278
39. Getting the Time from a Remote NTP Time Source (Scenario 1) 279
40. Getting the Time from a Remote NTP Time Source (Scenario 2) 279
41. Giving the Time to NTP .. 281
42. Configuration Before Stratum 2 Node Fails 281
43. Configuration After Stratum 2 Node Fails 282
44. Machines, Servers, and the Database 286
45. Disk Memory and Virtual Memory Copies of the Registry Database 289
46. The Master Replica Update Process 290
47. Slave Replica Update Process ... 291
48. ACL Managers in Servers .. 296
49. Sample ACL Entries ... 298
50. Order of Checking ACLs and Applying Masks 305
51. Initial ACLs for Objects Created in Containers 309
52. Initial ACLs for Containers Created in Containers 310
53. Direct and Transitive Trust Relationships 373

© Copyright IBM Corp. 1997

xvii
Tables

1. EMSD Server Permission Bits .. 89
2. Event Type Database Permission Bits 89
3. Event Type Permission Bits ... 90
4. Filter Database Permission Bits 90
5. Event Filter Permission Bits .. 90
6. Consumer Database Permission Bits 91
7. Serviceability Message Severity Levels 101
8. DCE Control Program Operations for CDS 172
9. dcecp Commands that Control CDS 173
10. ACL Entry Types Used for CDS Principals 177
11. DCE Control Program Commands and Required Permissions 180
12. Permissions Required To Create Target Objects 212
13. dcecp Operations for DTS ... 257
14. Settable DTS Object Attributes 258
15. Unsettable DTS Object Attributes 259
16. DCE Control Program Operations for the DCE Security Service. 314
17. rgy_edit Commands for Maintaining the Local Registry 316
18. Attribute Options to Create Principals 322
19. DCE Version 1.1/Pre-DCE Version 1.1 Authentication Interoperation 328
20. Attribute Options to Create Groups and Organizations 333
21. Attribute Options to Create Accounts 344
22. The keytab create and keytab add Options 352
23. Default Attribute Values of Cross-Cell Authorization Principals and 379
 Accounts ..
25. Initial Persons, Groups, and Organizations 416
26. Group Memberships Created by sec_create_db 417
27. Locksmith Account Changes Made by the Security Server 432
28. Registry Policy Changes Made by the Security Server 433
29. Permissions for Registry Objects 456
30. ACL managers and Valid Permissions and ACL Entry Types 468
31. Credential Cache Files .. 493
32. Keytab Files ... 494
33. Metacharacters and Their Meanings 497
34. Maximum Sizes of Directory Service Names 497
35. Time-Provider Selection Criteria 503
About This Book

The IBM DCE 2.2 for AIX: Administration Guide—Core Components provides concepts and procedures that enable you to manage the OSF® Distributed Computing Environment (DCE). Basic OSF DCE terms are introduced throughout the guide. A glossary for all of the DCE documentation is provided in the Introduction to IBM DCE 2.2 for AIX. The Introduction to IBM DCE 2.2 for AIX helps you to gain a high-level understanding of the DCE technologies and describes the documentation set that supports DCE.

Audience

This guide is written for system and network administrators who have previously administered a UNIX environment.

Applicability

This revision applies to the OSF DCE Release 1.2.2 offering and related updates. (See your software license for details.)

Purpose

The purpose of this guide is to help system and network administrators to plan, configure, and manage DCE. After reading the guide, you will understand what the system administrator needs to do to plan for DCE. Once you have built the DCE source code on your system, use this guide to assist you in installing executable files and configuring DCE. The IBM DCE 2.2 for AIX: Release Notes contain instructions for installing and building DCE source code.

Document Usage

The IBM DCE 2.2 for AIX: Administration Guide consists of two books, each of which is divided into parts, as follows:

- The IBM DCE 2.2 for AIX: Administration Guide—Introduction
 - Part 1. Introduction to DCE Administration
 - Part 2. Configuring and Starting Up DCE
- The IBM DCE 2.2 for AIX: Administration Guide—Core Components
 - Part 1. The DCE Control Program on page 1
 - Part 2. DCE Administration Tasks on page 61
 - Part 3. DCE Host and Application Administration on page 93
 - Part 5. DCE Distributed Time Service on page 235
 - Part 6. DCE Security Service on page 283
Related Documents

For additional information about the Distributed Computing Environment, refer to the following documents:

- Introduction to IBM DCE 2.2 for AIX:
- IBM DCE 2.2 for AIX: Command Reference
- IBM DCE 2.2 for AIX: Application Development Reference
- IBM DCE 2.2 for AIX: Application Development Guide—Introduction and Style Guide
- IBM DCE 2.2 for AIX: Application Development Guide—Core Components
- IBM DCE 2.2 for AIX: Application Development Guide—Directory Services
- OSF DCE/File-Access Administration Guide and Reference
- OSF DCE/File-Access User’s Guide
- IBM DCE 2.2 for AIX: Problem Determination Guide
- OSF DCE Testing Guide
- OSF DCE/File-Access FVT User’s Guide
- Application Environment Specification/Distributed Computing
- IBM DCE 2.2 for AIX: Release Notes

For a detailed description of DCE 2.2 for AIX documentation, see the Introduction to IBM DCE 2.2 for AIX: .

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold
Words or characters represent system elements that you must use literally, such as commands, options, and pathnames.

Italic
Words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in constant width typeface.

[]
Brackets enclose optional items in format and syntax descriptions.

{}
Braces enclose a list from which you must choose an item in format and syntax descriptions.

|
A vertical bar separates items in a list of choices.

< >
Angle brackets enclose the name of a key on the keyboard.

...
Horizontal ellipsis points indicate that you can repeat the preceding item one or more times.

This guide uses the following keying conventions:

<Ctrl-<x> or `x
The notation `<Ctrl-<x>` or `x` followed by the name of a key indicates a control character sequence. For example, `<Ctrl-C>` means that you hold down the control key while pressing `<C>`.
The notation <Return> refers to the key on your terminal or workstation that is labeled with the word Return or Enter, or with a left arrow.

Problem Reporting

If you have any problems with the software or documentation, please contact your software vendor’s customer service department.

Pathnames of Directories and Files in DCE Documentation

For a list of the pathnames for directories and files referred to in this guide, see the IBM DCE 2.2 for AIX: Administration Guide—Introduction and OSF DCE Testing Guide.
Part 1. The DCE Control Program
Chapter 1. DCE Control Program Introduction

DCE is an integrated set of services that supports the development and execution of distributed applications between heterogeneous networked computers. Each DCE environment (called a cell) maintains at least the following core DCE services:

- DCE Threads
- DCE Host Services
- DCE Cell Directory Service
- DCE Time Service
- DCE Security Service

With the exception of DCE Threads, all of the core services require administration in one way or another. Some services, such as CDS and the DCE Security Service, usually need more managing than, say, the DCE Time Service, which after you have set it up needs practically no intervention. If your DCE cell consists of just a few computers and their users, you could probably manage the naming, time, and security needs of users, programs, and host systems by logging into individual hosts to perform any necessary administration tasks. But most cells will consist of many, perhaps hundreds or even thousands, of computers and their users.

Consequently, the core services in such large cells will likely be extensive and complex, with some services being replicated or even partitioned across multiple heterogeneous systems. Some services, such as the DCE host services, will exist on every computer in the cell. Such large-scale operations demand an administrative interface that provides consistent and uniform access to DCE administration functions, wherever they reside, from any and every point in the cell. This means that administrative operations must work consistently and predictably regardless of the platform on which they execute.

The DCE control program (dcecp) fills this need, providing consistent, portable, extensible, and secure access to nearly all DCE administration functions from any point in a DCE cell. dcecp implements all of the operations previously performed by using various component control programs.

dcecp further streamlines administration by providing a number of task objects for performing complex DCE operations. For example, adding a host to a cell requires adding a host principal to the registry, adding the principal to various security groups and organizations, creating an account, placing host information in CDS and probably setting some ACLs on CDS directories. All of these operations can be accomplished using a single task object.

Flexible, Portable, and Extensible Administration

dcecp is built on a portable command language called Tcl (pronounced “tickle”), which stands for Tool Command Language developed by John K. Ousterhout at the University of California at Berkeley, California. Most computers provide a command language of some sort to give users a flexible and extensible way to access and use system capabilities. For instance, many UNIX systems offer shell language interpreters, and Digital Equipment Corporation’s OpenVMS operating system offers the Digital Command Language (DCL). But these command languages are not always portable. Commands and scripts based on one command language might not work in other command language environments.
Tcl, on the other hand, is a platform-independent command language that runs on every system where DCE is installed. A Tcl command interpreter and the DCE control program that uses it are provided as part of the DCE software.

The availability of both the DCE control program and the DCE control program language offer important benefits to DCE administrators:

- You can perform all routine DCE operations from within a single administrative interface.
- Most DCE administrative operations are consistently and uniformly executed from any DCE platform, allowing administrators to manage just about all DCE operations from any DCE system in the cell. DCE platforms that are not UNIX systems might not handle all DCE control program file operations.
- `dcecp` provides administration objects with names like `clearinghouse`, `principal`, and `endpoint`. This direct approach makes DCE administration intuitive and consistent. While for now this has only the appearance of being object oriented, it is an important step toward a true object-oriented administration interface.
- `Task objects` (high-level `dcecp` scripts that perform complex DCE operations) reduce the training requirements for DCE administrators. One need not be a DCE guru to perform routine DCE administrative tasks.
- You can adapt the supplied task objects to new uses or write new task objects or scripts by using the `dcecp` operations along with more general commands provided within Tcl.
- The `dcecp` language allows the use of variables, `if` statements, looping functions and other programming operations that let you boost the power of your operations. For instance, looping functions let you repeat operations on multiple objects such as users, servers, or CDS entries.
- Administrators can easily share their tools because scripts can be moved to foreign platforms without change. For instance, enterprises with multiple cells could use `dcecp` scripts to propagate a common cell configuration throughout the enterprise.

The DCE control program is an administrative interface that you can use to manage most aspects of the DCE core components. You cannot use `dcecp` to manage every aspect of DCE. For instance, `dcecp` cannot control DFS.

The chapters in [Part 1. The DCE Control Program](part1) discuss how you can use `dcecp` to administer the core services in your DCE environment. We also discuss how to make your operations do more by using Tcl constructs on the command line and by writing your own customized operations as scripts. We do not provide a complete discussion of Tcl or its companion toolkit (called Tk) for the X11 window system.

DCE Administration Objects

A DCE cell consists of many things that need administration. As examples, CDS servers (`clearinghouses`), DTS clocks, and server location information are all entities in a DCE cell that require administration in one way or another. The DCE control program treats all of DCE’s administrative entities as individual administration objects.

You operate on an entity by invoking its `object` name with some operation. For example, to check the time of a DTS clock, you invoke the object’s name (`clock`) and the desired operation (`show`) as in the following:
Each administrative entity in DCE has a corresponding administration object in the DCE control program. As a few examples, you can manage CDS clearinghouse operations in a cell by using the clearinghouse object. Manage application servers and their configuration information on DCE hosts by using the server object. Compare and manipulate time information using the utc object. Administer users in a DCE cell with the user task object. These examples represent just a few of the dcecp administration objects. All of the objects are listed in the IBM DCE 2.2 for AIX: Command Reference.

Using the DCE Control Program

This section provides a quick look at how to start and stop the DCE control program and how to perform operations. Additional information about these topics is contained in the IBM DCE 2.2 for AIX: Command Reference.

Starting and Stopping dcecp

You can enter dcecp operations directly from your operating system prompt or from within the DCE control program. If you are performing just one or two simple dcecp operations, you can invoke them directly at the operating system prompt.

If you will be doing several operations, you can invoke the DCE control program and then enter operations at the dcecp prompt. This method offers several advantages.

• It is more efficient for multiple operations because dcecp is initialized once rather than for each separate operation.
• The program stores operations in a history facility so they can be recalled and reused.
• You avoid the extra keystrokes needed to precede each operation with the dcecp command.

The following example shows how to invoke the DCE control program and perform a directory operation:

% dcecp
 dcecp> directory create /./:hosts/appserver2
 dcecp>

When you are through using the DCE control program, use the exit or quit operation to stop the program and return to the operating system prompt. The following example illustrates using the exit operation:

dcecp> exit
%

Invoking dcecp Operations

If you are performing a single dcecp operation, you can invoke it directly from the operating system prompt. Just precede the desired operation with the dcecp command and the -c (command-line operation) flag, as follows:

% dcecp -c directory list /./:subsys -simplename
 HP applications dce sales eng admin accts
% dcecp -c cell show
You can also enter some limited multiple operations using the ; (semicolon) as a command separator and enclosing the operations in "" (double quotes). The following example adds a principal to the registry and then checks that the principal is added:

% dcecp -c "principal create S_Preska ; principal show S_Preska"
 {fullname {} }
 {uid 28 }
 {uuid 0000001c-dc77-21cd-b700-0000c08adf56}
 {alias no}
 {quota unlimited}
%

Be careful entering multiple operations via the `dcecp` command with the `-c` option because operation results return to the `dcecp` interpreter, not to the shell. An operation like the following returns the results of just the last operation (`group list users`) to the shell:

% dcecp -c "group list staff; group list managers; group list users"
 /.../ward_cell.osf.org/P_Pestana
 /.../ward_cell.osf.org/R_Parsons
 /.../ward_cell.osf.org/L_Jones
 /.../ward_cell.osf.org/S_Preska
 /.../ward_cell.osf.org/N_Long
 /.../ward_cell.osf.org/D_Witt
 /.../ward_cell.osf.org/C_Pilat
 ...
 ...
 ...
%

This particular problem can be overcome by:

% dcecp -c "puts [group list staff]; puts [group list manager];
 puts [group list users]" ... %

To invoke a `dcecp` script, omit the `-c` argument but include the name of the script. The following example invokes a script that lists the names of all hosts in the cell in alphabetical order:

% dcecp list_hosts
 earth
 jupiter
 krypton
 mars
 mercury
When you want to invoke complex or multiple operations, you might want to invoke operations from within `dcecp`. The program provides a convenient history facility and a command-line editing capability that is useful for recalling and reusing previous operations. The following example operations invoke `dcecp` and add a new user to a DCE cell:

```
% dcecp

  dcecp> principal create J_Jones
  dcecp> group add users -member J_Jones
  dcecp> organization add staff -member J_Jones
  dcecp> account create J_Jones -group users -organization staff
     > -password change.me -mypwd mxyzptlk
  dcecp>
```

All `dcecp` object, operation, and option names can be abbreviated to the shortest unique string when used interactively. These names have been chosen with this in mind so that unique abbreviations are usually not more than one or two characters.

Avoid using object or command abbreviations within scripts as this limits a script's portability. Users defining their own commands could alter the uniqueness of abbreviations, resulting in ambiguous command names or object names.

Doing More with `dcecp`

The DCE control program accepts commands ranging from simple to complex, with more complex commands offering greater strength and versatility. Although simple commands are the easiest to compose, they are also limited, usually to performing one operation on a single object. So while it is always possible to enter simple commands, you will probably find that, at times, you want to repeat operations over several or even many objects, or to perform some operation only under certain conditions. For instance you might want to add some entry to a CDS directory only if some other specified entry already exists in CDS. `dcecp` makes this possible by utilizing Tcl's built-in commands that imitate elements commonly found in numerous programming and shell languages.

The DCE control program contains many C-like constructs that control command execution. Some examples are `if` statements for conditional execution, looping commands such as `while`, `for`, and `foreach` used to repeat operations under various conditions, a `case` command for testing values against various patterns, and `proc` for writing your own customized commands.

The DCE control program also includes other syntactic elements such as `"` (quotes), `{ }` (braces), `[]` (brackets), and `\` (backslash), which it uses to group elements together and for controlling interpretation of special characters.

Although many features are designed for use in scripts, you will probably find yourself using some constructs and elements (particularly quotes, braces, brackets, and backslashes) in interactive operations as well. You will need to decide when it makes sense to perform operations interactively or to use a script. In general, complexity and potential for reuse can help you decide.
Now let us look at a couple of simple examples that illustrate some DCE control program and Tcl basics. Some `dcecp` operations can be very straightforward like:

```
dcecp> account modify N_Long -expdate 1996-06-30
dcecp>
```

This operation lets you change information in the DCE Security Service registry. Here, we are changing the account expiration date for the principal (N_Long) named in the command line. While it is relatively simple to execute this operation for one or two principals, it is more difficult to change the account expiration date for many principals.

Imagine that your organization employs six temporary workers and the project they are associated with has been extended for three months. Rather than execute the `account modify` operation six times, you can use a `dcecp foreach` command to loop (repeat) an action for each item of a list:

```
dcecp> foreach i {N_Long L_Jones P_Sawyer 
> D_Witt M_Dougherty S_Preska} { 
> account modify $i -expdate 1996-06-30 }
```

In the example, the `foreach` looping command has three arguments: a variable, a list, and the body. The variable \(i \) substitutes sequentially for each item in the list (N_Long, L_Jones, and so on). The `foreach` command executes the body (`account modify $i -expdate 1996-06-30`) for each item in the list. The \$i\ variable in the body takes on the value of each principal name in the list, in turn, until all items in the list have been used. See "Controlling Script Execution with Loops" on page 33 for more detailed information about looping commands.

This example illustrates several other important syntax rules. The DCE control program uses `{ }` (braces) to determine where command arguments, such as the script body, begin and end. For example, the `foreach` command has three arguments: a variable name, a list, and a script body. Normally, command arguments are separated by spaces. To prevent `dcecp` from incorrectly interpreting the spaces between list elements as argument separators, we use braces to enclose the list and disable special interpretation of the spaces. Thus, all of the list elements appear as one argument. Similarly, we use braces to enclose the individual elements in the script body.

Braces also help `dcecp` determine whether a command is complete; incomplete commands will have more opening than closing braces. The lack of a closing brace at the end of the first line signals `dcecp` that more command input is coming; so, `dcecp` prompts with the secondary prompt (>). Similarly, the opening brace at the end of line 2 signals that you are still not finished entering the command. This lets you wrap lines without using a \`\` (backslash) line wrap character. The DCE control program executes the command when you press `<Return>` after the closing brace at the end of line 3. "Chapter 2. Using the DCE Control Program Command Language" on page 19 contains more information about braces.

Now assume that, instead of six temporary workers, your organization has fifty temporary workers (all in one group called `temps`) for whom you want to add three-month account extensions. We'll still use the `foreach` command but, rather than write all fifty principals directly in the list, use the `dcecp group list temps` operation to generate a list for you, as follows:

```
dcecp> foreach i [group list temps] { 
> account modify $i -expdate 1996-06-30 }
dcecp>
```
In this example, we have put the `group list temps` operation in `[]` (brackets). Called *command substitution*, this technique replaces the command inside the brackets with the results returned by that command. The results of the `group list temps` operation produces a valid Tcl list that might look like the following:

```
N_Long
L_Jones
P_Sawyer
D_Witt
M_Dougherty
S_Preska
.
.
.
J_Jones
```

Here, we have provided a high-level look at some practical uses of `dcecp`. Of course there is a lot we have not seen, too. In the next chapter we will look more closely at some of the `dcecp` operations that you are likely to use for DCE administration. Remember that `dcecp` is based on Tcl, and Tcl has other commands and command variations we will not discuss. So be sure you have access to the standard Tcl publications for detailed information on all of the commands.

When to Use an Interactive Command or Script

There is no absolute dividing line for when you should enter commands interactively or with a script. In general, though, the simpler operations—those that perform one or maybe two tasks—make the best candidates for interactive use. The following examples typify interactive operations:

```
dcecp> directory create ./:/printers

dcecp> account show w_shakespeare

dcecp> server start ./:/hosts/curley/config/srvrconf/BBSserver
```

The next example is a little more complicated, so at first you might choose to run this as a script:

```
foreach i [group list temps] {
    account modify $i -expdate 1996-06-30
}
```

Saving a frequently used operation as a script (in a file) has its advantages; it can help to automate repetitive or complicated tasks and you can keep it around for possible modification and use in other situations later on. Whichever method you choose, as you become more comfortable using `dcecp` and Tcl, you might find yourself entering fairly complex operations interactively. For information on how to create and invoke scripts, refer to "Customizing `dcecp` Sessions" on page 16.

Editing Command Lines

We have seen some basic ways to enter interactive `dcecp` commands. But let us say that now you want to edit the command you are entering or that you want to recall and modify a command you entered previously. The DCE control program offers several ways to edit commands. You can edit a current command line by
using the command-line editing facility. You can use the `history` command to recall, edit, and reissue a previously used command.

Editing the Current Command Line

You can edit a command line before sending it to `dcecp` by typing control characters or escape sequences that resemble `ksh` or `emacs` editing commands. A **control character**, shown as `<Ctrl-x>`, where `x` is a letter, is entered by holding down `<Ctrl>` (or `<Control>`) and pressing the letter key. For example, `<Ctrl-A>` is `<Ctrl>` and `<A>` pressed at the same time. Enter an escape sequence by pressing `Escape` followed by one or more characters. In an escape sequence, `<Escape>` is referred to as ESC, as in `<ESC f>` for example. Case matters in escape sequences (unlike control characters, which do not distinguish between upper and lower case); `<ESC F>` is not the same as `<ESC f>`.

You can enter an editing command anywhere on the line, not just at the beginning. In addition, a return may also be pressed anywhere on the line, not just at the end.

Most editing commands accept a repeat count, `n`, where `n` is a number. Enter a repeat count by pressing `<Escape>`, the number, and then the command to execute. For example, `<ESC 4><Ctrl-f>` moves forward four characters. Some of the descriptions that follow are marked with `[n]` to identify commands that accept a repeat count.

The following control characters are accepted:

- `<Ctrl-A>`
 - Move to the beginning of the line
- `<Ctrl-B>`
 - Move left (backward) `[n]`
- `<Ctrl-D>`
 - Delete character `[n]`
- `<Ctrl-E>`
 - Move to end of line
- `<Ctrl-F>`
 - Move right (forward) `[n]`
- `<Ctrl-G>`
 - Ring the bell
- `<Ctrl-H>`
 - Delete character before cursor (`<Backspace>`) `[n]`
- `<Ctrl-I>`
 - Complete filename (`<Tab>`); see following text
- `<Ctrl-J>`
 - Done with line (`<Return>`)
- `<Ctrl-K>`
 - Kill to end of line (or column `[n]`)
- `<Ctrl-L>`
 - Redisplay line
- `<Ctrl-M>`
 - Done with line (alternate `<Return>`)

10 IBM Distributed Computing Environment for AIX, Version 2.2: Administration Guide — Core Components
<Ctrl-N>
Get next line from history [n]

<Ctrl-P>
Get previous line from history [n]

<Ctrl-R>
Search backward (forward if [n]) through history for text; must start line if text begins with an up arrow

<Ctrl-T>
Transpose characters

<Ctrl-V>
Insert next character, even if it is an edit command

<Ctrl-W>
Wipe to the mark

<Ctrl-X><Ctrl-X>
Exchange current location and mark

<Ctrl-Y>
Yank back last killed text

<Ctrl-[]>
Start an escape sequence (<Escape>)

<Ctrl-[]>c
Move forward to next character c

<Ctrl-[]>?
Delete character before cursor (<Delete>) [n]

The following escape sequences are accepted:

<ESC><Ctrl-H>
Delete previous word (<Backspace>) [n]

<ESC DEL>
Delete previous word (<Delete>) [n]

<ESC SPC>
Set the mark (<Spacebar>); see <Ctrl-X><Ctrl-X> and <Ctrl-Y>

<ESC .>
Get the last (or [n]th) word from previous line

<ESC ?>
Show possible completions; see following text

<ESC <>
Move to start of history

<ESC >>
Move to end of history

<ESC b>
Move backward a word [n]

<ESC d>
Delete word under cursor [n]

<ESC f>
Move forward a word [n]
<ESC l>
 Make word lowercase [ln]

<ESC u>
 Make word uppercase [ln]

<ESC y>
 Yank back last killed text

<ESC w>
 Make area up to mark yankable

<ESC nn>
 Set repeat count to the number nn

In some cases, existing terminal key bindings take precedence over these dcecp control keys. In particular, the bindings used for erase, kill, eof, intr, quit, and susp in your environment will supersede any dcecp bindings for those same control keys. In most instances, control keys will not be interpreted by the terminal but will be passed through to dcecp. One of the few exceptions is Inext (literal next), which quotes the next character typed. When you type the control key that is bound to Inext it is interpreted by the terminal, which will pass the next character typed through to dcecp.

The DCE control program also provides filename completion. Suppose the root directory has the following files in it:

bin vmunix
core vmunix.old

If you type rm /v and then press <Tab>, the command processor completes as much of the name as possible by adding munix. Because the example name is not unique, it beeps. If you press <Escape> followed by the ? (question mark), it displays the two choices. The command processor completes the filename when you then enter the period (which makes the name unique) followed by <Tab>, as shown in the following:

rm /v <Tab>vmunix.<Tab>old

In this example, the constant width font indicates text automatically entered by the command processor.

Editing Command Lines with the history Command

Sometimes when you are entering interactive commands, you want to recall and reuse a previously entered command. Let us say you list the objects in a CDS directory and then you modify one of the objects. Now you want to list the objects again to verify that your modification took effect. You can use the history command to recall, edit, and reissue a previously used command. The history facility saves only interactive commands. Commands issued from scripts are not saved and cannot be recalled.

The history command takes various arguments depending on what you want to do. Entering history with no arguments lists all the commands (called events) entered during the current invocation of dcecp, as shown:

dcecp> history
 1 principal create wardr -fullname {Ward Rosenberry} \
 -quota unlimited
 2 group add users -member wardr
 3 organization add consultants -member wardr
Each history event is independent of previous events. This means that, if a recalled command used a variable, its current value may not be the same as when it was first entered. The `history` command itself generates a history event, too.

By default, the history list keeps the 20 most recent commands. You can use the `history keep` command to lengthen or shorten the history list. For example, the following command lengthens the history list to keep the 50 most recent events:

```
dcecp> history keep 50
```

You can specify events in various ways. Positive numbers specify events relative to the earliest event in the list. Negative numbers specify events relative to the most recent command. You can also specify an event by typing characters that match all or part of a previous event.

The history facility lets you reuse previous events in many ways. The following discussion covers just a few of the history commands you can use.

- You can execute a previous command without revision by using the `history redo` command:

```
dcecp> history redo directory show /.:/printers
```

- You can save the most typing by entering just the unique first characters of words in a history command. For instance, you can enter the `history redo directory` command from the previous example as:

```
dcecp> h r d
```

- Other ways to redo commands include `!!`, which recalls the most recent command, and `! event number` to recall a specific event.

- You can revise and reexecute a previous command by using the `history substitute` command. A common use of this command is to correct typing mistakes. The command syntax is as follows:

```
history substitute old
new [event number]
```

If you omit the `event number`, you'll redo the most recent command. Replace the `old` part of the recalled command with `new` information.
dcecp> history
1 directory show ./:/printers
2 object create ./:/printers/ascii_printer1
3 object create ./:/printers/ascii_printer2
4 object create ./:/printers/ascii_printer3
5 directory show ./:/printers
6 history

dcecp> history printer3 printer4 -3
object create ./:/printers/ascii_printer4
dcecp>

You can also recall and revise the most recent command by using the `old new` syntax familiar to users of the UNIX csh shell, as follows:

dcecp> `4^5`
object create ./:/printers/ascii_printer5
dcecp>

Using the dcecp Help Facilities

The DCE control program offers help in several ways:

- If you want to see a list of objects provided by the DCE control program, enter help at the dcecp prompt as shown in the following example:

dcecp> help
The general format of all dcecp commands is as follows:
 dcecp> <object> <operation> [argument] [options]
In addition to all of the standard tcl commands, dcecp supports many commands to administer DCE objects. A dcecp object or task represents a DCE entity. Type `man dcecp_<command>` for more information.

All of the following dcecp objects and tasks require an operation:
account cdsalias dts log rpckprofile
acl cdscache endpoint name secval
attrlist cdsclient group object server
aud cell host organization user
audevents cellalias hostdata principal utc
auditfilter clearinghouse hostvar registry uuid
audittrail clock keytab rpcentry xattrschema
cds directory link rpckgroup

Miscellaneous commands perform specific functions. Type `man dcecp' for more information. These commands take no operation:
echo errtext login logout quit resolve shell

To list all dcecp objects: dcecp> help -verbose
To list all operations an object supports: dcecp> <object> help
To list all options for an object operation: dcecp> <object> help <operation>
For verbose information on a dcecp object: dcecp> <object> help -verbose
For the manual page of a dcecp object: dcecp> man dcecp_<object>

dcecp>

- If you just need to know which operations an object supports, use the command `object operations` which returns a list of the actions you can take on an object. The following example shows how to list the operations available for the `principal` object:

dcecp> principal
operations
catalog create delete modify show operations help

dcecp>

You can save typing by abbreviating this command to something like prin oper.
• Get more detailed help about an object and its operations by using the object help command. The following example returns a 1-line description of each operation supported by the principal object:

 dcecp> principal help
 catalog Returns all the names of principals in the registry.
 create Creates a DCE principal.
 delete Deletes a principal from the registry.
 modify Changes the information about a principal.
 rename Renames the specified principal.
 show Returns the attributes of a principal.
 help Prints a summary of command-line options.
 operations Returns a list of the valid operations for this command.

• Get information about available command options by adding an operation argument to the object help command. The following example returns a 1-line description of each option supported by the principal create operation:

 dcecp> principal help create
 -alias Indicates the principal name is an alias of the uid.
 -attribute Specify principal attributes in an attribute list format.
 -fullname Fullname of the principal.
 -quota How many registry objects can the principal create.
 -uid User Identifier of the new principal.
 -uuid Orphaned UUID to be adopted by the principal.

• Get help about an object itself by using an object help -verbose command. The following example returns a description of the principal object along with information about how to use the object:

 dcecp> principal help -verbose
 This object allows manipulation of principal information stored in the DCE registry. The argument is a list of either relative or fully-qualified principal names. Specify fixed attributes using attribute options or an attribute list. Specify any extended attributes using an attribute list. Principal operations connect to a registry that can service the request. Specify a particular registry by setting the _s(sec) convenience variable to be a cell-relative or global replica name, or the binding of the host where the replica exists. The completed operation sets the _b(sec) convenience variable to the name of the registry contacted.

• Finally, some POSIX style systems will have reference pages for dcecp objects as well as a Tcl summary reference page. Each dcecp object has its own reference page that describes the object and the operations available to it. The general syntax for viewing a dcecp object reference page is:

 man object_name

 The following example shows how to invoke the reference page for the principal object. Note that you can use the man command from within dcecp.

 dcecp> man principal
 .
 . [output omitted]
 .
 dcecp>

 The Tcl reference page summarizes the Tcl built-in commands. You can view the Tcl summary reference page on a UNIX style system by entering:
Customizing dcecp Sessions

The DCE control program includes a number of commands, objects, and task scripts for performing most of the day-to-day DCE administration operations. Nevertheless, as you gain experience using the dcecp interface, you may find you want to add new commands and capabilities or to customize some existing ones. The following sections explain how to add scripts and new objects to your dcecp session. An object is just a formal implementation of a script that uses the dcecp help system and takes the form of object operation. Chapter 2, Using the DCE Control Program Command Language on page 19 and Chapter 3, Writing Scripts and dcecp Objects on page 49 explain the fundamentals of writing dcecp scripts and creating new objects.

Adding Scripts to dcecp Sessions

Once you have written a script, you can make it available to one person or to everyone who is logged into the host by modifying one or more of the following files invoked when dcecp initializes:

- \[info library\]/init.tcl
 This file is read first and contains standard Tcl initialization commands for the host. This affects all instances of dcecp running on a host. The file contains definitions for the Tcl unknown command and the auto_load facility used for initializing all of the dcecp objects. Administrators should avoid adding dcecp customizations to this file.

- dcelocal/init.dcecp
 This file contains dcecp-specific startup information for the host. This affects all instances of dcecp running on a host. The dcecp scripts implementing operations and tasks are stored in the dcelocal/dcecp directory. Add customizations in the form of procedures to this file to make them available to all dcecp users on the host.

- $HOME/.dcecprc
 This optional file stores user customizations that affect individual dcecp users (the owners of the .dcecprc files). Each DCE user can maintain a .dcecprc file and store private procedures or alias names for operations. Modified .dcecprc files allow flexible administration in environments with multiple administrators. For example, different .dcecprc files for each administrator could use dcecp source commands to call specific commands and task scripts that are tailored to particular areas of administration.

The rest of this section illustrates a simple task script and shows one way to make the script available for personal use. Our example begins with the control program’s existing clock object that shows the current time. However, the time is simply a DTS timestamp from the clock on the local host as in:

dcecp> clock show
1994-10-03-10:22:59.991-04:00I-----
dcecp>

Let us say you create a procedure that gets a timestamp from a DTS server but also displays the name of the DTS server with the time as in the following example which invokes a user-created procedure called `show_clock`:

```bash
dcecp> show_clock
Time on mars is 1994-09-30-15:03:43.979-04:00
```

eyou can make this procedure available to one user by including the procedure in the user's `.dcecprc` file. The following sample `.dcecprc` file includes user customizations consisting of the `_dcp_show_clocks` procedure and an alias that lets you invoke the procedure with the simpler `show_clocks` command name. Another procedure called `_dcp_whoami` shows the current login identity information. Note the order of operations in the `.dcecprc` file. Procedures are defined at the beginning of the file. Renaming and invoking the procedures must occur after the procedures are defined.

```bash
## Start up commands
## A simple command to rerun .dcecprc after modifications
proc .d {} {source $HOME/.dcecprc}

# Show your current login name and your current cell name.
proc _dcp_whoami {} {
    global _c _u
    return "You are '$_u' logged into '$_c'."
}

# Show the time on all of the dts servers running in your cell.
proc _dcp_show_clocks {} {
    set x [directory list /.:/hosts]
    foreach n $x {
        if {([catch {object show $n/dts-entity}] == 0) {
            set index [string last "/" $n]
            set y [string range $n $index]
            if {([catch {clock show $y/dts-entity} msg] == 0) {
                set i [expr 20 - [string length $y]]
                puts [format "Time on $y is %${i}s %s" \n                     [clock show $y/dts-entity]]
            } else {
                set i [expr 20 - [string length $y]]
                puts [format "Time on $y is %${i}s %s" \n                       "Server not responding."
            }
        }
    }
}

# Give some procs usable names
rename _dcp_whoami whoami
rename _dcp_show_clocks show_clocks

# If I am authorized, say so
if {$u != ""} {
    whoami
}
```

The `rename` command near the end of the file lets you invoke the `_dcp_show_clocks` and `_dcp_whoami` procedures using the easier command names `show_clocks` and `whoami`.

When you start `dcecp`, the last part of this file invokes the `_dcp_whoami` procedure if you are logged into DCE. If the `_u` convenience variable is set, the `_dcp_whoami` procedure prints your current login identity as follows:
Adding New Objects to the DCE Control Program

If you have written a script as a formal dcecp object, you can make it available by including the new object in the same directory where other task objects reside. On UNIX systems, this is often dcelocal/dcecp. As a rule, you should add the new object to each host in the DCE cell. [Chapter 3. Writing Scripts and dcecp Objects] on page 49 describes how you can use the dcecp hostdata object to copy scripts or other files to every host in a cell.

When you install a new script, you must run the auto_mkindex utility to make the new object available to other users on the host. For more information about running the auto_mkindex utility, see [Chapter 3. Writing Scripts and dcecp Objects] on page 49.

Environment Variables

Environment variables are variables used by DCE that customers can set themselves. See the IBM DCE 2.2 for AIX: Application Development Guide—Core Components for more comprehensive information of DCE environment variables.
Chapter 2. Using the DCE Control Program Command Language

In Chapter 1, DCE Control Program Introduction, we provided a high-level look at some ways to use the DCE control program to administer your DCE environment. In this chapter, we will discuss some syntax rules and some of the more important commands you will need to use in composing your dcecp administration commands and task scripts.

The dcecp command language consists of DCE administration commands like directory create and object modify, as well as Tcl built-in commands such as if and foreach. We will not discuss DCE administration commands here. These commands are discussed in sections that deal with administering the particular DCE component. Instead, we will focus on using the more generic syntax rules and built-in commands.

The Tool Command Language (Tcl) on which dcecp is based is a general-purpose language that is also used for other applications besides dcecp. Although there are many ways you can use Tcl for various purposes, we will limit our discussion to those commands most likely to be used for administering DCE environments. Furthermore, our command discussions do not describe every aspect of individual commands. Rather, they suggest why and how you might use a command in the context of administering a DCE environment. If you are not already familiar with Tcl, you'll likely need to have access to the appropriate Tcl documentation, including the Tcl reference pages, for writing sophisticated commands and task scripts.

Chapter Preview

This chapter walks you through the basic dcecp syntax and then looks at some commands that you are likely to use in interactive commands and task scripts. The discussions will focus on:

- Use of variables as an easy way to pass data around in your command or script
- Command substitution as a way to channel the output from one command to the input of another command
- Grouping elements together so that dcecp parses commands correctly
- Using lists to sort, find, and reuse information
- Using arithmetic functions in commands and task scripts
- Conditionalizing and controlling your script with if statements and loops
- Executing scripts associated with character patterns by using the case command
- Synthesizing commands by using eval
- Importing operations with source
- Creating new dcecp commands with proc
- Using error and exception information
- Handling strings
- Working with files
- Spawning subprocesses
Variable Substitution

Like other programming languages, dcecp provides shorthand ways to express and use values. Variable substitution is one shorthand method that lets you represent a value—say, the name of an object in a CDS directory—as a variable.

Use the `set` command to establish a value for a variable. For readability, a variable name can consist of any combination of letters, numbers, and _ (underscore) characters. Use "" (quotes) or \ (backslash) to include spaces in variable names (although this is not usually recommended) or values. All of the following examples use valid variable names:

```
set a $i
set CDS_clearinghouse_name cambridge_ch
set DCE_user_1 "William Rosenberry"
```

The following example sets variable `a` to have a value of 7. The second use of the `set a` command without a value causes dcecp to display the current value of the variable:

```
dcecp> set a 7
7
```

Once you have established a value for a variable using the dcecp `set` command, the variable can be subsequently used elsewhere in your script or interactive command. The DCE control program uses the $ (dollar sign) to trigger insertion of the current value into the command word. A simple example is:

```
dcecp> set a 7
7
```

```
dcecp> expr $a+2
9
```

Here we first set variable `a` to 7. In line 2, we use the `expr` command to add 2 to the value of `a` (7). The dollar sign triggers dcecp to insert the value 7. The last line shows the return value from the `expr` command.

A more relevant example might be:

```
dcecp> set a /./:sec/./:sec
{RPC_ClassVersion
 {01 00}}
{RPC_ObjectUUIDs
 {06 3b 23 00 72 e5 e0 1d 8c b4 00 00 c0 8a df 56}}
{RPC_Group
 {2f 2e 2e 2e 2f 77 71 72 64 5f 63 65 6c 6c 6f 73 75 62 73 79 73 2f 6f 63 65 2f 6d 61 73 74 00}}
{CDS_CTS 1994-05-23-17:21:37.481+00:00-c0-8a-df-56}
{CDS_UTS 1994-05-23-17:22:36.607+00:00-c0-8a-df-56}
{CDS_Class RPC_Group}
{CDS_ClassVersion 1.0}
```

Remove (undefine) a variable by using the `unset` command as in the following example:

```
dcecp> unset a
```

Remove (undefine) a variable by using the `unset` command as in the following example:
Command Substitution

Command substitution provides a convenient way to express the return value of one command within another command. This is useful when you want to use the return value of one command as input to another command. Use brackets to invoke command substitution. The following example uses the `expr` command, which we’ll discuss shortly. Generally, `expr` performs a math function, returning the computed value expressed by its arguments, as shown:

```
dcecp> set a 4
4
dcecp> set b [expr $a+2]
6
dcecp> set b
6
```

A more practical example might use command substitution for a command that returns a long name or a list. Let us recall an example we saw in “Chapter 1. DCE Control Program Introduction” on page 3. In this example, the `[group list temps]` command returns a list to the `foreach` command that performs the `account modify` operation on each element in the list. We’ll look more closely at the `foreach` looping command later in this section.

```
dcecp> foreach i [group list users] {
>   account modify $i -change {expdate 1995-12-31}}
```

Another practical use of command substitution is to set up a test condition for an `if` statement. We show an example of this usage in “Conditionalizing with if Statements” on page 33.

Grouping Elements and Controlling Interpretation

Programming languages often use symbols such as braces, quotes, and parentheses to operate on selected elements as a group rather than individually. Similarly, `dcecp` uses “” (double quotes) and {} (braces) to group elements into structures. Double quotes allow elements that would usually be parsed separately to be grouped and treated as a single element. Braces are used to group elements into a list so that `dcecp` can correctly parse commands and other data like return values.

The `dcecp` command elements are separated by whitespace: the space, tab, and newline characters. The following `dcecp` command uses space characters to separate its three elements:

```
dcecp> directory create .:/subsys/comm_services
```

Use either the newline character or the ; (semicolon) to separate commands in a script. The following two examples, which set and then use a variable, are equivalent:
The choice to use braces or quotes to group elements together depends on how you want `dcecp` to interpret special characters like $, [, and {}. While braces disable special interpretation of most of these characters, double quotes disable special interpretation of just a few. The backslash character, discussed in "Including Special Characters with Backslashes" on page 23, offers another way to disable interpretation of special characters. When used together, braces, quotes, and backslashes offer lots of flexibility in composing `dcecp` command strings.

Grouping Elements with Braces

Braces group separate elements to create a new element that consists of everything between a `{` (left brace) and its corresponding `}` (right brace). You can also nest braced elements. Each of the following example lists contain three elements:

- larry moe curly
- 1 { 3 5 7 11 13 } { 17 19 }
- red {orange yellow {green blue} indigo} violet

Braces disable command ([]), variable ($), and backslash substitution. While the most important use of braces is to ensure a `dcecp` command has the correct number of arguments, this also provides a convenient way to include special characters in a list. To see how this works, consider the following example:

```bash
ccecp> set a solution
solution
ccecp> puts $a
solution

ccecp> puts {This is a convenient $a}
This is a convenient $a
```

While the `puts` command is often used for writing to files, when called with only one argument it writes the argument to `stdout`. In our example, the first use of `puts` allows normal interpretation of the variable `a`. The second use of `puts` groups the separate elements into one argument by disabling special interpretation of space characters and the dollar sign.

Grouping Elements with Double Quotes

Like braces, double quotes also group elements together. But unlike braces, double quotes cannot be nested. Furthermore, while braces disable almost all special characters, double quotes disable just a few—spaces, tabs, newlines and semicolons—letting you avoid the potentially awkward use of backslashes in a string of text elements. The most convenient use of double quotes is to allow clean, readable expansion of variables using the dollar sign trigger. For instance, in the following example, we set a variable (`a`) to a value that includes spaces:
Use of double quotes does not disable command, variable, and backslash substitution. Let us look at a variation of the example used in the "Grouping Elements with Braces" on page 22:

```
dcecp> set a solution
solution
dcecp> puts $a
solution
dcecp> puts "This is a convenient $a."
This is a convenient solution.
dcecp>
```

In this example, the use of quotes with the second `puts` command gathers five elements into a single argument for `puts` by disabling special interpretation of the space characters. However, the quotes do not affect interpretation of the dollar sign.

Including Special Characters with Backslashes

We already know that `dcecp` relies on certain special characters such as spaces, braces, quotes, or dollar signs to control its interpretation of elements. Sometimes, you might want to include one special character in a string, temporarily suspending its special interpretation. The backslash provides a form of substitution that suppresses special interpretation of the character immediately following the backslash.

Use the backslash to insert a nonprinting space character in a string of elements. For instance, each of the following `dcecp` lists have three elements:

```
a b \ c d
a b \{
```

The elements in the first example are `a`, `b`, `c`, and `d`. The elements in the second example are `a`, `b`, and `{`. A more practical example could use the backslash to include quotes in error messages as shown in the following code fragment:

```
if {[llength $a] < 2} {
    error "Unable to parse \"$element_list\"."
}
```

The following list shows the special characters that you can include in a string of elements by using the backslash character:

<table>
<thead>
<tr>
<th>\l</th>
<th>Backspace</th>
</tr>
</thead>
<tbody>
<tr>
<td>\t</td>
<td>Tab</td>
</tr>
<tr>
<td>\e</td>
<td>Escape</td>
</tr>
<tr>
<td>\n</td>
<td>Newline</td>
</tr>
<tr>
<td>\r</td>
<td>Carriage-return</td>
</tr>
<tr>
<td>{</td>
<td>Left brace</td>
</tr>
<tr>
<td>}</td>
<td>Right brace</td>
</tr>
</tbody>
</table>
Documenting Scripts with Comments

When you are writing scripts, you might want to include some comment lines to remind yourself and others what the script is doing. Use the # (number sign) to insert comments. The DCE control program suppresses interpretation between a number sign and the next newline. You must place the number sign in a position where dcecp expects the first character of a command. Both of the following examples are valid:

```bash
set a 5
# sets a to 5

set a 5 ;# sets a to 5
```

The following example is not valid because the number sign is not positioned where dcecp expects the first character of a command:

```bash
set a 5 # sets a to 5
```

A common use of comments is to document procedures in scripts as in the following sample script fragment:

```bash
#
# _dcp_cleanup_user_create - This function undoes changes
# after a failure in one of the user create functions as
# though the operation never occurred.
#

proc _dcp_cleanup_user_create {account_name args} {
```

Convenience Variables

The DCE control program remembers what you enter as well as command output, and stores certain pieces of that information in convenience variables for reuse in subsequent commands. Using these variables in your interactive commands can reduce typing and help eliminate typing mistakes.

Convenience variables apply only to dcecp commands like directory, principal, acl, account, and so on. They do not apply to Tcl commands like for or eval, or UNIX commands like mv or grep. As an example, the convenience variable _n holds the name (the argument) used in the following principal create operation. The principal show operation retrieves the name by using the $_n variable.
While this simple explanation demonstrates the general operation of convenience variables, it understates their usefulness. Most of the convenience variables are intended to aid interactive use, but some can be used in scripts as well, adding flexibility because the information they contain is not hardcoded in the script. Moreover, as you gain experience with the DCE control program, you will likely find these variables to be indispensable administrative tools.

The DCE control program provides several convenience variables that substitute for previously entered information or command output. All of the convenience variables begin with an _ (underscore) to leave 1-character variable names free for other uses.

The following sections describe the convenience variables. Their order of presentation generally keeps similar or related variables together.

Current Principal (User) Name (_u)

The _u convenience variable holds the current simple principal name. The DCE control program sets this variable from the login context inherited from the parent process. You can change its value by performing another `login` operation. Setting it using `set` generates an error.

```plaintext
dcecp> puts $_u
cell_admin
```

A practical use of this variable could be in scripts that test for a certain DCE identity before proceeding. On finding an incorrect identity, scripts could prompt for the necessary identity information and perform a `dce_login` operation.

See the cell name variable description in "Current Cell Name (_c)" for information about composing fully qualified principal names.

Current Cell Name (_c)

The _c convenience variable holds the name of the cell in which the principal is registered. The DCE control program sets this variable from the login context inherited from the parent process. You can change its value by performing another `login` operation. Setting it using `set` generates an error.

```plaintext
dcecp> puts $_c
/.../my_cell.goodco.com
```

This variable is generally useful in environments where administrators deal with multiple cells. For example, you could use the _c variable as a building block in constructing the current context’s fully qualified principal name for use in scripts. Join the cell name and user name variables together with a / (slash) as shown in the following example:
Current Host Name (_h)

The _h convenience variable holds the DCE name of the current host. The DCE control program sets this variable when \texttt{dcecp} is invoked. Setting it using \texttt{set} generates an error.

\begin{verbatim}
dcecp> puts \$_h
hosts/planets
\end{verbatim}

The _h variable is useful for returning the name of the host to an interactive user. You can also use it with the _c variable, as shown, to construct names such as a host principal name in a script:

\begin{verbatim}
dcecp> puts \$_c/\$_h/self
/.../my_cell.goodco.com/hosts/planets/self
\end{verbatim}

Most Recent Operation Argument Name (_n)

The _n variable holds the name or names used as an argument to the most recent control program operation. Most \texttt{dcecp} objects take a name or a list of names as an argument. Those that do not use names as an argument include the miscellaneous \texttt{dcecp} commands \texttt{dcecp_initInterp, login, logout, errtext, quit, resolve}, and \texttt{shell}.

The name is usually the third argument in a \texttt{dcecp} operation, as shown in the following \texttt{directory} operation:

\begin{verbatim}
dcecp> directory create ././sales/printers/text_printers
\end{verbatim}

Once set, you can use \$_n in subsequent operations in place of the name argument. For example, you could modify a directory attribute for the \texttt{././sales/printers/text_printers} directory created in the preceding example, as follows:

\begin{verbatim}
dcecp> directory mod \$_n -change \{CDS_Convergence low\}
\end{verbatim}

The _n variable can also hold a list of names, as when you perform a directory service operation on more than one name. For instance, you could create several directories and then decide to modify an attribute:

\begin{verbatim}
dcecp> directory create {
> ././sales/printers/text_printers
> ././sales/printers/graphics_printers
> ././sales/printers/colorgraphics_printers }
\end{verbatim}

A subsequent directory service operation can simply use the _n variable in place of the name or list of names:

\begin{verbatim}
dcecp> directory
modify \$_n -change \{CDS_convergence high\}
\end{verbatim}
Parent of _n (_p)

The _p variable holds the parent of the name stored in _n. The _n variable holds the name or list of names used in the argument to the most recent operation (see "Most Recent Operation Argument Name (_n)" on page 26). The _p variable holds the name or list of names that are hierarchically above the name in _n (closer to the cell root).

One use of the _p variable is in traversing up a CDS hierarchy of directories. Another use is showing the access control list (ACL) of a parent object. The following operations view the ACLs of a server configuration object and of its parent object (/.:hosts/krypton/config/srvrconf):

dcecp> acl show /.:/hosts/krypton/config/srvrconf/video_clip
{appl_admin cdfrwx}
{unauthenticated r}
{any_other r}
dcecp>
dcecp> puts $_p
/.:/hosts/krypton/config/srvrconf
dcecp>
dcecp> acl show $_p
{appl_admin criI}
{unauthenticated r}
{any_other r}
dcecp>

Last dcecp Object Name (_o)

The _o variable holds the name of the dcecp object used in the most recent operation. The following example uses the _o variable to avoid retyping account:

dcecp> account show j_wanders
{acctvalid yes}
{client yes}

{output omitted}

{home /}

{output omitted}

{shell {}}
{stdtgauth yes}
dcecp> $_o modify j_wanders -home ./:/fs/corporate_services/users/j_wanders
dcecp>

Last Operation’s Return Value (_r)

The _r variable holds the return value of the most recent operation. Many dcecp commands return multiple lines of output which are in the form of a list.

The following example shows one use of the _r convenience variable. The dts show command returns multiple lines as a list. The attrlist getvalues operation (see the attrlist(8dce) reference page) searches through the returned list for the string toofewservers and returns its associated value.

dcecp> dts show -counters
{creationtime 1994-09-16-07:50:13.067-04:00I-----}
{nointersections 0}
{nointersections 0}
{diffepochs 0}
The \texttt{_s(xxx)} variables hold the names of the DCE servers to use for the next DCE operation. The DCE control program provides four of these variables. Because the variables are not set by \texttt{dcecp}, users must set these variables if they want to use them. The variables are as follows:

\texttt{_s(sec)}

This variable holds the name of the security server you want to use for the next registry operation. If you set this to specify a read-only replica and the operation (such as \texttt{principal create}) requires a master replica, \texttt{dcecp} ignores the variable and tries to bind to the master registry. Registry operations that use the \texttt{_s(sec)} variable include \texttt{principal}, \texttt{group}, \texttt{organization}, \texttt{registry}, \texttt{account}, and \texttt{xattrschema}.

DCE control program operations use the \texttt{_s(sec)} variable in conjunction with the \texttt{_b(sec)} variable, which holds the name of the most recent registry used. A registry operation uses the following order to select a security server:

1. Use the server passed as a name argument to the registry operation.
2. If the operation lacks a name argument, use the server named in the \texttt{_s(sec)} variable.
3. If the \texttt{_s(sec)} variable has not been set, use the server named in the \texttt{_b(sec)} variable.
4. If the \texttt{_b(sec)} variable has not been set (that is, this is the first registry operation since \texttt{dcecp} was initialized), the service provides an arbitrary server that is suitable for the operation.

\texttt{_s(cds)}

This variable holds the name of the CDS server you want to use for the next directory service operation. When set, CDS operations attempt to use the specified server. The operation fails if the attempt is unsuccessful such as when the server is unavailable for some reason. To overcome such a failure, you must \texttt{unset} this variable or make the server available.

It makes sense to use the \texttt{_s(cds)} variable when all of your application needs can be satisfied by the clearinghouse named in the variable. Consider not using the \texttt{_s(cds)} variable when name lookups in CDS are likely to traverse directories in several clearinghouses. In this case, you’ll
get lookup errors because the
\texttt{_s(cds)} variable limits the lookup operation to using just the named clearinghouse.

\texttt{_s(dts)}

This variable holds the name of the DTS server you want to use for the next time service operation. When set, DTS operations attempt to use the specified server. The operation fails if the attempt is unsuccessful such as when the server is unavailable for some reason. To overcome such a failure, you must \texttt{unset} this variable or make the server available.

One use of this variable is to restrict DTS operations to a single DTS server for monitoring purposes. Normally, time service operations can use any available DTS server.

\texttt{_s(aud)}

This variable holds the name of the audit daemon you want to use for the audit operation. By default, audit operations affect the local host’s audit daemon. You can operate on a remote host’s audit daemon by specifying its name as the value of the \texttt{_s(aud)} variable, as follows:

\begin{verbatim}
dcecp> set _s(aud) /.:/hosts/planets/audit-server/.:/hosts/planets/audit-server
dcecp>
\end{verbatim}

When \texttt{_s(aud)} is set, audit operations attempt to use the specified audit daemon. The operation fails if the attempt is unsuccessful such as when the specified audit daemon is unavailable for some reason. To overcome such a failure, you must \texttt{unset} this variable or make the audit daemon available.

You can specify a DCE server or audit daemon as any of the following:

- A DCE name. An example of a global registry name is \texttt{/.../my_cell.goodco.com/subsys/dce/sec/oddball}. An example of a cell-relative CDS clearinghouse name is \texttt{./:./Paris_CH}.
- The string binding for the host where the server resides. String bindings can represent security servers, DTS servers, and audit daemons. They cannot represent CDS servers. An example of a string binding is \texttt{\{ncacn_ip_tcp 110.15.22.131\}}. The DCE control program resolves the binding to the appropriate service on the host.
- The name of the cell. For a remote cell, specify a global cell name, for example \texttt{/.../my_cell.goodco.com}. For the local cell you can specify the root as \texttt{./:.}. These operations use an arbitrary server that is suitable for the operation.

Last Security Server Used (_b(sec))

The \texttt{_b(sec)} convenience variable holds the name of the security server used for the most recent registry operation. The DCE control program sets this variable based on previous registry operations. Consequently, users can view, but not set, this variable.

One reason to read the value of this variable is to check which registry performed the most recent operation as shown in the following example:

\begin{verbatim}
dcecp> puts _b(sec)
/.../my_cell.goodco.com/subsys/dce/sec/oddball
dcecp>
\end{verbatim}

Registry operations use the value of the \texttt{_b(sec)} variable in conjunction with the value of the \texttt{_s(sec)} variable to determine which security server to use. Refer to
Most Recent Error Code (_e)

The _e convenience variable holds the last DCE error code encountered. If the DCE control program can determine what the error code is, this variable is set. If an actual error code is unknown, the variable is set to -1 (negative one).

CDS Confidence Level (_conf)

The _conf convenience variable indicates the confidence you have in the local CDS daemon to fulfill requests. It alters the behavior of most commands that operate on a CDS object. A confidence level can be low, medium, and high.

Measuring and Counting with Expressions

The expr command offers flexible ways to express and use arithmetic functions in your scripts. Expressions are useful for things like comparing numeric information such as the number of elements in a list, setting thresholds for monitoring purposes, incrementing counters that control your script’s execution, and producing statistical information.

A simple dcecp expression is a combination of an operator like + (add) or * (multiply) and some operands. The expr command takes one argument—the expression—so parentheses or braces may be needed if your expression has spaces. Use parentheses to control grouping in expressions. Expressions can also be nested. All of the following are valid expressions:

dcecp> expr {2 + 3}
5
dcecp> expr 2+3
5
dcecp> set x 24
24
dcecp> expr ($x-8)*2
32
dcecp> expr $x-8+2
8
dcecp> expr $x-8*2
8
dcecp>

Be careful using variables in expressions; variables like $x must be numeric strings like 24, not nonnumeric strings like 4*6.

The DCE control program normally treats numbers as decimal integers, but can read numbers in octal and hexadecimal formats too. Precede a number with 0 (zero) for octal interpretation, as in 0477. Precede a number with 0x for hexadecimal interpretation, as in 0x9FF. You can also represent numbers in floating-point format by using any of the forms specified by the ANSI C standard (with the exception of the f, F, l, and L suffixes).

The DCE control program also supports numerous mathematical functions in expressions such as cos, exp, log, tan, sin, and others, by invoking the C math library functions of the same name.
Here is a partial list of operators you can use with the `expr` command. The list order also denotes precedence. This means, for instance, that `expr` multiplies before adding (2+2*4 equals 10).

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-</code></td>
<td>unary minus</td>
</tr>
<tr>
<td><code>-</code></td>
<td>bitwise NOT</td>
</tr>
<tr>
<td><code>!</code></td>
<td>logical NOT</td>
</tr>
<tr>
<td><code>*</code></td>
<td>multiply</td>
</tr>
<tr>
<td><code>/</code></td>
<td>divide</td>
</tr>
<tr>
<td><code>%</code></td>
<td>remainder</td>
</tr>
<tr>
<td><code>+</code></td>
<td>add</td>
</tr>
<tr>
<td><code>-</code></td>
<td>subtract</td>
</tr>
<tr>
<td><code><</code></td>
<td>Boolean less than</td>
</tr>
<tr>
<td><code><=</code></td>
<td>Boolean less than or equal</td>
</tr>
<tr>
<td><code>></code></td>
<td>Boolean greater than</td>
</tr>
<tr>
<td><code>>=</code></td>
<td>Boolean greater than or equal</td>
</tr>
<tr>
<td><code>==</code></td>
<td>Boolean equal</td>
</tr>
<tr>
<td><code>!=</code></td>
<td>not equal</td>
</tr>
<tr>
<td><code>&</code></td>
<td>bitwise AND</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td><code>&&</code></td>
<td>logical AND</td>
</tr>
<tr>
<td>`</td>
<td></td>
</tr>
<tr>
<td><code>a? b: c</code></td>
<td>if-then-else (as in C).</td>
</tr>
</tbody>
</table>

Operating on Lists

Lists provide convenient ways to operate on collections of things such as sets of principals, group members, or other objects. Lists are collections of objects entered by you or returned from commands. We have already seen lists in previous examples in this chapter; they are any number of elements separated by spaces, tabs, or newlines. Usually, a list is enclosed in braces.

All of the following are examples of lists:

- `{n_long l_jones p_sawyer d_witt m_dougherty s_preska}`
- `{{/.:/hosts} {/.:/subsys}}`

The DCE control program relies on lists to group elements so they can be correctly parsed by the `dcecp` command interpreter. For example, the `set` command takes two arguments:

```bash
set varName value
```

The following `set` command cannot be correctly parsed because `dcecp` detects a third argument:

```bash
set varName value
```
dcecp> set a John Hunter
Error: wrong # args: should be "set varName ?newValue?"

Use braces, quotes, or backslashes to create a valid list, as follows:

dcecp> set a {John Hunter}
John Hunter

dcecp> set a "John Hunter"
John Hunter

dcecp> set a John\ Hunter
John Hunter

The commands that operate on lists provide convenient ways to evaluate, select, and act on individual elements or groups of elements in a list. The DCE control program provides a comprehensive set of commands that let you create, modify, search, sort, and convert to and from lists.

For example, the following script returns the last element in a list. The \texttt{llength} command returns the number of elements in the list. Our list has four elements so \texttt{llength} returns 4. The DCE control program numbers the elements from left to right starting with 0 (zero) so our list with three elements has elements numbered 0, 1, 2, and 3. The value of variable \texttt{c} is set to the number of the last element in the list (3). Finally the \texttt{lindex} command returns element 2 (f).

The DCE control program provides numerous commands for working with lists. You can join lists together using the \texttt{concat} command. Use \texttt{linsert} to add elements to an existing list. Extract a range of elements by using \texttt{lrange}, replace elements in a list with \texttt{lreplace}, and sort list elements in alphabetical (dictionary) order by using \texttt{lsort}. The DCE control program also includes an \texttt{attrlist} object (see \texttt{attrlist(8dce)} for use in manipulating list elements.

Here is an example that lists all child directories in a tree in alphabetic order. The __r variable is a dcecp convenience variable that holds the output of the last command. In this case, __r holds the list of directories returned by the \texttt{directory list -simple} command.

The DCE control program provides several commands for controlling your script's execution. Commands such as \texttt{if}, \texttt{while}, \texttt{for}, \texttt{foreach}, and \texttt{case} execute parts of scripts under various conditions. The \texttt{break} and \texttt{continue} commands can stop execution of part or all of a command script.
Conditionalizing with if Statements

Sometimes, you'll want part of your script to execute only under certain conditions. Use an if statement to detect a condition and conditionally perform some operation.

The syntax for an if statement is:

```
if test true_body else false_body
```

Let us say you are writing a script that searches through a list of attributes for a particular attribute. An if statement could take particular actions depending on whether an attribute exists. The following example script fragment returns an error message if the account name does not exist in the `list_of_group_entries` variable:

```bash
set list_of_group_entries [group list $group -simplename]
if { [lsearch $list_of_group_entries $account_name] == -1} {
    group add $group -member $account_name
} else {
    error "Group "$group" already has an entry for "$account_name".
}
```

Controlling Script Execution with Loops

Programming languages use loops to repeat operations as long as specified conditions exist. The DCE control program offers three kinds of loops: foreach, while, and for. The type of loop you use depends on the way conditions are specified.

The foreach Loop

When you want to perform a given operation on each element in a list, use the foreach command. Remember that a list is a collection of objects, or things entered by you or returned from a command.

The syntax is:

```
foreach variable_name list body
```

The foreach command consists of a list, a script body, and a variable that represents each element of the list, in turn. The command runs the script body on the element represented by the variable and then sets the variable to be the next element in the list.

The following sample foreach command could be part of a script that manages hosts in a DCE cell. This script fragment removes the host principal name from the registry if a failure occurs while configuring the host in the cell. The foreach command looks at each principal name in the cell. If the string commands find the host name listed in the output from principal catalog, the script deletes the principal name from the registry.

```bash
foreach princ [principal catalog -simplename] {
    if {
        string match $host_name [string range $princ 0 \n        [expr [string length $host_name] - 1]]] == 1} {
            principal delete $princ
        }
    }
```

Keep in mind that loops return their results to the interpreter, not to stdout. You need to take extra steps to send the results to stdout. The next example uses a puts command to send the results of the foreach loop to stdout:
foreach i [group list subsys/dce/dts-servers] {
 puts [principal show $i]
}

You can also append all the results together into a variable in a script, or you can use lappend to append the results as separate list elements, as follows:

foreach i [group list subsys/dce/dts-servers] {
 append result [principal show $i]
}
return $result

The while Loop

The while loop behaves like the while loop in C. It takes two arguments: an expression and a script (called the body). When the expression evaluates to nonzero, the while command executes the body and then reevaluates the expression, continuing the loop until the expression evaluates to 0. The syntax for a while loop is:

while expression body

The following example procedure uses a while loop to search through each element in a list for a pattern. As long as the list size contains more than zero elements ($size > 0), the procedure continues looping.

proc _dcp_list_find {search_list pattern} {
 set found_items ""
 set size [llength $search_list]
 while { $size > 0 } {
 set size [expr $size - 1]
 set index [lsearch $search_list $pattern]
 if { $index == -1 } {
 return $found_items
 }
 lappend found_items [lindex $search_list $index]
 set search_list [lreplace $search_list $index $index]
 }
}

The for Loop

The for loop also behaves just like its C counterpart. Although for is more complex than its sibling while, for keeps all of the loop control information together, making it easier to see what is going on. The for command syntax is:

for initial_expression test reinit script_body

To use for, set an initial expression and then test for that condition before executing the script body. After executing the script body, the for command reinitializes the initial expression and again tests for the new value, repeating the loop until the test becomes false.

The following example shows a for loop that performs an operation a specified number of times and stops. In this example, we create 50 guest principal names in the registry.

dcecp> for {set i 0} {$i < 50} {incr i} {
 > principal create guest$i
 > }
dcecp>
Terminating Loops with continue and break

The `continue` and `break` commands terminate loops started with the `while`, `for`, and `foreach` commands.

Use the `continue` command to terminate the current iteration of a loop. For instance, your loop can test for, and selectively ignore, particular elements in a list while continuing to operate on the rest of the elements. Use the `break` command to immediately terminate loop execution.

The following example script fragment is a `foreach` command loop that includes `continue` and `break` commands. The `foreach` command looks through all the DTS servers in a cell until it finds one that is a time-provider. (A time-provider is a special DTS server that receives time from an external time source.) If the first server in the list (created by the `dts catalog` operation) returns output from a `dts show` operation, the `continue` command invokes the next lines in the script which search the output for the `{provider yes}` attribute and value. If the `provider` attribute (examined by the `attrlist getval` operation) is `yes`, the script sets the `server` variable to be the name of that DTS server, and the `break` command terminates the entire `foreach` loop.

```bash
foreach s [dts catalog] {
    if {[[catch {dts show $s} dts_sh_out] != 0]}
        continue
    set p [attrlist getval $dts_sh_out -type provider]
    if {[string match $p "yes"] == 1} {
        set provider "yes"
        set server $s
        break
    }
    set provider "no"
}
```

Testing with Patterns Before Execution with case

Some commands return a list such as a list of objects in a directory or a list of servers running on a host system. You can use the `case` command to test a list or string for specific patterns such as the name of a particular object or server. On detecting a specified pattern, the `case` command then executes a script associated with the pattern detected. The syntax for the `case` command is:

```bash
case string in pattern {script} pattern {script}
```

The `case` command looks in `string` for `pattern` and executes `script`. The word `in` may be omitted. The following example illustrates how the `case` command works:

```bash
dcecp> set x {one ten twenty}
one ten twenty

ddecp> foreach el $x {case $el in one {puts script1} two {puts script2}}

script1
```

The `case` command first checks in `$x` for the `pattern one`. On finding this pattern, the associated script echoes `script 1` on the display. When it finds no more matches, the `case` command ends.

For a more practical example, say you run a `dcecp` command that lists all the servers on a particular system. You could search the list for particular server names and execute a script that appends each name to a particular file, as follows:
case $x in server1 {lappend filename1} server2 {lappend filename2}

If your list of patterns is lengthy and likely to break across lines, you can prevent newlines from being interpreted as separators by enclosing the entire list of target patterns and scripts in braces. This has the additional benefit of preventing variable and command substitutions in the braced list.

Patterns can include wildcard characters. A ? (question mark) in a search pattern matches any single character in the target pattern. For instance, ?at matches bat and hat. An * (asterisk) in a pattern matches any string in the target pattern. For instance, *at matches both bat and “three cornered hat” (note the use of quotes to disable spaces as separators).

You might want a way to execute some default script when no pattern matches are found. The case command has a special pattern called default whose corresponding script executes when no pattern match is found. You should place the default pattern as the last position in the list:

case $x in
 a {puts "script for case a"}
 b {puts "script for case b"}
 default {puts "run this script if no matches are found"}
}

Creating Commands Dynamically

The eval command lets you create scripts as you go along by chaining smaller scripts together. This technique could be useful in a script that records administrator responses to various questions and then constructs a specialized script based on those responses. The syntax is:

eval arg ...arg

The following example uses variables to hold options and their values for an account create operation. The eval command ensures that the variables expand and execute properly.

dcecp> set
 mpwd {-mypwd mxyzptlk}
 -mypwd mxyzptlk
dcecp> set pwd {-password change.me}
 -password change.me
dcecp> set org {-organization guests}
 -organization guests
dcecp> set grp {-group guest}
 -group guest
dcecp> eval account create guest1 $mpwd $pwd $org $grp

dcecp>

Be careful when using variables to construct eval commands. An eval command such as the following can sometimes cause problems within scripts because dcecp parses it twice. First, dcecp parses the eval command and its arguments. Then it again parses the eval arguments when they are executed as scripts.

dcecp> eval $a $b $c
dcecp>

You can avoid some parsing problems by placing braces around the arguments as in this example:

dcecp> eval {a $b $c}
dcecp>
To make certain dcecp parses your eval command correctly, you can invoke the dcecp list command to generate a valid list structure:

```dcecp
eval [list $a $b $c]
```

Reading Other Files as dcecp Scripts

The source command reads the contents of other files, executing them as dcecp scripts. This capability lets you construct higher level scripts by plugging lower level functions together—like building blocks. Because you re-use your scripts rather than duplicate them with potential variations, scripts are more consistent and easy to develop and maintain. The command syntax is:

```
source filename
```

The return value from source is the return value from the last command in filename.

As a practical example, imagine we have one script that lists entries in CDS subtrees, another script that deletes subtrees, and another script that moves subtrees. One common function needed by all these scripts might be to list every child directory under the root of the subtree. You could write a script that lists every child and name it something like children_list.dcp. (The .dcp extension is a dcecp convention for naming script files.) When any of your scripts need to list all the child directories, simply use the source command:

```
source children_list.dcp
```

Terminate a source command by using the return command. The return command provides a way for commands like source and proc to exit in a controlled manner, even when expected or unexpected error conditions occur. Rather than allow error conditions to cause the whole script to exit and fail, the return command manages error information and allows the script to continue executing. We discuss the use of return with other error-handling techniques in "Dealing with Errors and Exceptions" on page 42.

Creating New Commands

The DCE control program provides a powerful and comprehensive set of commands for controlling and monitoring DCE operations. But the exact uses to which DCE is put by end users is unpredictable. Consequently, it is quite likely that some administrators will need additional commands to meet very specific needs. The proc command offers an easy way to create additional commands that look and behave just like built-in commands such as set, list, and while. But unlike built-in commands, which are written in C, commands created with proc are written using scripts, as follows:

```
dcecp> proc div {x y} {expr $x/$y}
dcecp>
```

The proc command takes three arguments: the procedure name, a list of names of procedure arguments, and the dcecp script that forms the body of the new procedure. Our new procedure div requires two arguments. For example:

```
dcecp> div 12 4
3
```

Chapter 2. Using the DCE Control Program Command Language 37
By default, proc assumes all variables are local variables. That is, their names and values are set only within the procedure and they expire when the procedure completes. The following command produces an error because variables \(x\) and \(y\) have not been set within the procedure:

```
dcecp> set x 15
15
dcecp> set y 3
3
dcecp> proc div {} {expr $x/$y}
dcecp> div
Error: cannot read "x": no such variable
```

You can import global variables (variables defined outside the procedure) by using the global command:

```
dcecp> set x1 5
dcecp> set y3
3

dcecp> proc div {} {
    > global x y
    > expr $x/$y
    > }
dcecp> div
5
```

Once you import a global variable, it persists for the duration of the procedure. Your procedure can change the value of the variable by using unset and set. The new value will be available for use inside and outside of your procedure, as shown.

You can use the return command to make your procedure return immediately. The value of the argument to return becomes the procedure’s return value.

```
proc find {a} {
    <some pattern matching script that looks for a specific CDS entry>
    if {a != b} {
        return 1
    }
    return 0
}
```

You can design procedures to take either no arguments or variable numbers of arguments. For instance, a procedure with no arguments could simply perform some straightforward operation as in the following example:

```
proc _do_create_group {} {
    global rpcgroupname
    rpcgroup create $rpcgroupname
}
```

You can also specify a default value for an argument by using a nested list structure in the argument list. In the following example, the first argument, attr, must be supplied. The second argument, value, defaults to unset if no argument is supplied.

```
proc _attr_show {attr {value "unset"}} {
    puts "$attr is $value"
}
```

Procedures can call other procedures. The current procedure can import variables from any calling procedure by using the upvar command, as shown:

```
upvar level otherVar1 myVar1 otherVar2 myVar2
```
A level argument of 1 gets the variable context of the parent procedure. An argument of 2 gets the variable context of parent's parent procedure. You can also specify levels relative to the global context by preceding the level argument with #. A level of #0 gets global variables. A level of #1 gets variables from a procedure invoked from the global level.

The otherVar argument names the variable you want to import. You need to include the myVar argument to rename the variable for use in the current procedure. The following example renames the imported variable to cargs:

```
upvar 1 local_args cargs
```

Procedures can also execute scripts under the context of parent procedures by using the uplevel command. This command offers a convenient way to manage your procedure’s context. For instance, rather than import and manipulate numerous variables from a parent procedure, use uplevel to connect to them all at once. The syntax is:

```
uplevel level arg arg arg
```

The uplevel command is similar to eval; it concatenates arguments and executes them as scripts but, unlike eval, uplevel executes the script in the context specified by level rather than the current context. The level argument works the same in uplevel as it does in upvar. Use the parent’s context with a level argument of 1. Use the context of a first-level procedure with a level argument of #1.

If a proc command specifies a command name that is already in effect, the new procedure replaces the existing procedure with the same name. Except in unusual cases, you should avoid naming new commands so that they replace existing built-in commands.

You can rename or delete Tcl commands by using the rename command. For instance, you could temporarily rename list to list.old and then use proc to create another command called list. When you are through using the manufactured list command, you could rename list old to list, restoring the original function of list as in the following:

```
rename list list.old
proc list {} {
   <some list operation>
}
rename list.old list
```

Delete a command by omitting the second argument to the rename command. The following example deletes the list command:

```
rename list
```

String Manipulation

Many DCE administrative operations return information of some sort. For instance, the principal show operation returns information about a principal. Usually this information is in the form of a list, as in the following example:

```
dcecp> principal show R_Parsons
{fullname {}}
{uid 15}
{uuid 0000000f-d6f9-21cd-8d00-0000c08ad56}
```
Although it is fairly easy for an administrator to scan a list and extract the necessary information from it, scripts operate differently. When scripts search for specific information, they usually ignore the notion of lists, operating instead on the collection of characters (called a string) that makes up a list. The DCE control program provides a set of commands to operate on strings, letting you construct, parse, compare, extract values from, and modify strings.

Constructing Strings

Often, scripts need to construct strings for use in other commands or for displaying on the screen for users. The DCE control program provides a `format` command that you use to construct strings for use by your script.

The `format` command substitutes variables where needed. The following example constructs the variable `_dcp_host_entries` by using the `format` command to prepend the cell name string (the string type is indicated by `%s`) to the string `/hosts`. The cell name is contained in the `_c` convenience variable.

```plaintext
dcecp> set _dcp_host_entries [format "%s/hosts" $_c]
/.../my_cell.goodco.com/hosts
```

The `format` command can also convert arguments between differing forms including decimal, octal, hexadecimal, floating-point, and scientific notation. You can also specify to print or omit signs for signed numbers, right or left justify output, and pad with spaces or zeroes. The following examples convert the integer 8 to its octal equivalent. The second example shifts the output nine character spaces to the right.

```plaintext
dcecp> format %1o 8
10

dcecp> format %9o 8
10
```

Parsing Strings

The DCE control program includes a `scan` command that parses strings and then converts and stores relevant parts of strings in variables. This capability is useful, for instance, when converting information returned by a previous command into data that can be input to another command. The syntax for the `scan` command is as follows:

```
scan "string" "format" [varname [varname]...]
```

You can specify the `string` literally or by using a variable. The `format` section controls parsing, ignoring blanks and tab characters you might have included in the `format` section for readability. This section consists of one or more conversion specifiers delimited by % (percent sign). Conversion specifiers define which parts of `string` get converted and stored, as well as the type of conversion.

The following example parses the string contained in the variable `_dcp_temp` for a valid floating-point number and stores it in the variable `_dcp_temp2`:

```plaintext
dcecp> scan "string" "format" [varname [varname]...]
```
if { [scan $_dcp_temp "$f" _dcp_temp2] !=1 } {
 error "Variable \"$_dcp_temp\" is not a \
 valid floating-point number"
}

Other String Handling Operations

You can specify one character or a range of characters in a string by using **string index** and **string range**. These commands would be useful for extracting information from a string of predictable length.

The **string index** command has one argument that is the position of one character (counting from left to right beginning with 0 (zero) to be extracted from the string. The **string range** command includes two arguments that are the positions of the leftmost and rightmost characters to be included in the range. The following example illustrates one use of the **string range** command:

dcecp> string range {The quick brown fox} 4 9
 quick

dcecp>

You can determine whether one string is lexicographically (alphabetically) greater than, less than, or equal to another string by using **string compare**. Generally, this operation performs a byte comparison of ASCII codes that make up the string.

Count the number of characters in a string using the **string length** command. Here is an example:

dcecp> string length "The quick brown fox"
 19

dcecp>

Convert characters between uppercase and lowercase by using the **string toupper** and **string tolower** commands. Here is an example:

dcecp> string toupper "The quick brown fox"
 THE QUICK BROWN FOX

dcecp>

Trim specific characters from a string by using the **string trim** command. Remove the leftmost or rightmost characters from a string by using the **string trimleft** and **string trimright** commands.

You can perform pattern-matching operations in any of several ways. Invoke "glob" style pattern matching with the **string match** command. This mimics the glob pattern matching capabilities available in **csh**, returning 1 for a match and 0 for no match. More flexible regular expression pattern matching (like that found in **egrep**) can be performed using **regexp** command. You can extend this operation to perform regular expression substitution by using the **regsub** command. The following example illustrates the use of the **regsub** command. The first argument specifies the search pattern. The second argument is the string to search. The third argument specifies the replacement pattern. The last argument is a variable into which **regsub** places the new string. The command returns 0 if no substitution occurs and 1 if substitution does occur.
Dealing with Errors and Exceptions

The dcecp interpreter includes error facilities that return error information when something goes wrong with a dcecp script. Error information tells users what went wrong so that they can avoid making the same mistake in the future. Many things can cause dcecp errors. For instance, a command might not receive the correct number of arguments, a command might have a typographic error of some kind, or the object of an operation (such as a CDS directory) might be unavailable for some reason.

Here, we discuss three ways of dealing with errors and exceptions:

- Using global error information variables
- Catching exceptions
- Reissuing complex errors

Using Global Error Information Variables

When dcecp encounters an error it prints a descriptive message, such as:

Error: wrong # args: should be "set varName ?newValue?"

In some cases, error messages may be insufficient for determining exactly where a problem occurred. So dcecp stores additional error information in a global variable called errorInfo. Your script can access and print this information to help you find the error. Generally, it traces the commands that were executing when the error occurred.

The following example shows the kind of information that can be stored in errorInfo. Reading backwards, you can determine that the error occurred near line 4 of the script body in the parseargs procedure called from the _dcp_create_user procedure of a user operation.

```
dcecp> puts $errorInfo
Unknown option "group"
  while executing
   " invoked from within
    " ("while" body line 4)
     invoked from within
      " (procedure "parseargs" line 60)
       invoked from within
        " (procedure ".dcp_create_user" line 64)
         invoked from within
          " invoked from within
           " invoked from within
            " (procedure "user" line 24)
             "
dcecp>
```
In addition, dcecp may store another kind of error information in another global variable called errorCode. This variable contains a list like the following that can identify other classes of errors.

UNIX, ENOENT, "insufficient arguments for filename"

The DCE control program sets the errorCode variable to NONE if an error produces no useful error information.

Using catch to Trap Errors and Exceptions

Occasionally, you might want to trap some kinds of errors rather than let them terminate an active command. The catch command lets you trap and ignore errors so your script can continue processing. Let us say your script wants to rename a command if it exists. However, it is possible that the command name might not exist when you execute the rename command.

```
dcecp> rename move move.old
Error: cannot rename "move": command does not exist
```

Use catch to invoke the rename command as a script.

```
dcecp> catch {ren move move.old}
1
```

The catch command treats its argument as a script and executes it, returning a 0 on successful execution. If an error occurs, it is caught by the catch command which returns a 1.

You can add a second argument to the catch command. This argument is a variable that catch modifies to hold the script's return value (on successful completion) or the error message. The syntax for the catch command is:

```
catch command varName
```

One use of catch in scripts is to invoke other procedures. You can read the following script fragment as follows: “If the _dcp_create_group procedure returns unsuccessfully (!= 0) then perform the _dcp_cleanup_user_create procedure and display the error stored in the msg variable.”

```
if [{ catch {_dcp_create_group $group group_created} msg] != 0 } {
   _dcp_cleanup_user_create $element -principal
   error $msg
}
```

Exceptions are a special class of error generated by the break, continue, and return commands. You use the break and continue commands to terminate loops such as while, for, and foreach, and you use the return command to terminate a proc or source command.

Resulting exceptions can be hard to handle in procedures where loops exist inside (as part of) a more comprehensive command. For instance, a user-written procedure that searches for specific object types in CDS might invoke foreach as part of a looping activity to test for the occurrence of particular attributes.

If you use the break, continue, or return commands to manage loop execution or to manage some other nested command (like case or if, for example), the parent command will not be ready to catch the exception. The parent command will abort
and issue an error message as usual. However, the error is associated with the parent command and is difficult to track to the looping command where it actually occurred.

If it is necessary to use a `continue`, `break`, or `return` command to terminate a command that has been called by another command, consider using `catch` to invoke the nested command which, in turn, calls the `continue`, `break`, or `return` command to recover from errors or exceptions. Used this way, the `catch` command keeps the exception within the looping or nested procedure where it is easier to track down.

```tcl
foreach s [server catalog] {
    if {[catch {server show $s} srv_sh_out] != 0} {
        continue
    }
}
```

Reissuing Complex Errors

The `proc` command lets you create procedures or commands that perform very precise operations. For instance, a user-written procedure called `_dcp_get_servers` that retrieves and filters information about running servers could include nested commands or procedures that perform various subtasks such as looping through server information looking for certain strings. While use of nested commands or procedures lets you develop comprehensive procedures or commands, they can also produce errors that are difficult to pinpoint if errors are not passed along properly.

Complex scripts can use the `error` command to reissue errors that have been triggered by some previously executing part of the script. The following script fragment simply prints out a hard-coded error message. This use also lets you custom tailor messages to precisely explain error conditions.

```tcl
set dts_cat_out [_dcp_dts_catalog]
if {([llength $dts_cat_out] == 0)} {
    error "Unable to find any DTS servers"
}
```

The next script fragment does more, using `catch` to store any error information returned from the `_dcp_create_group` procedure in the `msg` variable. On failure (`!= 0`), the script invokes a cleanup procedure that undoes whatever was done, and then prints out the message stored in the `msg` variable.

```tcl
if {[catch {_dcp_create_group $group group_created} msg] != 0 } {
    _dcp_cleanup_user_create $element -principal
    error $msg
}
```

This discussion has provided some fairly simple error handling techniques. Note, though, that error handling can be complicated, especially in more complex situations. We encourage you to read more about error handling in other publications that cover more general use of Tcl.

Working with Files

The DCE control program has several commands for use in reading from and writing to files. Files are useful for things like storing the output of `dcecp` operations for later reference. Here are several useful examples of file manipulation:
You could run a server catalog operation across all of the hosts in a cell and store the results from each host in a host-specific file. Later, you could compare the files to produce a report of server configurations.

You could detect inactive accounts by running a `dcecp` script that shows the last time each account was logged into, storing this information in a file for later evaluation.

You could also modify DCE files that are not manipulated easily by using the `dcecp hostdata` object. For example, you could write a function that added a new attribute to the `cds_attributes` file.

DCE as provided by OSF currently supports file operations only for UNIX systems or for systems that support POSIX system calls. However, some vendor DCE versions may support file operations on other systems.

Specifying Filenames

Specify filenames using customary UNIX rules. For instance, `/opt/dcelocal/dcecp/server_snap.dcecp` refers to a file named `server_snap.dcecp` in a directory called `/opt/dcelocal/dcecp`. You can also refer to files by using relative filenames, for example `~dce_admin/scripts/server_snap.dcecp` and `~/admin/server_snap.dcecp`. You can print the current working directory by using the `pwd` command and set the current working directory by using the `cd` command. The following command sets the current directory to be `dce_admin/scripts`:

```bash
dcecp> cd ~dce_admin/scripts
dcecp>
```

You can view a list of files in a directory by using the `glob` command. This command returns a list of filenames that match pattern arguments to the command. Here is an example:

```bash
dcecp> glob *
help local_lib.dcp
dcecp>
```

You can view lots of other information about files by using the `file` command with various options. The `file` commands can help select a file based on its age, its size, or its permissions (whether it is executable, or readable, or writable by the current user).

Reading and Writing Files

The `dcecp` commands for reading and writing to files look and act like their C language counterparts `fopen`, `fclose`, and so on.

Open a file for reading and writing using the `open` command. The second argument to the `open` command (shown in the following example as `+r`) specifies the file access mode. You can open files for reading, or writing, or both and you can specify whether to replace existing files or to add to them with new information. You can also set the initial access position to the beginning or the end of a file. The default access mode is read-only (the file must already exist).

```bash
dcecp> open server_snap.dcecp +r
+ file5
dcecp>
```
The `open` command assigns a file identifier to each file when it is opened. Use the file identifier to refer to files in subsequent commands.

Once a file is opened, you can add lines to a file by using the `puts` command. Normally, `dcecp` waits until it has accumulated sufficient data before writing this information to a file. If you want `dcecp` to immediately write the information to a file, use the `flush` command. Use `gets` to read the next line from a file or use `read` to read a number of bytes or all of the bytes in a file. The following example writes a list of all principals in a file named `prins`:

```
dcecp> open prins w+
file8
dcecp> puts file8 [principal catalog]
dcecp> close file8
dcecp>
```

Sometimes, you do not want to start reading or writing at the first line of a file. The DCE control program provides several commands that set the access position so you do not have to advance through every line in the file. These commands will produce an error if you use them for devices like terminals or other sequential devices that do not support random access. Use the `seek` command to set the access point in a file. Specify the offset as a number of bytes from the origin, which can be the beginning or end of the file or the current position. Use a negative number to move toward the beginning of the file, as in the following example which moves back 16 bytes from the current access position.

```
dcecp> seek file5
-16 current
dcecp>
```

You can determine the current access position by using the `tell` command. Save the return value in a variable so you can go back to that position in the file later on.

```
Finally, you can close a file by using the `close` command, as follows:

dcecp> close file5
dcecp>
```

Spawning Subprocesses

Using subprocesses to execute commands offers several convenient solutions to some complex scripting or special administrative needs. Subprocesses can provide:

- Access to operating system commands
- A way to establish synchronous, orderly execution
- Methods for streamlining complex or sophisticated scripts

Running Operating System Commands from a Script

Although the DCE control program is versatile, there are times when you may want your script to use operating system commands to accomplish some simple (or even not-so-simple) operation. The `exec` command provides a way for scripts to perform external commands by forking a subprocess in which the command executes. The following example uses the `exec` command to retrieve the local host name which is then established as a `hostname` variable and subsequently used in the script.
The `exec` command normally returns the results of the operation performed in the subprocess. However, you can use UNIX redirection symbols (<, <<, and >) to redirect standard input or standard output. You can also use the | (vertical bar) to pipe the output through filters such as `nroff`, `sort`, or `grep`.

When used alone, the `exec` command is synchronous, meaning that the external command completes before the script continues executing. But when a subprocess will take a long time to complete, for instance when you synchronize directories in a CDS cell, you can use the `exec` command with an & (ampersand) to push a subprocess into the background. The following example uses the `exec` command to send previously collected output to a printer. This lets your script continue without having to wait for the `print` command to complete.

dcecp> `exec lpr output.log` &
dcecp>
Chapter 3. Writing Scripts and dcecp Objects

The DCE control program supplies a number of objects that offer administrative access to each manageable component in a DCE cell. For instance, the principal object lets administrators manage principal information in the DCE Security Service registry database. Similarly, the rpcgroup object lets administrators manage group information in CDS.

Some DCE operations affect multiple components as when several operations must be performed to add a new user to a DCE cell. To meet this need, the DCE control program provides task objects, which let administrators operate on multiple components with a single operation. For instance, the user task object performs several operations that include creating principal information in the registry, adding the principal to an organization and to relevant groups, creating a CDS directory for the user, and so on. Task objects look and behave just like other dcecp objects, implementing the same help system used by other dcecp objects. However, task objects are written using the dcecp language instead of the C programming language. This makes it easy for administrators to extend or customize existing scripts.

While the DCE control program provides task objects to handle some multicomponent operations, variations in cell configurations and differences in the ways administrators manage their cells make it impractical for the supplied DCE task objects to satisfy all the needs of every DCE cell. For instance, some cells may use DFS components, or a cell may implement a cell directory naming scheme that differs from the standard OSF DCE implementation. Alternatively, some DCE implementations could have specialized administrative components, such as services or repositories, that need distinct dcecp objects for managing them.

To accommodate a cell’s specific needs, the DCE control program language lets administrators create their own scripts. Administrators can also extend or modify existing task objects or they can create new task objects to manage specialized components in a DCE cell. This chapter provides information for extending, modifying, or creating the following kinds of dcecp scripts:

- Informal administration scripts
- Formal task objects

Informal Administration Scripts

Informal administration scripts let administrators store multiple operations in a file and replay them whenever necessary. Informal scripts are useful for operations that take only one or two arguments or that just perform simple tasks. Furthermore, the script’s precise behavior and output can be custom tailored to the needs of its author. While informal scripts can be shared among administrators in a cell, they are typically included just in the author’s .dcecp file.

Scripts generally consist of one or more procedures created with the proc command. This lets you invoke the scripted operation by simply typing the procedure’s name at the dcecp prompt.

The following simple script prints information about your current cell and login identity:
Show your current login name and your current cell name.

```
proc _dcp_whoami {} {
    global _c _u
    puts stdout "You are '$_u' logged into '$_c'.'
}
```

This script can be included in your .dceprc file either directly or by using the `source` command and keeping the actual script in an external file. The second method lets other administrators include your same script by simply pointing to it with `source` commands in their .dceprc files. This method also keeps your .dceprc file uncluttered, making it easier for others to understand what is going on. Alternatively, you can place the script or a pointer in the init.dcecp file. Changes to this file are available to all users on a host. For more information about the init.dcecp file and the .dceprc file, see the [Customizing dcecp Sessions](#) page of Chapter 1, DCE Control Program Introduction on page 3. The following is an example of the `source` command in a .dceprc file:

```
source /usr/users/wardr/dcecp/local_lib.dcp
```

The .dcp filename extension is a convention for naming files used by the DCE control program. Another convention precedes procedure names with _dcp, as in _dcp_whoami. Many dcecp procedures adhere to this convention to distinguish their names from user-created procedures that do not need to use this convention. If you find procedure names like _dcp_whoami hard to remember or type, you can rename them. For instance, you could rename the procedure to whoami by using the `rename` command in the .dceprc file, as follows:

```
rename _dcp_whoami whoami
```

Restart dcecp to pick up any changes. Now you can enter whoami at the DCE control program prompt, as follows:

```
dcecp> whoami
You are 'cell_admin' logged into '/.../my_cell.goodco.com'.
dcecp>
```

By chaining operations together, you can create scripts that do more. For example, the following script lists all the hosts in a DCE cell. Then it checks whether each host has an object entry in CDS for a dts-entity. (This would indicate that a DTS server is available on the host.) For each host with an object entry for a dts-entity, the script does a `clock show` operation which returns the time on that host. The script prints the information on the display, formatting it for readability, and continues looping through all the hosts in the cell until all host entries have been checked.

```
# Show the time on all of the dts servers running in your cell.
proc _dcp_show_clocks {} {
    set x [directory list /./:/:/hosts]
    foreach n $x {
        if {[catch {object show $n/dts-entity}] == 0} {
            set index [string last "/" $n]
            set y [string range $n [incr index] end]
            if {[catch {clock show $n/dts-entity} msg] == 0} {
                set i [expr 20 - [string length $y]]
                puts [format "Time on $y is %${i}s %s"
                     [clock show $n/dts-entity]]
            } else {
                set i [expr 20 - [string length $y]]
                puts [format "Time on $y is %${i}s %s"
                       "Server not responding."]
            }
        }
    }
}
```

Make the _dcp_show_clocks procedure available to your dcecp session in the same way as the simpler script described previously.

```
# Show the time on all of the dts servers running in your cell.
proc _dcp_show_clocks {} {
    set x [directory list /./:/:/hosts]
    foreach n $x {
        if {[catch {object show $n/dts-entity}] == 0} {
            set index [string last "/" $n]
            set y [string range $n [incr index] end]
            if {[catch {clock show $n/dts-entity} msg] == 0} {
                set i [expr 20 - [string length $y]]
                puts [format "Time on $y is %${i}s %s"
                     [clock show $n/dts-entity]]
            } else {
                set i [expr 20 - [string length $y]]
                puts [format "Time on $y is %${i}s %s"
                       "Server not responding."]
            }
        }
    }
```
Formal Task Objects

Some DCE environments might have special administration needs that are not strictly addressed by the standard DCE control program objects. While you could write and distribute informal scripts to meet this administration need, you would likely need to document their operation in some way. More importantly, though, a complicated operation might require the use of numerous options to precisely control the script's behavior. Rather than invent your own mechanisms to provide help information and handle complicated argument parsing operations, you could rely on the existing help system and the `parseargs` facility utilized by other formal task objects supplied with `dcecp`. This approach makes your script consistent with other `dcecp` objects.

Formal task objects build on the idea of the informal scripts presented previously with some important additions:

- An argument table at the beginning of the script defines operations as separate procedures within the script. An argument table can also define available options. A `parseargs` procedure is called to parse the arguments and options passed to the script when it is invoked.
- Help information for each operation is placed in the argument tables in the script. Other script users can get this information by using standard `dcecp help` operations.
- Extensive error control is included because you cannot predict or control the conditions in which the script executes.

The rest of this section shows the general structures and conventions used in a formal task object. To aid our explanation, we use the `dcecp user` task object supplied with the DCE control program.

A Model for Task Objects

This section examines the parts of the `user` task object that should be emulated in other task objects that you create for use with the DCE control program. Adhering to the basic model ensures that your task object will look and behave consistently with other parts of `dcecp`.

For efficiency and readability, the example does not include all of the procedures contained in the `user` task object. Furthermore, we have omitted some repetitive parts of the included procedures, replacing the omitted parts with vertical ellipses in the code examples. The entire `user` task object is contained in `dcelocal/dcecp`.

Name your object after the entity on which it operates rather than as a verb such as "show" or "modify." DCE control program objects are named for the DCE entity on which they operate. Primitive objects like `rpcentry` and `principal` objects operate on single manageable DCE entities. Task objects operate at a higher level, generally invoking several primitive objects to achieve their goal. The authors of the user task object contrived a higher-level entity—a `user`—as a manageable object.
The user object begins with the top level proc command and its argument table that defines the procedures and operations provided by the user object. Use this syntax to define separate procedures in this argument table:

```
verb command function_call procedure_name "helptext_string"
```

The call to the parseargs procedure (defined in a separate file called parseargs.dcp) returns the name of the internal procedure that is to be called along with its arguments. The parseargs procedure is explained in "Using the parseargs Procedure" on page 57.

```
# proc user - This procedure is the front end for the user task scripts. All argument checking for the provided switches is done in the individual functions.
#
proc user { args } {
    set arg_table {
        {create command function_call _dcp_create_user
            "Create a DCE user"}
        {delete command function_call _dcp_delete_user
            "Delete a DCE user"}
        {show command function_call _dcp_show_user
            "Show the attributes of a DCE user"}
        {help help help_list
            "Print summary of command-line options and abort"}
        {operations operations operation_list
            "Return valid operations for command."}}
    set verbose_prose
    "This object allows the manipulation of a DCE user. A user is represented as a principal and account with membership in a group and organization as well as having a directory in the CDS namespace. A user may be created, deleted or have attribute information returned. The argument is a list of either relative or fully qualified principal names. All fixed attributes of the principal and account object may be specified when creating a user. The -force option to the create verb allows the group or organization for that user to be created if necessary. The user is provided a directory in the CDS namespace, with the appropriate ACLs. Access to create a user requires the correct ACLs on principal, group and organization directories within the registry and the clearinghouse and users directory in the CDS namespace."
    set local_args $args
    parseargs $arg_table local_args -found_one
    if { [info local help_prose] > 0 } { return $help_prose }
    if { [info local function_call] > 0 } { return [function_call local_args] }
    else {
        error "\"user\" object requires a verb to form a command."
    }
}
```

The next part of the script examines a procedure that takes many options or attributes as input: the _dcp_create_user procedure. While this procedure relies on numerous lower-level procedures to do the actual work of creating a user, the example begins by showing just one of the lower-level procedures, _dcp_create_principal_entry.

```
Then the script continues with the _dcp_create_user procedure. Notice that the name of this procedure (and all lower-level procedures) begins with an underscore.
```
That is because the Tcl info command is frequently used to return the names of all procedures. This convention distinguishes these internal procedure names from procedures like user, which are documented procedures. Furthermore, the _dcp part of the name distinguishes dcecp procedures from other Tcl procedures on a host.

The _dcp_create_user procedure has an argument table defining its available options. This argument table differs from the script's initial argument table in that it lacks the command keyword and the function_call variable that define separate procedures in the script.

Next it initializes variables entered either as options or as attributes in a list. A process_attribute_list procedure (at the end of the example) actually parses attributes that have been passed as a list. Then it does the work of creating the user information in the registry and in CDS. Near the end, the cleanup procedure _dcp_cleanup_user_create can undo a failed user create operation.

```tcl
# This procedure creates a principal in the current registry _s(sec)
# if that principal does not yet exist.
#
proc _dcp_create_principal_entry { principal_name princ_args} {
    set list_of_principals [principal catalog]
    if { [lsearch $list_of_principals $principal_name] == -1} {
        if { [llength $princ_args] !=0 } {
            principal create $principal_name -attribute $princ_args
        } else
    } else {
        error "Principal "$principal_name" already exists."
    }
}
#
# proc _dcp_create_user - This procedure actually creates a DCE user.
# Several steps are performed. If the principal does not exist
# a new one is created. If the groups do not exist and a -force switch is
# set, then two new groups will be added. The user will be added to the
# groups. The account will then be created. An entry in the CDS
# namespace will then be created with the appropriate ACLs.
#
proc _dcp_create_user { local_args } {
    set arg_table {
        {-alias string alias
         "Add principal named as an alias of specified uid."}
        {-attribute string attribute_list
         "Provide attributes in an attribute list format."}
        {-client string client
         "Can the account principal be a client."}
        {-description string descr
         "A general description of the account."}
        {-dupkey string dupkey
         "Can the accounts' principal have duplicate keys."}
        {-expdate string expdate
         "When does the account expire."}
    }
```
"User Identifier of the principal to be added."

Initializing some variables.
upvar 1 local_args cargs
set local_args $cargs
set account_args ""
set princ_args ""
set group_args ""
set force 0

parseargs $arg_table local_args -no_leftovers
if { [info local help_prose] > 0} { return }
if { [llength $local_args] > 1} {
 error "Unrecognized argument [lindex $local_args 1]."
} elseif { [llength $local_args] == 0} { error "No user name." }
else { set account_name $local_args }

if { [info local attribute_list] > 0} {
 set pile_of_attributes "alias client descr dupkey expdate forwadabletkt fullname force group home organization maxtktlife maxtktnew mypwd password postdatedtkt proxiabletkt pwdvalid renewabletkt server quota shell stdgtauth"
 process_attribute_list attribute_list $pile_of_attributes
}

if { [info local group] > 0} {
 set account_args [format "%s {%s %s}" $account_args group $group]
} else { error "No group name specified." }

if { [info local organization] > 0} {
 set account_args [format "%s {%s %s}" $account_args organiz $organization]
} else { error "No organization name specified." }

if { [info local password] > 0} {
 set account_args [format "%s (%s %s)" $account_args password $password]
} else { error "No password specified." }

if { [info local mypwd] > 0} {
 set account_args [format "%s (%s %s)" $account_args mypwd $mypwd]
} else { error "No admin password specified." }

princ_args and group operations both use the principal's full name
if { [info local fullname] > 0} {
 set princ_args [format "%s (%s %s)" $princ_args fullname $fullname]
 set group_args [format "%s (%s %s)" $group_args fullname $fullname]
}

if { [info local uid] > 0} {
 set princ_args [format "%s (%s %s)" $princ_args uid $uid]
}
if { [info local stdtgtauth] > 0 } {
 set account_args [format "%s {%s %s}" $account_args stdtgtauth \ $stdtgtauth]
}

set variables if entered as attributes in an attribute list
#
set account_name [lindex $account_name 0]
set group_created 0
set org_created 0
set group_arg ""
set org_arg ""

do the work - create principal, do group and organization operations, create the account, and create directory in CDS
#
foreach element $account_name {
 set clup_user

 if { $force == 1 } {
 if { ([catch (_dc_p_create_group $group group_created) \ msg] != 0) {
 _dc_p_cleanup_user_create $element -principal

 _dc_p_create_principal_entry $element $princ_args
 }
 if { $group_created == 1 } {
 set group_arg "-group group"
 }
 if { ([catch (_dc_p_create_org $organization org_created) \ msg] != 0) {
 set clup_user [concat $clup_user $group_arg]
 eval $clup_user
 error $msg
 }
 if { $org_created == 1 } {
 set org_arg "-org organization"
 }
 }
 set clup_user [concat $clup_user $group_arg $org_arg]
 if { ([catch (_dc_p_add_group_entry $group $element) msg] != 0) {
 eval $clup_user
 error $msg
 }
 if { ([catch (_dc_p_add_org_entry $organization $element) msg] != 0) {
 eval $clup_user
 error $msg
 }
 if { ([catch (_dc_p_add_account_entry $element $account_args) \ msg] != 0) {
 eval $clup_user
 error $msg
 }
 if { ([catch (_dc_p_add_namespace_entry $element) msg] != 0) {
 eval $clup_user
 error $msg
 }}}}
set _n $account_name
return

#_ dcp_cleanup_user_create - This function undoes changes after a failure in one of the user create functions as though the operation never occurred
#
proc _dcp_cleanup_user_create {account_name args} {
 if { [lsearch $args -principal] != -1 } {
 principal delete $account_name
 }
 if { [lsearch $args -group] != -1 } {
 upvar 1 group clean_group
 group delete $clean_group
 }
 if { [lsearch $args -org] != -1 } {
 upvar 1 organization clean_org
 organization delete $clean_org
 }
}

#_ process_attribute_list - Takes an attribute_list and parses out the appropriate attributes contained in the pile_of_attributes variable
#
proc process_attribute_list {attribute_list pile_of_attributes} {
 foreach element $pile_of_attributes { upvar 1 $element _dcp_$element }
 upvar 1 attribute_list _dcp_attribute_list
 set _dcp_attribute_list [check_list_list $_dcp_attribute_list]
 foreach element $_dcp_attribute_list {
 if { [llength $element] != 2 } {
 error "Incorrect attribute list element
 }
 set attribute_name [lindex $element 0]
 set attribute_value [lindex $element 1]
 set _dcp_attr_name [info vars _dcp_attribute_name]
 if { [llength $_dcp_attr_name] > 1 } {
 error
 "Ambiguous attribute "$_dcp_attribute_name" could be: $_dcp_attribute_name."
 }
 set [set _dcp_attr_name] $attribute_value
 }
}

proc check_list_list {attribute_list} {
 set not_list_list 0
 set i 1
 foreach element $attribute_list {
 if { [llength $element] != 2 && [llength $attribute_list] < 3 } {
 if { i == 1 } {
 return [format "(%s) $attribute_list"]
 }
 }
 }
}
The next procedure we discuss in the user task object is one that takes a single optional argument and returns lots of output information: the _dcp_show_user procedure. This procedure returns the results of principal show, and account show operations.

#_dcp_show_user - This procedure shows the principal and account attribute lists for a specified user.

proc _dcp_show_user {local_args} {
 upvar 1 local_args cargs
 set local_args $cargs
 parseargs "" local_args -no_leftovers
 if { [info local help_prose] > 0 } { return }
 if { [llength $local_args] > 1 } {
 error "Unrecognized argument [lindex $local_args 1]."
 } elseif { [llength $local_args] == 0 } {
 error "No user name."
 } else {
 set account_name $local_args
 set _dcp_principals [principal catalog -simplename]
 # Show each account that has been requested.
 foreach element $account_name {
 if { [lsearch $_dcp_principals $element] == -1 } {
 error "User "$element" does not exist."
 } else {
 set _dcp_user_attributes [principal show $element]
 }
 }
 set _dcp_accounts [account catalog -simplename]
 if { [lsearch $_dcp_accounts $element] == -1 } {
 error "User "$element" does not exist."
 } else {
 set _dcp_user_attributes [account show $element -all]]
 }
 return $_dcp_user_attributes
 }
}

Using the parseargs Procedure

Task objects and scripts that take arguments or options can call the parseargs procedure to parse arguments passed along with the object or script invocation. The parseargs procedure is a script in a separate file that provides a convenient and reusable method for argument parsing within a dcecp script. The basic syntax is:
parseargs *parse_options* *local_args* *args*

The procedure relies on arguments passed to it by the calling script. The **parseargs** procedure requires the following inputs:

parse_options

The argument table (**arg_table**) describing the parsing options. The **parse_options** argument can consist of five elements, as in the script’s top-level argument table, or four elements as in lower-level argument tables for called procedures within a script. The two syntaxes for **parse_options** are:

- `verb command variable command_name "help string"`

or

- `-options type variable "help string"`

- **verb** Provides top-level parsing. Typically an operation contains an object and a verb. The verb portion generally calls another procedure.

- **command**

 A keyword indicating that the procedure being defined is a verb of an object.

- **variable**

 The name of the variable that holds the value of the option. When parsing verbs, the variable is named **function call**. When parsing options, the variable is named for the option being parsed. For example, if the option name is **-alias**, the variable is named **alias**.

- **command_name**

 The procedure name to store in the variable.

- **help string**

 The string that describes the use of the verb or option.

- **-options**

 The actual string value of the option to be parsed such as **-attribute** or **-mypwd**.

- **type**

 The type of variable to be associated with **-option**. Acceptable types are **integer**, **string**, **float**, **boolean**, **command**, and **help**.

local_args

The arguments to be parsed. The **parseargs** procedure extracts all of the recognized entries into a list and resets **local_args** with the values that were not parsed (or not parsable). For instance, a top-level command like **user create** includes options that are parsed later when the procedure implementing the **create** operation is invoked within the script.

args

One of two flags:

- **-found_one**

 Tells the parser to return when one procedure argument has been found. In **user create**, for example, the parser would return after one **create** command had been found and processed.

- **-no_leftovers**

 Looks for extra options and generates an error if one is found.
Invoking Task Objects

Once your task object is written (and tested), you need to make it available for use. If your script is intended just for your personal use, you can include it in your .dcecp file and invoke it as described in Informal Administration Scripts on page 49.

Formal task objects require a few steps to make them behave like other dcecp objects.

1. Log in as root and copy the finished script into the dcelocal/dcecp directory and set the file permissions to executable.

2. Start dcecp and run the auto_mkindex utility. This creates information that informs the DCE control program about all available objects. With root privileges, run the following command in the directory where the task objects reside. On UNIX systems, this is often the dcelocal/dcecp directory.

   ```
   % dcecp
   dcecp> auto_mkindex /opt/dcelocal/dcecp *.dcp
   dcecp>
   ```

3. To include the new task object name in the dcecp help screen, edit the file /opt/dcelocal/dcecp/help.dcp. This file is displayed in response to the dcecp help operation.

You need to make this file available on each DCE host where the script will be executed. Generally, this means copying the file to each host’s /opt/dcelocal/dcecp directory and then running the auto_mkindex utility on the files in the directory. You might want to place the object name in the /opt/dcelocal/dcecp/help.dcp file as well.

As a convenience, you could write a script that uses the DCE control program’s hostdata object to create the file on each host. The script could then run the auto_mkindex utility using the hostdata object’s postprocessor attribute.

Chapter 9. Managing DCE Host Services and Host Data on page 95 contains information on using the dcecp hostdata object.
Part 2. DCE Administration Tasks
Chapter 4. DCE Administration Task Objects

This part of the IBM DCE 2.2 for AIX: Administration Guide—Core Components discusses the purpose and use of DCE administration task objects provided with DCE. Generally, these special dcecp objects perform routine high-level administration tasks by combining several lower-level operations.

Often, a single task object uses or affects multiple DCE services. For example, one of the task objects, the host object, can configure a host computer into a DCE cell. This task adds specific kinds of information to the DCE Security Service, the Cell Directory Service, and the DCE host daemon services. Because a single invocation of the host object can perform multiple steps, it shields DCE administrators from some of the lower-level administration details that would otherwise have to be attended to by using several lower-level dcecp administration objects.

While we discuss the task objects at a high level, you will need to keep in mind that there is often more going on that we are not describing in detail. In these cases, we will point out where to go in this guide for more detailed information. Usually you will be directed to the corresponding lower-level discussion in the relevant component’s part of this guide.

Using Task Objects to Simplify DCE Administration

Individual DCE control program objects operate on very specific pieces of information in DCE. For example, the group object operates solely on security groups in the DCE Security Service registry database. The group object enables administrators to create and delete security groups, add and remove members from security groups, rename the groups, and so on. Such precise control is necessary because it allows you to custom tailor DCE to meet very specific needs or circumstances.

While such control might be necessary when configuring a new cell or fixing some access control problem, it can overwhelm routine DCE administration tasks. As an example, let us look at the minimum steps needed to add a new user to a DCE cell:
1. Use the principal object to create a principal name for the user.
2. Use the group object to add the principal to a security group.
3. Use the organization object to add the principal to a security organization.
4. Use the account object to create an account for the principal.
5. Use the directory object to create a directory for the principal in CDS.
6. Use the acl object to give the principal access to the CDS directory.

Performing these six steps probably would not pose any problems in a small cell with 15 or 20 users. But consider a cell with more, perhaps a hundred or maybe even a thousand or more users, and the need to automate this and other administration tasks becomes evident.

To meet this administration need, the DCE control program includes several administration task objects for performing some routine DCE administration tasks. Here, we’re using the term task to mean doing something that requires multiple steps, such as when adding a user consists of performing six lower-level operations.
One of the task objects is the user object that you can use to add and remove user information in your DCE environment. For instance, a single invocation of the user object can perform all six of the previously mentioned steps needed to correctly add a new user to your DCE environment. You can also use this same task object to delete the user from your environment.

The task objects are implemented as dcecp scripts by using the DCE control program language, which means that you can extend the scripts or change their behavior according to your needs. For instance, the default implementation of the user task object does not operate on any DFS information. If your DCE environment includes these extended services, you might want to add some DFS operations to the script. [Part 1. The DCE Control Program on page 1] of this guide explains how to use the DCE control program language to write and modify a dcecp task object.

Looking Beyond the Tools

Although you use the task objects to perform various administrative operations, your most important focus is on the elements or entities that you’re managing. Each of four task objects provided with DCE enables you to manage a specific element or entity in your DCE cell. The elements are as follows:

A DCE cell
You can test whether a cell is running, show general information about available services in a cell, and back up security and CDS information by using the cell task object.

Cell name
You can create and manage cell alias names, which are needed for registering a cell in multiple global directory services. These operations use the cellalias task object.

DCE hosts
You can configure and remove DCE hosts in a cell, show information about hosts in a cell, and start and stop DCE processes on hosts in a cell by using the host task object.

DCE users
You can add and remove users and show information about users in a DCE cell with the user task object.

The remaining chapters in this part discusses how to manage these DCE elements by using the default implementations of the four dcecp task objects provided with DCE.
Chapter 5. Managing a DCE Cell

From a cell administrator’s point of view, a DCE cell consists of a set of networked services that supports the execution of distributed applications. This simple statement, however, does not really say anything about what services are currently available in your cell. In fact, the exact number of DCE servers and their locations differs from cell to cell. Even in the same cell, host and network outages and reconfigurations affect service availability.

Although you could use various service-related dcecp objects to test whether and where services are available in a cell, it would be cumbersome. Instead, the DCE control program provides a cell task object that conveniently lists configured DCE servers and tests whether services are available. It can also back up critical data maintained by the DCE Security Service and CDS.

Showing All Configured DCE Servers and DCE Hosts

Some DCE cells may be relatively stable, with few DCE hosts or DCE servers being added or removed. Other cells can be quite dynamic, with hosts and DCE servers being added, removed, or moved weekly or even daily. In this environment, tracking the locations of DCE resources can be difficult; so, the cell task object has a show operation that scans various databases in the cell returning the names of configured DCE servers and DCE hosts.

One use of a cell show command could be to track performance problems. For example, maybe many new hosts and users have been added, but the number or location of CDS or security servers has not grown accordingly. Or perhaps you’ve just been hired to administer a new cell and you want to see what your cell consists of.

To show configured DCE servers and hosts in a cell, enter a cell show operation. The command returns a list of servers grouped by type, along with a list of DCE hosts, as follows:

secservers
Each value is the name of a security server.

cdsservers
Each value is the name of a machine running a CDS server. The name is the simple name found under /.:/hosts. A clearinghouse must be configured on that machine.

dtsservers
Each value is the name of a DTS server in the cell.

hosts
Each value is the name of a host in the cell, including machines mentioned previously as servers. This is simply the return value of a directory list /.:/hosts operation.

The following example shows the names of all the configured DCE servers and hosts in the local cell:

dcecp> cell show
{secservers
 /.../my_cell.goodco.com/subsys/dce/sec/earth}
{cdsservers
 /.../my_cell.goodco.com/hosts/earth}
{dtsservers
If you have the necessary permission, you can show the configured DCE servers and hosts in another cell by including that cell's name as an argument as shown in the following example:

dcecp> cell show
../their_cell.goodco.com
{secservers
 ../their_cell.goodco.com/subsys/dce/sec/gold}
{cdsserver
 ../their_cell.goodco.com/gold}
{dtsservers
 ../their_cell.goodco.com/hosts/silver/dts-entity}
{hosts
 ../their_cell.goodco.com/hosts/brass
 ../their_cell.goodco.com/hosts/bronze
 ../their_cell.goodco.com/hosts/copper
 ../their_cell.goodco.com/hosts/gold
 ../their_cell.goodco.com/hosts/iron
 ../their_cell.goodco.com/hosts/mercury
 ../their_cell.goodco.com/hosts/silver
 ../their_cell.goodco.com/hosts/steel
 ../their_cell.goodco.com/hosts/tin}
dcecp>

Testing Cell Operation

When client-server communication problems occur, it is easy to suspect that one or more DCE services is not operating in the cell. You can easily test whether a cell's DCE services are running by invoking a cell ping operation.

If called with no option, the cell ping operation performs a server ping operation on the master security server, on the CDS server that has a master clearinghouse, and all the DTS servers in the cell. Use the -replicas option to test CDS and security service replicas as well as the masters. The -clients option tests every DCE host in the cell by looping through the /./hosts directory in CDS and performing a host ping, with each host name as an argument.

In case of failure, the operation generates an error and returns a list of servers or hosts that could not be contacted. For any successes, the operation returns the message DCE Services Available. For successes with the -clients option, the messageis DCE Clients Available.

The following example pings the names of all the configured master DCE servers in the local cell:

dcecp> cell ping
DCE services available

dcecp>
The following example pings the names of all the configured DCE hosts in the local cell. Depending on the size of a cell and timeout values set, this command can take a long time (from several to many minutes) to complete.

dcecp> cell ping -clients
DCE clients available
dcecp>

If you have the necessary permission, you can ping the configured DCE servers and hosts in another cell by including that cell’s name as an argument as shown in the following example:

dcecp> cell ping /.../their_cell.goodco.com
DCE services available
dcecp>

Backing Up the Security Service Registry and CDS

As organizations increasingly depend on DCE cells for their day-to-day operations, they cannot afford to lose the cell’s directory and security data. Organizations generally rely on regular backup schemes to prevent the loss of this and other critical data. But backing up these DCE databases by using traditional backup methods can cause security holes in your cell if the archives are not properly protected.

Fortunately, DCE includes features that let you back up these essential databases to destinations of your choosing. Once you’ve begun using the DCE mechanism to back up CDS and security data, you can redirect your traditional backup program to ignore these DCE databases.

The **cell backup** operation backs up the master security database and each clearinghouse with master replicas in the cell. This operation requires that a **dced** program is running on each of the server hosts being backed up.

Prepare a cell for regular backup operations by setting up an Extended Registry Attribute (ERA) that can specify a backup destination (typically a tape archive). Then add the new attribute to the principals for the master DCE Security Service registry database and all CDS clearinghouses with master replicas that you want to back up. To do this, follow these steps:

1. Put the DCE daemon into partial service mode by sending the **dced** process the correct signal:

   ```
   # kill -SIGUSR1 pid_of_dced
   #
   ```

2. Invoke **dcecp** with the **-local** option:

   ```
   % dcecp -local
dcecp>
   ```

3. Modify ACLs on the local **hostdata** and **srvrconf** objects to allow the **subsys/dce/dced-admin** group access by using the following **dcecp acl** operations:

   ```
   dcecp> acl modify hostdata -add {group subsys/dce/dced-admin -riI} -local
dcecp> acl modify srvrconf -add {group subsys/dce/dced-admin -riI} -local
dcecp> acl modify srvrconf -add {group subsys/dce/dced-admin -d-rwx} -io -local
dcecp>
   ```

4. Put the DCE daemon back into full service mode with the following command:

   ```
   % kill -SIGUSR1 pid_of_dced
   %
   ```
5. Create an ERA as a string that specifies a backup destination. Name the ERA
/.:/sec/xattrschema/bckp_dest and the type printstring. Select the ACL
manager named principal and set its four permission bits to r (read), m
/manage, r (read), and D (Delete) as shown in the following command:

dcecp> xattrschema create /.:/sec/xattrschema/bckp_dest
> -encoding printstring -aclmgr {principal r m r D}
dcecp>

6. Add the new ERA (bckp_dest) to the principal dce-rgy (the DCE Security
Service registry database). Set the value to be the tar filename or the device
that is the backup destination:

dcecp> principal modify dce-rgy -add {bckp_dest tarfilename_or_device}
dcecp>

7. Add the new ERA (bckp_dest) to the principal /.:/hosts/hostname/cds-server
(the CDS server). Set the value to be the tar filename or the device that is the
backup destination:

dcecp> principal modify /.:/hosts/hostname/cds-server
> -add {bckp_dest tarfilename_or_device}
dcecp>

To back up and restore the CDS server, back up and restore the following
directories in the CDS server:

/opt/dce/local
/var/dce
/krb5
/etc/dce

Now, whenever you want to back up your registry database or CDS database, just
invoke a cell backup operation as follows:

dcecp> cell backup
dcecp>

You can back up another cell by including the cell name as an argument to the cell
backup operation. Note that you need the necessary permissions in the remote
cell. (Refer to the IBM DCE 2.2 for AIX: Command Reference for the required
privileges.)

Changing the IP Address of a DCE Server

Server Updates

Use the following procedures to change the IP address of a machine configured as
a CDS and a Security server.

1. If a DFS server or any DCE applications are running on the system, stop them
and disable auto-restart in the inittab.

2. Remove knowledge of the clearinghouse on the machine. It is reinstated after
the IP address is changed. If you do not know the name, use the cdscp show
cell /.:/ command to get it.

cdscp clear clearinghouse /.:/<host_ch>

3. Stop all DCE daemons on the machine:

 stop.dce

4. Remove the endpoint database, clerk cache, and old credentials in one
command:

 clean_up.dce
5. Edit the `/opt/dcelocal/etc/security/pe_site` file to reflect the new address so that security can start.

6. If `/opt/dcelocal/var/dced/cdscache.inf` exists, change the IP address in it so the `cdsadv` can find the Directory Server.

7. Change the IP address on your system and reboot. If DCE is not started automatically by using inittab, start it using `start.dce`. The `gdad` and `dtsd` daemons do not come up since CDS is not completely functional yet. Start these daemons after the conversion process is completed. When the system checks for dced registration (a wait message is displayed), press `<Ctrl-C>` to exit.

8. Since CDS is not available, set the `BIND_PE_SITE` environment variable.

   ```
   export BIND_PE_SITE=1
dce_login cell_admin
   ```

9. Identify to CDS the clearinghouse it is to manage (ensure that you use the same name as in the previous `clear clearinghouse` command):
   ```
cdscp create clearinghouse ./:/<host_ch>
   ```

10. Because the CDS server was not aware of its clearinghouse when it was started, the `cdsadv` process is also unaware of the existence of this clearinghouse. Edit the `/opt/dcelocal/etc/security/pe_site` file to reflect the new address so that security can start. Rebuild the clerk cache:
   ```
   stop.dce cds_srv cds_cl cds_second
   cd /opt/dcelocal/var/adm/directory/cds
   rm cds_cache.* cdsclerk_*
   start.dce cds_srv cds_cl cds_second
   ```

 When the system checks for dced registration (a wait message is displayed), press `<Ctrl-C>` to exit.

11. The CDS and Security servers are now reconfigured to use the new IP address. Unset the `BIND_PE_SITE` environment variable and verify that you can `dce_login` normally:
   ```
   unset BIND_PE_SITE
dce_login cell_admin
   ```

12. Verify that you can now successfully access the namespace:
   ```
   cdsli -o
   ./:/cell-profile
   ./:/fs
   ./:/lan-profile
   ./:/sec
   ```

13. Update the server self entry in CDS. This step is critical if the system also runs a DFS server or any other application which relies on the self entry.
   ```
rpccp unexport -i elaf8308-5d1f-11c9-91a4-08002b14a0fa,3.0 \
   ./:/hosts/<server_name>/self
   rpccp export -i elaf8308-5d1f-11c9-91a4-08002b14a0fa,3.0 \
   -b ncadg_lp_udp:<new_ip_addr>[135] \
   ./:/hosts/<Server_name>/self
   ```


15. Run `start.dce`.
Client Updates

After the IP address of either a CDS or a Security server has changed, the following changes need to be made on the client machines. If DFS or any DCE applications are running on the system, they need to be stopped before performing these steps.

1. Stop all DCE daemons on the machine:
   ```bash
   stop.dce
   ```
2. Remove the end-point database, clerk cache (it has references to the CDS Server old IP address), and security credentials.
   ```bash
   clean_up.dce
   ```
3. Change the `/opt/dcelocal/etc/security/pe_site` file so that the `dced` can find the Security Server on restart.
4. Change the IP address in `/opt/dcelocal/var/dced/cdscache.inf` file so the `cdsadv` can find the Directory Server. If the `/opt/dcelocal/var/dced/cdscache.inf` file does not exist, create it. The format is:
   ```
   <cds_server_ip_addr> ip
   ```
 For example,
   ```bash
   9.3.53.233 ip
   ```
5. Start the DCE daemons:
   ```bash
   start.dce
   ```
6. The following steps need to be done only if the `/opt/dcelocal/var/dced/cdscache.inf` file does not exist
 a. Set the `BIND_PE_SITE` variable because CDS access is not restored yet:
      ```bash
      export BIND_PE_SITE=1
      dce_login cell_admin
      ```
 b. Inform the `cdsadv` process of the new IP address for the CDS server:
      ```bash
      cdscp define cached server <server_name> tower \ncadg_ip_udp:<new_address>
      ```
 c. At this point, the client is fully aware of the server’s new IP address. Verify that you can `dce_login` normally:
      ```bash
      unset BIND_PE_SITE
dce_login cell_admin
      ```
7. Verify that you can now successfully access the namespace:
   ```bash
   cdsli -o
   ./cell-profile
   ./fs
   ./lan-profile
   ./sec
   ```

Changing the IP Address of a DCE Client

1. Start the DCE Daemons:
   ```bash
   start.dce
   ```
2. Update the client self entry in CDS:
   ```bash
   rpccp unexport -i elfaf8308-5d1f-11c9-91a4-08002b14a0fa,3.0 \>./hosts/<client_name>/self
   rpccp export -i elfaf8308-5d1f-11c9-91af-08002b14a0fa,3.0 \>./hosts/<client_name>/self
   ```
Changing the IP Address of a DFS Server

In addition to the steps documented previously, if the server is running as a DFS server, modify the server entry in the FLDB to reflect the new address.
fts edserverentry <old_ip_addr> -changeaddr <new_ip_addr>

Modifying or Extending the Cell Object

The cell task object is implemented as a script so that administrators can modify or extend it on a per-site basis. Here are a few examples of possible modifications or extensions you can make:

- Add a way to show DFS server information.
- Add options to the cell show operation to omit listing all the hosts in a cell or to show only certain DCE servers.
- Add a command to configure a new cell. Such a command could perform the lower-level operations currently performed by the CONFIGURE selection in the DCE Installation and Configuration main menu of the dce_config program.

[Part 1. The DCE Control Program” on page 1] of this guide discusses ways to create new dcecp objects or modify existing objects written with the dcecp language.
Chapter 6. Managing DCE Hosts

Larger DCE cells can contain many host computers, with some running both DCE servers and application servers while others act only as client systems. Still other hosts might run application servers but also act as clients to their resident users. Such flexibility in DCE host configurations can make it difficult to control or track what is running or available on each host in a cell. The host task object represents DCE and application processes associated with hosts, letting administrators more easily manage DCE server and application processes on machines.

You can use the host task object to show information about processes on local and remote hosts in a cell, and start and stop DCE processes on hosts throughout a cell. You can also configure local DCE hosts in a cell and remove (unconfigure) remote DCE hosts from a cell. Online help for this object is available using the host help and host operations commands in dcecp.

All of the host object operations performed on a remote host except host catalog require dced to be running on the remote host.

Listing the DCE Hosts in a Cell

You can determine the number and names of DCE hosts configured in your DCE cell by using the host catalog operation. This operation might be useful for determining whether a specific host has already been configured into your cell. The host does not have to be running for this operation to work because the host catalog operation actually performs a directory list /./hosts operation and does not interact with the host. This method relies on the convention that hosts register their names in the /./hosts directory. If your hosts register in some other directory, you need to modify the host catalog operation in the host task object. You can read more about the purpose and use of CDS directories in "Chapter 18. Managing CDS Directories" on page 191.

The host catalog operation resembles the cell show operation except that it does not separately list DCE servers. The following example operation lists all DCE hosts that have been configured in the cell:

dcecp> host catalog
/./my_cell.goodco.com/hosts/bigbox
/./my_cell.goodco.com/hosts/drifter
/./my_cell.goodco.com/hosts/duh
/./my_cell.goodco.com/hosts/heater
/./my_cell.goodco.com/hosts/pcl
/./my_cell.goodco.com/hosts/pcl2
/./my_cell.goodco.com/hosts/pcl3
/./my_cell.goodco.com/hosts/peewee
/./my_cell.goodco.com/hosts/xoltar
/./my_cell.goodco.com/hosts/xray
/./my_cell.goodco.com/hosts/zoof
dcecp>

You can omit the cell name by using the -simplename option as in the following example:

dcecp> host catalog -simplename
hosts/bigbox
hosts/drifter
hosts/duh
hosts/heater
hosts/pcl
Showing All Servers Configured for a DCE Host

In larger cells, in which DCE servers and application servers reside on multiple hosts, you will likely want to see what servers are configured to run on particular hosts from time to time. The DCE control program's **host show** operation reads a DCE host's server configuration and execution information and returns a list of configured servers on that host. The list contains each server's simple name and indicates whether it is running. The list also indicates whether a security server is a master or replica and whether a DTS entity is a clerk or server.

This operation relies on the **server** object (and consequently on the DCE host daemon) to show information about configured servers. You can read more about controlling server operation in [Chapter 10. DCE Application Administration](#) on page 107.

The following example shows the servers configured to run on DCE host **xoltar**:

```plaintext
dcecp> host show ./:/hosts/xoltar
video_clip running
dts-entity running clerk
dcecp>
```

Testing Whether a DCE Host is Running

Because DCE communications often involve several steps before clients communicate with their servers, communication failures can be difficult to diagnose. For instance, a server may not be running on a host or the DCE services may not be currently running, even though the host has been configured into the cell. You can use a **server ping** operation to test whether a server process is running but, if this fails, you might need a way to see if the DCE host is even accessible through the network. The DCE control program's **host ping** operation tests whether a host's DCE services are accessible on the network, returning a **1** if it is and a **0** if it is not accessible.

The **host ping** operation tests for the presence of the remote host's DCE daemon (**dced**). You can read more about the purpose and use of **dced** in [Chapter 9. Managing DCE Host Services and Host Data](#) on page 95.

The following example tests whether **dced** on host **duh** is accessible on the network:

```plaintext
dcecp> host ping ./:/hosts/duh
1
dcecp>
```
Starting Configured DCE Processes on a Host

Each host’s DCE daemon (dced) can maintain configuration information for servers set to run on that particular host. This information is established using an application’s installation script or by using the server object directly. While the server object provides its own start operation that can start individual servers on a host, you must explicitly name each server. The host start operation lets you start all configured DCE servers and clients and all configured application servers on a host with a single command.

To operate on a remote host, its DCE daemon must be running. Remote host start operations also require at least one CDS server and one security server to be running in the cell. The host start operation operates on DCE servers and clients and on application servers that are configured by using the server object.

Application servers must be configured with the starton attribute set to boot or explicit. You can read more about configuring application servers in “Chapter 10. DCE Application Administration” on page 107.

The following example starts all configured servers on host bigbox:

dcecp> host start /./:hosts/bigbox

dcecp>

Stopping DCE Processes Running on a Host

Like the host start operation discussed in the previous section, the host stop operation is more encompassing than a server stop operation. It lets you stop all DCE processes on a host with a single command rather than issue a separate server stop operation for each server. This operation stops application servers, then DCE processes and finally, when stopping DCE processes on the local machine, stops dced. You can read more about controlling servers in “Chapter 10. DCE Application Administration” on page 107.

To operate on a remote host, its DCE daemon must be running. Remote host stop operations also require at least one CDS server and one security server to be running in the cell. The host stop operation operates on DCE servers and clients and on application servers that have been configured by using the server object.

The following example stops all DCE processes and application servers on host bigbox:

dcecp> host stop /./:hosts/bigbox

dcecp>

Configuring a DCE Host in a Cell

Once DCE Version 1.1 software has been installed on a host, you can configure the local host as a DCE client machine by using a host configure operation. You must have root or system administrator privileges on the local host to execute a host configure operation.

You can read more about requirements for DCE server and client systems in the IBM DCE 2.2 for AIX: Administration Guide—Introduction.
Note that you cannot configure DCE servers such as a DCE Security Service registry or a CDS server by using a host configure operation. Instead, use the DCE Installation and Configuration program to configure DCE servers in your cell.

Before configuring a DCE client system, be sure the DCE software has been installed on the host. For information about installing DCE, refer to your DCE installation instructions or the IBM DCE 2.2 for AIX: Administration Guide—Introduction.

To configure a DCE client system, perform the following steps:

1. Log into a privileged account (root or system administrator) on the host to be configured.

2. Start the DCE control program and perform a host configure -client operation. Include an argument specifying the cell-relative name of the local host being configured. The operation adds this name to CDS. Use required options to specify the host names where the master security server and a CDS server are running. Other required options are -administrator, which specifies the principal name of the person configuring the host (usually the cell administrator), and -password followed by the administrator's password.

The following example shows configuring host ptarmigan as a DCE client system. The cell's security server is on host eagle and the CDS server is on host owl. The administrator's principal name is cell_admin and the administrator's password is -dce-

```plaintext
dcecp> host configure /.:/hosts/ptarmigan -client -secmaster eagle \
    -cds owl -administrator cell_admin -password -dce-
```

Removing a DCE Host from a Cell

Occasionally, you might want to remove a DCE host from a cell. For instance, your organization is replacing some older systems that are being sold to another organization.

Removing or unconfiguring a DCE host is more than just erasing DCE information from the host's disk because CDS and the DCE Security Service both maintain host-specific information that needs to be removed as well. The host unconfigure operation deletes all objects, directories, and links from the /.:/hosts/hostname CDS directory including the directory itself. It also deletes all principal names beginning with hosts/hostname which, in turn, removes all accounts with the same name. Finally, it removes all local configuration files and stops all running DCE processes ending with the DCE daemon (dced).

The host unconfigure operation operates only on remote hosts. You cannot perform this operation on a local host because it removes the DCE Security Service registry information needed to complete the operation. Also note that you need cell administrator privileges to perform a host unconfigure operation.

To remove a remote DCE host from a cell, use a host unconfigure operation providing the host name of the host to be unconfigured. The following example removes host calypso from the cell:

```plaintext
dcecp> host unconfigure /.:/hosts/calypso
```

```plaintext
dcecp>
```
If you have cell administrator privileges in a foreign cell, you can remove a remote DCE host from that cell by supplying a global DCE name of the host to be unconfigured. The following example removes host `gobo` from foreign cell `/.../their_cell.goodco.com`:

```bash
dcecp> host unconfigure /.../their_cell.goodco.com/hosts/gobo
dcecp>
```

Modifying or Extending the Host Object

The `host` task object is implemented as a script so that administrators can modify or extend it on a per-site basis. For example, administrators might want to add DFS information to the object. You could also add calls to specialized commands to start or stop application servers. For instance a `printer stop` operation could be useful.

["Part 1. The DCE Control Program" on page 1](#) of this guide discusses ways to create new `dcecp` objects or modify existing objects written with the `dcecp` language.
Chapter 7. Managing DCE Users

One of the most frequent DCE administration tasks is likely to be managing users in your DCE environment. Corporate reorganizations, changing business needs, and fluctuating economics all exert pressures causing users to come and go or to move between various groups or organizations.

DCE users represent a big part of what DCE is designed to support; the DCE services authenticate and admit some while denying access to those who are unauthorized. Indeed, users have complex management requirements; their information is spread among multiple services that help validate and control their activities. User information includes principal names, group and organization information, account information, and information in CDS.

The DCE control program includes separate administration objects for managing each piece of user information in a DCE cell. While these separate objects might be very useful for making minor adjustments to certain user information, their constant use for repetitive tasks such as adding and removing users from a cell would prove quite tedious. A simpler method relies on the user task object that you can use to more easily create, delete, and show user information in a DCE cell. Online help for this object is available using the user help and user operations commands in dcecp.

Creating a New User

Each user in a DCE environment is a person with a unique identity (principal name). Each principal is a member of at least one security group and organization and has an account in the DCE Security Service registry database. Although it is not required, each principal can also have a directory in CDS.

When you create a user with the user task object, you perform several lower-level operations:

- The user create operation creates a new principal name and adds the principal to a security group and organization. If the security group or organization does not exist when you invoke the operation, you can force their creation by using the -force option. The principal attributes assume default values, but you can specify other attributes if necessary. All of the attributes are listed in the IBM DCE 2.2 for AIX: Command Reference.

 Typically, a security group’s name is included in access control lists (ACLs) that regulate user access to various server and data objects in the DCE environment. A security organization maintains policies that are applied to all the principals that are members of that organization. Policies control things like the lifespan of accounts, whether or when account passwords expire, or whether passwords can contain nonalphabetic characters. You can read more about administering principals, groups, and organizations in Chapter 30, Creating and Maintaining Principals, Groups, and Organizations on page 313.

- The user create operation creates an account for the principal and creates the user’s password. The account attributes assume default values but you can specify other attributes if necessary. All of the attributes are listed in the IBM DCE 2.2 for AIX: Command Reference.

 A principal’s account contains information about the principal such as group and organization names, account creation and expiration information, and information
about tickets (which identify principals to resources in a DCE environment). You can read more about administering accounts in Chapter 31.

- Finally, the `user create` operation adds a directory called `/:/users/principalname` to CDS. This directory can store user-specific application location information. The operation also adds an ACL entry to the default ACL which gives the user `rwcti` permissions on the directory. These permissions allow users to insert objects and links, but they cannot delete the directory or administer replication on the directory. Furthermore, users cannot create additional directories unless you give them `w` (write) access to the clearinghouse. You can read more about the purpose and use of CDS directories in [Chapter 18. Managing CDS Directories](on page 191). You can read more about ACLs and CDS directories in [Chapter 16. Controlling Access to CDS Names](on page 175).

You generally need numerous permissions to create new users in your DCE cell, so you should log into the cell administrator’s account (or a similar privileged account). The *IBM DCE 2.2 for AIX: Command Reference* lists the required permissions.

To create a new user in a DCE cell, invoke a `user create` operation. The following example creates a principal name `P_Pestana` and an account with the same name. The `create` operation requires your password to prevent someone else from using an unattended session to create an unauthorized account. You must also provide the `-password` option to specify a password for the user. The required `-group` and `-organization` options add principal `P_Pestana` to the named group and organization. The optional `-fullname` option creates a fullname to help other human users recognize the principal.

```bash
dcecp> user create P_Pestana -fullname {Patricia Pestana} 
     -mypwd mxyzptlk -password change.me -group users 
     -organization managers
```

You can create multiple users by specifying a list of user names as an argument to the `user create` operation. This method poses some limitations, however. All created users will have the same initial password, group name, and organization name. Furthermore, you cannot specify the `uid` attribute since this is unique for each user. The following example creates several users with a password `change.me`, a group name of `users`, and an organization named `staff`:

```bash
dcecp> user create {R_Lee B_Joy N_Lynn D_Dee} -mypwd mxyzptlk 
     -password change.me -group users -organization staff
```

Showing User Information

Sometimes you might want to view the attributes for a user. For instance, you might want to see the expiration date for one or more accounts or view the fullname of a principal.

The `user show` command returns the attributes associated with users that are included as arguments to the command. The attributes include principal attributes and ERAs, and account attributes and policies. The information is returned as if the following commands were run in the following order:

- principal show
- account show -all
The following command displays the principal and account attributes associated with user P_Pestana:

dcecp> user show P_Pestana
{fullname {Pat Pestana}}
{uid 5139}
{uuid 00001413-ad4f-21cd-8c00-0000c08ad56}
{alias no}
{quota unlimited}
{groups users}
{acctvalid yes}
{client yes}
{created /.../my_cell.goodco.com/cell_admin \ 1994-08-01-16:41:32.000+00:00I-----}
{description {}}
{dupkey no}
{expdate none}
{forwardabletkt yes}
{goodsince 1994-08-01-16:41:32.000+00:00I-----}
{group users}
{home /}
{lastchange /.../my_cell.goodco.com/cell_admin \ 1994-08-01-16:41:32.000+00:00I-----}
{organization managers}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}
{shell {}}
{stdgtauth yes}

You can show information about multiple users by specifying a list of user names as an argument to the user create operation.

Deleting a User

When users leave your organization, you might need to delete the user from the cell. Use the user delete command to do this. This operation removes the principal name from the registry which, in turn, deletes the account and removes the principal from any groups and organizations. The operation also deletes the /./users/principalname directory and any contents from CDS.

You need numerous permissions, such as those generally associated with cell administrator, to delete a user. See the IBM DCE 2.2 for AIX: Command Reference.

The following example operation removes user P_Pestana from the cell:

dcecp> user delete P_Pestana

dcecp>

You can remove multiple users from your cell by specifying a list of user names as an argument to the user delete operation, as follows:

dcecp> user delete {W_Rosenberry J_Hunter P_Pestana}

dcecp>

If you have permissions in a foreign cell, you can remove one or more users from that cell by specifying the global principal name of the users to be deleted. For example:
Modifying or Extending the User Object

The user task object is implemented as a script so that administrators can modify or extend it on a per-site basis. For example, administrators might want to add DFS information to the object. Other possible modifications include the following:

- Changing the location of the CDS directory created for users, or removing it completely.
- Changing the default ACLs placed on the various objects.
- Adding an option to give users write access to the clearinghouse where the master replica of the ./:users/username directory resides. This allows users to create their own subdirectories. The option could add individual principal names to the clearinghouse ACL. An easier method could add principals to a group that has write access to the clearinghouse.
- Setting certain attributes or policies on all newly created principals and accounts to match the site's policies. For example, you could set principals to have a pwd_val_type ERA and set accounts to generate random passwords.
- Setting up site-specific defaults for passwords (to be changed by the user later), groups, organizations, principal directories, and so on.
- Supporting a user modify command. Such a command could change group or organization information or some other attributes associated with users.

“Part 1. The DCE Control Program” on page 1 of this guide discusses ways to create new dcecp objects or modify existing objects written with the dcecp language.
Chapter 8. Event Management Service (EMS)

EMS manages event services in a DCE cell. In EMS, an event is data being transmitted from an event supplier to EMS and from EMS to one or more event consumers. An event consists of an event header and a list of event attributes that contain the event type-specific data.

EMS consists of three major components:

- **The EMS daemon (emsd)** is a server that:
 - Authenticates and authorizes event suppliers and consumers
 - Maintains databases of event types, event filters, and consumers
 - Associates an event filter group with each event consumer
 - Ensures reliable delivery of events to interested consumers.
- **The event supplier** is any DCE-based user application that emits event data.
- **The event consumer** is a requestor that:
 - Queries EMS for supported event types
 - Obtains a list of existing filter names
 - Constructs event filters for each event type
 - Adds event filters to its event filter group.

EMS data structures are grouped into the following functions:

- Event Attributes
- Event Structure
- Event Types
- Event Filters
- Consumer Data Structures
- Server Data Structures

The ability to route events to EMS is integrated with the SVC and Audit subsystem. You can also use EMS to communicate events through the SVC to the DCE SNMP subagent. For more information on routing messages, see DCE Application Development Guide — Core Components — SVC and Audit Sections.

DCE administrative functions include management of EMS servers, event queues, and event logs. For more information, see:

- “Starting the EMS Server” on page 84
- “Logging EMS Events” on page 84
- “Managing EMS Consumers” on page 85
- “Managing EMS Event Filters” on page 86
- “Managing EMS Event Queues” on page 87
- “Managing the EMS Daemon” on page 88
- “Setting Permission for the EMS Server” on page 88
- “Event Type Security Management” on page 89
- “Event Filter Security Management” on page 90
- “Consumer Security Management” on page 90
Starting the EMS Server

The `emsd` command starts the EMS daemon. The EMS daemon must be running on the host system in the DCE cell before a consumer can receive events or a supplier can supply events.

The EMS daemon runs under the local host machine principal identity `(host/hostname/self)`. The DCE Host daemon (`dced`) must be running on the local host when `emsd` is started. The `emsd` command also requires a CDS Advertiser (`cdsadv`).

The `emsd` command has the following optional parameters:

- `-l log_directory`
 Specifies where the log file resides.

- `-q queue_size`
 Specifies the maximum number of events that are counted by EMS.

- `-w svc_route`
 Specifies DCE serviceability routing instructions.

To start the EMS daemon and to specify the queue size and location of the log, type:

```
emsd -q 2048 -l /opt/dcelocal/var/ems
```

To start the EMS daemon, specify the serviceability routing instructions, and define the maximum queue size, type:

```
emsd -w NOTICE:STDOUT:- -w NOTICE_VERBOSE:STDOUT-:-
```

Logging EMS Events

The EMS event log is used to store events in case of EMS failures. EMS writes all events to the event log and deletes the event record after it has been transmitted to all consumers that are supposed to receive it. The event log is kept in a file on the machine where `emsd` is running. Events are stored in a directory specified by the environment variable `EMS_EVENTLOG_DIR`. An API is provided to examine local event logs.

The `emslog` object represents the EMS event log. The `emslog` command is issued in the `dcecp` environment and is followed by one of these subcommands:

- `help` Returns help information on the object.
- `operations` Returns a list of operations supported by the object.
- `show` Returns a list of events in the event log file.

To display the general EMS log help information, type:

```
dcecp> emslog help
```

EMS displays:
help Print a summary of command-line options.
operations Returns the valid operations for command.
show Returns a list of events in the event log file.

To obtain a list of operations supported by the object, type:

dcecp> emslog operations

EMS displays:

show help operations

To display a list of events in the event log file, type:

dcecp> emslog show

EMS Displays:

--- Start of an EMS event record ---
Type: SVC:Event Id: 8d1b0b00-e9e7-11ce-8af3-10005a890435
Name Service: DCE /.../eagle_dce/hosts/hidalgod.austin.ibm.com
Description Name: EMS_Test_Producer
PID: 565 UID: 0 GID: 0
Severity: NOTICE
Arrival Time: 1995-09-08-14:06:32.970+00:00I-----
Printing 16 items
Item 1: [version] = ulong int 1
Item 2: [t] = 1995-09-08-14:06:32.970+00:00I-----
Item 3: [argtypes] = char string
Item 4: [table_index] = ulong int 0
Item 5: [attributes] = ulong int 64
Item 6: [message_index] = ulong int 389738500
Item 7: [format] = char string Test Supplier starting
Item 8: [file] = char string supplier.c
Item 9: [progname] char string EMS_Test_Producer
Item 10: [line] = ulong int 63
Item 11: [threadid] = ulong int 2
Item 12: [component_name] = char string sup
Item 13: [sc_name] = char string general
Item 14: [attribute.debug] = ushort int 0
Item 15: [attribute.severity] = ushort int 4
Item 16: [attribute.actroute] = ulong int 0
--- End of an EMS event record ---

Managing EMS Consumers

EMS consumers register with the event server to receive events. Each consumer has a name, a UUID, a host where it is running, and a list of filter names that make up the filter group.

If a consumer process terminates abnormally, the system administrator may have to delete the consumer using the emsconsumer command.

If new filters have been defined in the filter database, the administrator can use the emsconsumer command to add those filters to the consumer filter groups to further refine the events that a consumer receives. Also, if a consumer is not receiving all the events it should, the administrator can delete filters from the consumer filter group with the emsconsumer command.

DCE provides the emsconsumer command and associated subcommands to manage the consumer. This command is issued in the dcecp environment and can execute the following subcommands:
catalog
- Returns the list of consumers registered with EMS on a host.

delete
- Deletes a registered consumer from EMS on a host.

help
- Displays help information on the object.

modify
- Modifies the event filter group associated with the given consumer.

operations
- Returns a list of operations supported by the object.

show
- Returns the list of filter names in a consumer filter group.

The following are the required permissions:

- For **emsconsumer catalog** and **emsconsumer show**, you must have **r** permission on `./:/hostname/ems-server/consumers`.
- For **emsconsumer delete**, you must have **d** permission on `./:/hostname/ems-server/consumers`.
- For **emsconsumer modify**, you must have **w** permission on `./:/hostname/ems-server/consumers`.

To obtain the list of consumers registered with EMS, type:

```bash
dcecp> emsconsumer catalog
```

EMS displays:

```
{consumer1 7e383761-f41f-11ce-9051-08005acd43c6 ./:/hosts/eagle.austin.ibm.com}
{consumer1 a4c7ff26-f449-11ce-a863-10005a4f3556 ./:/hosts/eagle.austin.ibm.com}
{consumer2 283cc40c-f447-11ce-9dd3-10005a4f3556 ./:/hosts/umesh.austin.ibm.com}
```

To add the filter **foo** to the **consumer2** event filter group, type:

```bash
dcecp> emsconsumer modify consumer2 -add {filter foo}
```

To display the list of filter names in the **consumer2** filter group, type:

```bash
dcecp> emsconsumer show consumer2
```

EMS displays:

```
{foo2 foo3 foo4 foo5}
```

Managing EMS Event Filters

EMS event filters are applied by EMS to events received from suppliers to determine if the events are to be forwarded to the consumers.

An EMS event filter is a collection of one or more filter expressions. Each filter expression consists of an attribute name, an attribute operator, and an attribute value.

You can issue the **emsfilter** command with an associated subcommand in the **dcecp** environment to manage event filters on the local host. You can also specify the **—host** option to issue the command to a different host. The format of the DCE host name accepted is either an entire DCE name (for example, `./:/hosts/jurassic.austin.ibm.com`) or a DCE host name with a domain name (for example, `jurassic.austin.ibm.com`).

The **emsfilter** executes the following subcommands:
The following are the required permissions:

- For `emsfilter catalog` and `emsfilter show`, you must have r permission on `./hostname/ems-server/filters`.
- For `emsfilter delete`, you must have d permission on `./hostname/ems-server/filters/filtername`.

To display the filters kept by the EMS daemon, type:

```bash
dcecp> emsfilter catalog
```

EMS displays:
```
Filter1
Filter2
```

To delete the filter named `Filter1` and its associated filter expressions, type:

```bash
dcecp> emsfilter delete Filter1
```

To display a list of operations supported by the object, type:

```bash
dcecp> emsfilter operations
```

EMS displays:
```
catalog delete show help operations
```

To display a list of filter expressions in the `Filter2` filter, type:

```bash
dcecp> emsfilter show Filter2
```

EMS displays:
```
{event_type == SVC}
{file == file.c}
```

Managing EMS Event Queues

The EMS event queue size can be set at `emsd` startup using the `-q` option or the `EMS_QUEUE_SIZE` environment variable. If EMS starts receiving `queue full` errors, the daemon should be restarted using a larger queue size. See "Starting the EMS Server" on page 84 for more information on `emsd` startup.

Using the configuration GUI, only the environment variable can be used to increase the queue size.
Managing the EMS Daemon

The EMS daemon, **emsd**, is responsible for:

- Managing event ACLs in regards to event suppliers and consumers
- Maintaining databases of event types, event filters, and consumers
- Associating an event filter group with each event consumer
- Ensuring reliable delivery of events to interested consumers.

The **ems** command and its associated subcommands manage the EMS daemon on a DCE host. This command is issued in the **dcecp** environment and can execute the following subcommands:

catalog
Returns a list of all hosts the EMS daemon is running on in the current cell.

help
Returns help information on the object.

operations
Returns a list of operations supported by the object.

show
Returns the attribute list for the EMS daemon.

The **ems show** command requires that you have the **r** permission on `./:/hostname/ems-server`.

To list all hosts running in the current cell, type:
```
dcecp> ems catalog
```
EMS displays:
```
./:/hosts/eagle.austin.ibm.com
./:/hosts/umesh.austin.ibm.com
```

To return a list of operations supported by the object, type:
```
dcecp> ems operations
```
EMS displays:
```
catalog show help operations
```

To display the list of attributes for the EMS daemon, type:
```
dcecp> ems show
```
EMS displays:
```
{eventlog_dir /opt/dcelocal/dce/var/ems}
{queue_size 5000}
```

Setting Permission for the EMS Server

EMS provides for secure manipulation of data in the EMS databases. This includes the Event Filter Database, the Event Type Database, and the list of consumers in the Consumer Database. EMS also provides for supplier and consumer authentication and authorization as well as secure transmission of event data.

All ACLs are associated with names in the DCE namespace and the EMSD server manages the namespace past the junction:
```
./:/hosts/hostname/ems-server/
```
The ACL associated with this object controls access to the EMSD server registered in this namespace. The permissions associated with ems-server are:

<table>
<thead>
<tr>
<th>Permission bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>control</td>
<td>Modify the ACLs on the server</td>
</tr>
<tr>
<td>r</td>
<td>read</td>
<td>Read the attributes for this server</td>
</tr>
<tr>
<td>s</td>
<td>stop</td>
<td>Stop the EMS server</td>
</tr>
<tr>
<td>w</td>
<td>write</td>
<td>Modify the attributes on this server</td>
</tr>
</tbody>
</table>

Table 1. EMSD Server Permission Bits

Three security objects are maintained under the EMS-server junction. The directories and the databases they represent are:

- **event-types**
 - Event Type Database
- **filters**
 - Filter Database
- **consumers**
 - Consumer Database

Each of these databases has an ACL associated with it.

Event Type Security Management

The Event Type Database is represented by the following name in the DCE namespace:

```
/./:hosts/hostname/ems-server/event-types
```

The ACL associated with this object controls access to this database. The permissions associated with event-types are:

<table>
<thead>
<tr>
<th>Permission bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>control</td>
<td>Modify the ACLs on the event type</td>
</tr>
<tr>
<td>d</td>
<td>delete</td>
<td>Delete an event type schema</td>
</tr>
<tr>
<td>i</td>
<td>insert</td>
<td>Add an event type schema</td>
</tr>
<tr>
<td>r</td>
<td>read</td>
<td>Read the contents of event type schemas</td>
</tr>
</tbody>
</table>

Table 2. Event Type Database Permission Bits

EMS event data access can be granted per event type. Authority on event data of a given event type can be granted by modifying the ACL on:

```
/./:hosts/hostname/ems-server/event-types/event_type_name
```

where `event_type_name` is the event type name that appears in the event type schema. The name recognized for SVC events is:

```
/./:hosts/hostname/ems-server/events/SVC
```
The permissions associated with event_type_name are:

<table>
<thead>
<tr>
<th>Permission bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>control</td>
<td>Modify the ACLs on the event type</td>
</tr>
<tr>
<td>d</td>
<td>delete</td>
<td>Delete an event type</td>
</tr>
<tr>
<td>r</td>
<td>read</td>
<td>Read (consume) an event of this type</td>
</tr>
<tr>
<td>w</td>
<td>write</td>
<td>Write (supply) an event of this type</td>
</tr>
</tbody>
</table>

Supplier rights are verified on the first event sent to EMS, and the consumer rights are verified before forwarding events to that consumer. Authenticated RPC is used to access the EMS supplier and consumer remote API.

Event Filter Security Management

The Filter Database is represented by the following name in the DCE namespace:

```
./:hosts/hostname/ems-server/filters
```

The ACL associated with this object controls access to this database. The permissions associated with filters are:

<table>
<thead>
<tr>
<th>Permission bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>control</td>
<td>Modify the ACLs on filters</td>
</tr>
<tr>
<td>d</td>
<td>delete</td>
<td>Delete an event filter</td>
</tr>
<tr>
<td>i</td>
<td>insert</td>
<td>Add an event filter</td>
</tr>
<tr>
<td>r</td>
<td>read</td>
<td>Get a list of or the contents of event filters</td>
</tr>
</tbody>
</table>

Event filter access control is granted on a per-event-filter basis. Authority on filter access for a given event filter is granted by modifying the ACL on:

```
./:hosts/hostname /ems-server/filters/filter_name
```

where filter_name is the event filter name given the event filter on the call to ems_filter_add.

The permissions associated with event filters are:

<table>
<thead>
<tr>
<th>Permission bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>control</td>
<td>Modify the ACL on the event filter</td>
</tr>
<tr>
<td>d</td>
<td>delete</td>
<td>Delete the event type filter</td>
</tr>
<tr>
<td>w</td>
<td>write</td>
<td>Modify the contents of an event filter</td>
</tr>
</tbody>
</table>

When a consumer creates an event filter, that consumer principal automatically receives dwc permissions on the created event filter.

Consumer Security Management

The Consumer Database is represented by the following name in the DCE name space:
The ACL associated with this object controls access to this database. The permissions associated with consumers are:

Table 6. Consumer Database Permission Bits

<table>
<thead>
<tr>
<th>Permission bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>control</td>
<td>Modify the ACLs on consumers</td>
</tr>
<tr>
<td>d</td>
<td>delete</td>
<td>Delete a consumer</td>
</tr>
<tr>
<td>i</td>
<td>insert</td>
<td>Add (register) a consumer</td>
</tr>
<tr>
<td>r</td>
<td>read</td>
<td>List consumer information</td>
</tr>
<tr>
<td>w</td>
<td>write</td>
<td>Modify a consumer including his filter group</td>
</tr>
</tbody>
</table>

EMS Security Initialization

When EMS is configured, several security groups are created by default. The groups are `ems-admin`, `ems-consumer`, and `ems-supplier`. The default permissions are:

```bash
./hosts/hostname/ems-server object acl
  ems-admin  crws
  hosts/hostname/self  rws
  any_other  r

./hosts/hostname/ems-server/event-types object acl
  ems-admin  cri
  ems-consumer  r
  ems-supplier  ri
  any_other  r

initial object acl (./hosts/&cont;hostname/ems-server/event-types/event_type_name)
  ems-admin  cdw
  ems-consumer  r
  ems-supplier  w

./hosts/hostname/ems-server/filters object acl
  ems-admin  crdi
  ems-consumer  ir
  any_other  r

initial object acl (./hosts/&cont;hostname/ems-server/filters/filter_name)
  ems-admin  cdw

./hosts/hostname/ems-server/consumers object acl
  ems-admin  cdrw
  ems-consumer  irwd
  any_other  r
```

Because these permissions are set for the `ems_admin` group, each new event filter and event type created automatically inherits the same permissions.

Administrators can add principals to each of these groups to give them access to all EMDs running in a cell. If tighter security is desired, the group can be removed from the respective ACL and principals can be added.
Part 3. DCE Host and Application Administration
Chapter 9. Managing DCE Host Services and Host Data

Some services like DTS, CDS, and the DCE Security Service registry, which produce or maintain cell-wide information, are centralized. Although the services they provide are available throughout a cell, the servers themselves typically reside on just a few selected hosts in a cell.

Other DCE services are pervasive; that is, they reside on every host in a DCE cell. The DCE software that runs on every DCE host provides essential services that enable local client and server programs to interact with remote client and server programs in a reliable and secure way. Consequently, each host in a DCE cell has administrative aspects which are discussed in the first part of this chapter.

Each DCE host maintains local data that is essential to host operation in a DCE environment. Occasionally, you may find it necessary to modify parts of this data as your cell configuration changes, or as you add DCE capabilities or DCE applications. The second part of this chapter discusses how to use the DCE control program to gain remote, authenticated access to this data.

When DCE operations do not succeed for some reason, you want to inform the right people about what happened. DCE’s serviceability messaging facility lets you route error messages based on the severity level of the message. The last part of this chapter explains how to manage this facility.

DCE Host Services

Some DCE host services such as the runtime libraries are inert and require no administration once DCE has been configured on a host. But other services are active programs. One such active service is the endpoint mapper which acts as a lookup service on a host. The endpoint mapper lists server communication ports (called endpoints) in the host’s endpoint map. Remote clients looking for particular servers query the endpoint mapper which returns information contained in the endpoint map. The endpoint mapper, along with other active services, are contained in a single program called the DCE host daemon or dced. Typically, once a host has been configured with DCE software, the host booting process starts the dced process along with other daemons or processes. Occasionally however, you may need to manually start or restart this daemon.

The dced program comprises a set of DCE host services that satisfies many needs of DCE client and server applications on a host system:

- The endpoint mapper service acts as a directory of servers running on a host. Clients can acquire a registered server’s communication endpoint by looking in the host endpoint map.
- A security validation service manages DCE security on the local host.
- A server configuration and execution service lets administrators remotely set servers’ starting and stopping conditions, explicitly start and stop individual servers, and monitor running servers’ states.
- A key management service lets administrators manage server passwords remotely.
- A hostdata service lets administrators remotely manage data stored in files on a host. Administrators will find this most useful for remotely managing a host’s cell name and cell alias information.
An attribute schema capability lets administrators add new attributes to server configuration information.

Normally, any system that hosts a DCE server (such as a DCE cell directory server) or that runs a DCE-based application server or client that uses authentication, must also run the `dced` process.

It is clear that if the `dced` process failed for some reason, it would take all of its component services down along with it, leaving the host unable to respond to client requests. Similarly, a failure of one of the component services (for example the key management service) might be caused by the `dced` process unexpectedly exiting for some reason. This relationship between `dced` and its component services is worth remembering if problems occur.

Starting and Stopping DCE Host Services

Although the `dced` process generally starts as part of the host booting process, sometimes you may need to start the process manually.

Before starting `dced`, any underlying network services on which client/server communication depends must be available; on most UNIX systems, for example, network interfaces and routing services must be enabled. Once these transport-layer services are established, you can start `dced`. After `dced` starts, RPC-based servers can start.

The endpoint mapper listens on privileged or reserved communication ports (well-known endpoints) for client requests for service. Consequently, `dced` must be started as a privileged user.

Part of `dced` (the endpoint map) contains information that clients use to locate servers on a host system. The `dced` process maintains a copy of this information in a database file named `dcelocal/var/dced/Ep.db` so it will not be lost if you stop and then restart `dced` for some reason. Another database file called `dcelocal/var/dced/Srvrexec.db` maintains information about servers (such as each server’s process ID) that are currently running on the host. The information in both of these databases becomes obsolete when a system reboots because most servers get different endpoints and different process IDs each time they start.

You can configure `dced` to start each time a host boots. In some cases, the `dcelocal/etc/start.dce` file is linked to or copied to `/etc/start.dce`. This way, `dced` is invoked when other daemons are started. The `dcelocal/etc/start.dce` file is also responsible for deleting the `Srvrexec.db` and `Ep.db` database files before starting `dced`. If your system does not automatically delete these files, you will have to manually delete them before starting `dced`.

While you normally do not need to start `dced` in a shell, if you ever need to do so, log in as `root` and enter the following command:

```sh
# dcelocal/bin/dced
```

By default, `dced` listens on one endpoint for each transport that is supported by the host on which it is running. That is, if a host supports both TCP/IP and UDP/IP transports, `dced` will listen on one TCP and one UDP socket for client requests. An optional `protseq` argument lets you limit the transports that `dced` uses to the ones you specify. Intended as a debugging capability, this feature should be used with care; if you limit transports, clients will not be able to locate servers over the
excluded transports, and servers will not be able to register themselves in the endpoint map by using the excluded transports. For information about the optional protseq argument, see the IBM DCE 2.2 for AIX: Command Reference.

If the DCE daemon stops or exits unexpectedly, you can restart it. The restarted dced process does not lose any previously registered server bindings. It simply loads the information from the Ep.db and Srvreexec.db files. As a rule, stopping and restarting dced is not recommended because it also stops the security validation service.

Although you should run the host services on all hosts where DCE client or server applications run, there are some situations where you can avoid running them:
- DCE clients that do not perform authentication
- DCE servers that do not perform authentication and that do not use the endpoint mapper or other active DCE host services

Once you’ve started the DCE host services, you can perform all DCE host and server administration tasks by using the DCE control program, dcecp. The control program offers secure, remote access to host and server administrative functions, which means you can manage all of your DCE hosts without having to log into each host. [Part 1. The DCE Control Program* on page 3 of this book explained how to use dcecp in interactive mode as well as how to write dcecp scripts to manage DCE activities. You should be acquainted with those basics before performing administrative tasks explained in this chapter or elsewhere in this document.

Managing Host Data

Each host in a DCE cell maintains local data that is essential for operating in a DCE environment. For instance, each host’s DCE identity relies on certain data items that specify the host’s host name, cell name, and any cell aliases. Currently, these data items are stored in a local file called dcelocal/dce Cf.db. These and other data items can be modified remotely using the DCE control program’s hostdata object.

The hostdata object has a much broader application, too; administrators will find it extremely useful for accessing general data and files on remote hosts using secure and platform-independent methods. The last part of this chapter examines this powerful access method.

Permissions for Accessing Host Data

Access control lists (ACLs) prevent unauthorized principals from creating, changing, or deleting hostdata information. Two types of ACLs protect hostdata information. One type of ACL protects the container in which the hostdata items reside. A second type protects each individual hostdata item.

This section shows how to manage ACLs that protect hostdata information. For detailed information about setting and using ACL protections, see [Chapter 28. Using Access Control Lists* on page 295].
Permissions for the Hostdata Container

In DCE, the hostdata items reside in a container which is really a backing storage mechanism maintained by dced. On UNIX systems this is usually a file called /var/dced/Hostdata.db. The file is owned by root and its access via dced is protected by an ACL. These ACL permissions control who can access the data in the container. Each DCE host has one hostdata Container ACL with the following name:

```
/.../cellname/hosts/hostname/config/hostdata
```

The hostdata Container ACL has the following permissions:

- **c (control)**
 - Modify the Container ACL.

- **r (read)**
 - Read the list of hostdata items in the container.

- **i (insert)**
 - Create new hostdata items.

- **I (Insert)**
 - Although the I permission is present, it does not apply to hostdata items. The permission applies to server control facilities, which are explained in "Chapter 10. DCE Application Administration" on page 107.

Use the `dcecp acl` object to view or modify ACLs. For example, use the following operation to view the ACL for the hostdata container object on host silver:

```
dcecp> acl show ./hosts/silver/config/hostdata
{user hosts/silver/self criI}
{unauthenticated r}
{any_other r}
dcecp>
```

Permissions for the Hostdata Items

Each of the following host identity data items is protected by an ACL:

```
/.../cellname/hosts/hostname/config/hostdata/host_name
/.../cellname/hosts/hostname/config/hostdata/cell_name
/.../cellname/hosts/hostname/config/hostdata/cell_aliases
/.../cellname/hosts/hostname/config/hostdata/post_processors
```

Each ACL can have the following permissions:

- **c (control)**
 - Modify the ACL

- **d (delete)**
 - Delete the item

- **p (purge)**
 - Delete the backing storage for an item

- **r (read)**
 - Read an item’s data

- **w (write)**
 - Modify an item’s data
Use the `acl` object to view or modify ACLs. For example, use the following operation to view the ACL for the `cell_aliases` hostdata item on host `silver`:

dcecp> acl show /.:/hosts/silver/config/hostdata/cell_aliases
{unauthenticated ---r-}
{user hosts/silver/self cdprw}
{any_other ---r-}
dcecp>

Modifying Host Cell Name Information

Using the `hostdata` object, you can add, change, and remove data items on DCE hosts. While administrators will find this useful for modifying a host’s cell name or cell alias information, they can also operate on other data that is accessible on a host.

Each DCE host maintains a protected local copy of the cell name and cell aliases of the cell in which the host is registered. Hosts keep this information in a local file called `dcelocal/dce_cf.db` which is owned by `root`. A host uses this information for authentication purposes—as part of its host identity information.

Although host cell name information tends to be fairly stable, there are circumstances where it is necessary to change this information:

- When a host moves to a different cell
- When a host’s cell name changes or the cell name acquires an alias

When either of these situations occurs, however, it is usually not enough to just update the cell name information on the host. Cell name information must also be updated in CDS and in the DCE Security Service registry as well. For these purposes, `dcecp` provides the `host` and `cellalias` task objects which update cell name information wherever it needs to be changed.

When a host moves to a different cell, you should usually perform a `host unconfigure` operation to remove the host from one cell. Then run a `host configure` operation to establish the host in the new cell. For details on using the `host` task object, refer to **Chapter 6. Managing DCE Hosts** on page 73.

When a host’s cell name changes or the cell name acquires an alias, you should perform a `cellalias` operation which updates cell information in CDS, in the DCE Security Service registry, and in the `dce_cf.db` file of every affected host in the cell.

Sometimes however, the higher-level `dcecp` task objects do not offer enough control such as you might need when fixing a corrupted file somewhere or when configuring a host by hand for some reason. In these cases, you can use the `hostdata` object to change cell name information on individual hosts.

Note though, that this use of the `hostdata` object is intended mostly to be a troubleshooting operation to be relied on when a host’s cell information is out of synchronization with other cell information stored in the DCE registry or stored in CDS. This situation might be a common occurrence in cells with many hosts.

To update the cell name or cell alias name information on a host, use the `hostdata` object. The following example catalogs the `hostdata` objects in the cell named `/.../my_cell.goodco.com`. Then it shows the contents of the `cell_name` object on host `silver`. Finally, it modifies the cell name to be `/.../my_cell.goodco.com` on host `silver`.
dcecp> hostdata cat
/.../my_cell.goodco.com/bronze/config/hostdata/dce_cf.db
/.../my_cell.goodco.com/bronze/config/hostdata/cell_name
/.../my_cell.goodco.com/bronze/config/hostdata/host_name
/.../my_cell.goodco.com/bronze/config/hostdata/cell_aliases
/.../my_cell.goodco.com/bronze/config/hostdata/post_processors

Manipulating Data in Other Host Files

While the **hostdata** object is useful for changing cell name and cell alias information, it has a broader use too; you can use it to add, change, and remove data from any file that is accessible on a DCE host.

One useful example is adding a new CDS attribute. Every DCE host has its own CDS attributes file (**cds_attributes**) where it stores object IDs for each CDS attribute. You could use the local host’s editor to add the attribute and then copy the new file to each host. But this method requires you to log into each host. A simpler method would be to use the **hostdata** object to add the new attribute to the CDS attributes file. Place the operation within a **foreach** loop that reexecutes it for each host in the cell.

1. Make the CDS attributes file accessible as an object of the **hostdata** object.
 First, use the **hostdata** object to create a CDS entry representing the CDS attributes file. Set the storage attribute to be the host filename of the CDS attributes file. The following example assumes the CDS attributes file is in the default location and that the file exists:

 dcecp> hostdata create /./:hosts/silver/config/hostdata/cds_attr
 > -storage /opt/dcelocal/etc/cds_attributes -entry
dcecp>

2. The **hostdata** object modifies data in files by replacing all the data in the file with new data that you specify. The following example shows one way to do this. First, retrieve and store all the lines as **dcecp** list elements in a variable. Then create a new variable by using the **attrlist** command to add the new line as a list element to the variable. Finally, copy the new variable back to the file.

 dcecp> set val [attrlist getvalues [hostdata show /./:hosts/silver/config/hostdata/cds_attr]
 > -type hostdata/data]
dcecp> set newval [attrlist add $val -member {NEW_ATTR 1.2.3.4}]
dcecp> hostdata modify /./:hosts/silver/config/hostdata/cds_attr -data $newval
dcecp>
Routing Serviceability Messages

The DCE serviceability mechanism is designed to be used mainly for server informational and error messaging—that is, for messages that are of interest to those who are concerned with server maintenance and administration (in the broadest sense of these terms). The essential idea of the mechanism is that all server events that are significant for maintaining or restoring normal operation should be reported in messages that are made to be self-documenting. As a result (assuming that all events have been correctly identified and reported), users and administrators will always be able to learn what action they should take in a given situation.

Note: User-prompted, interactive, client-generated messaging is handled through the standard DCE messaging interface.

The serviceability component is used by the DCE components (RPC, DTS, Security, and so on) for their own server messaging, and it is made available as an API for use by DCE application programmers who wish to standardize their applications’ server messaging. (The serviceability API is described in the IBM DCE 2.2 for AIX: Application Development Guide—Core Components.)

Messaging uses XPG4 (X/Open Portability Guide) message catalogs to hold message texts, but it adds an additional layer to the XPG4 functionality. The message catalogs and other required data (and documentation) files are generated by a utility called sams (symbols and message strings). Its input is a text file that establishes some organizational information about the program that is to use the messages, followed by a series of specifications of the messages themselves. The serviceability mechanism allows system administrators to control the routing of these messages. Specifically, you can define message routings based on the severity levels (FATAL, ERROR, and so on) defined for the messages.

The following sections describe how to control the routing of serviceability messages. First, you are provided with an overview of serviceability messaging in the DCE. Then the text describes how you can use message severity levels to control routing. Finally, it describes the different ways in which you can specify routing for serviceability messages.

Serviceability Message Severity Levels

Serviceability messages are categorized by their severity level, which provides important information about the situation that causes the program to issue the message. Every message’s severity is defined in the text of the message itself (for example, NOTICE indicates that a message is an informational notice), and system administrators can route messages differently on the basis of their severity levels.

Table 7 lists the possible severity levels and provides an explanation for each.

<table>
<thead>
<tr>
<th>Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATAL</td>
<td>Fatal error exit: An unrecoverable error (such as database corruption) has occurred and will probably require manual intervention to be corrected. The program usually terminates immediately after such an error.</td>
</tr>
<tr>
<td>Name</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>ERROR</td>
<td>Error detected: An unexpected event that is nonterminal (such as a timeout), or is correctable by human intervention, has occurred. The program will continue operation, although some functions or services may no longer be available. This severity level may also be used to indicate that a particular request or action could not be completed.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Correctable error: An error occurred that was automatically corrected (for example, a configuration file was not found, and default values were used instead). This severity level may also be used to indicate a condition that may be an error if the effects are undesirable (for example, removing all files as a side effect of removing a nonempty directory). This severity level may also be used to indicate a condition that, if not corrected, will eventually result in an error (for example, a printer is running low on paper).</td>
</tr>
<tr>
<td>NOTICE</td>
<td>Informational notice: A significant routine major event has occurred; for example, a server has started.</td>
</tr>
<tr>
<td>NOTICE_VERBOSE</td>
<td>Verbose information notice: A significant routine event has occurred; for example, a directory entry was removed.</td>
</tr>
</tbody>
</table>

How to Route Serviceability Messages

Serviceability messages can be written to any of the normal output destinations. You can specify routing for serviceability messages in any of the following four ways:

- Through the `dcecp log` object, if the server supports the remote serviceability interface
- By the contents of a routing file
- By the contents of an environment variable
- By command-line flags (usually `-w`), if supported by the server

Note: Each of the methods accepts the string syntax form for serviceability routing specifications. In addition, `dcecp` allows you to use Tcl (Tool Command Language) syntax, which is easier to use when writing scripts.

Routing a message actually consists of specifying two things:

- How the message should be processed (that is, the form in which it should be put)
- Where the message should be sent (its destination)

The two specifications are sometimes closely interrelated, and sometimes specifying a certain destination implies that the message must be put into a certain form. This fact allows certain combinations to be abbreviated.

The ways to route serviceability messages are described separately in the following sections.
Using the dcecp log Object

The dcecp log object represents the current state of routing for DCE serviceability messages for a given server. The log object supports both serviceability routing and debug routing.

The log object exports a number of operations. The following operations are useful for serviceability message routing:

- The log list operation returns a list of the components registered by the server. The -comp option allows you to also return a list of the subcomponents for one or more named components.
- The log show operation returns a list describing the current serviceability routing specifications for a server.
- The log modify operation sets message routing specifications for one or more specified servers.

For a complete description of the dcecp log object and the syntax for its supported operations, refer to the IBM DCE 2.2 for AIX: Command Reference.

The remainder of this section describes only the log modify operation and how to use it to establish routings for serviceability messages. Remember that routing is always set on a per-server basis and is recorded in the log object for each server.

The syntax for the log modify operation is:

```
log modify {string_binding_to_server | RPC_server_namespace_entry} \ 
{-change serviceability_routing specifications}
```

You can specify multiple target servers as a space-separated list. Specify each server by supplying either the RPC string binding that describes the server’s network location (string_binding_to_server) or a namespace entry of the server (RPC_server_namespace_entry). When specifying multiple servers, you can mix the forms in the same list.

A serviceability_routing_specification is a space-separated list of serviceability routing elements. No spaces are allowed within the specification of an individual routing element. Each routing element is a substring consisting of four fields containing portable character set (PCS) data, as follows (shown in string syntax form):

```
severity:output_form:destination[:application-defined]
```

where:

- **severity**
 A message severity level: FATAL, ERROR, WARNING, NOTICE, or NOTICE_VERBOSE.

- **output_form**
 Specifies how messages of the associated severity level should be processed, and must be one of the following:

 - **BINFILE**
 Write these messages as binary log entries

 - **TEXTFILE**
 Write these messages as human-readable text

 - **FILE**
 Equivalent to TEXTFILE
DISCARD
Do not record these messages

STDOUT
Write these messages as human-readable text to standard output

STDERR
Write these messages as human-readable text to standard error

Do not set up routing of **NOTICE** and/or **NOTICE_VERBOSE** messages to **STDERR**. These messages should be routed to **STDOUT, FILE, EMS**, etc. Configuration of DCE will fail if **NOTICE** and/or **NOTICE_VERBOSE** messages are routed to **STDERR**.

Files written as **BINFILEs** can be read and manipulated with a set of log file APIs, which are described in the IBM DCE 2.2 for AIX: Application Development Guide—Directory Services.

The **BINFILE, TEXTFILE**, and **FILE** **output_form** specifiers may be followed by a 2-number specifier of the form:

```
gens.count
```

where:

- **gens** is an integer that specifies the number of files (that is, generations) that should be kept
- **count** is an integer specifying how many entries (that is, messages) should be written to each file

The multiple files are named by appending a . (dot) to the simple specified name, followed by the current generation number. When the number of entries in a file reaches the maximum specified by **count**, the file is closed, the generation number is incremented, and the next file is opened.

When the maximum number of files have been created and filled, the generation number is reset to **1**, and a new file with that number is created and written to (thus overwriting the already existing file with the same name), and so on. Thus the files wrap around to their beginning, and the total number of log files never exceeds **gens**, although messages continue to be written as long as the program continues writing them.

destination
Specifies where the message should be sent, and is a pathname. You can leave this field blank if the **output_form** specified is **DISCARD, STDOUT, or STDERR**. The field can also contain a %ld string in the filename which, when the file is written, will be replaced by the process ID of the program that wrote the message(s). Filenames may not contain : (colon), ; (semincolons), % (percent sign), or the space character.

application-defined
Is used for application-specific information. Standard DCE programs ignore it.

String Syntax: The string syntax for a serviceability routing specification is:

```
severity:output_form:destination[:application-defined][;...]
```

Note that you can define multiple routing specifications as a semi-colon separated list.
For example, this specification:

```plaintext
FATAL:TEXTFILE:/dev/console;STDOUT:
ERROR:TEXTFILE.5.100:/tmp/errors
EXIT:DISCARD:
*:FILE:/tmp/svc-log
NOTICE:BINFILE:/tmp/log%ld
WARNING:STDOUT:
```

instructs the serviceability mechanism to do the following:

- Send fatal error messages to the console and to standard output
- Send other error messages to a log-rolled file
- Discard normal exit reports
- Write all messages to a log file
- Send informational messages to a temporary binary log
- Send warnings to standard output

Tcl Syntax: The Tcl syntax for a serviceability routing specification is:

```
{severity output_form destination application-defined}
```

where `severity`, `output_form`, `destination`, and `application-defined` are specified as previously described. In Tcl syntax, multiple routing specifications take the following form:

```
{ {specification} {specification} {specification} }
```

For example, the sample specification shown previously for string format would be expressed in Tcl syntax as follows:

```tcl
{FATAL { {TEXTFILE /dev/console} STDOUT} }
{ERROR TEXTFILE.5.100 /tmp/errors}
{EXIT DISCARD}
{*:FILE /tmp/svc-log}
{NOTICE BINFILE /tmp/log%ld }
{WARNING STDOUT /}
```

Using a Routing File

If a file called `dce-local-path/var/svc/routing` exists, the contents of the file (if in the proper format) will be used to determine the routing of messages written by the serviceability mechanism.

The default location of the serviceability routing file is normally `/opt/dcelocal/var/svc/routing`. However, you can specify a different location for the file by setting the value of the environment variable `DCE_SVC_ROUTING_FILE` to the complete desired pathname.

The routing file contains lines that specify the routing desired for the various kinds of messages (based on message severity level). Each line consists of three fields as follows:

```
severity:output_form:destination[:application-defined][...]
```

You can supply multiple routings by specifying additional `output_form:destination` pairs as a semicolon-separated list.

In the routing file, blank lines beginning with the `#` character are treated as comments.
Using Environment Variables

Serviceability message routing can also be specified by the contents of certain environment variables. If you use environment variables, the routings you specify will override any conflicting routings specified by a routing file.

The routings are specified (on the basis of severity level) by putting the desired routing instructions in the following environment variables:

- SVC_FATAL
- SVC_ERROR
- SVC_WARNING
- SVC_NOTICE
- SVC_NOTICE_VERBOSE
- SVC_BRIEF

Each variable should contain a single string in the following format:

```
severity:output_form:destination[:application-defined][...]
```

You can supply multiple routings by specifying additional `output_form:destination` pairs as a semicolon-separated list.
Chapter 10. DCE Application Administration

As DCE evolves, commonly needed functions are being included in the DCE infrastructure. As an example, DCE includes server control capabilities that can manage server operation and help servers exit in a controlled and efficient manner. Application developers can rely on these capabilities rather than implement special mechanisms to handle them independently in every server.

Moving commonly needed functions out of applications and into the DCE infrastructure provides important benefits. Applications can be smaller and easier to develop and maintain. Even more important, because applications are not encumbered with lots of special code, they are easier to reconfigure and reconnect with different kinds of clients. This adaptability is critical as organizations strive to keep up with changing business needs.

DCE applications have always had administrative aspects. Often, programs include the necessary functions to manage their own administrative needs, but this approach can be awkward and somewhat inflexible for administrators. Now, virtually all administrative functions are available to programmers and administrators alike through dcecp. This does not mean programmers no longer need to deal with these issues. We expect some programmers to provide scripts written with dcecp that configure client and server programs to start and stop under specified conditions.

Although this approach offers a convenient and consistent way to administer applications, it also creates an area where programming and administrative concerns overlap. Our discussions in this chapter will include this area of overlap, noting circumstances where administrative action might be needed.

Controlling Server Operation

The conventional notion of a DCE application server assumes that a server is running, waiting for client requests to service. While this is an effective model for some general server operations, it does not offer the flexibility needed by DCE applications. Commercial environments will likely have many kinds of servers. Some may need to be constantly available, while others may be needed only at certain times of the day. Still others may be needed on an infrequent or unpredictable basis.

An application programmer or administrator could solve these kinds of problems by writing a script or application that monitors server operation, automatically starting or restarting servers when necessary. Such solutions frequently rely on host utilities like startup and shutdown programs or schedulers like cron. However, this often requires administrators to log into separate system administration accounts on each host. Moreover, this approach places more burden on developers and administrators to device independent server control mechanisms which may not be portable, especially in heterogeneous environments.

DCE solves some of these problems by providing a server control facility that offers a variety of ways to control DCE application servers. The server control facility is part of the DCE daemon (dced) so servers can rely on it wherever dced runs. Additionally, the facility’s administration functions are accessible via dcecp, so administrators can use consistent (portable) methods to manage servers from any

© Copyright IBM Corp. 1997

107
host where `dcecp` is available. Furthermore, access to the server control facility is authenticated, preventing unauthorized or accidental tampering of server control information.

The following sections show some common configuration needs and describe ways to configure and unconfigure servers, how to start and stop servers, and how to view server information.

Common Server Configuration Needs

Before you configure a server, you might need to perform some preliminary steps. If a server uses DCE authentication and authorization, its principal name must be registered with the DCE Security Service or run under the DCE identity of the parent process. For details on creating server accounts, see `Chapter 31. Creating and Maintaining Accounts` on page 339.

Naming Server Configuration Information

Server configuration information is accessible using a name of the form: `.../cellname/hosts/hostname/config/srvrconf/servername`. If you have the necessary permissions, you can use the global name to access the configuration database on a remote host (even a host in another cell). The following example shows configuration information for the `video_clip` server on host `krypton` in remote cell `/.../their_cell.goodco.com`:

```
dcecp> server show /.../their_cell.goodco.com/hosts/krypton/config/srvrconf/video_clip
{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}
{program {vclip}}
{arguments {-catalog}}
```

The next example shows configuration information for the `video_clip` server on host `silver` in the local cell:

```
dcecp> server show ./.../hosts/silver/config/srvrconf/video_clip
{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}
{program {vclip}}
{arguments {-catalog}}
```

Use the simple name to show configuration information for the `video_clip` server on the local host:

```
dcecp> server show video_clip
{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}
{program {vclip}}
{arguments {-catalog}}
```

...
Server Configuration Information

Each DCE has a database that can store configuration information for servers on that host. Use the DCE control program server object to store, modify, or remove server configuration information in the server configuration database on the host system.

You need to specify some or all of the following information when managing server configuration:

uuid An identifier for the particular server configuration object.

program The name (including the pathname) that invokes the server program.

directory The name of the program's working directory. Once a server is running, it might need a place to store its output or temporary files.

arguments Command-line arguments used to start the server.

entryname The name of an RPC entry to which the server exports its binding.

keytabs A list of one or more UUIDs of related keytab objects (files) where the server stores its keys. This information is needed for servers that use DCE authentication or authorization.

principals A list of one or more principal names for the server that are registered in the DCE Security Service. This information is needed for servers that use DCE authentication or authorization.

services Identifies the services offered by the server. Each service attribute consists of an attribute list with the following elements:

annotation A human-readable string describing the service.

ifname The interface name of this service (specified in the interface definition file).

interface The interface identifier (UUID and version number) of this service (specified in the interface definition file).

binding A list of string bindings identifying this service.

entryname The name of an RPC entry to which the server exports its binding for this service.

flags A list of keywords to identify flags for this server. Only the disabled flag is currently supported.

objects A list of object UUIDs supported by this service.

uid A POSIX UID that the server is started with.
starton
Specifies server starting conditions. The value is a list of one or more of the following:

- auto The server starts whenever a request for its service is received by the DCE daemon.
- explicit The server starts (or stops) whenever an administrator performs a server start or server stop operation that directly names the server.
- boot The server starts whenever the host system starts.
- failure The server starts whenever it has exited with a unsuccessful exit status.

Permissions for Accessing Server Control Facilities

An ACL prevents unauthorized principals from creating, reading, changing, or deleting information maintained by the server control facilities.

The server control facility maintains two kinds of server control information. Server configuration information (named `srvrconf` in DCE) consists of the information needed to start servers. Server execution information (named `srvreexec` in DCE) consists of information needed to control or stop servers when they are running.

Server configuration information is protected by two types of ACLs. One ACL protects the container in which the server configuration information resides. A second ACL type protects each individual server’s configuration information.

Similarly, server execution information is protected by two types of ACLs. One ACL protects the container in which the server execution information resides. A second ACL type protects each running server’s execution information.

This section shows how to manage ACLs that protect server control information. For detailed information about setting and using ACL protections, see Chapter 28, Using Access Control Lists.

Permissions for the Server Configuration Container: The server configuration information resides in a container. The container, a backing storage mechanism implemented as a file on UNIX systems, is owned by root and is also protected by an ACL. These ACL permissions control who can access information in the container. Each DCE host has one server configuration Container ACL with the following name:

```
/.../cellname/hosts/hostname/config/srvrconf
```

The server configuration Container ACL has the following permissions:

- c (control)
 Modify the Container ACL.
- r (read)
 Read configuration information in the container.
- i (insert)
 Create new configuration information.
Create new configuration information for a server that runs as a privileged user (for example, as root on a POSIX system). Such operations also require the i permission.

Use the `dcecp acl` object to view or modify ACLs. For example, use the following operation to view the ACL for the server configuration container object on host `silver`:

```
dcecp> acl show /.:/hosts/silver/config/srvrconf
{user appl_admin cril}
{unauthenticated r}
{any_other r}
dcecp>
```

Because `/.:/hosts/silver/config/srvrconf` is a container, it also has an Initial Container ACL and an Initial Object ACL. You can operate on these initial ACLs by using the -ic and -io options to `acl` operations. Note, however, that because you cannot currently create child containers under `/:/hosts/hostname/config/srvrconf`, the Initial Container ACL has no effect.

Permissions for Accessing Server Configuration Information: Each server’s configuration information is protected by its own ACL. These ACLs can prevent unauthorized principals from creating, reading, changing, or deleting server configuration information, and from starting, stopping, enabling, and disabling servers.

Each ACL is named for the server configuration information it protects and has a name like the following:

```
/.../cellname/hosts/hostname/config/srvrconf/server_name
```

This ACL has the following permissions:

- **c (control)**
 - Modify the ACL.

- **d (delete)**
 - Delete the server configuration information.

- **f (flag)**
 - Start the server with custom flags.

- **r (read)**
 - Read the server configuration information.

- **w (write)**
 - Modify the server configuration information.

- **x (execute)**
 - Start the server.

Use the `acl` object to view or modify ACLs. For example, use the following operation to view the ACL for the `video_clip` server on host `silver`:

```
dcecp> acl show /.:/hosts/silver/config/srvrconf/video_clip
{user appl_admin cdfrwx}
{unauthenticated r}
{any_other r}
dcecp>
```
This ACL takes its default values from the container’s Initial Object ACL. You can operate on the Initial Object ACL by using the -io option to acl operations. The following example shows the Initial Object ACL for the video_clip server:

dcecp> acl show ./:/hosts/silver/config/srvrcnf/video_clip
 -io
 {unauthenticated r}
 {any_other r}
dcecp>

Permissions for the Server Execution Container: When servers are started, the DCE daemon copies server configuration information into the server execution database. The dced process also adds more information about the running server such as a UUID, the server’s communication endpoints and its process name and ID. The execution information controls the running server; for instance, the process ID is used to stop a server. When a server exits, the DCE daemon removes its server execution information.

The server execution information resides in a container. The container, a backing storage mechanism implemented as a file on UNIX systems, is owned by root and its access through dced is protected by an ACL. These ACL permissions control who can access information in the container. Each DCE host has one server execution Container ACL with the following name:

/.../cellname/hosts/hostname/config/srvrexec

The server execution Container ACL has the following permissions:

c (control)
 Modify the Container ACL.

r (read)
 Read execution information in the container.

i (insert)
 Create new execution information.

I (Insert)
 Create new execution information for a server that runs as a privileged user (for example, as root). Such operations also require the i permission.

Use the acl object to view or modify ACLs. For example, use this operation to view the ACL for the server execution container object on host silver:

dcecp> acl show ./:/hosts/silver/config/srvrexec
 {user appl_admin criI}
 {unauthenticated r}
 {any_other r}
dcecp>

Because ./:/hosts/silver/config/srvrexec is a container, it also has an Initial Container ACL and an Initial Object ACL. You can operate on these initial ACLs by using the -ic and -io options to acl operations. Note that the Initial Container ACL has no effect because currently, child containers do not exist under ./:/hosts/hostname/config/srvrexec.

Permissions for Accessing Server Execution Information: Each server’s configuration information is protected by its own ACL. These ACLs can prevent unauthorized principals from creating, changing, reading, or deleting server configuration information, and from starting, stopping, enabling, and disabling servers.
Each ACL is named for the server execution information it protects and has a name like the following:

```
/.../cellname/hosts/hostname/config/srvrexe/config/server_name
```

This ACL has the following permissions:

- **c (control)**
 - Modify the ACL
- **r (read)**
 - Read the server execution information
- **w (write)**
 - Modify the server execution information
- **s (stop)**
 - Stop the server.

As an example, use the following operation to view the ACL for the server execution information for the `video_clip` server on host `silver`:

```
dcecp> acl show ./:/hosts/silver/config/srvrexe/video_clip
{user appl_admin crws}
{unauthenticated r}
{any_other r}
dcecp>
```

This ACL takes its default values from the container's Initial Object ACL. You can operate on the Initial Object ACL by using the `-io` option to `acl` operations. The following example shows the Initial Object ACL for the `video_clip` server:

```
dcecp> acl show ./:/hosts/silver/config/srvrexe/video_clip
-io
{unauthenticated r}
{any_other r}
dcecp>
```

Configuring Servers

Use the `server create` operation to make an application server accessible to the server control facility. Configuring a server means creating the information needed to start and control the server. Typically this includes a server's starting command line and arguments, along with other information needed to start DCE applications.

Some servers need to be available whenever a host system is running. For instance, you might want a server that provides information on host activity to start at the host boot time and run until the host shuts down. Other kinds of services might be needed or only for brief periods. The server control facility has an administrative interface that lets you specify some conditions for starting and stopping servers:

- **Explicit**: You can set a server so that you can explicitly start it whenever you want.
- **Boot**: You can set a server to start at boot time.
- **Automatic**: You can set a server to start on demand; that is, it starts whenever a client request for its services is received at the host system.
- **Failure**: You can set a server to start automatically if it exits unexpectedly.

The following example creates an entry for a fictitious video clip server named `video_clip` on the local host. For a remote host or a host in another cell, use the
cell-relative or the global name. The program name `vclip` invokes the server that is located in the `/usr/local/bin` working directory. The server has a catalog mode that was set by specifying `-catalog` as the argument. The server uses the DCE Security Service, so the server has a principal name `Vclip_Srv_1`. The `-entryname` option specifies the entry name in the Cell Directory Service (CDS) where the server stores its binding information. The `-starton` option sets the server to start when `dced` receives an explicit `server start` operation that names the `video_clip` server. The `failure` attribute further specifies to restart the server if it exits with a status that is not successful. The `-services` option has annotation information to help administrators identify servers when this information is returned with `server show` operations. The `interface` attribute is needed because the DCE daemon copies this information into the host endpoint map when the server starts.

```bash
dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip
  "-program {/usr/local/bin/vclip} "
  "-directory {/tmp} -arguments {-catalog} "
  "-principal {Vclip_Srv_1} "
  "-entryname {/.:/subsys/applications/video_clip_1} "
  "-starton {explicit failure} "
  "-services {{annotation {Video Clip Catalog and Server}} "
  "{interface {d860322b-d499-11cd-9dfb-0000c08adfs56 1.0}}}"
dcecp>
```

The next example configures the same server to start whenever the host system boots. The only difference from the preceding example is that the `-starton` option has a value of `boot`.

```bash
dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip
  "-program {/usr/local/bin/vclip} "
  "-directory {/tmp} -arguments {-catalog} "
  "-principal {Vclip_Srv_1} "
  "-entryname {/.:/subsys/applications/video_clip_1} "
  "-starton {boot} "
  "-services {{annotation {Video Clip Catalog and Server}} "
  "{interface {d860322b-d499-11cd-9dfb-0000c08adfs56 1.0}}}"
dcecp>
```

The final configuration example sets the `video_clip` server to start whenever a client request for its services is received at the host system. The `-starton` option value is `auto`. [Unconfiguring Servers](#) on page 115 discusses the steps for disabling and enabling services.

```bash
dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip
  "-program {/usr/local/bin/vclip} "
  "-directory {/tmp} -arguments {-catalog} "
  "-principal {Vclip_Srv_1} "
  "-entryname {/.:/subsys/applications/video_clip_1} "
  "-starton {auto} "
  "-services {{annotation {Video Clip Catalog and Server}} "
  "{interface {d860322b-d499-11cd-9dfb-0000c08adfs56 1.0}}}"
dcecp>
```

Listing and Retrieving Server Configuration Information

When you want to see a list of the names of servers configured on a particular host, use a `server catalog` operation, as shown. This operation does not show every server available on a host, just those that have configuration information stored in the server configuration database.

```bash
dcecp> server catalog /.:/hosts/silver
  ".../my_cell.goodco.com/hosts/silver/config/srvrconf/video_clip"
dcecp>
```
List the names of all the configured servers in a DCE cell by using a **foreach** command to repeat the **server catalog** operation for each host in a cell:

```bash
foreach h [directory list /.:/hosts]{
    echo [server catalog $h]
}
```

If you are unsure of the configuration information established for a server, you can view it using a **server show** operation, as shown. Use the **-executing** option to view information about a running server.

```bash
dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
{program {/usr/local/bin/vclip}}
{arguments {-catalog}}
{prerequisites {}}
{keytabs {683cf29a-e456-11cd-8f04-0000c08adf56}}
{services {[annotation "Video Clip Catalog and Server"]}
{principals {Vclip_Srv_1}}
{starton {explicit failure}}
{uid 1441}
{gid 1000}
{dir {/tmp}}
dcecp>
```

Unconfiguring Servers

You can remove server configuration information from a host's configuration database by using a **server delete** operation. You would perform this operation, for instance, when a server moves to a different host. A **server delete** operation does not stop a server that is currently running.

The following example removes the **video_clip** server's configuration information from the configuration database on host **silver**:

```bash
dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip
dcecp>
```

Starting and Stopping Servers

Once a server has been appropriately configured, you can use a **server start** or **server stop** operation to start or stop the server remotely. For example, the following **server start** operation starts the server **video_clip** on host **silver** in the local cell:

```bash
dcecp> server start /.:/hosts/silver/config/srvrconf/video_clip
    eb814e2a-0099-11ca-8678-02608c2ea96e
dcecp>
```

The next example stops the server **video_clip** on the local host **silver** in the local cell:

```bash
dcecp> server stop video_clip
dcecp>
```

Disabling and Enabling Services

You can prevent clients from using a service offered by a server—even when the server is running—by setting its services to disabled. When set to disabled, server endpoint information is not returned to requesting clients, thereby preventing clients
from finding servers. Instead, clients receive a server status of endpoint not registered. Clients that previously acquired the server endpoint can still communicate with the server, however.

When a server provides multiple interfaces, you can disable any one or more of its interfaces by specifying their interface identifiers. The following example disables one service of the video_clip server:

dcecp> server disable /.:/hosts/silver/config/srvrExec/video_clip
> -interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
dcecp>

The next example enables the vidsrv service of the video_clip server after it has been disabled. This operation allows clients to acquire a server’s endpoint.

dcecp> server enable /.:/hosts/silver/config/srvrExec/video_clip
> -interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
dcecp>

Extending Server Configurations

Some servers may require configuration information that is not supported by the set of attributes provided with your DCE software. You can add arbitrary information to your server configuration information by creating additional extended registry attributes (ERAs) with the xattrschema object.

For example, say you have a server that needs an attribute that specifies an object family. You create such an attribute by using the xattrschema object. The following example creates an ERA called svrrconf/objfamily. The operation specifies the permissions needed to query, update, test, and delete the ERA, and it specifies the ACL manager that supports the permissions.

dcecp> xattrschema create
> /.:/hosts/silver/config/xattrschema/svrrconf/objfamily
> -attribute {{annotation {object family}} {encoding uuid}
> {aclmgr {svrrconf {r w r d}}}}
dcecp>

Once you have created a new attribute, use a server modify operation, as explained in [Changing Server Configurations](#) on page 118, to insert the necessary data. More information about ERAs is provided in [Chapter 32. Creating and Using Extended Registry Attributes](#) on page 359.

You can review the attributes associated with an ERA by using an xattrschema show operation as shown in the following example:

dcecp> xattrschema show /.:/hosts/silver/config/xattrschema/svrrconf/objfamily
{aclmgr {svrrconf {{query r} {update w} {test r} {delete d}}}}
{annotation {object family}}
{applydefs no}
{encoding uuid}
{intercell reject}
{multivalued yes}
{reserved no}
{scope {}}
{trigbind {}}
{trigtype none}
{unique no}
{uuid 1bef2222-e687-11cd-b74a-0000c08adf56}
dcecp>
ERAs in server configuration information are protected by two levels of ACLs. One ACL type protects the container in which the ERA resides. The second ACL type protects the individual ERA.

The ERA Container ACL is named as follows:

\[./.../cellname.hosts/hostname/config/xattrschema\]

The ERA Container ACL has the following permissions:

- **c (control)**
 - Modify the Container ACL.

- **r (read)**
 - Read the ERA in the container.

- **i (insert)**
 - Create new ERA information.

- **I (Insert)**
 - Although the I permission is present, it does not apply to ERA items. The permission applies to server control facilities, which are explained in "Permissions for Accessing Server Control Facilities" on page 110.

Use the `dcecp acl` object to view or modify the Container ACL. For example, the following operation views the ERA Container ACL on host `silver`:

```
dcecp> acl show ./../hosts/silver/config/xattrschema
{user appl_admin crwl}
{unauthenticated r}
{any_other r}
dcecp>
```

The ACL for an individual ERA is named as follows:

\[./.../cellname.hosts/hostname/config/xattrschema/ERA_name\]

ACLs on individual ERAs can prevent unauthorized principals from creating, reading, changing, or deleting ERA information. The following example shows permissions established for the `srvrconf/objfam` ERA. In this example, the c permission has no effect because it was not assigned when the ERA was created with the `xattrschema create` operation. All users can query and test the ERA. Only the user named `appl_admin` can also update and delete the ERA.

```
dcecp> acl show ./../hosts/silver/config/xattrschema/srvrconf/objfam
{user appl_admin crwd}
{unauthenticated cr}
{any_other cr}
dcecp>
```

This ACL takes its default values from the container’s Initial Object ACL. You can operate on the Initial Object ACL by using the `-io` option to `acl` operations. The following example shows the Initial Object ACL for the `xattrschema` container on host `silver`:

```
dcecp> acl show ./../hosts/silver/config/xattrschema -io
{unauthenticated cr}
{any_other cr}
dcecp>
```
Changing Server Configurations

Sometimes you might want to change a server’s configuration information. For instance, you want to change the `-starton` attribute from `boot` to `explicit` so that you can control the server manually.

To change the normal server configuration attributes, you must first delete all of the existing attributes and then create new ones. Avoid losing the current information by first using a `server show` operation to display it on your screen.

The steps are illustrated in the following example which uses a `server show` operation to capture the current server configuration information. The `server delete` operation removes the configuration information, and a `server create` operation inserts the new `-starton` attribute along with the remaining server configuration information.

```bash
dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip
{uuid d860322b-d499-11cd-9dfb-0000c08adf56 1.0}
{program {/usr/local/bin/vclip}}
{arguments {-catalog}}
{prerequisites {}}
{keytabs {683cf29a-e456-11cd-8f04-0000c08adf56}}
{services {{annotation "Video Clip Catalog and Server"}}}
{principals {Vclip_Srv_1}}
{starton {boot}}
{uid 1441}
{gid 1000}
{dir /tmp}
dcecp>

dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip

dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip
  > -program /usr/local/bin/vclip
  > -directory /tmp
  > -arguments {-catalog}
  > -principal Vclip_Srv_1
  > -entryname /.:/subsys/applications/video_clip_1
  > -starton {explicit}
  > -services {{annotation "Video Clip Catalog and Server"}}

dcecp>
```

You can directly change ERA information by using a `server modify` operation. The following example changes a server’s ERA called `srvrconf/objfamily` to contain new values. This operation assumes the ERA has already been created using an `xattrschema create` operation described in [Extending Server Configurations](#) on page 118.

```bash
dcecp> server modify /.:/hosts/silver/config/srvrconf/video_clip
  > -change {srvrconf/objfamily {c09dccc40-e4f4-11cd-bd59-0000c08adf56}}

dcecp>
```

Checking Whether Servers Are Running

You can check whether a particular server is running by performing a `server ping` operation. This might be a convenient test when some client users report they cannot communicate with a server. The `server ping` operation communicates with the named server to test its presence, returning a `1` if a server is listening and a `0` if it is not listening. The argument to the server ping operation is the `entryname` of the server, not the name of the `srvrconf` object. The following example tests whether the `video_clip` server is running:

```bash
dcecp> server ping /.:/hosts/silver/config/srvrconf/video_clip
```


Managing Client/Server Binding Information

In a DCE environment, clients and their servers frequently reside on different hosts in a network, so clients need a way to find servers.

Clients need three pieces of information to communicate with a server:
• The host name (or network address) of the host where the server is running
• The name of the network transport the server is using
• The communication port (endpoint) the server is using for client communications

Of course, an application programmer could simply hardcode a server’s location information (also called binding information) into the client side of the application where it is immediately available for use. However, this approach requires that a programmer have advance knowledge of precise network details such as host names and available port numbers. Furthermore, servers with hardcoded binding information do not easily adapt to configuration changes. If you move a server to a different host, you need to recompile all of the clients with the server’s new host name. So DCE provides more flexible ways for clients to obtain server bindings.

The standard way for clients to find servers is by using CDS and the server host’s endpoint map. Figure 1 on page 120 provides a high-level example of this method, showing how a fictitious dictionary client application on host larry finds a dictionary server on host curly.
1. When the dictionary server starts up, DCE host software assigns the server a communications port (endpoint), which clients will use to communicate with this server. Here, the endpoint is TCP/IP port 1015. The DCE host software also places the server identification information along with the current endpoint in the host's endpoint map.

2. The dictionary server then advertises its availability to clients by placing (exporting) its host name (usually it is the host address) and the transport it uses to a server entry in CDS.

3. When the dictionary client makes a call to a remote procedure provided by the server, the DCE software on the client queries the CDS server to find the dictionary server's host name and the transport.

4. The client system's host software then queries the endpoint map on host curly to find the dictionary server's endpoint (port 1015).

5. Equipped with all the necessary binding information, the host services on host larry transmit the remote procedure call directly to port 1015 on host curly.

Although we have omitted some details in this high-level example, the figure still shows the major binding activities performed by clients and servers. That is, servers place their binding information in CDS and in the host endpoint map where clients look for it. There are other ways for clients to find servers and there are variations on the mechanism we have described. But these alternatives are generally controlled by the applications themselves rather than through conventional DCE administration facilities like dcecp.
This section discussed one basic client/server binding mechanism. The following sections examine the roles played by the endpoint map and by CDS. We will also discuss specific administration tasks for managing binding information in endpoint maps and in CDS.

Using the Endpoint Map for Easy Application Development and Administration

Remote clients can find a server by using the server host’s endpoint map to determine the server’s communication endpoint. But how do remote clients know where to find the endpoint map itself? They know because the endpoint map is always accessible at a well-known endpoint (that is, it is always the same endpoint) on each host so clients can easily find it.

When hosts support multiple transports, the endpoint map listens on one port for each transport. In the IP address family (both TCP and UDP), the endpoint map process listens on port 135. In the Domain Domain Sockets (DDS) address family, it listens on port 12. In the DECnet NSP address family, it listens on port 69. A complete list of the protocol sequences and well-known endpoints used by the endpoint mapper service can be found in the header file /opt/dcelocal/share/include/dce/ep.idl.

Note that not all hosts support all transports. DCE software tries to ensure that at least one transport is shared between a client and a server.

While well-known endpoints provide convenient access to some critical servers, for most servers they are impractical. That’s because some address families have a limited number of endpoints and well-known endpoints can be assigned only by a central administrative authority. So most servers use dynamic endpoints. When a server starts up, the RPC runtime library gets an available endpoint from the operating system and registers it in the host endpoint map.

Because a server can be assigned a different endpoint each time it starts, the endpoint information is stored in the endpoint map rather than CDS, which is a repository for more stable information; namely, the server’s host address and the transports it uses. As long as the server stays on the same machine, host and transport information need not be updated, which tends to reduce bottlenecks at CDS.

This scheme makes application development and administration easier because it reduces the need to manage endpoints. Servers need not worry about passing dynamic endpoints to clients. Furthermore, unless a server moves to a new host, or removes or adds a transport, it does not even have to update the information in CDS.

Automatic Endpoint Map Administration

Each server that uses the endpoint map stores a set of information in the endpoint map when it starts up. The information includes universal unique identifiers (UUIDs) for objects and interfaces offered by the server, an annotation string, and other fields.

The endpoint map resides on disk in dcelocal/var/dced/Ep.db and dcelocal/var/dced/Srvrexec.db. After a system reboot, DCE-based servers restart...
and reregister with the endpoint mapper service, so the database files need to be
deleted before the DCE daemon starts. This happens automatically on most
systems.

DCE-based servers normally need to register with the endpoint mapper service on
startup and unregister on termination. If any servers exit without unregistering, the
endpoint map may contain stale entries.

DCE provides server control facilities that help servers unregister and avoid leaving
stale entries in the endpoint map. Servers that do not use these facilities (older
servers, for example) are more likely to leave stale entries if they exit unexpectedly.
So periodically, the DCE daemon (dced) purges stale entries by scanning the
endpoint map, pinging each server that is registered, and deleting entries for
servers that do not respond.

The background process of removing stale entries is not intended to be highly
responsive. It is not intended to replace the need for servers to unregister
themselves from the endpoint map when they no longer service RPCs. Rather, this
processing is intended only to clean up after a server failure.

While the behavior of the pinging/purging mechanism is implementation dependent,
in a typical implementation the database is scanned (that is, servers are pinged and
stale entries removed) only infrequently; for example, a few times an hour. Once a
ping to a server fails, the server is pinged several times over a shorter interval; for
example, every 5 minutes. If the server continues to not respond, the dced process
determines that its entry is stale and removes it from the database. Ultimately, the
rate at which stale server entries are detected and purged depends on the number
of stale entries in the database; the more stale entries, the longer it takes to detect
and purge the stale entries.

Restricting Endpoints

You can restrict the assignment of endpoints (ports) for DCE servers and clients to
a specific set. This is useful if your environment has applications other than DCE
that are designed to use certain endpoints, and you do not want to be concerned
about DCE servers or clients monopolizing them.

The facility is activated by setting the **RPC_RESTRICTED_PORTS** environment
variable with the list of endpoints to which dynamic assignment should be restricted
before starting a client or server application. **RPC_RESTRICTED_PORTS** governs
only the dynamic assignment of server ports by the RPC runtime. It does not affect
well-known endpoints.

The following example restricts servers to using TCP/IP endpoints ranging from
5000 to 5110, and 5500 to 5521. It restricts UDP/IP endpoints to the range of 6500
to 7000.

```bash
% set RPC_RESTRICTED_PORTS
\ncacn_ip_tcp[5000-5110,5500-5521]:ncadg_ip_udp[6500-7000]
%
```

To use **RPC_RESTRICTED_PORTS** for DCE servers such as CDS, set the
environment variable each time before starting your cell.
Note that this facility does not add any security to RPC and is not intended as a security feature. It merely facilitates configuring a network firewall to allow incoming calls to DCE servers.

Viewing Information in the Endpoint Map

For the most part, the endpoint map on each host takes care of itself, purging stale entries when necessary and removing the endpoint information each time the host reboots. So there is really no administration needed for the endpoint map.

However, when client/server communication problems arise, the information stored in the endpoint map might be useful to administrators, particularly for determining whether servers are supplying the correct endpoint information to clients. In this case, you can use the `endpoint` object to view endpoint map information. Besides its use in troubleshooting, you can also use the `endpoint` object for other specialized server operations such as adding new object UUIDs to existing mappings.

Endpoints are not protected by ACLs. This means anyone who can run `dcecp` can use an `endpoint show` operation on their host to view endpoint information on any other host in the cell. Other endpoint operations, such as creating or deleting endpoints, can be performed only by users who are logged into the local host. No other special privileges, such as system administrator or root privileges, are needed for local access to endpoint information.

You can view information stored in a host's endpoint map database by using an `endpoint show` operation. The following example shows the endpoint map information for the `video_clip` server on a remote host `megazoid`. Omit the `hostname` argument to operate on the local endpoint map.

```
dcecp> endpoint show .:/hosts/megazoid

> -interface {2fa417e8-bb4c-11cd-831b-0000c08adf56 1.0}
{object 99ff4fb8-c042-11cd-91cd-0000c08adf56}
{interface {2fa417e8-bb4c-11cd-831b-0000c08adf56 1.0}}
{binding {ncacn_ip_tcp 130.105.1.227 1028}}
{annotation {Text Development Utilities}}}
```

dcecp>

You can view all of the endpoints in an endpoint map by not using any options with the `endpoint show` operation.

Managing Server Entries, Groups, and Profiles in CDS

An endpoint map acts as a directory of servers on a host. Similarly, CDS acts as a directory of servers in the cell. In the first part of this chapter, we gave a high-level look at how applications can use CDS to store relatively stable binding information such as a server's name, its host address, and the transports over which the server is available. In this section, we will show how to use CDS facilities for organizing your servers and other distributed objects in meaningful ways.

Many of the operations discussed in the following sections operate on CDS directories that are protected by ACLs against unauthorized access. For detailed information about ACLs and CDS see "Chapter 16. Controlling Access to CDS Names" on page 175.
Using Unique Server Entry Names to Identify Individual Servers and Objects

We know that servers store their binding information in CDS where clients can find it. But so far, we have been treating CDS like a black box. If a DCE cell consisted of just a few servers or objects and a handful of users, CDS could be as simple as a data file accessible to both servers and clients. Finding unique names for objects would probably not pose a big problem. And you could probably even devise some effective scheme for protecting objects from unauthorized use. But DCE cells can include many hundreds or even thousands of objects. Large cells will likely contain many similar or even identical servers that need convenient and effective ways to offer their services to clients.

DCE CDS answers this need by providing a hierarchical (tree-structured) name system that servers use to store binding information. CDS acts much like a hierarchical file system of directories that stores names and other information instead of files. You can build on its hierarchical structure, imposing directory names that can correspond to your company's organizational structure.

Servers have CDS names like /.:admin/finance/payroll/check_writer. When this check_writer server exports its server entry name to CDS, CDS stores it in a directory named /.:admin/finance/payroll. Consequently, clients will not confuse this check_writer with another check_writer named /.:admin/finance/accts_payable/check_writer. Thus, unique server entry names fill a critical administration need, providing a way to access and control individual servers.

"Part 4. Cell Directory Service" on page 139 of this book provides more information about CDS and the structure and uses of CDS names. For our current purposes, it is enough to know how and why CDS directory names help make potentially identical server entries unique.

While servers themselves often manage exporting and removing their names and binding information from CDS, sometimes administrators need to manually add, change, or remove binding information. For instance, when a server host machine crashes unexpectedly and stays offline for a long time, its resident servers cannot remove their entry names and binding information from CDS. Clients can waste time looking for these phantom servers. The DCE control program provides the rpcentry object that you can use to manage server entry names and their binding information in CDS.

Before we get to the actual management tasks, let us examine a server entry to see exactly what it is we'll be managing. Figure 2 on page 125 shows possible information in a server entry.
The top part of Figure 2 contains bindings. Each binding consists of an interface identifier and a binding. The interface identifier identifies an interface offered by the server, and its binding information indicates the host address and network transport to use to access that interface. The following example of a binding (shown in dcecp syntax) indicates the server is on the host with internet address 120.101.13.157 and is available using the User Datagram Protocol (UDP):

{nacdgp_ip_udg 120.101.13.157}

When an interface identifier is available over several transports, the server entry contains bindings (one binding for each transport). Servers can offer more than one interface. Multiple interfaces can be available through a single endpoint. That is, different interfaces can have the same bindings.

The lower part of the figure contains object UUIDs. Object UUIDs offer additional information to clients; they identify specific objects or resources managed by the server. For instance, one print server offers printers on floor 2 while another print server offers printers on floor 1. In this case, object UUIDs let clients select printers on the appropriate floor. In other words, object UUIDs help clients distinguish from among otherwise identical services.

Although application servers can manage their own server entries in CDS, you may find it more convenient (and more straightforward) to manually add, remove, or change information in a server entry. There are four methods for managing server entries in CDS:
Server entry names can be hardcoded into an application. You can change server entry information in the source code, but you need to recompile and rerun the application before the entry names take effect.

Server entry names can be stored as the `entryname` attribute of the server's configuration information (using the `server` object) where it is accessible to the application. This is more convenient than recompiling but, more importantly, this method places the server's entry name in a standard (platform independent) place where administrators can see it too. You might need to restart an application to use this method, however.

Server entry names can be passed to an application through environment variables or arguments. While these are effective methods and they are more convenient than recompiling, they are not platform independent. This means you might need different approaches on different operating systems.

Server entry names can be directly managed in CDS by using the DCE control program's `rpcentry` object. This manual method does not require recompiling or restarting applications.

The next sections discuss how to use the `rpcentry` object to manually manage server entries in CDS.

Creating a Server Entry in CDS

Often, servers will create their own entries in CDS either when they initialize or when they are configured after installation. But sometimes, you might want to create a server entry manually. When you create a server entry, it is empty; it does not contain any interface or binding information.

One reason to create an empty server entry is to establish ownership of the entry. Server entries are owned by the creator. If a server creates an entry, the server can also delete the entry later. You can preempt such a circumstance by creating the entry yourself. Later, the server exports its bindings to the existing server entry (provided that the ACL allows this).

Use an `rpcentry create` operation to create an empty server entry as in the following, which creates one named `./subsys/applications/bbs_server`. The CDS directory `./subsys/applications` must already exist for this operation to succeed.

```
dcecp> rpcentry create ./subsys/applications/bbs_server
```

Deleting a Server Entry from CDS

Because server entries generally contain stable server binding information, they tend to stay around rather than be deleted. Even when a server goes away for a short time, say, overnight, it might not be practical to remove its entry. But when a server goes away for a long time, you can avoid the client expense of trying to use the phantom server by removing the server's entry from CDS.

Use an `rpcentry delete` operation to remove a server entry from CDS as shown in the following example:

```
dcecp> rpcentry delete ./subsys/applications/bbs_server
```

Exporting Binding Information to a Server Entry in CDS

Servers usually export their own binding information to CDS when they initialize or when they are configured after installation. But sometimes, binding information may have been removed for some reason or by accident and you want to restore it. Or another transport has been added and you want to export the binding for the new transport.

You can manually export server binding information to a server entry by using an `rpcentry export` operation. If the entry does not already exist, the `rpcentry export` operation creates it provided the directory already exists and you have the necessary permissions.

The following example illustrates exporting a server’s binding information to a server entry named `./subsys/applications/bbs_server`. The object UUID identifies the data file resource used by `bbs_server`.

```
dcecp> rpcentry export ./subsys/applications/bbs_server \
   > -interface {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0} \
   > -binding {ncacn_ip_tcp 130.105.1.227} \
   > -object {76030c42-98d5-11cd-88bc-0000c08adf56}
dcecp>
```

Importing Binding Information from a Server Entry in CDS

Application client programs can automatically import server binding information from CDS and use it in their quest to find and communicate with a server. But occasionally, an administrator might want to import a binding. For instance, a client might lack access to CDS but it could still communicate with the server if you supplied it with a valid binding.

Use an `rpcentry import` operation to return a server’s binding information, as follows:

```
dcecp> rpcentry import \
   ./subsys/applications/bbs_server \
   > -interface {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0} \
   {ncacn_ip_tcp 130.105.1.227}
dcecp>
```

Viewing Information in a Server Entry

When clients are having difficulty communicating with servers, you might want to see what binding information is contained in a server entry as a troubleshooting step. Or say you are adding object UUIDs to server entries and you wonder whether a server entry has been overlooked. You can use an `rpcentry show` operation to view the information in a server entry as illustrated in the following example. The returned information includes the interface identifier, two bindings over which the server can be reached, and an object UUID of a resource maintained by the server.

```
dcecp> rpcentry show ./subsys/applications/bbs_server \
   {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0} \
   {ncadg_ip_udp 130.105.1.227} \
   {ncacn_ip_tcp 130.105.1.227}) \
   {76030c42-98d5-11cd-88bc-0000c08adf56}
dcecp>
```
Removing Binding Information from a Server Entry in CDS

Occasionally, you might want to remove binding information from a server entry. If a server host crashes, its servers cannot remove their server entries from CDS. To prevent clients from trying to communicate with these phantom servers, you should unexport the bindings from CDS manually. Unlike the **endpoint delete** operation, this operation does not remove the entry name from CDS.

Use an **rpcentry unexport** operation to remove server binding information as shown in the following example. Notice that the object UUID is not removed from the server entry unless you specify it as an option to the **unexport** operation.

```
dcecp> rpcentry unexport ./:/subsys/applications/bbs_server \\
   > -interface {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0}
dcecp>
dcecp> rpcentry show ./:/subsys/applications/bbs_server \\
   > {76030c42-98d5-11cd-88bc-0000c08adf56}
dcecp>
```

Using Group Entries to Help Balance Server Workloads

When a client queries CDS for a server binding, the request includes the name of the entry to look in for the binding. When only one server offers the client’s requested service, CDS will return the same binding for every client request for this service. While this model works fine for limited client requests, it can cause service bottlenecks when many client requests converge on one server. Applications can avoid bottlenecks by providing multiple servers to service large numbers of client requests. Server entry names alone do not provide a convenient way to distribute client requests evenly among multiple servers because you’d have to explicitly direct each client to a particular server. So CDS provides **group entries** as a convenient mechanism for distributing the client load across multiple servers.

A CDS group entry gathers related servers together under a common group name. Group entries contain members that are generally pointers to server entries, but members can point to other group entries, too. When a client requests a binding from a group entry, CDS returns, at random, one of the pointers contained in the group entry. If the entry picked at random is another group entry, CDS does not return that. Instead, CDS goes to that group and picks another random member, continuing until a server entry is returned. This model requires that any group member can service the client request. Figure 3 on page 129 shows how a group entry contains members that point to other groups and to server entries.
Now, let us see how group entries help balance a workload. Consider an organization with 12 identical laser printers equally spread among three departments. The following group entry examples show how each group entry name returns any one of the four printers assigned to its own department:

Group entry name:
\[.:/admin/finance/accts_payable_printers\]
\[.:/admin/finance/accts_payable/laser_10\]
\[.:/admin/finance/accts_payable/laser_11\]
\[.:/admin/finance/accts_payable/laser_12\]
\[.:/admin/finance/accts_payable/laser_13\]

Group entry name:
\[.:/admin/finance/accts_receivable_printers\]
\[.:/admin/finance/accts_receivable/laser_10\]
\[.:/admin/finance/accts_receivable/laser_11\]
\[.:/admin/finance/accts_receivable/laser_12\]
\[.:/admin/finance/accts_receivable/laser_13\]

Group entry name:
\[.:/admin/finance/payroll_printers\]
\[.:/admin/finance/payroll/laser_10\]
\[.:/admin/finance/payroll/laser_11\]
\[.:/admin/finance/payroll/laser_12\]
\[.:/admin/finance/payroll/laser_13\]

You could temporarily make one department's printers available to another group by adding its group name to the group entry of the other group as shown in the next group entry example:

Group entry name:
\[.:/admin/finance/accts_payable_printers\]
\[.:/admin/finance/accts_payable/laser_10\]
\[.:/admin/finance/accts_payable/laser_11\]
\[.:/admin/finance/accts_payable/laser_12\]
\[.:/admin/finance/accts_payable/laser_13\]
\[.:/admin/finance/accts_receivable_printers\]
The configuration in the preceding example means the clients in accounts payable can use the printers in accounts receivable 20% of the time. You could offer a higher percentage of use by adding server entry names rather than the group name. The next group entry example shows a situation where the clients in accounts payable can use the printers in accounts receivable 50% of the time. However, do not try to increase the percentage of use by including a group name multiple times because you'll get an error.

Group entry name: `/./admin/finance/accts_payable_printers`
`././admin/finance/accts_payable/laser_10`
`././admin/finance/accts_payable/laser_11`
`././admin/finance/accts_payable/laser_12`
`././admin/finance/accts_payable/laser_13`
`././admin/finance/accts_receivable/laser_10`
`././admin/finance/accts_receivable/laser_11`
`././admin/finance/accts_receivable/laser_12`
`././admin/finance/accts_receivable/laser_13`

Although application servers can manage their own group entries in CDS, you may find it more convenient (and more straightforward) to manually add, remove, or change server information in a group entry. Like managing server entries, there are several methods for managing group entries in CDS:

- Group entry names can be hardcoded into an application. You can change group entry information in the source code, but you need to recompile and rerun the application before the entry names take effect.
- Group entry names can be passed to an application through environment variables or arguments. These are more convenient methods than recompiling, but you might need to restart an application to use either method.
- Group entry names can be directly managed in CDS by using the DCE control program's `rpcgroup` object. This manual method does not require recompiling or restarting applications.

The next sections discuss how to use the `rpcgroup` object to manually manage group entries in CDS.

Creating a New Group Entry in CDS

You can create an empty group entry in CDS by using an `rpcgroup create` operation. While group creation is frequently performed by applications that first use a group entry, creating an entry yourself establishes you as the owner of the entry. As the owner, you have ultimate control over who can export and manage information in the entry.

To create an empty group entry in CDS, use an `rpcgroup create` operation as in the following example:

```
dcecp> rpcgroup create  
././subsys/applications/admin_bbs_servers  
dcecp>
```

Adding a Member to a Group Entry in CDS

You can use an `rpcgroup add` operation to add a member to a group entry. If the group entry does not exist, the operation creates the group entry and adds the member. The member can be a server entry or another group entry. Note that no operations check whether the members you add actually exist. This lets you configure the namespace even before servers are up and running.
To add a member to the ./subsys/applications/admin_bbs_servers group entry in CDS, use an `rpcgroup add` operation as in the following example:

dcecp> rpcgroup add ./subsys/applications/admin_bbs_servers
> -member ./subsys/applications/bbs_server4
dcecp>

Viewing the Members of a Group Entry

You can list the members of a group entry by using an `rpcgroup list` operation. This is useful for troubleshooting or for just seeing how servers are distributed in group entries.

To list the members of a group entry in CDS, use an `rpcgroup list` operation, as shown in the following example, which lists the members of the group ./subsys/applications/admin_bbs_servers:

dcecp> rpcgroup list ./subsys/applications/admin_bbs_servers
> ./.../my_cell.goodco.com/subsys/applications/bbs_server3
> ./.../my_cell.goodco.com/subsys/applications/bbs_server4
>
Importing Binding Information from a Group Entry in CDS

Application client programs can automatically import server binding information from CDS and use it in their quest to find and communicate with a server. But occasionally, an administrator might want to import a binding. In the case where a client lacks access to CDS, it could still communicate with the server if you supplied the client with a valid binding.

You can use an `rpcgroup import` operation to return a server's binding information. You must specify an interface by using the `-interface` option as shown in the following example:

dcecp> rpcgroup import ./subsys/applications/admin_bbs_servers
> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0}
> {ncacn_ip_tcp 130.105.1.227}
dcecp>

You can use other options such as `-version` and `-object` to further specify a binding. Use the `-max` option to limit the number of bindings returned.

Removing Members from a Group Entry in CDS

Over time, organizational changes can require you to redeploy servers in your DCE cell. You might, for instance, want to move server entries from one group entry into another.

Use an `rpcgroup remove` operation to remove one or more members from a group. The following example removes `bbs_server3` from the group ./subsys/applications/admin_bbs_servers:

dcecp> rpcgroup remove ./subsys/applications/admin_bbs_servers
> -member ./.../my_cell.goodco.com/subsys/applications/bbs_server3
dcecp> rpcgroup list ./subsys/applications/admin_bbs_servers
> ./.../my_cell.goodco.com/subsys/applications/bbs_server4
> ./.../my_cell.goodco.com/subsys/applications/bbs_server5
> ./.../my_cell.goodco.com/subsys/applications/bbs_server6
>

Deleting a Group Entry from CDS

Organization changes or server redeployments can make some groups obsolete. When you want to remove a group entry from CDS, use an `rpcgroup delete` operation. The following example illustrates removing an obsolete group entry called `./:/subsys/admin/temporaries/wp_services` from CDS:

```
dcecp> rpcgroup delete ./:/subsys/admin/temporaries/wp_services
dcecp>
```

Using Profiles to Direct Client Searches for Servers

Group entries offer clients a random choice from among multiple available services. Although a group entry can help in load balancing and resource allocation, its random nature resists fine tuning. Furthermore, it does not offer a way to prioritize servers for use by particular clients.

Profiles offer a complementary way to organize servers because you can prioritize the search order of the profile members. (These were called elements in previous DCE versions.) Members identify servers by providing the following information:

- **Interface identifier**

 This field is the key to the profile. The interface identifier consists of the interface UUID and the interface version numbers.

- **Member name**

 The entry name of one of the following kinds of directory service entries:
 1. A server entry for a server offering the requested RPC interface
 2. A group corresponding to the requested RPC interface
 3. A profile

- **Priority value**

 The priority value (0 is the highest priority; 7 is the lowest priority) is designated by the creator of a profile member to help determine the search order to select among like-priority members at random.

- **Annotation string**

 The annotation string enables you to identify the purpose of the profile member. The annotation can be any textual information; for example, an interface name associated with the interface identifier or a description of a service or resource associated with a group.

 Unlike the interface identifier field, the annotation string is not a search key.

Profiles are flexible; they contain members that can point to server entries, groups, and to other profiles. Profiles can also contain a special member called a default profile member. This optional member should point to a default profile, usually a comprehensive backup profile that can serve the needs of most users in an organization. Figure 4 on page 133 shows some possible mappings of a profile.
To get an idea of how profiles can work, let us build on our printer example from the preceding discussion on group entries. The following profile entry example shows one way to use profiles to prioritize resources based on proximity to clients.

In the figure, three users have personalized printer profiles that return server entries for printers nearest to them first. For example, user John is closest to laser_20O so the profile priority1 returns that binding first. John is furthest from laser_23, so the profile priority 4 returns that binding last.

Profile entry name: ././admin/finance/accts_receivable_printers/johns_profile

/../admin/finance/accts_receivable/laser_20 1
/../admin/finance/accts_receivable/laser_21 2
/../admin/finance/accts_receivable/laser_22 3
/../admin/finance/accts_receivable/laser_23 4

Figure 4. Possible Mappings of a Profile
Profile entry name: /./admin/finance/accts_receivable_printers/pats_profile
/./admin/finance/accts_receivable/laser_20 3
/./admin/finance/accts_receivable/laser_21 4
/./admin/finance/accts_receivable/laser_22 2
/./admin/finance/accts_receivable/laser_23 1

Profile entry name: /./admin/finance/accts_receivable_printers/wills_profile
/./admin/finance/accts_receivable/laser_20 2
/./admin/finance/accts_receivable/laser_21 1
/./admin/finance/accts_receivable/laser_22 3
/./admin/finance/accts_receivable/laser_23 4

To conclude this example, let us say that your department’s server is being overused by another department. You could further limit its use by lowering the server’s priority value in the foreign department’s profile that points to your server.

Just as application servers can manage their own profile entries in CDS, they can also manage their own profile entries. However, you may find it more convenient (and more straightforward) to manually add, remove, or change server information in a profile entry. Like managing server entries and group entries, there are several methods for managing profile entries in CDS:

- Profile entry names can be hardcoded into an application. You can change profile entry information in the source code, but you need to recompile and rerun the application before the entry names take effect.
- Profile entry names can be passed to an application through environment variables or arguments. These methods are more convenient than recompiling, but you might need to restart an application to use either method.
- Profile entry names can be directly managed in CDS by using the DCE control program’s `rpcprofile` object. This manual method does not require recompiling or restarting applications.

The next sections discuss how to use the `rpcprofile` object to manually manage profile entries in CDS.

Creating a New Profile

You can create an empty profile entry in CDS by using a `rpcprofile create` operation. While profile creation is frequently performed by applications that first use a profile entry, creating an entry yourself establishes you as the owner of the entry. As the owner, you have ultimate control over who can export and manage information in the entry.

To create an empty profile entry in CDS, use an `rpcprofile create` operation as in the following example:

dcecp> rpcprofile create
/./subsys/applications/admin_group_profile
dcecp>

Adding a Profile Member

You can use an `rpcprofile add` operation to add a member to a profile entry. If the profile entry does not exist, the operation creates the profile entry and adds the member. The member can be a server entry or another profile entry.

To add a member to the `/./subsys/applications/wards_profile` profile entry in CDS, use an `rpcprofile add` operation as in the following example which adds the server entry `/./subsys/applications/bbs_server3` with a priority of 2:
Viewing the Members of a Profile Entry

You can simply list the members of a profile entry by using an `rpcprofile list` operation. This is useful for troubleshooting or for just seeing how servers are distributed in profile entries.

To list the members of a profile entry in CDS, use an `rpcprofile list` operation as in the following example which lists the members of the profile `/.:/subsys/applications/admin_group_profile`:

dcecp> rpcprofile list /.:/subsys/applications/wards_profile
{/.../my_cell.goodco.com/subsys/applications/admin_bbs_servers
{/.../my_cell.goodco.com/subsys/applications/bbs_server

dcecp>

You can view the complete information stored with a profile entry by using an `rpcprofile show` operation. This shows the priority and the interface UUIDs associated with a member. The following example shows all of the information contained in the profile named `/.:/cell-profile`:

dcecp> rpcprofile show /.:/cell-profile
{{d46113d0-a848-11cb-b863-08001e046aa5 2.0} /.../cell.co.com/sec 0 rs_bind}
{{0d7c1e50-113a-11ca-b71f-08001e01dc6c 1.0} /.../cell.co.com/sec-v1 0 secidmap}
{{8f73de50-768c-11ca-bfbc-08001e039431 1.0} /.../cell.co.com/sec 0 krb5rpc}
{{b1e338f8-9533-11ca-a34a-08001e019ce1 1.0} /.../cell.co.com/sec 0 rpriv}
{{b1e338f8-9533-11ca-a34a-08001e019ce1 1.1} /.../cell.co.com/sec 0 rpriv}
{{6f264242-b9f8-11c9-ad31-080002b0dc035 1.0} /.../cell.co.com/lan-profile 0 LAN}
{{4d37f2dd-ed43-0000-02c0-37cf2e000001 4.0} /.../cell.co.com/fs 0 fs}

dcecp>

Importing Binding Information from a Profile Entry in CDS

Application client programs can automatically import server binding information from CDS and use it in their quest to find and communicate with a server. But occasionally, an administrator might want to import a binding. In the case where a client lacks access to CDS, it could still communicate with the server if you supplied the client with a valid binding.

You can use an `rpcprofile import` operation to return a server's binding information. You must specify an interface by using the `-interface` option as shown in the following example:

dcecp> rpcprofile import /.:/subsys/applications/wards_profile \
> -interface {458fffcbe-98c1-11cd-88bc-0000c08adf56 1.0}
{ncacn_ip_tcp 130.105.1.202}
{ncacn_ip_tcp 130.105.1.227}
dcecp>

You can use other options such as `-version` and `-object` to further specify a binding. Use the `-max` option to limit the number of bindings returned, as shown in the following example:

dcecp> rpcprofile import /.:/subsys/applications/wards_profile \
> -interface {458fffcbe-98c1-11cd-88bc-0000c08adf56 1.0} \
> -max 1
{ncacn_ip_tcp 130.105.1.202}
dcecp>
Removing Members from a Profile Entry in CDS

Over time, organizational changes can require you to redeploy servers in your DCE cell. You might, for instance, want to move server entries from one profile entry into another.

Use an `rpcprofile remove` operation to remove one or more members from a profile. In the following example, the `rpcprofile remove` operation removes member

```
./.:subsys/applications/admin_bbs_servers
```

from the profile

```
./.:subsys/applications/wards_profile
```


```
dcecp> rpcprofile remove ./.:subsys/applications/wards_profile \
> -member ./.:subsys/applications/admin_bbs_servers \
> -interface {458fffce-98ce-11cd-88bc-0000c08ad56 1.0}
dcecp>
```

Deleting a Profile Entry from CDS

Organization changes or server redeployments can make some profiles obsolete. When you want to remove a profile entry from CDS, use an `rpcprofile delete` operation. The following example illustrates removing an obsolete profile entry called

```
./.:subsys/admin/temporaries/74232_profile
```

from CDS:

```
dcecp> rpcprofile delete ./.:subsys/admin/temporaries/74232_profile
dcecp>
```

Client Administration

So far, this chapter has focused on server administration issues. We've seen how to control some server operations, and how to store server binding information in CDS and in the host endpoint map where clients can find it. This section discusses the administration needs of application clients. Although client administration is very simple—there are just two related operations—it is an essential step in getting clients and servers working together.

We know that CDS is a hierarchical system of directories that stores server binding information in the form of server entries. We also know that CDS offers group entries and profile entries as a way to direct clients to appropriate servers. But how do clients know where to begin looking for a server?

As we discussed earlier in this chapter, servers register interfaces and their bindings in CDS. Each interface-binding combination is registered under a server entry name. When a client makes a remote procedure call, it passes a server entry name (or a group or profile entry name) to CDS along with the UUID of an interface that offers the remote procedure. CDS uses the server entry name (or group or profile entry name) as a starting point in the search for a binding that contains an interface UUID and version matching that passed by the client. This method presumes the client has previously acquired the server entry name (or group or profile name) used by the server.

Getting clients to use an appropriate server entry name is a 2-step process:

1. Determine what entry name a client should use.
2. Pass the name to the client program.

Note that a client uses whatever name you supply. The client program cannot distinguish whether the name is a server entry name or group entry name or profile entry name. To the client, all of these names look and behave the same.
Determining the Entry Name

You need to know the entry name exported by a server so you can provide it to client programs when you configure them. Here, we are just calling this name an entry name, but it can be a server entry name or group entry name or profile entry name. Your application documentation should help you decide which kind of entry to use.

If you are installing and configuring the server and client parts of an application, make a note of the server’s entry name when you configure the server.

If you are not installing or configuring the server (for instance, the server was previously installed), you might need to do some detective work to determine the name to use. There are several places you can look.

If a server uses the server control facility described earlier in this chapter, you can probably use a `server show` operation to reveal its entry name. Of course, this means you need to know the server’s object name on the host where the server resides. You can see all of the server object names on a host by using a `server catalog` operation. The following example lists all the server objects configured on host `silver`. The `server show` operation reveals the entry name used by the `info_server` program.

```
dcecp> server catalog ./:/hosts/silver
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/video_clip
/.../my_cell.goodco.com/hosts/silver/config/srvrconf/info_server

dcecp> server show ./:/hosts/silver/config/srvrconf/info_server
{uuid 6d5e7184-71b7-11cd-a205-08000925634b}
{program {/usr/local/bin/infosrv}}
{arguments {-brief}}
{prerequisites {}}
{keytabs {}}
{entryname {./:/subsys/applications/info_server_1}}
{services {}}
{principals {}}
{starton {explicit failure}}
{uid 1423}
{gid 1000}
{dir {/tmp}}
```

If a server starts from a boot program or script of some kind, look in the program or script for the name or names (sometimes servers use multiple names when they export multiple interfaces). The name might be supplied as an argument to the command that starts the server, as in the following example:

```
infosrv ./:/finance/operations/infoserv
```

When the server side does not easily reveal its entry name, try to determine what entry other client programs are using. Client programs frequently start from a boot program or script of some kind, and entry names are generally provided as arguments to the command to start the client. These commands often follow the same model shown in the previous example of the server startup command.

Providing the Entry Name to Clients

Sometimes, very simple clients can have the server entry name encoded within them so you do not have to pass any entry name. But more often, you need to supply an entry name to a client program when it starts. This approach is more
flexible than hardcoding an entry name because it offers an easy way to use a
different entry name should the need arise.

The client configuration documentation should include instructions on how to pass
the name to the client. One method uses a script or batch file that contains the
command to start the client along with arguments that include the appropriate
server entry name. The following example shows a server entry name passed as a
command argument in a shell script that starts the client:

```bash
# Shell Script to start the InfoClient application
infoclient /./finance/operations/InfoServ_profile
```

Alternatively, the server entry name can be stored in an environment variable
(called `RPC_DEFAULT_ENTRY` on UNIX systems). The following example shows a
shell script that defines this variable and then invokes the client:

```bash
#!/bin/sh
# Shell Script to start the InfoClient application
export RPC_DEFAULT_ENTRY=/.:/finance/operations/InfoServ_profile
infoclient
```
Chapter 11. Introduction to the DCE Directory Service

Distributed processing involves the interaction of multiple systems to do work that is done on one system in a traditional computing environment. One challenge resulting from this network-wide working environment is the need for a universally consistent way to identify and locate people and resources anywhere in the network.

The DCE Directory Service makes it possible to contact people and to use resources such as disks, print queues, and servers anywhere in the network without knowing their physical location. The directory service is much like a telephone directory assistance service that provides a phone number when given a person’s name. Given the unique name of a person, server, or resource, it can return the network address and other information associated with that name.

The DCE Directory Service stores addresses and other relevant information as attributes of the name. For example, attributes can contain the name of an organizational unit, such as European Sales; a location, such as the first floor of Building A; or a telephone number.

How the DCE Components Use the DCE Directory Service

The DCE Directory Service is a fundamental service that applications can rely on and use to their advantage. This section describes how other DCE components use the DCE Directory Service.

The DCE remote procedure call (RPC) interface facilitates the development and use of distributed applications that follow a client/server model. In the RPC model, clients are programs that make remote procedure calls, and servers are programs that carry out the procedures. The DCE RPC software stores information in the directory service about the addresses of RPC servers and the interfaces they support.

When an RPC client wants to make a call to a particular server, it can query the directory service for the information necessary to contact that server. If the client wants to access a specific resource that is named in the directory service, it can query for that specific name. If a client application knows the type of service that it wants, such as C compilers, printers, or employee information, but does not know the address of a specific server, it can also use the directory service to find that information.

The DCE Security Service, which verifies the identity of users when they log in, uses the directory service to store the addresses of its authentication servers.

The Distributed File Service (DFS) provides a location service for filesets (logical groups of files) so that users can access remote files as if they are on the local system. DFS uses the DCE Directory Service to find out how to contact its fileset location servers.

The Distributed Time Service (DTS) is responsible for synchronizing system clocks in the network. Synchronized clocks are important to any distributed application that needs to keep track of the order in which events occur across multiple systems. DTS uses the DCE Directory Service to find out how to locate its time servers.
How to Use DCE Directory Services

Other than DCE administrators, the people who use directory services normally do so indirectly, through an application interface. An application can interact with the directory service on behalf of users who create a name for a resource and subsequently refer to it by that name. The following examples, both real and hypothetical, explain some of the ways that users can use the directory service:

- A user invokes a spell-checking application on a new document. The application contains DCE RPC client code on the user’s local system. The RPC client contacts the directory service for information on an available spell-checking server. The directory service returns the address of the server, the protocol type it uses to communicate, and a universal unique identifier (UUID) that represents an interface. Using this information, the RPC client makes a remote call to the server and the server checks the spelling in the user’s document. The user is unaware that use of the spell checker involved a call to the directory service and interaction with a remote server.

- A user logging into a system enters a name and password. The directory service helps the login program locate an authentication server, which verifies the user’s identity in an authentication database.

- A user enters a file specification. The directory service provides the address of a DFS fileset location database, which contains the network address of a server that allows the user to access the file.

- A user enters the name of a computer conference or electronic bulletin board and the directory service provides an address, allowing the application to connect to the conference service.

- By entering a name or some information about a printer’s capabilities, a user can learn the printer’s network address. For example, the user may want to find the address of the closest and fastest available color printer.

- A user needs information from an employee in the marketing department. The user remembers that the employee’s last name is Wong, but cannot remember the first name. By entering the last name and department name in an employee locator application, the user can check the directory service for information on all Wongs in the marketing department and find out how to contact the employee.

- A user enters a report in a problem-tracking database. Although the database was recently moved to a new node, the user is not aware of the change because the database is always referred to by its name only. The directory service stores the current network address and provides it to the problem-tracking application and any other application that requests it.

The remainder of this chapter explains how the DCE Directory Service environment works with regard to cells. It introduces the main directory service components: the Cell Directory Service (CDS) and the Global Directory Agent (GDA), which is a gateway between the local and global naming environments. The chapter also discusses DCE support for the Domain Name System (DNS) and LDAP Server, which are global name services that are not parts of the DCE technology offering.

Directory Services and the Cell Environment

This section introduces the following main components of the DCE naming environment and explains their relationship to the cell:

- CDS
- DNS
CDS is a high-performance distributed service that provides a consistent, location-independent method for naming and using resources inside a cell (intracell). CDS can also be used for communication between cells (intercell) when cells are connected into a hierarchy.

The X.500 server is a server that will accept the directory access protocol (DAP) from an X.500 client to access objects in its directory. In DCE, the server is the GDS server and the client is the GDS client. The GDA communicates with the GDS client via the XDS/XOM API. The GDS client and server are based on the 1988 X.500 standard.

The LDAP client is a client that is implemented in two libraries, **libldap.a** and **liblber.a** and they are shipped with DCE. The client is based on the University of Michigan 3.3 source code. The LDAP client accepts the LDAP API from the GDA and communicates with the LDAP server via the LDAP protocol.

The LDAP server is a server that will accept the LDAP protocol from an LDAP client to access objects in its directory. The LDAP server may be an X.500 server that also accepts the LDAP protocol or any proprietary directory service that accepts the LDAP protocol. The LDAP server is not provided by DCE and must be provided by the user. The GDA communicates with the LDAP client via the LDAP protocol.

Figure 5 represents a hypothetical configuration of two cells that each use X.500 or an LDAP server to access names in the other cell. Names that are stored directly in X.500 or the LDAP Server also are accessible from each cell. CDS is the directory service within each cell. The same organization administers both cells, which are configured based on geographic location and network topology.

DNS is a widely used existing global name service for which DCE offers support. Many networks currently use DNS primarily as a name service for Internet host names. Although DNS is not a part of the DCE technology offering, the directory service contains support for cells to interoperate through DNS.

The GDA is the DCE component that makes cell interoperation possible. The GDA enables CDS to access a name in another cell through one of the global naming environments (X.500, LDAP, or DNS), or through the CDS of the parent cell, if the cell is part of a hierarchical cell configuration. The GDA is an independent process.
that can exist on a system separate from a CDS server, although by default the DCE configuration script configures the GDA on the same machine as a CDS server. CDS needs to be able to contact at least one GDA to participate in the global naming environment.

Figure 6 shows how the GDA helps CDS access names outside of a cell. When CDS determines that a name is not in its own cell, it passes the name to a GDA, which searches the appropriate naming environment (CDS, X.500, LDAP, or DNS) for more information about the name. The GDA returns information that enables the original CDS server to contact the CDS server in whose cell the name resides. The GDA can help CDS find names in a cell that is registered in DNS (Scenario A), a cell that is registered in an X.500 or LDAP server (Scenario B), or a cell that is registered in the originating cell’s parent cell (not shown). The GDA decides which name service to use based on the syntax of the name. "An In-Depth Analysis of DCE Names" on page 147 describes name syntaxes in detail. Note the interface between the GDA and the X.500, GDS, or LDAP server is dependent on the type of server being used. The GDA uses the XDS/XOM API to interface with the GDS client. The GDS client uses the DAP protocol to interface with the X.500 Server. The GDA uses the LDAP API to interface with the LDAP client. The LDAP client uses the LDAP protocol to interface with the LDAP server.

Figure 6. Interaction of CDSs, GDAs, and Global Directory Services

The GDA helps CDS resolve names:
A. in another cell that is registered in DNS
B. in another cell that is registered in GDS

Figure 6. Interaction of CDSs, GDAs, and Global Directory Services

How Cells Determine Naming Environments

In addition to delineating security and administrative boundaries for users and resources, cells determine the boundaries for sets of names. Because different naming components operate in a cell and outside of a cell, naming conventions in the cell and global environments differ as well. The DCE naming environment supports two kinds of names: global names and cell-relative, or local, names. The following subsections introduce the concept of global and local names. "An In-Depth Analysis of DCE Names" on page 147 describes CDS, X.500, LDAP, and DNS names in detail.
Global Names

All entries in the DCE Directory Service have a global name that is universally meaningful and usable from anywhere in the DCE naming environment. The prefix /... indicates that a name is global. A global name can refer to an object within a cell (named in CDS) or an object outside of a cell (named in X.500).

The following example shows the global name for an entry created in X.500. The name represents user Ellie Bloggs, who works in the administrative organization unit of the Widget organization, a British corporation.

/.../C=GB/O=Widget/OU=Admin/CN=Ellie Bloggs

The X.500 name syntax consists of a global prefix /... and a set of elements, called relative distinguished names (RDNs). Each RDN consists of one or more pairs of parts separated by an = (equal sign) character. The items that are separated by an equal sign are multiple attribute value assertions (AVAs). See the OSF DCE GDS Administration Guide and Reference for more information about AVAs. The first part of a pair is an abbreviation that indicates a type of information. Some common abbreviations are Country (C), Organization (O), Organization Unit (OU), and Common Name (CN). The second part of the pair is a value. (See "X.500 Names" on page 148 for more information on X.500 names.)

The following example shows a global name for a price database server named in CDS. The server is used by the Portland sales branch of XYZ Company, an organization in the United States.

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1

As the example illustrates, global names for entries that are created in CDS look slightly different from pure X.500-style names. The first portion of the name, /.../C=US/O=XYZ/OU=Portland, is a global cell name that exists in an X.500 server. The remaining portion, /subsys/PriceMax/price_server1, is a CDS name.

The cell name exists because cells must have names to be accessible in the global naming environment. The GDA looks up the cell name in the process of helping CDS in one cell find a name in another cell. Cell names are established during initial configuration of the DCE components. Before configuring a cell that will participate in standard intercell communication (that is, via the DNSX.500 global directory services), the DCE administrator must obtain a unique cell name from either of the global naming environments, depending on whether the cell needs to be accessed through X.500 or DNS.

The next example shows the global name of a host at ABC Corporation. The global name of the company’s cell, /.../abc.com, exists in DNS.
Cell-Relative Naming in a Standalone Cell

In addition to their global names, all CDS entries have a cell-relative, or local, name that is meaningful and usable only from within the local cell where that entry exists. The local name is a shortened form of a global name, and thus is a more convenient way to refer to resources within a user’s own cell. Local names have the following characteristics:

- They do not include a global cell name.
- They begin with the ./: prefix.

Local names do not include a global cell name because the ./: prefix indicates that the name being referred to is within the local cell. When CDS encounters a ./: prefix on a name, it automatically replaces the prefix with the local cell’s name, forming the global name. CDS can handle both global and local names, but it is more convenient to use the local name when referring to a name in the local cell. For example, these names are equally valid when used within the cell named

```
/.../C=US/O=XYZ/OU=Portland:
```

```
/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1
```

```
./:/subsys/PriceMax/price_server1
```

The naming conventions required for the interaction of local and global directory services may at first seem confusing. In an environment where references to names outside of the local cell are necessary, the following simple guidelines can help make the conventions easy to remember and use:

- Know your cell name.
- Know whether a name that you are referring to is in your cell.
- When using a name that is within your cell, you can omit the cell name and include the ./: prefix.
- When using a name that is outside of your cell, enter its global syntax, including the /... prefix and the cell name.
- When someone asks for the name of a resource in your cell, give its global name, including the /... prefix.
- When storing a name in persistent storage (for example, in a shell script), use its global name, including the /... prefix. Local names (that is, names with a ./: prefix) are intended only for interactive use and should not be stored. (If a local name is referenced from within a foreign cell, the ./: prefix is resolved to the name of the foreign cell and the resulting name lookup either fails or produces the wrong name.)

Cell-Relative Naming in a Hierarchy of Cells

In a hierarchy of cells, cell-relative names and local names may not be the same. A parent cell can reference a name in a child cell by using cell-relative naming (./:).

Consequently, you can no longer determine whether a cell is in your local cell by merely looking at its name. In the following example, the child cell (eng) is named relative to its parent cell:

```
./:/eng
```

This type of naming allows you to access names in a child cell (for example, ./:/eng/hosts/admin) from the parent cell, without having to specify the global name of the cell.
Note: When referencing names in a child cell from a parent cell, you should be mindful that your status is that of a foreign user. Therefore, the child cell may have access controls imposed on it that will deny you access to its namespace.

Local Filenames

When referring to pathnames of files in the local cell, you can shorten a local name even further by using the \:/ prefix. This prefix translates to the root of the cell file system. The default name of the file system root is /:/fs, which is one level down from the root of the cell namespace. So, for example, the following are all valid ways to refer to the same file from within the /.../.../widget.com cell:

/.../.../widget.com/fs smith myfile
/..:/fs smith myfile
/:: smith myfile

(See the IBM DCE 2.2 for AIX: DFS Administration Guide and Reference for more information on local file system abbreviations.)

An In-Depth Analysis of DCE Names

The rest of this chapter describes in depth the different kinds of names that make up the DCE namespace. Appendix A and the OSF DCE GDS Administration Guide and Reference contain further details about valid characters and naming conventions in CDS and DNS names.

CDS Names

Every cell contains at least one server that is running a CDS server. A CDS server stores and maintains names and handles requests to create, modify, and look up data. The total collection of names shared by CDS servers in a cell is called a cell namespace. The cell namespace administrator can organize CDS names into a hierarchical structure of directories. CDS directories, which are conceptually similar to the directories in your operating system’s file system, are a logical way to group names for ease of management and use.

In a cell namespace, any directory that has a directory beneath it is considered the parent of the directory beneath it. Any directory that has a directory above it is considered a child of the directory above it. The top level of the cell namespace is called the cell root. You can refer to the cell root either by the global name of the cell or by the short-form \:/ prefix.

Figure 7 on page 148 shows a simple cell namespace hierarchy, starting at the cell root. The cell root (\:) is the parent of the directories named \:/hosts and \:/subsys. The \:/subsys directory is a child of the cell root directory and the parent of the \:/subsys/dce directory.
The complete specification of a CDS name, going left to right from the cell root to the entry being named, is called the full name. Each element within a full name is separated by a / (slash) and is called a simple name. For example, suppose the /.:/hosts directory shown in Figure 7 contains an entry for a host whose simple name is bargle. The CDS full name of that entry is /.:/hosts/bargle. Multiple consecutive slashes are turned into a single slash in a full name.

Multiple directory levels enable flexibility in distributing, controlling access to, and managing many names. A directory hierarchy also reduces the probability of duplicate names. For example, the names /.:/subsys/Hypermax/printQ/server1 and /.:/subsys/ABC/spell/server1 are unique.

X.500 Names

The operation of X.500 is similar to that of CDS, but some important differences exist in the structure of names and the ways they can be looked up. Like CDS, X.500 and the LDAP Server have a server process that provides access to and management of names for X.500. This process is called a Directory System Agent (DSA). The combined knowledge of all DSAs that participate in the same global directory service implementation is called the Directory Information Base (DIB). This collective knowledge is viewed as a single global directory consisting of many entries.

Information exists in the X.500 global directory in the form of a rooted hierarchy that is called a directory information tree (DIT). The DIT is similar to a CDS namespace. However, unlike a namespace, which has no inherent rules regarding structure and content, the X.500 hierarchy is influenced by a set of rules that is called a schema. Every X.500 DSA must define a standard schema to which all of the entries in its portion of the DIB conform.

Although the X.500 standard does not mandate a specific schema, it does make general recommendations that are based largely on existing X.400 standards for electronic mail. For example, countries and organizations should be named close to the root of the DIT; people, applications, and devices should be named further down in the hierarchy. X.500 supplies a default schema that complies with these recommendations.

Every X.500 entry has a distinguished name, which uniquely and unambiguously identifies that entry. The distinguished name consists of a sequence of valid relative distinguished names (RDNs). Each RDN consists of one or more assertions of the type and value of an attribute at a particular position in the DIT. Attribute types indicate the nature of the information that is stored in the attribute value. A pair consisting of an attribute type and value is known as an attribute value assertion (AVA). RDNs can have multiple AVAs. For example, the distinguished name:

/C=us/O=osf/OU=branch1/CN=nollman,OU=doc-team
consists of four RDNs. The final RDN consists of two AVAs that are separated by a comma.

Figure 8 illustrates the concepts of RDNs and distinguished names and how they relate to the DIT. The figure shows the following:

- A DIT consisting of a hierarchy of schema-defined attribute types
- RDNs that result from assertions of an attribute type and value
- Distinguished names that result from a concatenation of the RDNs

An X.500 name is understood by the GDA, and it contacts either an X.500 client (GDS) via the XDS/XOM API or an LDAP client via the LDAP API to resolve the X.500 cell name.

The LDAP server contacted by the LDAP client may be proprietary or could be an X.500 server that supports the LDAP access protocol. Therefore, you may need to contact the supplier of your LDAP server for this information.

The shaded boxes in the DIT represent the entries that are named in the column labeled relative distinguished name. The schema dictates that countries are named directly below the root, followed by organizations, organization units, and names of users. Each attribute value that makes up an RDN (and thus a distinguished name) is called a distinguished value.

As the rightmost column in the figure illustrates, the distinguished name of the entry at each level of the DIT is a concatenation of RDNs from the root of the global directory to that entry’s level. The lowest entry in the hierarchy,
\[/\ldots/C=US/O=ABC/OU=Sales/CN=Smith \], represents the name of a user, John Smith, who works in the sales division of ABC Company, an organization in the United States. The abbreviated attribute type labels stand for Country (C), Organization (O), Organization Unit (OU), and Common Name (CN).

Note that the figure shows the global DCE convention for distinguished names. Each distinguished name starts with the representation of the global root (\[/\ldots\]). Attribute types and values are separated by equal signs, and RDNs are separated
by slashes. These conventions for specifying names are not followed by all X.500 implementations. In addition, these conventions are only used at the X.500 administration interface level. Internally, distinguished names are specified in other ways.

The structure of X.500 names points out another important difference between X.500 and CDS. A CDS name is distinct from its attributes; that is, it consists of a string of directory names ending with the simple name of the entry. In contrast, a X.500 name consists solely of a series of attribute types and their values.

Figure 9 illustrates this difference in the construction of CDS and X.500 names. The CDS full name /.:Admin/Personnel/Employee_DB is the complete directory specification of an entry with the simple name Employee_DB. Attributes and their values are not a part of the CDS full name. The X.500 distinguished name /.../C=US/O=ABC/OU=Sales is a concatenation of attribute types and values, one from each level of a DIT schema.

Note: The LDAP name /.../OU=Sales,O=ABC,C=US is not valid in DCE. The name must be specified as an X.500 distinguished name (/.../C=US/O=ABC/OU=Sales).

X.500 supports the ability to search for names by supplying the values of one or more attributes. This results in what is called descriptive naming; in a sense, users can describe the name they are looking for. Although the search capability is valuable, it can be expensive and time consuming; so, X.500 allows users to restrict the scope of a search. Support for the search operation is limited to the X.500 environment.
LDAP Names

The LDAP name contains the same information as an X.500 name, but differs in its syntax. LDAP names start with the last RDN of an X.500 name and use a comma (,) instead of a slash (/) for RDN separators. The following example shows these differences:

X.500 name: /C=us/O=osf/OU=branch1/CN=nollman/OU=doc_team

LDAP name: OU=doc_team,CN=nollman,OU=branch1,O=osf,C=us

DCE only supports X.500 cell names. GDA will convert an X.500 cell name to LDAP syntax when accessing an LDAP server via the LDAP client.

DNS Names

The DCE naming environment supports the version of DNS that is based on Internet Request for Comments (RFC) 1034 and RFC 1035. Many networks currently use DNS primarily as a name service for host names. The most commonly used implementation of DNS is the Berkeley Internet Naming Domain (BIND). The BIND namespace is a hierarchical tree with its topmost levels under the control of the Network Information Center (NIC). (See the IBM DCE 2.2 for AIX: Administration Guide—Introduction for information on how to contact the NIC Domain Registrar to register a domain name.)

The names directly under the root of the BIND namespace include 2-letter codes for countries, such as us and gb, as defined in ISO Standard 3166, “Codes for the Representation of Names of Countries.” Other names one level below the root include several generic administrative categories, such as com (commercial), edu (educational), gov (government), and org (other organizations). The owners of these names can grant permission to companies and organizations to create new subordinate names. Figure 10 shows a sample portion of the BIND namespace. (The double quotes indicate that the root of the namespace has a null name and is not addressable.) Note that, like CDS names, DNS names are not typed; that is, they do not consist of pairs of attribute types and values.

![Figure 10. Sample Portion of the BIND Namespace](image)

A DNS name consists of a string of hierarchical names that are separated by . (dots) and arranged right to left from the root of the namespace. For example, the name ai.mit.edu represents the branch of the namespace owned by the
Names Outside of the DCE Directory Service

Not all DCE names are stored directly in the DCE Directory Service. Some services connect into the cell namespace by means of specialized CDS entries called *junctions*. A junction entry contains binding information that enables a client to connect to a server outside of the directory service.

For example, the security service keeps a database of principals (users and servers) and information about them, such as their passwords. The default name of the security service junction is `/.:/sec`.

The following example illustrates the parts of a global DCE principal name:

```
Cell name \rightarrow CDS name \rightarrow Security Service name
```

```
/.../C=US/O=ABC/OU=west/sec/principals/mozart
```

The cell name, `/.../C=US/O=ABC/OU=west`, is an X.500 name. The `sec` portion is the junction entry in CDS, and `principals/mozart` is a principal name that is stored in the security service database.

Another service that uses junctions is DFS. The DFS fileset location service keeps a database that maps DFS filesets to the servers where they reside. The junction to this database has a default name of `/.:/fs`. The following example illustrates the parts of a global DCE filename:

```
Cell name \rightarrow CDS name \rightarrow Filename
```

```
/.../ai.mit.edu/fs/users/mozart/myfile
```

The global name contains a DNS cell name, `/.../ai.mit.edu`. The `fs` portion is the file system junction entry in CDS, and `/users/mozart/myfile` is the name of a file.

Thus, the DCE namespace is a connected tree of many kinds of names from many different sources. The GDA component of the directory service provides connections out of the cell and to other cells through a global namespace, such as X.500 or DNS. In a similar manner, junctions enable connections downward from the cell namespace to other services.
Chapter 12. CDS Concepts

The Cell Directory Service (CDS) is a high-performance distributed service that provides a consistent, location-independent method for naming and using resources inside a cell. CDS offers the ability to replicate CDS names; that is, to store copies of them on more than one node. CDS automatically keeps multiple copies consistent. Names also can be distributed among several nodes so that no one node has to store all of them. This feature is particularly valuable in large cells.

The ability to replicate and distribute information has many benefits, including the following:

- Availability—Because you can store the same name in more than one place, data is likely to be available even in the event of a system or network failure.
- Efficiency—CDS finds names efficiently because you can store them close to where they are used most often. Furthermore, once CDS finds a name, it can connect to the same name immediately on all subsequent lookups.
- Load Sharing—Because names are in more than one place, several systems can share the load of looking them up.
- Expandability—New names are easily accommodated as the network grows and more applications use CDS.

How CDS Works

Operation of the CDS involves several major participants:

- Client applications
- Servers
- Clerks
- Clearinghouses

CDS uses a client/server model. An application that depends on CDS to store and retrieve information for it is a client of CDS. Client applications create names for resources on behalf of their users. Through a client application, a user can supply other information for CDS to store as attributes of a name. Then, when a client application user refers to the resource by its CDS name, CDS retrieves data from the attributes for use by the client application.

A system running CDS server software is a CDS server. A CDS server stores and maintains CDS names and handles requests to create, modify, or look up data.

A component called the clerk is the interface between client applications and CDS servers. Every DCE node must run a CDS clerk. The clerk receives a request from a client application, sends the request to a server, and returns the resulting information to the client. This process is called a lookup. The clerk is also the interface through which client applications create and modify names. One clerk can work on behalf of many client applications.

The clerk caches, or saves, the results of lookups so that it does not have to repeatedly go to a server for the same information. The cache is written to disk periodically so that the information can survive a system reboot or the restart of an application. When you stop the CDS advertiser, the cache is written to disk. Caching improves performance and reduces network traffic.
Figure 11 shows a sample configuration of CDS clerks and servers on a 9-node local area network (LAN). Every node is a clerk, and CDS servers run on two selected nodes.

Every CDS server has a database called a clearinghouse in which it stores names and other CDS data. The clearinghouse is where a CDS server adds, modifies, deletes, and retrieves data on behalf of client applications. Although more than one clearinghouse can exist at a server node, it is not recommended as a normal configuration.

Figure 12 on page 155 shows the interaction between a CDS client, clerk, server, and clearinghouse during a simple lookup. It illustrates the following CDS lookup steps:

1. The client application on Node 1 sends a lookup request to the local clerk.
2. The clerk checks its cache and, not finding the name there, contacts the server on Node 2.
3. The server checks to see if the name is in its clearinghouse.
4. The name exists in the clearinghouse, so the server gets the requested information.
5. The server returns the information to the clerk on Node 1.
6. The clerk passes the requested data to the client application. The clerk also caches the information so that it does not have to contact a server the next time a client requests a lookup of that same name.
Replicas are the units by which you distribute and replicate names throughout the cell’s namespace. Each physical copy of a directory, including the original, is called a *replica*. When you create a replica of a directory, you replicate all of the entries in it as well.

Replicas are stored in clearinghouses. You can think of a clearinghouse as the collection of directory replicas at a particular server. After you create a directory in one clearinghouse, you can create replicas of it in other clearinghouses to increase availability for looking up information. CDS periodically ensures that the contents of all replicas of a directory remain consistent.

Two types of replicas can exist:

- Master
- Read-only

A replica’s type affects the processing that can be done on it and the way CDS updates it. The type of replica that CDS uses when it looks up or changes data is invisible to users. However, it helps to understand how the two types differ.

The master replica is the first instance of a specific directory in the cell’s namespace. After you make copies of the directory, you can designate a different replica as the master, if necessary. However, only one master replica of each directory can exist at a time. (See “Chapter 21. Restructuring a Namespace” on page 215 for complete information on how to redesignate the master replica of a directory.)

The master replica is the only directly modifiable replica of a directory. CDS can create, change, and delete information in a master replica. Because it is modifiable, the master replica incurs more overhead than read-only replicas, which CDS keeps up-to-date periodically with changes made to the master replica.
A read-only replica is a copy of a directory that is available only for looking up information. CDS does not create, modify, or delete names in read-only replicas; it simply updates them with changes made to the master replica.

Replicas can contain three kinds of entries:
- Object entries
- Soft links
- Child pointers

Object Entries

An object is any real resource—like a disk, application, or node—that is given a CDS name. When an object name is created, client applications and the CDS software supply attributes to be stored with the name. An attribute, consisting of an attribute name and value(s), describes a particular operational property of an object. The name and its attributes make up the object entry. When a client application requests a lookup of the name, CDS returns the value of the relevant attribute or attributes.

Object entries are typically created and managed through a client application interface. For example, the DCE control program and the name service interface (NSI) of the RPC runtime let users create entries that represent RPC servers, groups, and profiles. These are special kinds of entries that enable an RPC application to locate and select servers. (See the *IBM DCE 2.2 for AIX: Application Development Guide* for details on how RPC uses CDS for this purpose.)

You can also create object entries through the DCE control program (*dcecp*). (See [Part 1. The DCE Control Program" on page 1](#) of this document and the *IBM DCE 2.2 for AIX: Command Reference* for information on the commands that allow you to create and manage object entries by using *dcecp*.)

Every object can have a defined class, which is an optional attribute of the object entry. DCE components that use the directory service can define their own object classes and supply class-specific attributes for the directory service to store on their behalf. Class-specific attributes have meaning only to the particular class of objects with which they are associated.

The clearinghouse object entry represents a special class of object that is predefined by CDS. A clearinghouse object entry serves as a pointer to the location of a clearinghouse in the network. CDS needs this pointer so that it can look up and update data in a clearinghouse.

When you create a clearinghouse, CDS creates its clearinghouse object entry automatically. The clearinghouse object entry acquires the same name as the clearinghouse. The clearinghouse object entry is like any other object entry in that it describes an actual resource, but it is different because it is solely for internal use by CDS. Clearinghouses can only be created in the cell root directory. Therefore, all clearinghouse object entries are stored in the cell root directory. CDS itself updates and manages clearinghouse object entries when necessary. They do not require any external management except in rare problem-solving situations. (See your vendor for help in these situations.)
Soft Links

A soft link is a pointer that provides an alternate name for an object entry, directory, or other soft link in the cell’s namespace. You can do minor restructuring of a cell’s namespace by creating soft links that point from an existing name to a new name. Soft links also can be a way to give something multiple names so that different kinds of users can refer to a name in a way that makes the most sense to them.

Soft links can be permanent, or they can expire after a period of time that you specify. If the name that a soft link points to is deleted, CDS deletes the soft link automatically when it expires.

CDS managers should use soft links carefully. They should not use soft links to completely redesign the cell’s namespace or to provide shortcuts for users who do not want to use the full name of an object entry. Overuse of soft links makes CDS names more difficult to keep track of and manage.

Child Pointers

A child pointer provides the following kinds of connections for cells:
- Between a directory to another directory immediately beneath it in a cell’s namespace
- Between a parent and its child cell

Users and applications do not create child pointers; CDS creates a child pointer automatically when someone creates a new directory. The child pointer is created in the directory that is the parent of (one level above) the directory to which it points. CDS uses child pointers to locate directory replicas when it is trying to find a name. Child pointers do not require management except in rare problem-solving situations.

Summary

To summarize, a cell consists of a complete set of names that are shared and managed by one or more CDS servers in a cell. A name can designate a directory, object entry, soft link, or child pointer. The logical representation of a cell’s namespace is a hierarchical structure of directories and the names they contain. Every physical instance of a directory is called a replica. Names are physically stored in replicas, and replicas are stored in clearinghouses. Any node that contains a clearinghouse and runs CDS server software is a CDS server.

Figure 13 on page 158 shows the components of a CDS server node. Every server manages at least one clearinghouse containing directory replicas. A replica can contain object entries, soft links, and child pointers. The figure shows only one replica and one of each type of entry that is possible in a replica. Normally, a clearinghouse contains many replicas, and a replica contains many entries.
Security in the Cell Directory Environment

In a secure DCE cell operation, a server does not complete a user’s request unless the user’s identity has been verified through the DCE Authentication Service. So, for example, a CDS server allows a user to create a new directory only if that user’s identity has been verified. The process of verifying that users are who they say they are is called authentication. The proof is in the form of a user name, or principal name, coupled with a special kind of password.

CDS servers themselves must be authenticated principals for two reasons:
- To prove to clients that they are trustworthy
- To prove to each other that they have the permission to modify and manage the data that they share

The principal name of a CDS server is automatically selected by the configuration program and is placed in a group that contains the names of all CDS servers in the cell. The group is stored as an entry in the DCE Security Service database. After initial contact with a CDS server, the clerk confirms through the DCE Security Service that the server is a valid member of the server group.

Authentication is not an end in itself, but is instead a step in the process of authorization. Once the identity of a principal has been verified, the software must next determine whether that principal has the permissions that are required to perform a requested action. This is called authorization. Therefore, to create a new directory, the user in the previous example must not only be authenticated, but have the appropriate permissions as well.

Servers need to be authenticated to each other because they share and modify replicated data. For example, suppose server A and server B both store a replica of the same directory. Associated with each directory is a list of all the servers authorized to maintain that directory. When a user modifies an entry in the replica at
server B, server B must notify server A of the change. Server A does not accept the
update unless server B is an authenticated principal and is one of the principals
authorized to modify that directory.

The CDS permissions are read, write, insert, delete, test, control, and administer.
Each has a slightly different meaning depending on the kind of name it is
associated with, but, in general, their meanings are as follows:

- Read permission lets users view data.
- Write permission lets users add or change data.
- Insert permission lets users create entries in a directory.
- Delete permission lets users delete entries.
- Test permission lets users test whether an attribute of a name has a specific
 value without being able to see any values—that is, without having read
 permission to the name. The main advantage of this permission is that it gives
 application programmers a more efficient way to check for a value: rather than
 reading a whole set of values, the application can test for a particular value.
- Control permission lets users manage the access control list (ACL) of an entry.
- Administer permission lets users manage directory replication.

Note that it is possible to define a special ACL for users who cannot be
authenticated or who deliberately request unauthenticated operations. In such a
case, the user’s identity is not verified, and the ACL entry for unauthenticated users
determines whether the user has the permissions to perform the requested action.
(See [Part 6. DCE Security Service on page 283 of this guide for details on
creating ACLs for unauthenticated users.]

CDS User Interfaces

CDS has several *entities* that can be managed via user interfaces that are provided
in DCE. A CDS entity is any individually manageable piece of the CDS software.
CDS directories, soft links, and object entries are the most common entities that
you manage with the DCE user interfaces. Some object entries, though, are
normally managed through the client application that creates them.

The DCE control program provides many commands for managing CDS entities.
[Chapter 15. Managing the DCE Directory Service on page 171 of this guide
contains information about these commands.

CDS also comes with one other user interface called the browser.

The browser is a tool for viewing the content and structure of a namespace. It runs
on workstations with windowing software that is based on the OSF/Motif® graphical
user interface. Using a mouse to manipulate pull-down menus, you can view the
directory structure of a namespace, view child directories of a particular directory,
view the object entries and soft links in a directory, and set a filter to display only
object entries of a particular class. (For users who do not have windowing software,
similar functions are available with *dcecp*.)

In addition to *dcecp* and the browser, other DCE user interfaces allow access to
and management of CDS names. For example, users can control access to CDS
directories and their contents by using an ACL editor such as the *dcecp acl* object,
which is supplied with the DCE Security Service. RPC application programmers can create server entries, groups, and configuration profiles in the cell’s namespace with `dcecp`.
Chapter 13. How CDS Looks Up Names

This chapter illustrates the relationship between a name and the physical resource that it describes, and explains how CDS handles requests to look up names. Understanding these concepts can help you to plan for the location of clearinghouses and directories in your cell namespace. It can also help you to isolate the source of a problem if you encounter lookup errors or failures. Note that the figures in this chapter do not reflect the actual structure of a typical DCE cell namespace. For simplicity, the figures show fewer directories and directory levels.

Translating from Names to Resources

Just as directory names in a logical namespace hierarchy translate to physical replicas in clearinghouses, CDS names translate to physical resources that are used either internally by CDS or by client applications. The attributes of a name are what make the translation possible. This section describes the relationship between CDS names and the physical resources that they describe.

Figure 14 on page 162 shows three directories and their contents in a logical namespace, and how replicas of those directories are physically implemented in two clearinghouses. The clearinghouses themselves have CDS names: /.:Paris_CH on Node 1 and /.:NY_CH on Node 2. The _CH suffix is a recommended convention for naming clearinghouses. The /.:Paris_CH clearinghouse contains replicas of the root directory and the /.:subsys/PrintQ directory. The /.:NY_CH clearinghouse contains replicas of the root directory and the /.:subsys directory. Recommended practice is to create at least two replicas of every directory. Therefore, the /.:subsys and /.:subsys/PrintQ directories each need to be replicated in at least one other clearinghouse somewhere in the cell.
To discover the physical location of a resource, CDS looks up an attribute that is associated with its name. Figure 15 on page 163 through Figure 17 on page 165 illustrate the connection between the various kinds of CDS names and the resources that they describe. The figures are based on the namespace in Figure 14. All of the names in Figure 15 on page 163 through Figure 17 on page 165 are in the same cell namespace, as evidenced by the use of the .:/ prefix to represent the cell root. (See Chapter 22, Managing Intercell Naming on page 227 for information about name resolution across multiple cells.)

Figure 15 on page 163 shows the relationship between two clearinghouse object entries and the clearinghouses that they describe. A clearinghouse object entry differs from other kinds of object entries in that it is created, used, and maintained by the CDS software instead of by a client application. However, it is like any other object entry in that it describes a physical resource in the network: the clearinghouse. CDS creates the object entry automatically when you create and name the clearinghouse.

Figure 15 on page 163 shows two clearinghouse object entries: .:/Paris_CH, which points to the clearinghouse that is named .:/Paris_CH on Node 1, and .:/NY_CH, which points to the clearinghouse that is named .:/NY_CH on Node 2. Each clearinghouse object entry has an attribute called CDS_CHLastAddress attribute, whose Tower subattribute contains RPC binding information that CDS uses to...
contact the node where the clearinghouse resides. (See Appendix B for a list of CDS attributes and their descriptions.)

![Diagram showing the relationship between soft links and object entries]

Legend:
- = Replica
= Object entry

Figure 15. Clearinghouse Object Entries and Clearinghouses

Figure 16 on page 164 shows the relationship between a soft link, the object entry it points to, and the resource that the object entry describes. The soft link, `.:/subsys/Print1`, has an attribute called **CDS_LinkTarget**, which contains the name that the link points to: an object entry that is named `.:/subsys/PrintQ/server1`. The object entry describes a print server machine that is used by an application called `PrintQ`. The replica containing the `.:/subsys/PrintQ/server1` object entry exists in the `.:/Paris_CH` clearinghouse. The object entry has an attribute called **CDS_Towers**, whose **Tower** subattribute contains RPC binding information that enables the `PrintQ` application to contact the print server machine.
Figure 17 on page 165 shows the relationship between directories and their associated child pointers. It illustrates that, although a child pointer has the same name as its associated directory, the child pointer is a separate entry in the namespace and resides in the parent of the directory to which it refers.

The root replicas in both clearinghouses contain a child pointer for the /./subsys(;) directory. The /./subsys child pointer has an attribute called CDS_Replicas which contains the name and address of the /./NY_CH clearinghouse, where a replica of the /./subsys directory exists.

In the /./NY_CH clearinghouse, the replica of the /./subsys directory contains a child pointer for the /./subsys/PrintQ directory. The child pointer’s XSCDS_Replicas attribute contains the name and address of the /./Paris_CH clearinghouse, where a replica of the /./subsys/PrintQ directory exists.

When a directory has multiple replicas, as is normally the case, the CDS_Replicas attribute lists all of the clearinghouses containing a replica of the directory. You can
use the `dcecp directory show` command with the `-replica` and `-clearinghouse` options to display this attribute.

How CDS Finds Names

As Figure 14 on page 162 through Figure 17 illustrate, CDS finds information about the physical location of a resource by looking up one or more attributes that are associated with its name. First, though, the clerk must know how to find the name. If a name does not yet exist in the clerk’s cache, the clerk must know of at least one CDS server to contact in search of the name.

The clerk can learn about CDS servers and their locations in any of three ways:

- Through the solicitation and advertisement protocol
- During a regular lookup
- By response to the `cdscache create` command

The Solicitation and Advertisement Protocol

Clerks and servers on the same LAN communicate by using the solicitation and advertisement protocol. A server broadcasts messages at regular intervals to
advertise its existence to clerks on its LAN. The advertisement message contains data about the cell that the server belongs to, the server’s network address, and the clearinghouse it manages. Clerks learn about servers by listening for these advertisements on the LAN. A clerk also sends out solicitation messages that request advertisements at startup.

Lookups

During a lookup, if a clearinghouse does not contain a name that the clerk is searching for, the server managing that clearinghouse gives the clerk as much data as it can about where else to search for the name. If a clearinghouse contains replicas that are part of the full name being looked up, but not the replica containing the target simple name, it returns data from a relevant child pointer in the replica it does have. The data helps the clerk find the next child directory in the path toward the target simple name. The child pointer’s **CDS_Replicas** attribute contains this data, in the form of clearinghouse names and binding information.

The cdscache create Command

A DCE administrator can run the **dcecp cdscache create** command to create knowledge in the clerk’s cache about a server. This command is useful when the server and clerk are separated by a wide area network (WAN), and the clerk therefore cannot learn about the server from advertisements on a LAN.

Figure 18 on page 167 is an example of how the clerk works downward from the root of the cell namespace to locate an object entry. The object entry, /./Sales/Spell, describes a spell-checking server at a company’s London sales headquarters.
As shown in Figure 18, the clerk locates the desired object entry by performing the following steps:

1. On Node A, a spell-checking application requests the network address of the /./Sales/Spell server. The clerk does not have that name in its cache, and the only clearinghouse it knows about so far is the /./:/Bristol_CH clearinghouse on Node B.

2. The clerk contacts the server on Node B with the lookup request.

3. The /./:/Bristol_CH clearinghouse does not contain the target object entry, but it does contain a replica of the root directory. From the /./:/Sales child pointer in the root, the clerk can learn how to contact clearinghouses that have a replica of the /./:/Sales directory. The server on Node B returns this data to the clerk, informing it that a replica of /./:/Sales is in the /./:/London_CH clearinghouse on Node C.

4. The clerk contacts the server on Node C with the lookup request.

5. The /./:/Sales replica in the clearinghouse on Node C contains the /./:/Sales/Spell object entry, so the server passes the address of the spell-checking server to the clerk.

6. The clerk returns the information to the client application, which can now make a remote call to the spell-checking server.

Long lookups, as illustrated in Figure 18, do not normally happen often after a clerk establishes its cache and becomes more knowledgeable about clearinghouses and their contents. However, the figure illustrates the resources and connections that

Chapter 13. How CDS Looks Up Names 167
could be involved in an initial lookup. The figure also illustrates the importance of maintaining connectivity between parent and child directories in the namespace. If somewhere the directory path is broken or a clearinghouse is unreachable, a clerk may not be able to find a name.
Chapter 14. How CDS Updates Data

Once names exist in the namespace, users who have the appropriate access can make changes to the data associated with the names. Any addition, modification, or deletion of CDS data initially happens in only one replica: the master replica. This chapter introduces the main methods by which CDS keeps other replicas consistent: update propagation and the skulk operation. It also describes two timestamps that help to ensure consistency in CDS data. By understanding the concepts in this chapter, you can more effectively plan the content and replication of directories.

Update Propagation

An update propagation is an immediate attempt to apply one change to all replicas of the directory in which the change was just made. Its main benefit is that it delivers each change in an efficient and timely way.

Unlike a skulk operation, however, update propagation does not guarantee that the change gets made immediately in all replicas. If a particular replica is not available, the update propagation does not fail; the change is made later in that replica. The skulk operation ensures that, when the replica is available again, it becomes consistent with the other replicas in its set.

You can tune the degree of persistence that CDS uses in attempting an update propagation—or prevent propagation altogether—by adjusting a directory attribute called CDS_Convergence. Convergence also affects the frequency of skulks on a directory. (See “Chapter 18. Managing CDS Directories” on page 191 for details on viewing and changing a directory’s convergence.)

Skulk Operation

The skulk operation is a periodic distribution of a collection of updates. Its main functions are to ensure that replicas receive changes that may not have reached them during an update propagation and to remove outdated information from the namespace.

Skulk maintenance functions include the following:

- Removing soft links that have expired. You can specify an expiration time when you create a soft link.
- Maintaining child pointers, which includes removing pointers to directories that were deleted.
- Removing information about deleted replicas.

CDS skulks each directory individually. During a skulk, CDS collects all changes that were made to the master replica since the last successful skulk and then disseminates the changes to all read-only replicas of the directory. All replicas must be available for a skulk to be considered successful. If CDS cannot contact a replica, it continues making changes in the replicas that it can contact, while generating an event to notify you of the replica or replicas it could not update. CDS then periodically reattempts the skulk until it completes successfully.

A skulk can begin in one of three ways:
- A CDS manager can enter a command to start an immediate skulk on a directory.
- CDS starts a skulk as an indirect result of other namespace management activities, which include the following:
 - Adding or removing a replica
 - Creating or deleting a directory
 - Redesigning replica types
 - Adding or deleting a child cell name in a parent cell

All of these activities produce changes in the structure of the namespace; so, an immediate skulk ensures that the new structure is reflected throughout the namespace as quickly as possible.
- The CDS server initiates skulks automatically at a routine interval called the background skulk time.
 The background skulk time interval guarantees a maximum lapse of time between skulks of a directory, regardless of other factors, such as namespace management activities and user-initiated skulks. A CDS server periodically checks each master replica in its clearinghouse and initiates a skulk if changes were made in a directory since the last successful skulk of that directory.

How Timestamps Help Keep Data Consistent

CDS uses several timestamps to help ensure the consistency and accuracy of data. The following two timestamps exist for every entry:
- Creation Timestamp (CTS)
- Update Timestamp (UTS)

CDS assigns a CTS to everything that is in a cell namespace: clearinghouses, directories, object entries, soft links, and child pointers. The CTS is a unique value reflecting the date, time, and location where a clearinghouse, directory, or entry in a directory was created. It consists of two parts: a time portion and the system identifier of the node on which the name was created. The two parts guarantee uniqueness among timestamps that are generated on different nodes.

During propagation of a new name or a changed name to each replica of the directory where it was created, every CDS server checks the validity of the CTS before accepting the new name.

The UTS reflects the most recent change that was made to any of the attributes of a clearinghouse, directory, object entry, soft link, or child pointer. When a CDS server receives an update to an existing entry in a directory, it checks the validity of the UTS before accepting the update.

Directories and replicas have several other timestamps that CDS uses when determining whether to skulk a directory or make a change in a directory. (See the IBM DCE 2.2 for AIX: Command Reference for information about other timestamp attributes used by CDS.)
Chapter 15. Managing the DCE Directory Service

The DCE control program (dcecp) provides most of the commands you need to manage CDS. This chapter describes the CDS entities that the DCE control program permits you to manage and summarizes the available commands for managing these entities.

For detailed descriptions of dcecp commands, see the IBM DCE 2.2 for AIX: Command Reference.

Using the DCE Control Program

Chapter 1. DCE Control Program Introduction on page 3 of this guide introduced you to dcecp and its command syntax, so this chapter does not repeat that information. Instead, this chapter describes commands that dcecp supplies specifically for managing CDS.

CDS Managed Objects

DCE control program commands operate on the following objects representing CDS entities:

- **directory**
 This object represents a CDS directory. The directory can be a parent or child directory, or a master or read-only replica of the parent or child directory. In addition to child directories, a CDS directory can contain soft links and object entries for other CDS resources.

- **link**
 This object represents a soft link in a CDS directory. A soft link is a pointer to (alternate name for) a child directory, object entry, or other soft link.

- **object**
 This object represents an object entry, which is the name of a CDS resource that appears in the cell namespace. Some object entries name resources that CDS clients can access (for example, a disk, machine, or application). Others name resources solely for internal use by CDS (for example, servers and clearinghouses).

- **clearinghouse**
 This object represents a CDS clearinghouse. A clearinghouse is a database that is located on a CDS server machine for use by servers.

- **cdscache**
 This object represents a CDS cache. A CDS cache is a collection of information about servers, clearinghouses, and other CDS resources that a CDS clerk establishes on the local system for its reference.

- **cdsalias**
 This object represents an alias name of a DCE cell as known to CDS. This object can be used to establish a hierarchical relationship between two DCE cells.

- **cds**
 This object represents a CDS server.

- **cdsclient**
 This object represents a CDS client.
Table 8 lists the operations that dcecp performs on CDS objects.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a child directory to a parent in the cell namespace.</td>
</tr>
<tr>
<td>catalog</td>
<td>Displays a list of a DCE cell’s alias names or clearinghouses.</td>
</tr>
<tr>
<td>create</td>
<td>Creates an object in the cell namespace. The object type can be a directory, object entry, soft link, clearinghouse, CDS cache, or CDS cell alias.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes an object in the cell namespace. The object type can be a directory, object entry, soft link, clearinghouse, or CDS cell alias.</td>
</tr>
<tr>
<td>disable</td>
<td>Removes the knowledge of a clearinghouse from the server running on the local machine or disables a CDS server or CDS client.</td>
</tr>
<tr>
<td>discard</td>
<td>Completely removes the cache information held by a CDS client.</td>
</tr>
<tr>
<td>dump</td>
<td>Displays an in-core dump of a CDS cache.</td>
</tr>
<tr>
<td>help</td>
<td>Displays a help message for a CDS object type, describing the operations that it performs or operations that can be performed on it. The object type can be a directory, object entry, soft link, clearinghouse, or CDS cache.</td>
</tr>
<tr>
<td>initiate</td>
<td>Begins a specific operation on the specified clearinghouse.</td>
</tr>
<tr>
<td>list</td>
<td>Displays the names of all of the CDS objects contained in a directory.</td>
</tr>
<tr>
<td>merge</td>
<td>Copies the contents of a directory into another directory.</td>
</tr>
<tr>
<td>modify</td>
<td>Modifies the attribute information for a CDS object type. The object type can be a directory, object entry, or soft link.</td>
</tr>
<tr>
<td>operations</td>
<td>Displays the operations that a CDS object type can perform or can have performed on it. The object type can be a directory, object entry, soft link, or clearinghouse.</td>
</tr>
<tr>
<td>ping</td>
<td>Checks if all or selected servers are running in a DCE cell.</td>
</tr>
<tr>
<td>remove</td>
<td>Removes a child directory from a parent in the cell namespace.</td>
</tr>
<tr>
<td>repair</td>
<td>Begins diagnostic operations on the specified clearinghouse.</td>
</tr>
<tr>
<td>show</td>
<td>Displays the attribute information for a CDS object type. The object type can be a directory, object entry, soft link, or clearinghouse.</td>
</tr>
<tr>
<td>synchronize</td>
<td>Tells a child or parent directory to synchronize with its replicas (perform a skulk).</td>
</tr>
</tbody>
</table>

CDS Object Attributes

Every CDS object has attributes, which are pieces or sets of data associated with the object. Attributes can reflect or affect the operational behavior of the object. Some attributes are created and modified only by CDS; you can modify others as needed for your environment. For a complete list of the attributes of a particular
CDS object, refer to the appropriate reference page. Also, you can use the `dcecp show` operation for most objects to display the names and values of all attributes or specific attributes of the objects.

Using dcecp to Maintain CDS

You can use `dcecp` for certain CDS maintenance tasks. The `dcecp` commands to do this are listed in Table 9.

<table>
<thead>
<tr>
<th>Commands</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cdsclient disable</code></td>
<td>Stops the execution of a CDS clerk.</td>
</tr>
<tr>
<td><code>cds disable</code></td>
<td>Stops the execution of a CDS server.</td>
</tr>
<tr>
<td><code>set _conf</code></td>
<td>Permits you to set the confidence level of CDS clerk calls.</td>
</tr>
<tr>
<td><code>directory modify</code></td>
<td>Reconstructs a directory’s replica set by designating a new master replica.</td>
</tr>
<tr>
<td><code>put $_conf</code></td>
<td>Permits you to see the current confidence level of CDS clerk calls.</td>
</tr>
<tr>
<td><code>directory show</code></td>
<td>Displays the information needed for creating a cell entry in DNS or GDS.</td>
</tr>
<tr>
<td><code>cdsclient show</code></td>
<td>Displays the attributes of a CDS clerk.</td>
</tr>
<tr>
<td><code>cds show</code></td>
<td>Displays the attributes of a CDS server.</td>
</tr>
</tbody>
</table>
Chapter 16. Controlling Access to CDS Names

This chapter presents information on the following CDS authorization topics:
- Overview of DCE authorization for CDS
- DCE authorization components supported by CDS
- DCE permissions supported by CDS
- Controlling access to CDS clerk and server management operations
- Control program commands and required permissions
- Editing ACLs on CDS names
- How CDS servers gain access to the namespace
- Setting up access control in a new namespace

Overview of DCE Authorization for CDS

CDS authorization allows you to control user access to the following CDS components:
- Names that are stored in the namespace, including clearinghouses, directories, object entries, soft links, and child pointers
- Execution of privileged CDS clerk and server commands

You control access to a name in the namespace by creating an ACL. An ACL contains individual ACL entries that specify the permissions you grant a user (principal) to the name with which the ACL is associated. The ACL entries that you create determine collectively which principals can use the name and what management operations they are allowed to perform on it.

CDS ACL management software, incorporated into all CDS clerks and servers, performs access checking for incoming CDS requests. When a principal requests an operation on a CDS name, ACL management software on a server that stores the name examines the ACL entries associated with the name. The software then grants or denies the operation, based on the permissions granted to the requesting principal in the ACL entries. Similarly, when a principal requests a privileged operation on a CDS clerk or server, ACL management software on that system examines the ACL entries that are associated with the principal name that represents the clerk or server. The software then grants or denies the operation, based on the permissions granted to the requesting principal in the ACL entries.

The DCE control program (dcecp) provides commands that add, modify, copy, delete, and display ACLs that are associated with CDS names, clerks, and servers. See the IBM DCE 2.2 for AIX: Command Reference for detailed information on the commands. The remainder of this chapter describes DCE authorization as it applies specifically to CDS. Before you try to create or modify permissions to CDS names, clerks, or servers, read Part 6, DCE Security Service on page 283 of this guide for complete information on the DCE authorization mechanism.

ACL Types Supported by CDS

CDS supports the following DCE ACL types:
• **Object ACL** — You can use the object ACL type to grant permissions to any CDS name (that is, object entries, soft links, child pointers, clearinghouses, and directories), as well as to CDS clerks and servers. When associated with a CDS directory, the permissions you grant with the object ACL type apply only to the directory itself, not to the directory’s contents or to any child directories.

• **Initial object creation ACL** — The initial object creation ACL type applies only to CDS directory names. Use this ACL type to grant permissions specifically to a directory’s future contents, including soft links, application-defined object entries, child pointers, and clearinghouse object entries. The permissions you grant by using the initial object creation ACL type apply only to the future contents of the directory, not to the directory itself. The permissions are inherited only by names that are created in the directory after you create the ACL entry; permissions are not propagated to names that already exist in the directory.

To edit an initial object creation ACL, you use the `-io` option of the `dcecp acl modify` command.

• **Initial container creation ACL** — The initial container creation ACL type applies only to CDS directory names. Use this ACL type to grant permissions to a directory that automatically propagate (the default) to all child directories that you may later create under that directory. The permissions you grant by using the initial container creation ACL type are inherited only by the child directories that you create after you create the ACL entry; permissions are not propagated to child directories that already exist.

To edit an initial container creation ACL, you use the `-ic` option of the `dcecp acl modify` command.

How Permissions Propagate to CDS Directories and Their Contents

By creating all three ACL types (object ACL, initial object creation ACL, and initial container creation ACL) for a directory, you can grant access not only to the directory itself but also to the directory’s future contents and all child directories (and their contents) that may later be created.

Note: Permissions do not propagate from parent cells to child cells. You must set permissions for each child cell individually.

For example, suppose you just created a new directory named `./sales`. If you create an ACL entry of the Object ACL type that grants user **Smith** read permission to the `./sales` directory, **Smith** can do the following:

- Read the attributes associated with the `./sales` directory
- Display the names stored in the `./sales` directory

If you create a second ACL entry of the initial object creation ACL type that grants user **Smith** read permission to the `./sales` directory, **Smith** can do the following:

- Read the attributes associated with the `./sales` directory
- Display the names stored in the `./sales` directory
- Read the attributes associated with all the names that you may later create in the `./sales` directory, unless prohibited by explicit ACL modification after their creation

If you create a third ACL entry of the initial container creation ACL type that also grants user **Smith** read permission to the `./sales` directory, **Smith** can do the following:

- Read the attributes associated with the `./sales` directory.
Display the names stored in the /.:sales directory.

Read the attributes associated with all the names that you may later create in the /.:sales directory.

Perform all of the three preceding operations on all child directories that may later be created under the /.:sales directory.

(See "Part 6. DCE Security Service" on page 283 of this guide for complete information on default ACLs.)

ACL Entry Types Used for Principals

You use ACL entry types to specify the category of principal for which the ACL entry is created. These ACL entry types are described in Table 10.

Table 10. ACL Entry Types Used for CDS Principals

<table>
<thead>
<tr>
<th>Entry Type</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>user</td>
<td>Specifies an ACL entry for an individual principal whose credentials were authenticated within the local cell.</td>
</tr>
<tr>
<td>group</td>
<td>Specifies an ACL entry for an authorization group whose members have been authenticated within the local cell.</td>
</tr>
<tr>
<td>other_obj</td>
<td>Specifies an ACL entry for authenticated principals in the local cell who are not individual users named by an ACL entry of the type user or members of a group named by an ACL entry of the type group.</td>
</tr>
<tr>
<td>foreign_user</td>
<td>Specifies an ACL entry for an authenticated principal in a foreign cell.</td>
</tr>
<tr>
<td>foreign_group</td>
<td>Specifies an ACL entry for an authorization group whose members were authenticated in a foreign cell.</td>
</tr>
<tr>
<td>foreign_other</td>
<td>Specifies an ACL entry for authenticated principals in a foreign cell who are not individual users named by an ACL entry of the type foreign_user or members of a group named by an ACL entry of the type foreign_group.</td>
</tr>
<tr>
<td>any_other</td>
<td>Specifies an ACL entry for an authenticated principal who is not otherwise covered by any of the preceding ACL entry types.</td>
</tr>
<tr>
<td>mask_obj</td>
<td>Specifies an ACL entry containing a mask that is substituted for the permissions of any principals, whose credentials are either authenticated or unauthenticated.</td>
</tr>
<tr>
<td>unauthenticated</td>
<td>Specifies an ACL entry for principals who cannot pass authentication procedures.</td>
</tr>
<tr>
<td>user_delegate</td>
<td>Specifies an ACL entry for an intermediary that acts for an authenticated principal in the local cell.</td>
</tr>
<tr>
<td>groupDelegate</td>
<td>Specifies an ACL entry for an intermediary that acts for the authenticated principals who are members of an authorization group in the local cell.</td>
</tr>
</tbody>
</table>
Table 10. ACL Entry Types Used for CDS Principals (continued)

<table>
<thead>
<tr>
<th>Entry Type</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>other_delegate</td>
<td>Specifies an ACL entry for an intermediary that acts for authenticated principals in the local cell who are not individual users named by an ACL entry of the type user_delegate or who are not members of a group named by an ACL entry of the type group_delegate.</td>
</tr>
<tr>
<td>foreign_user_delegate</td>
<td>Specifies an ACL entry for an intermediary that acts for an authenticated principal in a foreign cell.</td>
</tr>
<tr>
<td>foreign_group_delegate</td>
<td>Specifies an ACL entry for an intermediary that acts for the members of an authorization group in a foreign cell.</td>
</tr>
<tr>
<td>foreign_other_delegate</td>
<td>Specifies an ACL entry for an intermediary that acts for authenticated principals in a foreign cell who are not individual users named by an ACL entry of the type foreign_user_delegate or members of a group named by an ACL entry of the type foreign_group_delegate.</td>
</tr>
<tr>
<td>any_other_delegate</td>
<td>Specifies an ACL entry for an intermediary that acts for authenticated principals in the local cell or in a foreign cell who are not named by an ACL entry of any other type for intermediaries of authenticated principals or groups.</td>
</tr>
</tbody>
</table>

DCE Permissions Supported by CDS

CDS supports the following DCE permissions: read (r), write (w), insert (i), delete (d), test (t), control (c), and administer (a). Each permission has a slightly different meaning, depending on the kind of CDS name with which it is associated. In general, the permissions are defined as follows:

- Read permission—Allows a principal to look up a name and view the attribute values that are associated with it.
- Write permission—Allows a principal to change the modifiable attributes that are associated with a name, except its ACLs.
- Insert permission—Allows a principal to create new names in a directory (for use with directory entries only).
- Delete permission—Allows a principal to delete a name from the namespace.
- Test permission—Allows a principal to test whether an attribute of a name has a particular value without being able to actually see any of the values; that is, without having read permission to the name.
- Test permission provides application programs with a more efficient way to verify a CDS attribute value. Rather than reading an entire set of values, an application can test for the presence of a particular value.
- Control permission—Allows a principal to modify the ACL entries that are associated with a name. (Note that read permission is also necessary for modifying a CDS entry’s ACLs; otherwise, dcecp and acl_edit will not be able to bind to the entry.) Control permission is automatically granted to the creator of a CDS entry.
• Administer permission—Allows a principal to issue CDS commands that control the replication of directories. Administer permission is for use with directory entries only.

A principal needs some permission to a name before it can try to perform management operations on the name. Otherwise, CDS does not recognize the name when the principal tries the management operation and returns an error stating that the name does not exist. If the principal has some permissions, but not those required to perform the operation, CDS returns an error explaining that the principal had insufficient rights to perform the operation.

The creator of a name is automatically granted all permissions that are appropriate for the type of name that is created. For example, a principal that is creating an object entry is granted read, write, delete, test, and control permissions to the object entry. A principal that is creating a directory is granted read, write, insert, delete, test, control, and administer permissions to the directory.

Note: Unlike the security mechanisms that are enforced by most other file systems, CDS does not require a principal to have access to all intermediate elements in the pathname (full name) of a name in order to perform an operation on the name. For example, consider an object entry object1 stored in the /.:/sales directory. In CDS, you can grant a principal access to the object entry /.:/sales/object1 without necessarily granting the principal access to either the /.:/sales directory or the cell root directory (/.:).

Controlling Access to CDS Clerk and Server Management Operations

CDS authorization allows you to control the use of CDS commands that involve local management operations on CDS clerks and servers. Principal names for each clerk and server are stored in the security namespace. An object entry that contains the binding information for each clerk and server is stored in the CDS namespace in the /.:/hosts subdirectory. Servers are represented as /.:/hosts/hostname/cds-server. Clerks are represented as /.:/hosts/hostname/cds-clerk.

Each clerk and server maintains a separate ACL that contains entries specifying the principals allowed to perform these operations. Unlike the ACLs that are associated with names in the namespace, the ACLs that are associated with clerks and servers exist exclusively to provide local control of the use of these commands.

Whenever a new clerk or server is initialized, an ACL is created on the clerk or server system. An initial ACL entry is also created, granting the machine principal and the namespace authorization group (subsys/dce/cds-admin) read, write, and control permissions to the clerk or server process on that system. All other principals, both authenticated and unauthenticated, are granted read permission. The creation of this ACL entry ensures that, immediately after its creation, any user logged into the system as the machine principal is permitted to execute privileged clerk or server CDS commands.

Note: Use of the machine principal for this purpose is provided as a convenience and assumes that the account itself (user name and password) is already moderately secure. Namespace administrators may prefer to modify this scheme and grant permission to particular clerks and servers on behalf of other individual principals or authorization groups.
To edit an ACL that is associated with a CDS clerk or server, you use the `dcecp acl modify` command with the `-change` option. For example, to change the permissions for the user `michaels` in the ACL that is associated with the CDS clerk on node `orion`, enter the following command:

```
dcecp> acl modify /./:hosts/orion/cds-clerk -change {user michaels rw}
dcecp>
```

Keep in mind that clerks and servers are also represented by entries in the namespace. To edit an ACL that is associated with the namespace entry for a CDS clerk or server, you must include the `-entry` option, as well as the `-change` option, in the `acl modify` command line. For detailed instructions on how to modify an ACL on the CDS entry for a DCE resource, see “Editing ACLs on CDS Names” on page 183.

Control Program Commands and Required Permissions

Table 11 lists all the `dcecp` commands that operate on CDS objects and the permissions that a principal must have to execute the commands.

<table>
<thead>
<tr>
<th>Commands</th>
<th>Required Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cds disable</code></td>
<td>Delete, write, and create permissions on the namespace entry of the server.</td>
</tr>
<tr>
<td><code>cds show</code></td>
<td>Read permission on the namespace entry of the server.</td>
</tr>
<tr>
<td><code>cdsalias catalog</code></td>
<td>Read permission to the cell’s root directory whose alias you want to list.</td>
</tr>
<tr>
<td><code>cdsalias connect</code></td>
<td><code>auth_info</code> permission on the the local cell's root directory. Also, the CDS server principal on the machine containing the master replica of the local cell's root directory needs insert permission on the parent cell's root directory.</td>
</tr>
<tr>
<td><code>cdsalias create</code></td>
<td><code>auth_info</code> permission on the root directory of the cell.</td>
</tr>
<tr>
<td><code>cdsalias delete</code></td>
<td><code>auth_info</code> permission on the root directory of the cell.</td>
</tr>
<tr>
<td><code>cdscache create</code></td>
<td>Write permission to the clerk that is to create the server entry in the local CDS cache.</td>
</tr>
<tr>
<td><code>cdscache delete</code></td>
<td>Write permission to the clerk that will be deleted from the server entry in the local CDS cache.</td>
</tr>
<tr>
<td><code>cdscache discard</code></td>
<td>Superuser (root) privileges on the clerk system where the CDS cache resides. No CDS permissions are required.</td>
</tr>
<tr>
<td><code>cdscache dump</code></td>
<td>Superuser (root) privileges on the clerk system where the CDS cache resides. No CDS permissions are required.</td>
</tr>
<tr>
<td><code>cdscache show</code></td>
<td>Read permission to the clerk that is designated to retrieve either the server (-server option) or clearinghouse (-clearinghouse option) information from the CDS cache.</td>
</tr>
<tr>
<td>Commands</td>
<td>Required Permissions</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>cdsclient disable</td>
<td>Delete, write, and create permissions on the namespace entry of the clerk.</td>
</tr>
<tr>
<td>cdsclient show</td>
<td>Read permission on the namespace entry.</td>
</tr>
<tr>
<td>clearinghouse catalog</td>
<td>No special privileges are needed.</td>
</tr>
<tr>
<td>clearinghouse create</td>
<td>Write permission to the server on which you intend to create the clearinghouse, and Admin permission to the cell root directory. Also, the server principal needs read, write, and Admin permissions to the cell root directory.</td>
</tr>
<tr>
<td>clearinghouse delete</td>
<td>Write and delete permissions to the clearinghouse to be deleted, and Admin permission to all directories that store replicas in the clearinghouse. Also, the server principal needs delete permission to the associated clearinghouse object entry, and Admin permission to all directories that store replicas in the clearinghouse.</td>
</tr>
<tr>
<td>clearinghouse disable</td>
<td>Write permission to the CDS server on which the clearinghouse resides.</td>
</tr>
<tr>
<td>clearinghouse initiate</td>
<td>Write permission on the clearinghouse server and Admin permission on the cell root directory. The server principal needs read, write, and Admin permission on the cell root directory.</td>
</tr>
<tr>
<td>clearinghouse repair</td>
<td>Write permission to the clearinghouse server and Admin permission to the cell root directory. The server principal needs read, write, and Admin permission to the cell root directory.</td>
</tr>
<tr>
<td>clearinghouse show</td>
<td>Read permission to the clearinghouse whose attributes you want to list.</td>
</tr>
<tr>
<td>clearinghouse verify</td>
<td>Write permission to the clearinghouse server and Admin permission to the cell root directory. The server principal needs read, write, and Admin permission to the cell root directory.</td>
</tr>
<tr>
<td>directory add</td>
<td>Insert permission to the parent directory where the child pointer (-member option) is to be placed.</td>
</tr>
<tr>
<td>directory create</td>
<td>Insert and read permissions to the parent directory, and write permission to the clearinghouse that stores the master replica of the new directory. Also, the server principal needs read and insert permissions to the parent directory of the new directory.</td>
</tr>
<tr>
<td>directory delete</td>
<td>Delete permission to the directory and write permission to the clearinghouse that stores the master replica of the directory. The server principal (hosts/hostname/cds-server) needs Admin permission to the parent directory delete permission to the child pointer that points to the directory you intend to delete.</td>
</tr>
<tr>
<td>Commands</td>
<td>Required Permissions</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>directory list</td>
<td>Read permission to the directory whose contents you want to list.</td>
</tr>
<tr>
<td>directory merge</td>
<td>Read permission to the source and destination directories, and insert permission to the destination directory.</td>
</tr>
<tr>
<td>directory modify</td>
<td>Write permission to the directory for which you want to add (-add option), change (-change option), or remove (-remove option) the attribute or attribute value.</td>
</tr>
<tr>
<td>directory remove</td>
<td>Delete permission to the child pointer (-member option) or Admin permission to the parent directory.</td>
</tr>
<tr>
<td>directory show</td>
<td>Read permission to the directory whose attributes you want to list. For a replica of a directory (-replica option)—Read permission to the directory of which the replica is a member. For a child directory (-member option)—Read permission to the child directory.</td>
</tr>
<tr>
<td>directory synchronize</td>
<td>Admin, write, insert, and delete permission to the directory. Also, the server principal needs admin, read, and write permissions to the directory.</td>
</tr>
<tr>
<td>link create</td>
<td>Insert permission to the directory in which you intend to create the link.</td>
</tr>
<tr>
<td>link delete</td>
<td>Delete permission to the link entry, or Admin permission to the directory that stores the link entry to be deleted.</td>
</tr>
<tr>
<td>link modify</td>
<td>Write permission to the link whose attributes are to be modified.</td>
</tr>
<tr>
<td>link show</td>
<td>Read permission to the link whose attributes are to be listed.</td>
</tr>
<tr>
<td>object create</td>
<td>Insert permission to the parent directory that is to store the object entry.</td>
</tr>
<tr>
<td>object delete</td>
<td>Delete permission to the object entry, or administer permission to the parent directory that stores the object entry.</td>
</tr>
<tr>
<td>object modify</td>
<td>Write permission to the object entry for which you want to add (-add option), change (-change option), or remove (-remove option) the attribute or attribute value.</td>
</tr>
<tr>
<td>object show</td>
<td>Read permission to the object entry whose attributes you want to list.</td>
</tr>
</tbody>
</table>
Editing ACLs on CDS Names

To edit an ACL that is associated with an entry in the CDS namespace for a child directory, clearinghouse, soft link, or some other CDS object, specify the `-entry` option to any `dcecp acl` command. The `-entry` option is especially useful in case of an ambiguous pathname. In some cases, a pathname can resolve to a leaf object in the DCE Directory Service and to an object in some other DCE component that supports ACLs. In these cases, you must use the `-entry` option to edit the leaf object in CDS. You do not need to specify this option to edit ACLs that are associated with actual clearinghouses or directories.

For example, to edit the permissions in the Object ACL that is associated with a CDS entry for a clearinghouse named `/.:/Paris1_CH`, you would enter the following command:

```
dcecp> acl modify /.:/Paris1_CH -entry -change {unauthenticated -}
dcecp>
```

To edit the permissions in the Object ACL that is associated with the `/.:/Paris1_CH` clearinghouse itself, you would enter the following command:

```
dcecp> acl modify /.:/Paris1_CH -change {unauthenticated -}
dcecp>
```

Another example is the soft link `../eng_printer`. The target of this soft link is `../boston.com/print_server`. To edit the soft link leaf entry that is in the CDS namespace, enter the following command:

```
dcecp> acl modify ../eng_printer -change -entry ">
> {group subsys/dce/cds-admin rwdtc}
dcecp>
```

How CDS Servers Gain Access to the Namespace

CDS servers require permission to the cell root directory and to lower-level directories to successfully execute the following CDS commands:

- `clearinghouse create`
- `directory create` (For directories and replicas)
- `directory delete` (For directories and replicas)
- `directory synchronize`

To automate the process of granting all CDS servers the permissions that they require, the CDS cell configuration process creates an authorization group for CDS servers under the fixed name `subsys/dce/cds-servers`. The principal name of the initial server in the cell is added to this group as part of the configuration process. Immediately after the group is created, the configuration process grants full permissions (r, w, i, d, t, c, a) to the cell root directory of the new namespace on behalf of the group. ACL entries of the object ACL and initial container creation ACL types are created by specifying `subsys/dce/cds-servers` as the principal in each ACL entry. This ensures that the group has full access to all future directories and their contents.

Thereafter, whenever a new server is configured in the cell, the server configuration process automatically adds the principal name of the new server to the group. Through this process, all CDS servers in the cell receive adequate permissions to all directories in the namespace.
Setting Up Access Control in a New Namespace

You should plan a consistent access control policy and be ready to implement the policy as soon as you configure your first CDS server and before you create or populate any new directories. Among the tasks you can perform are the following:

- Adding members to the namespace authorization group
- Creating additional authorization groups
- Establishing maximum permissions for unauthenticated principals

Adding Members to the Namespace Authorization Group

To facilitate managing and troubleshooting your namespace, the cell configuration process creates a namespace authorization group under the fixed name `subsys/dce/cds-admin`. The configuration process then grants the group full access to the cell root directory. This access propagates to the entire namespace as it evolves.

Immediately after its creation, the authorization group contains only the name that the initial namespace administrator specified during the cell configuration process. You can use the `dcecp group add` command to add the principal names of other individuals in your organization who you want to administer and troubleshoot the namespace. Because this group possesses full access to the entire namespace, its members can intervene, whenever necessary, to solve problems for namespace users with fewer permissions. By removing a user’s principal name from the group, the user described by that principal loses the access assigned to the group.

(See “Part 6. DCE Security Service” on page 283 of this guide for complete information on how to add and delete group members.)

Creating Additional Authorization Groups

Authorization groups can provide a convenient and flexible way to control access to your namespace. You can combine users according to organization, work type, security status, and so on, and then grant each group a specific set of permissions to specific directories or other names in the namespace.

To delegate authority locally, you can create an authorization group for each of the functional directories that you plan to create in your namespace. For example, you could create an authorization group named `subsys/dce/sales-admin` and include, as members, the individuals who are responsible for managing the `./sales` directory. Each local authorization group could have full access to the contents of the directory for which it is responsible.

Establishing Maximum Permissions for Unauthenticated Principals

If you want to apply a namespace-wide set of maximum permissions for all unauthenticated principals, you should do so immediately after you configure your first CDS server and before you create and populate any directories below the cell root. By creating an unauthenticated ACL entry and an `any_other` entry for the cell root by using the object ACL and initial container creation ACL types, you can take advantage of automatic propagation of the unauthenticated entry to the entire namespace as it evolves.
Chapter 17. Managing Clerks, Servers, and Clearinghouses

CDS clerks, servers, and clearinghouses are initially created and started as part of the CDS clerk and server configuration. Thereafter, clerk and server processes are created and started with a series of commands that are executed either manually or by the startup scripts on the systems where they are running. These CDS entities are largely self-regulating and, apart from routine monitoring, require only minor management intervention.

This chapter explains how to monitor CDS clerks, servers, and clearinghouses and perform other management tasks, such as backing up namespace information.

Monitoring Clerk, Server, and Clearinghouse Counters

Every clerk, server, and clearinghouse maintains a set of attributes called counters to keep track of the read, write, and other operations that it performed, or that were performed on it, since it was last started up. You can monitor these counters to determine the type and volume of the CDS traffic that is being generated on your network.

Clerk, server, and clearinghouse counters are fully described in the *IBM DCE 2.2 for AIX: Command Reference*.

Displaying Clerk Counters

Use the `dcecp cdsclient show` command to display current counter values for a clerk. For example, to display the current values of all attributes that are associated with a clerk, you enter the following command:

```
dcecp> cdsclient show /.:/hosts/<hostname>/cds-clerk
```

Displaying Server Counters

Use the `dcecp cds show` command to display the current counter values for a server. For example, to display the current values of all the attributes that are associated with a server, you enter the following command:

```
dcecp> cds show
```

Displaying Clearinghouse Counters

Use the `dcecp clearinghouse show` command with the `-counters` option to display the current counter values for a specified clearinghouse. For example, the following command displays the current values of all attributes that are associated with the remote clearinghouse `/.:/Paris1_CH`:

```
dcecp> clearinghouse show /.:/Paris1_CH -counters
```

Monitoring Clerk Communications with Specific Clearinghouses

Every CDS clerk maintains a separate set of clearinghouse counters to keep track of read, write, and other operations that it directs to each of the clearinghouses with which it communicates. These records collectively represent the cached clearinghouse entity for a particular clerk.
You can monitor a clerk’s cached clearinghouse counters so that you can look at
the distribution of the clerk’s transactions to each of the clearinghouses that it uses
and find out where a clerk’s requests are most often directed. To do this, you use
the `dcecp cdscache show` command with the `-clearinghouse` option. For
example, to display the cached clearinghouse counters that are maintained by the
local clerk for the `./:NY1_CH` clearinghouse, you enter the following command:
```
dcecp> cdscache show ./:NY1_CH -clearinghouse
```

Displaying the Contents of a Clearinghouse

Use the `dcecp clearinghouse show` command to display the directory names of all
the directories that are stored in a particular clearinghouse. For example, to display
the names of the directories that are stored in the clearinghouse `./:Chicago2_CH`,
you enter the following command:
```
dcecp> clearinghouse show ./:Chicago2_CH
```
(See Chapter 19. Viewing the Structure and Contents of a Namespace” on
page 201 for more examples of displaying clearinghouse information.)

Forcing the Clearinghouse to Checkpoint to Disk

Under normal operations, the server will periodically checkpoint the clearinghouse
from memory to disk. However, you can perform this task immediately by having
write permission to the server and entering the `dcecp clearinghouse initiate` command
with the `checkpoint` option. For example, to checkpoint the
clearinghouse `./:Boston3_CH` from memory to disk, you enter the following
command:
```
dcecp> clearinghouse initiate ./:Boston3_CH -checkpoint
```

Disabling Clerks and Servers

You may occasionally have to disable the clerk or server that is running on a
particular system when you need to perform diagnostic or troubleshooting work that
requires active clerk or server processes to be suspended. Usually, you can use the
dce_config procedure to start and stop DCE daemons. You can disable CDS clerks
and servers by using the `dcecp` commands, `cdsclient disable` and `cds disable`.

Disabling a Clerk

To disable the clerk that is on the local node, enter the following command:
```
dcecp> cdsclient disable ./:/hosts/<hostname>/cds-clerk
```

Disabling a Server

To disable the server that is on the local node, enter the following command:
```
dcecp> cds disable ./:/hosts/<hostname>/cds-server
```
Restarting Clerks and Servers

CDS clerk and server processes are created and started automatically by startup scripts that execute whenever the host system is rebooted. Sometimes, however, you may need to run these scripts yourself if a clerk or server fails to start automatically upon reboot, or if you want to restart a clerk or server that you disabled to perform a backup or do diagnostic work on the host system.

Restarting a Clerk

To restart a clerk, follow these steps:
1. Log into the clerk system as superuser (root).
2. Enter the following command to see if the dced process is already running:
 # ps -e
3. If the dced process appears on the list of active processes, proceed to step 4. If the dced process does not appear on the list of active processes, enter the following command to start the process:
 # dced
4. Enter the following command to start the cdsadv process:
 # cdsadv

Restarting a Server

To restart a server, follow these steps:
1. Log into the server system as superuser (root).
2. Enter the following command to see if the dced process is already running:
 # ps -e
3. If the dced process appears on the list of active processes, proceed to step 4. If the dced process does not appear on the list of active processes, enter the following command to start the process:
 # dced
4. Enter the following command to see if the cdsadv process is already running:
 # ps -e
5. If the cdsadv process appears on the list of active processes, proceed to step 6. If the cdsadv process does not appear on the list of active processes, enter the following command to start the process:
 # cdsadv
6. Enter the following command to restart the server:
 # cd

When the server process starts, it starts all clearinghouses on the system.

Preserving a Clearinghouse Across a Server System Upgrade

If you plan to upgrade the operating system software on a CDS server system, and you want to preserve the clearinghouse (or clearinghouses) on the system, follow this procedure:
1. Make sure that you disable the clerk and server.
2. Before you perform the system upgrade, back up the following CDS files:
3. Perform the system upgrade.
4. Restore all the files that you backed up in step 2.
5. Follow the procedure described in “Restarting Clerks and Servers” on page 187 for restarting a server. When the server process starts, it automatically locates the appropriate restored files and starts all clearinghouses on the system.

Backing Up Namespace Information

Because updates and skulks of directories can occur asynchronously, and because of the distributed nature of a namespace, you cannot always depend on traditional backup methods to preserve CDS data.

The rest of this chapter tells when to use the following backup mechanisms:

- Directory replication
- Operating system backups

Using Replication to Back Up Namespace Information

Directory replication is always the most reliable way to back up the information that is in your namespace. When you create a new replica of a directory at a clearinghouse, you are not only distributing the information but also creating an up-to-date, real-time backup of the information. If a replica in one clearinghouse becomes unavailable, users can look up the information they need in another replica of the directory in some other clearinghouse. The more replicas of a directory you create, the more likely users will always be able to find the information that is contained in the directory somewhere in the namespace.

If an entire clearinghouse is corrupted, you can restore it by creating a new clearinghouse and then creating new replicas of the directories that were stored there. (See Chapter 18. Managing CDS Directories on page 191 for complete information on how to create a replica.)

Using Operating System Backups

Because a namespace is a distributed database to which modifications are synchronized at variable intervals, any traditional backup of a particular server system always contains old and incomplete information. If you frequently create, modify, or delete names, restoring an out-of-date backup can cause recently
created names to disappear, recent modifications to be reversed, or recently deleted names to reappear in the namespace. The degree to which a traditional backup reflects the current condition of a clearinghouse depends entirely on the following conditions:

- How recently the backup was created
- What modifications were made since that time
- Whether the backup included the clearinghouse files in the directory `dcelocal/var/directory/cds`

If you decide to use operating system backups, you only need to back up the server systems whose clearinghouses store master replicas of directories. To ensure that you back up your namespace completely, check for the following:

- The servers on these systems are disabled by using the `dcecp cds disable` command.
- The files in the root directory `dcelocal/var/directory/cds` are included in the backup.

If your namespace is small enough to be maintained in one clearinghouse, you can reliably use traditional operating system backups to save and restore the clearinghouse data. If only one clearinghouse exists, only one replica (the master replica) of each directory exists. This eliminates the need to account for the discrepancies that may exist among multiple directory replicas. Remember that the more frequently you back up clearinghouse data, the more up-to-date that information will be if you need to restore it.
Chapter 18. Managing CDS Directories

If you manage a namespace in a small, slow-growth network of 25 nodes or less, you can maintain all your names in the root directory and may not need to create additional directories. However, if you manage a namespace in a network of more than 25 nodes, you should consider creating at least one additional level of directories under the root.

This chapter explains how to create directory hierarchies in the cell namespace and describes tasks related to managing directories, such as:

- Creating and deleting directory replicas
- Skulking a directory
- Modifying a directory’s convergence

Creating Directories

By creating directories, you make it possible to replicate and manage groups of object entries according to where, how often, or by whom they are used. Grouping related object entries into separate directories also makes it easier to control access because it allows you to take advantage of default ACL entry propagation.

CDS cell configuration creates an initial hierarchy of directories under the root so that DCE components can fix locations within the namespace where they can create and catalog their object entries. Among the directories created by cell configuration is the `subsys` directory, beneath which independent software vendors (ISVs) can create their own directories to store the object entries that are used by their distributed applications.

Alternatively, ISVs and other users of the namespace may prefer to create a hierarchy of directories of their own design under the root to store their information.

(See the IBM DCE 2.2 for AIX: Administration Guide—Introduction for more information on the initial hierarchy that is established by cell configuration.)

Permissions for Creating a Directory

To create a directory, you need the following permissions:

- Insert permission to the parent of the new directory.
- Write permission to the clearinghouse that stores the master replica of the new directory.
- The server principal for the server system where you enter the DCE control program’s `dcecp directory create` command must have read and insert permissions to the parent directory of the new directory.

If the server is included in the server authorization group `subsys/dce/cds-servers`, these permissions should already be in place. If in doubt, use the `dcecp acl show` command on the parent directory to verify that the server principal has the appropriate permissions. (See the IBM DCE 2.2 for AIX: Command Reference for more information on arguments to the `acl show` command.)
Entering the directory create Command

Use the directory create command to create a new directory (master replica) with the name that you specify. When you use this command, CDS, by default, stores the master replica of the new directory in the same clearinghouse that stores the master replica of the new directory's parent directory.

For example, to create a directory named /.:sales and store the master replica of the new directory in the root directory's initial clearinghouse, you enter the following command:

dcecp> directory create /.:sales

dcecp>

Note: For the directory creation to succeed, the master replica of the new directory's parent directory must be available when you enter the command.

You can use the directory create command’s -clearinghouse option to store the master replica of a new directory in a different clearinghouse than the parent directory’s clearinghouse. For example, to place the new directory created in the previous example into another clearinghouse (/.:/Chicago1_CH), you would enter the following command:

dcecp> directory create /.:sales -clearinghouse /.:/Chicago1_CH

dcecp>

(See the IBM DCE 2.2 for AIX: Command Reference for complete information on arguments and options to the directory create command.)

Checking the ACL Entries for a New Directory

After you create a directory, you want to verify that the users and applications for whom the directory was created have the appropriate permissions. To do this, use the acl show command on the directory to see the associated ACL entries. For example:

dcecp> acl show /.:sales
{unauthenticated r--t-}
{group subsys/dce/cds-admin rwdtc}
{group subsys/dce/cds-server rwdtc}
{any_other r--t-}

dcecp>

(See the IBM DCE 2.2 for AIX: Command Reference for complete information on the acl show command.)

If the required permissions were not inherited from the new directory’s parent directory, use the acl modify command to create the necessary ACL entries. For example:

dcecp> acl modify /.:sales -add
{user cell_admin rwdtcia}

dcecp>

(See the IBM DCE 2.2 for AIX: Command Reference for complete information on the arguments and options for the acl modify command.)
Upgrading the Directory Version on the Cell Root Directory

Upgrading the directory version on the cell root directory has special significance. This procedure implies that all CDS servers in the cell have been upgraded to the latest version, given that a cell root directory is replicated in all CDS servers in the cell. After you have set the CDS UpgradeTo attribute on the cell root directory, the server software soon recognizes this and sets the CDS UpgradeTo attribute on all directories in the cell. Eventually, the CDS DirectoryVersion attribute on all the affected directories in the cell will be upgraded to the new value.

Upgrading the Directory Version on a Directory

To use new features in a given release of CDS, you may need to explicitly update the directory version of a directory. This typically occurs when the servers replicating the directory all have been upgraded to the latest version of software, as older versions will not recognize the new features.

To upgrade the directory version, you need write permission to the directory and you must use the following commands:

deccp> directory modify directory-name -add {CDS UpgradeTo <v.n>} -single

deccp> directory synchronize directory-name

Eventually, all clearinghouses that contain a replica of this directory will detect the presence of the CDS UpgradeTo attribute and upgrade the CDS ReplicaVersion attribute on the appropriate replica. You can also use the following command on all clearinghouses that are replicating the directory:

deccp> clearinghouse verify clearinghouse-name

This command forces the server background thread to run, thereby freeing you to perform other tasks until the job finishes. After you have verified all affected clearinghouses, you will need to perform another skulk of the directory to finally set the CSA DirectoryVersion attribute to the appropriate value. The CDS DirectoryVersion attribute is not upgraded until all of the CDS ReplicaVersion attribute values of all replicas contain the new value.

Creating a Read-Only Replica

From time to time, you will want to create read-only replicas of directories. You create read-only replicas of a directory for the following purposes:

- To distribute the information that is contained in the directory throughout your network and to make the information more accessible to users and applications at other locations.
- To improve response time, especially in a namespace where users are dispersed over long distances. You should create read-only replicas in clearinghouses that are located near the user groups and applications that most frequently use the information that is contained in the directory.
- To preserve a backup of the information that is contained in the master replica of the directory. Maintaining multiple replicas ensures that the temporary loss of an individual replica does not cause an interruption in service and that the loss of a replica can be easily recovered. Even directories that store information used at only one particular site should be replicated in at least one other clearinghouse, preferably on a server at another location, so that a local failure at one site does not cause both replicas to be unreachable at the same time. (See “Chapter 17.
Read-only replicas of directories are safe from alteration by users. Users can look up information in a read-only replica, but they are not permitted to create new information or modify existing information.

You create read-only replicas with the \texttt{-replica} option of the \texttt{directory create} command. You should create the replicas in clearinghouses whose users need to access the directory but do not need, or are not permitted, to update its contents.

\section*{Before You Create a Replica}

Before you try to create a replica, verify that the clearinghouse containing the master replica of the directory you intend to replicate is running and reachable. To verify that this condition is satisfied, follow these steps:

1. For the directory that you intend to replicate, use the \texttt{directory show} command to display the directories attribute values and look at the \texttt{CDS_Replicas} attribute. The value of this attribute shows the names of the clearinghouses that currently store a replica of the directory. For example:

\begin{verbatim}
dcecp> directory show /./sales
{RPC_ClassVersion {01 00}}
{CDS_CTS 1994-08-12-09:52:30.396-04:0010.000/00-00-c0-f7-de-56}
{CDS_UTS 1994-08-12-09:52:31.506-04:0010.000/00-00-c0-f7-de-56}
{CDS_ObjectUUID a37d84d0-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_Replicas
 {{CH_UUID ce7ed810-b5db-11cd-8ffe-0000c0f7de56}
 {CH_Name /.../Chicago1/Chicago1_CH}
 {Replica_Type Master}
 {Tower {ncacn_ip_tcp 130.105.5.16}}
 {Tower {ncadg_ip_udp 130.105.5.16}}}}}
{CDS_AllUpTo 1994-08-12-09:52:31.566-04:0010.000/00-00-c0-f7-de-56}
{CDS_Convergence medium}
{CDS_ParentPointer
 {{Parent_UUID d034bc25-b5db-11cd-8ffe-0000c0f7de56}
 {Timeout
 {expiration 1994-08-12-09:52:30.396}
 {extension +1-00:00:00.000}}
 {myname /.../Chicago1/sales}}}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSku1 1994-08-12-09:52:31.566-04:0010.000/00-00-c0-f7-de-56}
{CDS_LastUpdate 1994-08-12-09:52:31.506-04:0010.000/00-00-c0-f7-de-56}
{CDS_RingPointer ce7ed810-b5db-11cd-8ffe-0000c0f7de56}
{CDS_Epoch a3df2a50-b5dc-11cd-8ffe-0000c0f7de56}
{CDS_ReplicaVersion 3.0}
dcecp>
\end{verbatim}

2. With this information, use the \texttt{directory show} command with the \texttt{-clearinghouse} and \texttt{-replica} options to verify that you can get a response from the clearinghouse that stores the master replica. For example:
The directory show command with the -clearinghouse and -replica options displays all the attribute values for the directory and its replica role.

Note: If any read-only replicas in the directory’s existing replica set are unavailable, the replication cannot complete. The normal skulking process completes the replication as soon as all replicas in the directory’s replica set become available.

Permissions for Creating Replicas

To create a replica, you need the following permissions:
- Administer permission to the directory that you intend to replicate
- Write permission to the clearinghouse that stores the new replica
- For the replica creation to succeed, the server principal for the server system where you enter the directory create command with the -replica and _clearinghouse options must have read, write, and administer permissions to the directory that you intend to replicate.

If the server is included in the server authorization group subsys/dce/cds-servers, these permissions should already be in place. If in doubt, use the acl check command to verify that the server principal has the appropriate permissions. (See the IBM DCE 2.2 for AIX: Command Reference for complete information on using the acl check command.)

Entering the directory create Command

Use the directory create command with the -replica and -clearinghouse options to create a replica of a directory and store it in the clearinghouse that you specify. For example, the following command creates a replica of the ./mfg directory and stores the replica in a clearinghouse that is named ./Chicago1_CH:
Deleting a Read-Only Replica

Sometimes you may need to delete a read-only replica when the information that it contains is no longer needed by the local users of the clearinghouse in which the replica is stored. You may also need to delete a read-only replica to prepare for deleting the directory of which the replica is a member, or before permanently removing the clearinghouse in which the replica is stored.

Permissions for Deleting a Replica

To delete a replica, you must have the following permissions:

- Administer permission to the directory whose replica you want to delete
- Write permission to the clearinghouse from which you are deleting the replica

Entering the directory delete Command

Use the `directory delete` command with the `-replica` and `-clearinghouse` options to delete a replica from the clearinghouse that you specify. For example, the following command deletes a replica of the `./:eng` directory from the `./:Chicago2_CH` clearinghouse:

```
dcecp> directory delete ./:eng -replica -clearinghouse ./:Chicago2_CH
```

Note: You can delete a directory’s master replica only by deleting the directory itself (by using the `directory delete` command). (See Chapter 21, Restructuring a Namespace on page 215 for complete information on how to delete a master replica.)

Skulking a Directory

The skulk operation is a periodic distribution of recent modifications that were made to the namespace. CDS skulks every directory at regular intervals according to the value assigned to the directory’s `CDS_Convergence` attribute. To ensure that updates are distributed to all replicas of a directory as soon as possible, you can initiate a skulk of the directory by using the `directory synchronize` command rather than waiting for the next scheduled skulk to distribute the new information. You can use this command to perform the following tasks:

- Distribute crucial updates that were made to a directory’s contents or replica set when you do not want to wait for the next skulk
- Skulk directories that store replicas on servers that were inoperative for an extended period and were just brought back online

Permissions for Skulking a Directory

To skulk a directory, you must have the following permissions:

- Administer, write, insert, or delete permission to the directory.
The server principal for the server system where you enter the `directory synchronize` command needs read, write, and administer permissions to the directory that you intend to skulk. If the server is included in the server authorization group `subsys/dce/cds-servers`, these permissions should already be in place. If in doubt, use the `acl show` command to verify that the server principal has the appropriate permissions. (See the IBM DCE 2.2 for AIX: Command Reference for complete information on the `acl show` command arguments.)

Entering the directory synchronize Command

Use the `directory synchronize` command to initiate an immediate skulk on a directory.

After you enter the command, `dcecp` temporarily suspends the `dcecp>` prompt while the skulk is in progress. Skulks of directories with large replica sets may take some time to execute. If the prompt returns with no error messages, the skulk is successful. If error messages are displayed before the prompt returns, the skulk failed.

For a skulk to succeed, every replica in the directory’s replica set must be reachable. Skulks may sometimes fail, especially on directories with large replica sets, or when the servers that store replicas of the directory are located over great distances where network connectivity is not always reliable.

Skulk failure does not make CDS unusable. Although the skulking process is unable to update information in a replica that it cannot contact, it always updates information in the replicas that it can reach. Temporarily, some replicas contain the latest information and some do not. When a skulk fails, CDS automatically repeats the skulking process, at an interval based on the directory’s convergence value, until all replicas in the set are updated with the latest changes. When all replicas contain identical information, CDS considers the skulk successful.

If skulks of a particular directory continue to fail, you can determine the cause by reviewing the log of CDS events on the server that stores the master replica of the directory. For example, the following command initiates a skulk on the `./:/admin` directory:

```
dcecp> directory synchronize ./:/admin
dcecp>
```

Synchronizing CDS Server Clocks

After performing a skulk operation on a directory, you may receive the message:

```
Server clocks are not synchronized
```

indicating that the server clocks are not synchronized. If so, you should first check to see whether the system clocks on the server systems are indeed synchronized. If they are and you still receive the message, then perhaps the system clock on an individual server was mistakenly set to a future time and subsequently restored. This causes a problem for CDS because there may be timestamps stored in a clearinghouse that are invalid (any timestamp greater than 5 minutes in the future from the current time).
If this is the case, you should adjust the system clock to the current time and then enter the following command:

dcecp> clearinghouse
repair <clearinghouse-name> -timestamps

This command will disable the clearinghouse, analyze and repair bad timestamps, checkpoint the clearinghouse to disk, and reenable the clearinghouse. To use the command, you need write permission to the server on which the clearinghouse resides. Also, you should execute this command on all clearinghouses that replicate the directory (and its objects) that needs to be repaired.

After executing the clearinghouse repair command, you should be able to skulk the directory successfully.

Modifying a Directory’s Convergence

The value assigned to a directory’s CDS_Convergence attribute determines how frequently the server that stores the master replica of the directory initiates a skulk of the directory’s replica set. A directory’s convergence can be set to a value of high, medium, or low.

A directory that is set to a convergence value of high is skulked at least once every 12 hours. If an update is made to the directory, the server that stores the master replica immediately attempts to propagate the new information to the entire replica set. If this update propagation fails, the server schedules a skulk of the directory to begin within the hour. If this initial skulk fails, additional skulks are initiated at 1-hour intervals until the skulk succeeds.

A directory that is set to a convergence value of medium is skulked at least once every 12 hours. If an update is made to the directory, the server that stores the master replica immediately attempts to propagate the new information to the entire replica set. If the propagation fails, the server waits for the next skulk to synchronize the replica set.

A directory that is set to a convergence value of low is skulked at least once every 24 hours. The server on which a low-convergence directory resides makes no immediate attempt to propagate updates and waits for the next skulk to synchronize the replica set.

Every newly created directory inherits the convergence value of its parent directory. When you create a namespace, the root directory is automatically assigned a convergence value of medium. Unless you change this value, or the convergence values of any lower-level directories after you create them, all directories that you create under the root also have a convergence value of medium. For most directories, you never need to modify this value. However, you may occasionally find it useful to set a directory’s convergence to high or low.

Before You Modify a Directory’s Convergence

Before you modify a directory’s convergence, you want to verify the current convergence value of the directory. To do this, use the directory show command to display the directory’s attribute values and look at the CDS_Convergence attribute value.
Permissions for Modifying a Directory’s Convergence

To modify a directory’s convergence, you must have write permission to the directory.

Entering the directory modify Command

Use the directory modify command with the -change option to assign a value of high, medium, or low to a directory’s CDS_Convergence attribute. For example, the following command sets the convergence value of the /./sales/us directory to high:

dcecp> directory modify /./sales/us -change {CDS_Convergence high}
dcecp>
Chapter 19. Viewing the Structure and Contents of a Namespace

When you need to view the structure and contents of the cell namespace, you can use one or more programs provided by CDS. The CDS browser (cdsbrowser) allows you to display namespace information in a windowing environment, while the DCE control program (dcecp) displays information through its command line interface. This chapter explains how to use the CDS browser and dcecp to display namespace information.

Viewing the Namespace with the CDS Browser

The CDS browser is a tool for viewing the content and structure of a namespace, which runs on workstations with the OSF/Motif graphical user interface or compatible software. The program can display an overall directory structure as well as show the contents of directories, enabling you to monitor growth in the size and number of directories in a namespace. You also can customize the CDS browser so that it displays only a specific class of object names.

To start the CDS browser, enter the following command at your system prompt:

```
$ cdsbrowser
```

To end a CDS browser session and return to your system prompt, choose Quit from the File pull-down menu. (See the cdsbrowser(8cds) reference page for a complete description of the cdsbrowser command.)

Displaying the Default Namespace

The CDS browser lets you view the default namespace for your system. You can see only the entries in the namespace to which you have read permission. Directories to which you do not have read permission do not appear. When you use the CDS browser, it sets the confidence level of clerk calls to low.

When you start the CDS browser, an icon representing the root directory is the first item to be displayed in the window. Directories, soft links, and object entries all have distinct icons associated with them. Table 1 shows the CDS browser icons and what they represent.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Entry type</th>
<th>Icon</th>
<th>Entry type</th>
</tr>
</thead>
<tbody>
<tr>
<td>🗃️</td>
<td>Directory</td>
<td>🗃️</td>
<td>Object entry</td>
</tr>
<tr>
<td>🗃️</td>
<td>Clearinghouse object entry</td>
<td>🗃️</td>
<td>Soft link</td>
</tr>
</tbody>
</table>

To expand (open) the root directory, double-click on it. Double-click on the expanded directory to collapse (close) it. When you expand a directory, you see all of the soft links and object entries that it contains. Object entries can represent clearinghouses or any resource for which a client application creates entries in the namespace. Note that object entries representing clearinghouses are shown with a different icon than are ordinary object entries. All entries, such as object entries, soft links, and directories, are shown indented from their parent directories.
Expanding and Collapsing Selected Directories

By double-clicking on single directories, you can continue expanding a particular directory pathname one level at a time. Other methods are available to expand all directories at once or to expand selected groups of directories.

To expand or collapse a group of directories, select them and double-click on them. Note that, because double-clicking has a toggle effect, you can expand or collapse groups of directories only one level at a time. If you double-click multiple directory levels at one time, the result may be the opposite of what you expect.

To expand or collapse selected directories level by level, click on the first directory that you want to select, then continue selecting directories by shift-clicking (pressing `<Shift>` and clicking) on them. When you select the last directory, press `<Shift>` and double-click, instead of single-clicking, on it. This selects the last directory and expands or collapses all of the directories that you selected.

Expanding and Collapsing the Entire Cell Namespace

To expand all directories on all levels at once, choose the Expand All option from the File menu. Likewise, choose Collapse All from the File menu to close an expanded namespace.

Note: Use Expand All with care if you have a large namespace. The larger a namespace, the longer it takes to display its entire contents.

Filtering the Namespace Display

Using the Filters menu, you can selectively display object entries of a particular class. For example, if you are interested in seeing the entries for clearinghouse objects only, choose the class `CDS_Clearinghouse` from the Filters menu. For any directory that you expand after choosing a filter, you see only names of objects whose class matches the filter.

Note that soft links are still displayed because they are not object entries and only object entries can be filtered out. To reset the filter so that you can again view all object entries, choose the * (asterisk) from the Filters menu.

Navigating the Namespace

Once you begin expanding the namespace, it can exceed the boundaries of your CDS browser window, even if you enlarge the window. You can use the horizontal and vertical scroll bars and stepping arrows to scroll through the namespace.

Dragging the slider up and down the vertical scroll bar on the right side of the display window produces an index window. The index window shows the name where the slider is currently positioned in the namespace. When the index window contains the name that you want to view, release the mouse button to position that name at the top of the CDS browser window.

In displays that are larger than the length of the window, scrolling through directory levels can produce a reference line toward the top of the window. The line orients you by showing the full directory pathname from the current name to the root. It also indicates that you have scrolled past other parts of the namespace that are no longer displayed.
Listing the Contents of Directories

The DCE control program (*dcecp*) provides a **directory list** command that allows you to display a list of the descendants of a directory within the cell namespace. A directory’s descendants are all the child pointers, clearinghouses, object entries, and soft links existing in it.

To use the **directory list** command, you must have read permission to the CDS names that you want to display.

For a complete listing of a directory’s contents, you enter the **directory list** command with the name of the directory or directories whose contents you wish to view. For example:

```
dcecp> directory list /.:/eng
/.../eng_cell.osf.org/hosts/eng/aud-acl
/.../eng_cell.osf.org/hosts/eng/aud-svc
/.../eng_cell.osf.org/hosts/eng/cds-clerk
/.../eng_cell.osf.org/hosts/eng/cds-server
/.../eng_cell.osf.org/hosts/eng/dts-entity
/.../eng_cell.osf.org/hosts/eng/profile
/.../eng_cell.osf.org/hosts/eng/self
/.../eng_cell.osf.org/hosts/eng/CDS_CTS
/.../eng_cell.osf.org/hosts/eng/CDS_UTS
```

By default, the **directory list** command displays the full names of the objects (the object names preceded by *.../pathname*) contained in the directory. To list only the RDNs of the objects, enter the **directory list** command with the **-simplename** option.

To display the names of a particular kind of directory descendant only, you include the appropriate option of the **directory list** command. For example, you enter the following command to display the names of all the soft links that are stored in the /.:/eng directory:

```
dcecp> directory list /.:/eng/ -links
/.../eng_cell.osf.org/hosts/eng/CDS_CTS
/.../eng_cell.osf.org/hosts/eng/CDS_UTS
```

Displaying the Attribute Values of CDS Names

To display any or all of the current values of the attributes associated with the names in a namespace (except for clerks or servers), use the **dcecp show** operation.

The basic syntax of the **show** operation is as follows:

```
object-type show object-name
```

where **object-type** is the type of CDS object about which you want to display information, and **object-name** is a complete directory specification terminating with a simple name (that is, the full CDS name) of the object you are inquiring about.

To use the **show** operation, you must have read permission to the name that you want to display.
In the following example, the **show** operation displays the current values of the `CDS_CHDirectories` attribute associated with the `./:/Chicago2_CH` clearinghouse. The display returned by the operation shows two values for the attribute, each value having two parts. The parts of the attribute value are UUID of Directory and Name of Directory. The **show** operation displays the values separately. For each value, it first lists the attribute name on a line ending with a colon, then the parts of the value.

```
dcecp> clearinghouse show ./:/Chicago2_CH
{RPC_ClassVersion {01 00})
{CDS_CTS 1994-01-24-07:12:51.966-05:0010.000/00-00-c0-f7-de-56)
{CDS_UTS 1994-02-03-07:17:35.794-05:0010.000/00-00-c0-f7-de-56)
{CDS_ObjectUUID 0094e40e-bb43-1d43-9e0a-0000c0f7de56)
{CDS_Al1UpTo 1994-02-03-09:17:06.393-05:0010.000/00-00-c0-f7-de-56)
{CDS_DirectoryVersion 3.0)
{CDS_CHName ./.../Chicago2/Chicago2_CH)
{CDS_CHLastAddress {Tower ncacn_ip_tcp:130.105.5.16}]
{CDS_CHLastAddress {Tower ncadg_ip_udp:130.105.5.16}])
{CDS_CHState on)
{CDS_CHDirectories {dir_uuid 00595ca5-bb46-1d43-9e0a-0000c0f7de56}
{directory ./.../Chicago2})
{CDS_CHDirectories {dir_uuid 0088574-bb53-1d43-9e0a-0000c0f7de56}
{directory ./.../Chicago2/subsys})
{CDS_CHDirectories {dir_uuid 0069ff14-bb55-1d43-9e0a-0000c0f7de56}
{directory ./.../Chicago2/subsys/dce})
{CDS_CHDirectories {dir_uuid 0023cc38-bb56-1d43-9e0a-0000c0f7de56}
{directory ./.../Chicago2/subsys/dce/sec})
{CDS_CHDirectories {dir_uuid 0026d57c-bb57-1d43-9e0a-0000c0f7de56}
{directory ./.../Chicago2/host})
{CDS_ReplicaVersion 3.0)
{CDS_NSCellname ./.../Chicago2}
```dcecp>

In the following example, the **show** operation displays all of the object entries that are stored in the `./:/sales` directory:

```
dcecp> object show ./:/sales
{CDS_CTS 1994-06-23-15:56:44.734+00:0010.000/08-00-20-0f-59-bf)
{CDS_UTS 1994-08-08-22:23:54.226+00:0010.000/08-00-20-0f-59-bf)
{CDS_ClassVersion 1.0)
```dcecp>

The following command displays all of the soft links stored in the `./:/mfg` directory:

```
dcecp> link show ./:/mfg
{CDS_CTS 1994-06-23-15:56:44.734+00:0010.000/08-00-20-0f-59-bf)
{CDS_UTS 1994-08-08-22:23:54.226+00:0010.000/08-00-20-0f-59-bf)
{CDS_LinkTarget = /.../abc/mfg/robotics_controller1}
dcecp>
```

Displaying Clerk and Server Attribute Information

To show the values of the attributes associated with clerk and server entries in the cell namespace, use **dcecp** commands **cds** and **cdsclient**. The basic syntax for each command is:

```
cds show cdr-server-name
cdsclient show cdr-client-name
```
To use these commands, you must have read permission to the CDS name that you want to display.

You are not permitted to use wildcard characters in the simple names of clerks and servers on the show operation line.

In the following example, the show operation displays the current values of all attributes that are associated with the local clerk:

dcecp> cdsclient show /./hosts/hostname/cds-clerk

The returned display is as follows:

{Creation_Time 1996-08-01-15:39:06.052+00:00I-----}
{Protocol_Errors 0}
{Authentication_Failures 0}
{Read_Operations 1088}
{Cache_Hits 928}
{Cache_Bypasses 157}
{Write_Operations 68}
{Miscellaneous_Operations 94}
Chapter 20. Using the CDS Subtree Commands to Restructure CDS Directories

Sometimes, because of corporate restructuring or for other reasons, you need to combine or rearrange various directories or subtrees of directories in your CDS namespace.

For example, suppose the engineering group in your organization, ./eng, is combined with the research and development group, ./rnd, and that the two groups begin to share a common set of applications and other network resources. You can reflect this organizational change in your namespace hierarchy by merging the contents of these directories.

Similarly, if the engineering group becomes subordinate to the research and development group, you can reflect this change by creating an empty directory named ./rnd/eng and then merging the contents of the ./eng directory into ./rnd/eng, effectively appending ./eng below ./rnd.

Overview of the Merge and Append Procedures

To merge or append CDS directories, you use the DCE control program (dcecp) directory merge command. The basic steps for both procedures are as follows:

1. At your system prompt, enter dcecp to invoke the DCE control program.
2. Merge or append one existing directory with another existing directory. To do this, use the directory merge command to combine the directory’s information about its descendants (object entries, soft links, and child directories) with another directory’s information or to append the information below an existing bottom-level directory.
3. Delete the source directory or subtree (and its contents) that you merged in step 2 from its old location in the hierarchy by using the directory delete command. Replace the deleted directory information with a single soft link of the same name to redirect lookups of the information at the new location by using the link create command.

Note: The presence of clearinghouses, duplicate names, or unreachable names in a merged directory requires special handling. The merge and append operations described in the following sections assume that no duplicate names exist in the source and target directory or subtree, and that the clearinghouses that store the master replicas of affected directories are enabled and reachable at the time the operations are initiated.

The example merge and append operations described in this section are based on an example namespace, shown in the following figure.
Merging CDS Directories

The following procedure merges the source directory `./eng` into the target directory `./rnd`:

1. Perform a skulk on the `./eng` directory before merging it with the `./rnd` directory. This synchronization of the source directory’s replicas can prevent errors that cause the merge operation to fail.
   ```
   dcecp> directory synchronize ./eng
   dcecp>
   ```

2. Run the `directory merge` command to merge the `./eng` and `./rnd` directories:
   ```
   dcecp> directory merge ./eng -into ./rnd
   dcecp>
   ```

 Note that the `directory merge` command merges only the immediate contents of the source directory named in the command-line argument (that is, the object entries, soft links, and child directories in these directories).

 To copy the descendants of any child directories of a directory to a target location, you must use the `-tree` option of the command. For example, if the `./eng` directory in the previous example included the child directories `dev` and `qa`, and you wanted to merge the contents of these directories into the target directory `./rnd`, you would enter the following command line:
   ```
   dcecp> directory merge ./eng -into ./rnd -tree
   dcecp>
   ```

 By default, the `directory merge` command places all object entries, soft links, and child directories in the target directory’s master clearinghouse. You can, however, place child directories in another clearinghouse. To do this, you use the `-clearinghouse` option of the command to specify the name of the other clearinghouse.

 Note that you are allowed to specify only one alternate clearinghouse in the `-clearinghouse` option. If you wish to place child directories in different alternate clearinghouses, you must issue separate `directory merge` commands for each
clearinghouse, or you must issue a single `directory merge` command to place all the child directories in one clearinghouse, then relocate the directories after the merge operation.

Note: The CDS objects created by the `directory merge` command retain all of the writable attribute values and some of the read-only attribute values of the source objects. However, these objects do not inherit the ACLs of the source objects. If the merged object is a directory, the `directory merge` command gives it the default ACLs of the initial container. If the merged object is any other CDS object type, the `directory merge` command gives it the default ACLs of the initial object.

If the `directory merge` command encounters problems with the merge operation, it behaves in one of two ways. If you include the `-nocheck` option, the command does not check for errors before performing the operation. It proceeds immediately to perform the operation, and if it encounters an error, it stops. If you omit the `-nocheck` option, the command checks for certain error conditions before starting the merge. If it finds errors, it displays messages for the errors and stops; otherwise, it proceeds with the merge.

Error messages returned by the `directory merge` command identify the CDS entity causing the problem and provide a brief description of the problem. You should fix any problems that the command encounters, before running it again. (See "Handling Errors" on page 212 for more information on the types of errors that can occur during a merge operation.)

3. After the merge operation, the `./:eng` directory (and its contents) still exists at the source location. Run the following commands to delete the `./:eng` directory from its original location and create a soft link named `./:eng` in place of the deleted directory. The soft link will redirect lookups of the `obj1` and `link1` object entries to their new locations in the `./:rnd` directory.

It is recommended that you perform a skulk on a source directory before deleting it. This synchronization of the directory’s replicas can prevent errors that cause the delete operation to fail.

The sequence of commands to synchronize and delete the `./:eng` directory and then create soft links for the former contents are as follows:

```
dcecp> directory synchronize ./:eng
dcecp> directory delete ./:eng -tree
dcecp> link create ./:eng -to ./:rnd
```

The `directory delete` command invoked with the `-tree` option deletes a directory and all the object entries, soft links, and child directories beneath that directory. If you use the the `directory delete` command without the `-tree` option, all of the directories to be deleted must be empty, or errors will occur.

Figure 20 on page 210 shows the structure of the example namespace before and after the merge operation in our example.
Appending CDS Directories

The following procedure appends the source directory /.:eng to the /.:rnd directory (that is, copies the /.:eng directory into the empty target directory /eng under the /.:rnd directory):

1. Run the `directory create` command to create a new empty directory named /.:/rnd/eng into which the contents of the source directory /.:eng can be placed:
   ```
   dcecp> directory create /.:/rnd/eng
   dcecp> 
   ```
 By default, the `directory create` command creates new directories in the same clearinghouse as the parent directory. If you wish to create a directory in another clearinghouse, you must use the `-clearinghouse` option of the command to specify the other clearinghouse.

2. Perform a skulk on the /.:eng directory before appending it to the /.:rnd directory. This synchronization of the source directory’s replicas can prevent errors that cause the append operation to fail:
   ```
   dcecp> directory synchronize /.:/eng
   dcecp> 
   ```

3. Run the `directory merge` command to append the source directory /.:eng to the /.:rnd directory (or merge it into the new /.:/rnd/eng directory):
   ```
   dcecp> directory merge /.:/eng
   -into /.:/rnd/eng
   dcecp> 
   ```
 If the source directory contains any child directories whose contents you want to copy over, you must specify the `-tree` option in the `directory merge` command line. Additionally, you need to specify the `-clearinghouse` option if you wish to place the child directory and its contents in a different clearinghouse from the /.:/rnd/eng directory.

 If the merge operation is not successful, you can delete any partially merged information at the target location and run the command again. Be sure, though, to delete any duplicate names and to make certain that connectivity to the affected clearinghouses can be maintained.

 Note: The CDS objects created by the `directory merge` command retain all of the writable attribute values and some of the read-only attribute values of

Figure 20. Example Namespace Before and After the Merge Operation
the source objects. However, these objects do not inherit the ACLs of the
source objects. The ACLs on the target objects are either those that are
inherited from the initial container (the parent directory into which the
objects are merged) or the initial object.

4. After the append operation, the /./eng directory (and its contents) still exists at
the source location. You need to delete the /./eng directory from its original
location and create a soft link named /./eng in place of the deleted directory.
The soft link will redirect lookups of the obj1 and link1 object entries to their
new locations in the /./rnd/eng directory.

It is recommended that you perform a skulk on a source directory before
deleting it. This synchronization of the directory’s replicas can prevent errors
that cause the delete operation to fail.

The sequence of dcecp commands for removing the /./eng directory from the
source location is the following:

dcecp> directory synchronize /./eng

The sequence of dcecp commands for removing the /./eng directory from the
source location is the following:

dcecp> directory synchronize /./eng

dcecp> directory delete /./eng

dcecp> link create /./eng -to /./rnd/eng

dcecp>

Figure 21 shows the structure of our example namespace before and after the
append operation.

Modifying ACLs at the Target Location

To preserve the access by principals to the merged information in the target
directories, the ACLs on the newly created objects at the target location need to
match those of the objects in the source directories. Because the directory merge
command does not recreate the source ACLs on the CDS objects at the new
location, you may need to modify the target ACLs after the merge operation. To
modify these ACLs, use the dcecp acl replace or acl modify command, depending
on whether you want to replace an entire ACL or just modify ACL entries.

![Figure 21. Example Namespace Before and After the Append Operation](image-url)
Handling Errors

Most of the errors that the directory merge command encounters during its operations are caused by the following:

- Duplicate names that are detected during the merge
- Names in the source subtree whose master clearinghouses were not reachable when the command was executing
- Entries not created in the target location due to insufficient permissions

The following subsections explain how to recover from these errors.

Duplicate Names

If the full name of a CDS object entry or soft link is identical to a full name of an object entry or soft link at the target location, the directory merge command lists these duplicate names and stops. Duplicate names are not merged to avoid overwriting and destroying the identical names in the target directory.

If duplicate names exist, you need to decide which names you want to preserve: the names in the source subtree or the names in the target subtree. Once you have made your decision, proceed in the following manner:

1. Use the dcecp create operations to recreate (under a new name) any duplicate object entry or soft link as a new object entry or soft link in the source or target subtree. Then delete the duplicate name.
2. When you are certain that connectivity to the affected clearinghouses can be maintained, rerun the directory merge command to merge the contents of the source and target directories.

Unreachable Name Failures

Sometimes, the clearinghouse that stores the master replica of a directory you are trying to merge is disabled or unreachable when you enter the directory merge command. When this happens, the command cannot create the directory and the entries it contains at the new target location.

When unable to merge a name for this reason, the directory merge command displays an error message specifying the name that could not be created and terminates.

Insufficient Permissions

The directory merge command cannot create CDS objects at a target location if it lacks the appropriate permissions. If the command returns error messages indicating insufficient permissions, you need to examine the ACLs for the target clearinghouse, directories, and object entries to see the current permissions and change the inappropriate ones.

Table 12 shows the permissions required to create directories and other CDS object entries at the target.

<table>
<thead>
<tr>
<th>Objects</th>
<th>Required Permissions</th>
</tr>
</thead>
</table>
Table 12. Permissions Required To Create Target Objects (continued)

<table>
<thead>
<tr>
<th>directory</th>
<th>Write permission to the clearinghouse that is to store the master replica of the new directory. Insert and read permissions to the parent of the new directory. Insert and read permissions to the initial container for the new directory. The server principal also needs read and insert permissions to the parent directory of the new directory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>other CDS object</td>
<td>Insert and read permissions to the directory where it is to be created. Insert and read permissions to the initial object for its object type.</td>
</tr>
</tbody>
</table>

Merging CDS Directories into a Foreign Cell

You can also use the directory merge command to merge CDS directories into the namespace of a foreign cell. In general, the procedure you follow is the same as the procedure you use to merge directories or subtrees in the same namespace. There are, however, some additional considerations to keep in mind:

- You need to establish cross-cell authentication in advance.
- You need to merge the entire directory hierarchy in the source and target cells.

Also, you need to modify the ACLs of the newly created target objects as when you merge directories in the same namespace.

Establishing Cross-Cell Authentication

If you want users and applications in the source cell to be able to continue accessing their merged information in the target cell conveniently, make sure that an agreement of cross-cell authentication exists between the source cell and foreign (target) cell. Otherwise, principals from the source cell requesting newly merged information will not be permitted to communicate with the target cell. See [Part 6] DCE Security Service on page 283 for complete information on how to set up cross-cell authentication.

Performing a Merge Operation into a Foreign Cell

To merge CDS data into the namespace of a foreign cell, follow these steps:

1. While logged into a privileged account (cell_admin or a member of cds-admin group) on the target machine in the foreign cell, run the directory merge command to merge the contents of the source cell’s directory with an existing directory.

2. If you intend to continue accessing the merged information from the source cell, delete the uppermost directory in the source subtree and replace the deleted information with a single soft link of the same name as that directory. This redirects lookups of the information to its new location in the foreign cell.

Restoring Merged CDS Directories

You can use the dcecp link delete and directory merge commands to restore deleted directories and their contents to your namespace.
First run the **link delete** command to remove the soft links in the former source location, then use the **directory merge** command to append the copy of the directory back under its former parent directory.

If the directory has slave replicas, use the **directory create** command to create a new replica of the directory in each of the clearinghouses from which the directory was deleted.

Remember that the **directory merge** command affects only directories and their contents. It does not copy clearinghouses or their associated clearinghouse object entries and therefore cannot be used to restore clearinghouses or to account for discrepancies in information among individual replicas resident on different clearinghouses. Furthermore, the directory information in a particular location may have changed since the time of the original merge operation.
Chapter 21. Restructuring a Namespace

Over time, you may need to restructure or rename certain elements of your namespace. For example, you may want to create soft links to provide users with one or more alternate names for an existing namespace entry. You may need to reconfigure a directory’s replica set to modify the locations and replica types of particular replicas, or exclude a replica from the set. Occasionally, you may want to delete certain directories when the information that they contain is no longer needed by users. You may also need to relocate a clearinghouse or delete a clearinghouse from a server system to perform diagnostic or troubleshooting work on the system, or to prepare for removing the system from your network. Finally, you may want to create a hierarchy of cells, add a cell to an existing hierarchy, or change the structure of a cell hierarchy.

This chapter explains how to perform the following namespace restructuring tasks:
- Managing soft links
- Modifying a directory’s replica set
- Deleting a directory
- Relocating a clearinghouse
- Deleting a clearinghouse

Managing Soft Links

A soft link is an alternate name, or alias, with which you can refer to another existing name in a namespace. Soft links allow users and client applications to refer to a particular directory, object entry, or soft link by more than one name.

In general, you should create soft links to assign alternate names to particular network resources, or to make minor changes to the original names of directories in your namespace hierarchy. You should avoid using soft links to completely redesign your namespace.

Creating a Soft Link

Use the DCE control program (dcecp) link create command to create a soft link. In addition to the name for the new soft link, you must specify the soft link’s destination name, or existing name to which the new soft link points, with the -to option. You can specify any name in the local cell namespace or in any foreign cell namespace, as the destination name, including another soft link.

To create a soft link, you must have insert permission to the directory in which you intend to create the soft link.

Note: If you create a soft link that points to another soft link, make sure you do not create a soft link loop. A soft link loop occurs when you specify a destination name that eventually points back to the new soft link’s own link name. The clerk detects this error.

All soft links that you create with the link create command are permanent and never expire unless you use the command’s -timeout option to specify an expiration date and time value for the CDS_LinkTimeout attribute of the soft link.

Enter the expiration date and time value in the format:
For example, the following value indicates that, if the soft link still exists (that is, has not been deleted manually) on August 25, 1994, at 4:00 p.m., CDS will automatically delete it the next time the directory in which it is stored is skulked:

```
CDS_LinkTimeout=(1994-08-25-16:00:00)
```

If you use the `-timeout` option to specify an expiration value for a soft link’s `CDS_LinkTimeout` attribute, you can also specify an extension value, which is a period of time to be added to the expiration date and time that are already assigned. Enter the extension value in the format `ddd-hh:mm:ss`. For example, a value of `030-00:00:00` indicates that, if the destination name of the soft link still exists when the assigned expiration date and time are reached, CDS allows another 30 days to pass before it again checks, during a skulk, for the existence of the destination name. If, at that time, the destination name cannot be found, CDS deletes the soft link.

The following command creates a permanent soft link named `/./sales/asia` that points to a directory named `/./sales/eur`:

```
dcecp> link create /./sales/asia -to /./sales/eur
```

The following command creates a soft link named `/./mfg/robo1` that points to an object entry named `/./mfg/robotics_controller01` and sets its expiration date and time:

```
dcecp> link create /./mfg/robo1 -to /./mfg/robotics_controller01 -timeout 1994-12-12-09:00:00
```

In the preceding command, the expiration date and time placed in the `CDS_LinkTimeout` attribute value indicates that CDS will delete the soft link `/./mfg/robo1` on the next skulk after December 12, 1994, at 9:00 a.m.

The following command creates a soft link that is named `/./admin/linka` that points to an object entry named `/./sales/discount_stats`:

```
dcecp> link create /./admin/linka -to /./sales/discount_stats -timeout {1994-01-11-12:00:00 090-00:00:00}
```

In the preceding command, the expiration time placed in the `CDS_LinkTimeout` attribute value indicates that CDS will check that the destination name `/./sales/discount_stats` still exists on the next skulk after January 11, 1994, at 12:00 p.m. If the destination name does not exist, CDS deletes the soft link. If the destination name still exists, the soft link remains in effect for another 90 days, as specified by the extension time specified for the `CDS_LinkTimeout` attribute value `090-00:00:00`. When the 90-day extension period expires, CDS repeats the check at 90-day intervals until the destination name is deleted.

Changing a Soft Link’s Destination Name

Use the `dcecp link modify` command to specify a new value for a soft link’s `CDS_LinkTarget` attribute and redirect the soft link from its current destination name to some other name in the namespace.
To change a soft link’s destination name, you must have write permission to the soft link. For example, the following command redirects a soft link that is named `./admin/work_disk` from its current destination name to the new destination name `./admin/work_disk03`:

```
dcecp> link modify ./admin/work_disk -change {CDS_LinkTarget \ 
/./admin/work_disk03}
```

Changing a Soft Link’s Expiration or Extension Value

Use the `dcecp link modify` command to specify a new value for the expiration and extension values that are stored in a soft link’s `CDS_LinkTimeout` attribute. Even if you want to modify only one of the values, you must specify values for both expiration and extension in your command. You specify a new value in the same format that you used to establish the original value. The expiration value has the format `yyyy-mm-dd-hh:mm:ss` and an extension value has the format `ddd-hh:mm:ss`.

To change a soft link’s expiration or extension value, you must have write permission to the soft link.

The following command sets the expiration value of a soft link that is named `./eng/link01` to December 31, 1994, at 12:00 p.m. In this example, no extension is currently assigned to the soft link.

```
dcecp> link modify ./eng/link01 -change {CDS_LinkTimeout \ 
(1994-12-31-12:00:00 000-00:00:00)}
```

The following command changes the expiration value of a soft link that is named `./eng/link01` to December 31, 1994, at 12:00 p.m. and sets the soft link’s extension value to 90 days:

```
dcecp> link modify ./eng/link01 -change {CDS_LinkTimeout \ 
1994-12-31-12:00:00 090-00:00:00}
```

Deleting a Soft Link

If you find that a permanent soft link has outlasted its original purpose, or if you prefer not to wait until a soft link’s assigned expiration and extension times have been reached, you can delete the soft link from the namespace yourself.

Use the `link delete` command to delete the soft link of the name that you specify.

To delete a soft link, you must have delete permission to the soft link, or administer permission to the directory that stores the soft link.

For example, the following command deletes a soft link that is named `./dist/pointer_1`:

```
dcecp> link delete ./dist/pointer_1
```

Chapter 21. Restructuring a Namespace
Modifying a Directory’s Replica Set

A directory’s replica set always contains a master replica; it can also contain other read-only replicas. The values that are stored in the CDS_Repl icas attribute that is associated with a directory contain information that describes the directory’s replica set, including how many replicas exist, their replica types, and the name of the clearinghouse where each of the replicas is stored. You can use the dcescp directory modify command to overwrite the current values that are stored in the directory’s CDS_Repl icas attribute and to perform either or both of the following tasks in a single command:

- Designate a new master replica in a directory’s replica set.
- Exclude a replica from a directory’s replica set.

Note: As part of the directory modify command, CDS initiates an immediate skulk on the directory to distribute modifications to all members of the replica set as soon as possible.

Before You Modify a Replica Set

Before you modify a directory’s replica set, you need to know how many replicas exist, their replica types, and the name of the clearinghouse where each of the replicas is stored. The command that you use to modify a directory’s replica set does not allow you to accidentally leave a replica out of the new set. You must explicitly list all existing replicas that are in the set. You can include or exclude any replica from the new set, but you must account for all replicas. Only one of the replicas that you include in the new set can be designated as the master replica.

To display the names of all of a directory’s replicas, use the dcecp directory show command. This command queries the directory’s CDS_Repl icas attribute to gather this information. (See “Chapter 18. Managing CDS Directories” on page 191 for information on how to use the dcecp directory show command.)

Permissions Required for Modifying a Replica Set

The permissions for modifying a directory’s replica set are as follows:

- You must have administer permission to the directory. Also, the server principal needs administer, read, and write permissions to the directory.
- When designating a new master replica, you also need write permission to the clearinghouse that stores the current master replica. The server principal needs write permission to the clearinghouse that stores the read-only replica that you intend to designate as the new master replica.

The server principal on the server where the new master replica will be located needs administer, read, and write permissions to the directory.

When you know which replicas to include and exclude and have changed permissions that need to be changed, issue the directory modify command to modify a directory’s replica set. Instructions for your two options—designating a new master replica, and excluding an existing read-only replica—are given in the sections that follow.
Designating a New Master Replica

Sometimes, for configuration management reasons, you may want to designate a different replica as a directory’s master replica.

For example, you can specify a new master replica when:

- A server system whose clearinghouse contains one or more master replicas will be down for an extended period of time or removed permanently from the network.
- A clearinghouse that stores one or more master replicas will be deleted from the namespace.
- You want to locate a master replica closer to where the majority of updates to the directory originate.

To designate a new master replica, use the `dcecp directory modify` command.

Figure 22 illustrates an example replica set. This replica set of the `./:/eng` directory consists of three replicas: the master replica, which is stored in clearinghouse `./:/NY1_CH`, a read-only replica stored in clearinghouse `./:/NY2_CH`, and a read-only replica stored in clearinghouse `./:/Chicago1_CH`.

```
./:/NY1_CH
Master

./:/NY2_CH
Read-only

./:/Chicago1_CH
Read-only
```

Figure 22. Example Replica Set

The following command designates the read-only replica that is stored in clearinghouse `./:/Chicago1_CH` as the directory’s new master replica, designates the former master replica (stored in clearinghouse `./:/NY1_CH`) as a read-only replica, and leaves the read-only replica stored in clearinghouse `./:/NY2_CH` as it is:

```
dcecp> directory
modify ./:/eng -master ./:/Chicago1_CH
> -readonly {./:/NY1_CH ./:/NY2_CH}
dcecp>
```

Figure 23 on page 220 shows the result of the preceding command.
Excluding a Replica from a Replica Set

You can temporarily exclude a replica from its replica set when the clearinghouse in which the replica is stored unexpectedly becomes unavailable. This makes it possible for CDS to complete skulks of the directory during the time the excluded replica is unavailable.

To exclude a replica from a replica set, you use the `dcecp directory modify` command with the `exclude` argument to rebuild a directory’s replica set, excluding the replica that you specify. Remember that you must account for all existing replicas in the command.

In the following example, the replica set of the `/.:/eng` directory consists of three replicas: the master replica, which is stored in clearinghouse `/.:/Chicago1_CH`, and the read-only replicas that are stored in clearinghouses `/.:/NY1_CH` and `/.:/NY2_CH`.

In this case, the `/.:/NY1_CH` clearinghouse is cut off from the network because of accidental damage to the network transmission lines. Connectivity to the clearinghouse will not be restored for several days. During this period, skulks of the `/.:/eng` directory will fail unless you temporarily exclude the read-only replica that is stored in clearinghouse `/.:/NY1_CH`.

To make it possible for skulks of the `/.:/eng` directory to succeed during the repair period, enter the following command to overwrite the current values of the `/.:/eng` directory’s `CDS_Repli cas` attribute with new values that include only the replicas that are stored in the `/.:/NY2_CH` and `/.:/Chicago1_CH` clearinghouses:

```
dcecp> directory modify/.:/eng -master /:/Chicago1_CH > -readonly /:/NY2_CH -exclude /:/NY1_CH
dcecp>
```

Figure 24 on page 221 shows the result of the preceding command.
When connectivity with the \./NY1_CH clearinghouse is reestablished, enter the following command to reintroduce the read-only replica that is stored in clearinghouse \./NY1_CH to the replica set:

dcecp> directory modify \./eng -master \./Chicago1_CH \
> -readonly {\./NY1_CH \./NY2_CH}
dcecp>

Note: Always reintroduce excluded replicas to their replica sets as soon as possible after the clearinghouse in which they reside again becomes available.

Deleting Directories

You may sometimes want to delete a directory from your namespace when the information that it contains is no longer needed by users. You must take two considerations into account when deleting a directory:

- Does the directory contain child directories or the entries for any other CDS object? Before a directory can be deleted, it must be empty.
- Are there any replicas of the directory? They must each be deleted separately.

Both of these considerations are discussed in following sections.

To delete a directory, you must have the following permissions:

- Delete permission to the directory.
- Write permission to the clearinghouse that stores the master replica of the directory.
- The server principal for the server from which you enter the directory delete command needs administer permission to the parent directory or delete permission to the child pointer that points to the directory you intend to delete.

If the server is included in the server authorization group subsys/dce/cds-servers, these permissions should already be in place. If in doubt, use the acl show of the dcecp utility and verify that the server principal has the appropriate permissions. (See the IBM DCE 2.2 for AIX: Command Reference for complete information on the acl show command.)
Deleting a Nonreplicated Directory

To delete a directory that has no replicas, use the `dcecp directory delete` command. For example, to delete the directory `./sales`, all of its immediate contents, and the contents of any of its child directories, you would enter the following:

```
dcecp> directory delete ./sales -tree
```

Note: Be careful when using the `-tree` option of the `directory delete` command. The command does not ask you to confirm that you want to delete the directory that you specify in the command line; it proceeds immediately with the delete operation. This can result in the loss of directories that you want to keep.

Remember that you can change the behavior of `dcecp` commands through scripts. In the case of the `directory delete` command, you could write a script that prompted for a confirmation of the delete operation whenever the command was run with its `-tree` option. See [Part 1. The DCE Control Program](#) on page 1 of this guide for a discussion of writing scripts.

A way to guard against the inadvertent deletion of directories and their entries is to view the contents before you run the `directory delete` command. To display the contents of a CDS directory by entry type, use the `directory list` command with the `-object`, `-link`, and `-directory` options.

The following is an example in which a directory named `./sales` is deleted. The directory has one object entry and one soft link:

```
dcecp> directory list ./sales -simplename
work_disk link1

dcecp> directory list ./sales -simplename -object
work_disk

dcecp> directory list ./sales -simplename -link
link1

dcecp> directory delete ./sales -tree

dcecp> directory show ./sales
Error: Requested entry does not exist
```

If a directory to be deleted is not empty, the `directory delete` command will fail. To recover from this kind of failure, you must remove all the entries in the directory and its child directories, then run the `directory delete` command again. Use the `link delete` and `object delete` commands to delete the soft links and object entries in any directories. Then run the `directory delete` command to delete the directories.

Deleting a Directory Replica

If a directory is replicated, all the replicas have to be deleted individually. Then the directory can be deleted using the commands described in the previous section.

To display a list of all replicas of a directory, use the `dcecp directory show` command. Look at the `CDS_Role` attribute of the directory in the list. Each replica’s `CDS_Roles` attribute has several subattributes. Look at the `CH_Name` subattribute for each replica to get the name of the clearinghouse where it is located. For example:
The name of the directory and the name of the clearinghouse can be used to uniquely identify each replica. Use these names in a series of `directory delete` commands to remove the replicas. The name of each replica is the argument to the command, and the name of the clearinghouse should be used as the value of the `-clearinghouse` option. The `-replica` option should also appear in the command line to indicate that the directory to be deleted is a replica. A sample command line is the following:

```
dcecp> directory delete .:/sales -replica -clearinghouse .:/NY1_CH
```

Note: The `directory delete` command does not require that directory replicas are empty in order to operate on them. It will delete the replicas, all their contents, and their child directories immediately, without prompting for confirmation of the operation.

You may want to write a `dcecp` script that looks at the `CDS_Repllicas` attribute, finds all the replicas and deletes them with one command. See the “Part 1: The DCE Control Program” on page 1 of this guide for a discussion of writing scripts.

Relocating a Clearinghouse

Note: This section describes the procedure that you use to temporarily relocate a clearinghouse from one CDS server system to another. Note that the procedure cannot be used to configure additional CDS server systems. (See the *IBM DCE 2.2 for AIX: Administration Guide—Introduction* for information on how to configure CDS servers and CDS clerks.)

Occasionally, you may need to relocate a clearinghouse from the server system where it currently resides to another server system. For example, you may want to move a clearinghouse when:
You need to temporarily disconnect the host server system from the network for repair or for other reasons.

You no longer want the current host system to function as a CDS server.

You want to move the clearinghouse to a server system that is physically closer on the network to the user groups and applications that use the information contained in the clearinghouse.

To relocate a clearinghouse, follow these steps:

1. Login as the cell_admin on CDS servers A and B.
2. Enter the following command on server A.

 dcecp> dcecp -c clearinghouse disable /.:/my_ch

3. Change directories on server A to <d>:\opt\dcelocal\var\dir\cds.

4. Check the cdsfiles.map files for entries associated with /.:/my_ch. They will look something like the following:

 <d>:\opt\dcelocal\var\dir\cds\acell#my_ch.checkpoint001 -> <d>:\opt\dcelocal\var\dir\cds\AAAAAAA
 <d>:\opt\dcelocal\var\dir\cds\acell#my_ch.tlog001 -> <d>:\opt\dcelocal\var\dir\cds\BBBBBBBB
 <d>:\opt\dcelocal\var\dir\cds\acell#my_ch.version -> <d>:\opt\dcelocal\var\dir\cds\CCCCCCCC

 where AAAAAAA, BBBBBBB, and CCCCCCC are file names.

5. Transfer the files that you found in step 4 to the same directory on server B.

6. Extract and add the map entries you found in step 4 in server A’s cdsfiles.map file to server B’s cdsfiles.map file, changing the drive letter if necessary.

7. On server A, delete the entries you found in step 4 in server A’s cdsfiles.map file and the files associated with them.

8. Enter the following command on server B:

 dcecp> dcecp -c clearinghouse create /.:/my_ch

Dissociating a Clearinghouse from Its Host Server System

Whenever a CDS server starts, one of the tasks the server software performs is to start its clearinghouse (or clearinghouses). The server performs this task automatically by examining a list of the clearinghouses that are resident on the system. Before you relocate a clearinghouse, use the dcecp clearinghouse disable command to update the clearinghouse files and ensure that the files are consistent before you copy them to the target server.

The clearinghouse disable command also removes, from the source server’s internal memory, knowledge of the clearinghouse that you specify. This ensures that the relocated clearinghouse is not automatically started at the source server during server restarts.

To use the clearinghouse disable command, you must have write permission to the server on which the clearinghouse resides.

The following example command removes knowledge of clearinghouse /.:/Chicago2_CH from the memory of its host server:

 dcecp> clearinghouse disable /.:/Chicago2_CH
 dcecp>
Copying the Clearinghouse Database Files to the Target Server System

After you disable the clearinghouse and remove knowledge of the clearinghouse from the host server, you must copy the clearinghouse database files to a specific location on the new host server system.

A clearinghouse database consists of the following three files:
- `clearinghouse-name.checkpointnnnnnnnn`
- `clearinghouse-name.tlognnnnnnnn`
- `clearinghouse-name.version`

where `nnnnnnnn` represents an 8-digit number.

You should verify the existence of these files before you attempt to copy them to the new host system. (See the IBM DCE 2.2 for AIX: Administration Guide—Introduction and the OSF DCE Porting and Testing Guide for the full pathnames of all CDS files.)

Note: You may sometimes find two `.checkpointnnnnnnnn` files in the directory. This can happen as a result of a system crash or other interruption during the clearinghouse’s most recent checkpoint operation. If you do find two files, copy both of them to the target server system. The server software that is on that system automatically reconciles any problem that may exist as soon as the clearinghouse is enabled at the target server.

To move the database files to the new CDS server, use the `ftp` utility or a similar network file transfer utility. Copy the three database files from the existing server host to the new CDS server host. The directory where the files reside on the old and new CDS server is `/var/directory/cds`.

Starting the Clearinghouse on the Target Server

After copying the clearinghouse database files to the appropriate location on the target server system, use the `clearinghouse create` command to start the clearinghouse at the new location. Make sure that you specify the same clearinghouse name that was used at its original (source) location. After you enter the command, the server detects the clearinghouse files, adds knowledge of them to its memory, then starts the clearinghouse.

To use the `clearinghouse create` command for the purpose of relocating a clearinghouse, you must have write permission to the server on which you intend to relocate the clearinghouse.

In the preceding example, the database files for clearinghouse `./:Chicago2_CH` were successfully copied to a server system named `orion`. The following command, which is issued on `orion`, relocates the clearinghouse named `./:/Chicago2_CH` on that server:

```
dcecp> clearinghouse create ./:/Chicago2_CH
```

```
Deleting a Clearinghouse

You may need to delete a clearinghouse from the server system on which it resides when:

- The system is scheduled for reallocation or removal from your network.
- You no longer want the system to function as a CDS server.

Before You Delete a Clearinghouse

Before you attempt to delete a clearinghouse, make sure of the following:

- The clearinghouse is known to the server.
- The clearinghouse does not store a master replica.

When you clear a clearinghouse, the server on which the clearinghouse was running no longer has information about the clearinghouse in its internal memory. If you subsequently try to delete the clearinghouse, CDS will not find it and will return a message that it does not exist. Before you can delete a cleared clearinghouse, you must recreate it using the `clearinghouse create` command.

CDS does not allow you to delete a clearinghouse that contains a directory’s master replica. Before you delete such a clearinghouse, you must designate another replica in that directory’s replica set as the master replica. If no other replicas of the directory exist, create a read-only replica at another clearinghouse and then designate it as the directory’s new master replica before you delete the original master replica from the clearinghouse. (See “Modifying a Directory’s Replica Set” on page 218 for instructions on modifying a directory’s replica set.)

Permissions for Deleting a Clearinghouse

The following permissions are required for deleting a clearinghouse:

- You need write and delete permissions to the clearinghouse, and administer permission to all of the directories that store replicas in the clearinghouse.
- The server principal needs delete permission to the associated clearinghouse object entry, and administer permission to all directories that store replicas in the clearinghouse.

Deleting a Clearinghouse

Use the `clearinghouse delete` command to delete a clearinghouse. The command also deletes the clearinghouse’s associated clearinghouse object entry, and all read-only replicas from the clearinghouse.

Clearinghouse deletion can take some time to complete. CDS deletes a clearinghouse only after successfully completing a skulk of all directories that stored read-only replicas in the clearinghouse.

The following example command deletes the `./:/Paris2_CH` clearinghouse:

dcecp> clearinghouse delete ./:/Paris2_CH

dcecp>
Chapter 22. Managing Intercell Naming

To find names outside of the local cell, CDS clerks must have a way to locate directory servers in other cells. The Global Directory Agent (GDA) enables intercell communications by serving as a connection to other cells through the global naming environment. This chapter describes how the GDA works and how to manage it. The chapter also describes how to define the local cell in (X.500, LDAP, or DNS), where a step is necessary to make the local cell accessible to other cells.

Note: If the cell name is an X.500 formal name, then either GDS or an LDAP server may be used as the global name server.

How the Global Directory Agent Works

The GDA is an intermediary between CDS clerks in the local cell and CDS servers in other cells. A CDS clerk treats the GDA like any other name server, passing it name lookup requests. However, the GDA provides the clerk with only one specific service; it looks up a cell name in the X.500, LDAP, or DNS namespace and returns the results to the clerk. The clerk then uses those results to contact a CDS server in the foreign cell.

A GDA must exist inside any cell that wants to communicate with other cells. It can be on the same system as a CDS server, or it can exist independently on another system. You can configure more than one GDA in a cell for increased availability and reliability. Like a CDS server, a GDA is a principal and must authenticate itself to clerks.

CDS finds a GDA by reading address information that is stored in the CDS_GDAPointers attribute associated with the cell root directory. Whenever a GDA process starts, it creates a new entry or updates an existing entry in the CDS_GDAPointers attribute. The entry contains the address of the host on which the GDA is currently running. If multiple GDAs exist in a cell, they each create and maintain their own address information in the CDS_GDAPointers attribute.

When a CDS server receives a request for a name that is not in the local cell, the server examines the CDS_GDAPointers attribute of the cell root directory to find the location of one or more GDAs. Figure 25 on page 228 shows how a CDS clerk and CDS server interact to find a GDA.
The following steps summarize the GDA search that is illustrated in the preceding figure:

1. On Node A, a client application passes a global name, beginning with the /... prefix, to the CDS clerk.
2. The clerk passes the lookup request to a CDS server that it knows about on Node B.
3. The server’s clearinghouse contains a replica of the cell root directory, so the server reads the CDS_GDAPointers attribute and returns the address of Node C, where a GDA is running.
4. The clerk passes the lookup request to the GDA.

Figure 26 on page 229 shows how CDS and a GDA interact to find a name in a foreign cell that is defined in DNS. Suppose the name is /.../widget.com/printsrv1, which represents a print server in the foreign cell.
The following steps summarize the name search that is illustrated in the preceding figure:

1. The client application passes the name /.../widget.com/printsrv1 to the CDS clerk.
2. The clerk passes a lookup request to a CDS server that it knows about on Node B.
3. The server’s clearinghouse contains a replica of the cell root directory, so the server looks up the CDS_GDAPointers attribute and returns the address of Node C, where a GDA is running.
4. The clerk passes the lookup request to the GDA.
5. The GDA recognizes that the name is a DNS-style name, so it assumes that the second component is a cell name that is defined in DNS. It passes that portion of the name (widget.com) to DNS. For simplicity, the figure shows only one DNS server; more than one DNS server can actually be involved in resolving a global cell name.

**Note:** Although this example concerns the lookup of a DNS-style name, the sequence and execution of operations is nearly identical for an X.500 name or a hierarchical cell name. If the GDA recognizes that a name is an X.500-style name, it passes the name to either an LDAP client (via LDAP APIs) or a GDS client (via XDS/XOM APIs) rather than to a DNS server. The LDAP client or GDS client then communicates with the appropriate server to obtain the cell bindings (the same information as would be obtained from a DNS server).

6. DNS looks up and returns to the GDA information that is associated with the widget.com cell entry. The information includes the addresses of servers that maintain replicas of the root directory of the /.../widget.com cell namespace.
7. The GDA passes the information about the foreign cell to the clerk.
8. The clerk contacts the CDS server on Node E in the foreign cell, passing it a lookup request.

*Figure 26. How the GDA Helps CDS Find a Name*
9. The Node E server’s clearinghouse contains a replica of the root directory, so the server looks up the entry for printsrv1 in the root and passes the requested information to the clerk on Node A. For simplicity, this example shows the clerk contacting only one server in the foreign cell. While resolving a full name, the clerk may actually receive referrals to several servers in the foreign cell.

10. The clerk passes the information to the client application that requested it.

Note that both of the previous examples (Figure 25 on page 228 and Figure 26 on page 229) represent initial lookups. The CDS clerk caches the locations of GDAs once it discovers them. The clerk also caches the addresses of servers in foreign cells that it learns about, enabling it to contact the foreign servers directly on subsequent requests for names in the same cell.

Note also that a GDA knows its own cell name and can therefore avoid contacting a global directory service to look up names in its own cell. Furthermore, the GDA can recognize whether a cell name conforms to the X.500 or DNS naming syntax, and it uses that knowledge to route a lookup request to the appropriate global directory service. If the cell name conforms to the X.500 naming syntax, the GDA will first send the request to the LDAP client and then to the GDS client if it is not resolved by the LDAP client/server.

Managing the Global Directory Agent

Use the DCE configuration program to configure the GDA; the GDA requires little management once it is configured. (See the IBM DCE 2.2 for AIX: Administration Guide—Introduction for details on configuring the GDA.)

The GDA is typically started and stopped automatically by scripts that execute as part of normal system startup and shutdown procedures. Sometimes, however, you may want to use commands to stop and restart a GDA. Once you have configured GDA with the DCE configuration program, you can use these steps to start and stop GDA.

The GDA runs as a process called gdad. To start the gdad process, follow these steps:

1. Make sure that a CDS server is already running somewhere within the cell.
2. Log into the system as superuser (root).
3. Enter the following command to see if the dced process is already running:
   
   ```
 # ps
   ```
   
   If the dced process appears on the list of active processes, proceed to step 5. If the dced process does not appear on the list of active processes, enter the following command to start the process:
   
   ```
 # dced
   ```
   
4. Enter the following command to start the cdsadv process:
   
   ```
 # cdsadv
   ```
   
5. Enter the following command to start the gdad process:
   
   ```
 # gdad
   ```

   Note: See the IBM DCE 2.2 for AIX: Administration Guide—Introduction for the parameters required if gdad is to use LDAP to obtain cell bindings.
To stop the GDA, enter the following command, where \texttt{pid} is the process identifier of the \texttt{gdad} process:
\begin{verbatim}
# kill pid
\end{verbatim}

### Enabling Other Cells to Find Your Cell

The GDA is the mechanism that allows CDS clerks in your local cell to find other cells. To make your cell accessible to others, you must create an entry for it in one of the currently supported global naming environments. Before you do this, obtain a unique cell name from the appropriate naming authority. (See the \textit{IBM DCE 2.2 for AIX: Administration Guide—Introduction} for details.)

After you configure a cell, name it, and initialize the cell namespace, you can use the \texttt{dcecp directory show} command to obtain the data you need to create or modify the cell entry in an X.500, LDAP, or DNS. You can use the \texttt{ldap\_addcell} command to add the appropriate information for the cell to an LDAP server. The data in a cell entry is what the GDA passes to CDS after looking up a cell name. CDS, in turn, uses the information to contact servers in the cell. The following subsections describe how to define and maintain a cell entry in GDS, an LDAP server, or DNS server. These sections assume a basic familiarity with X.500 and DNS; for details, see the appropriate documentation for each global name service.

### Defining a Cell in the Domain Name System

Names in DNS are associated with one or more data structures called \textit{resource records}. The resource records are stored in a data file whose name and location are implementation specific. To create a cell entry, you must edit the data file and create two resource records for each CDS server that maintains a replica of the cell namespace root.

The first resource record, whose type can be AFSDB or MX, contains the host name of the system where the CDS server resides. You can use MX as an alternative to using AFSDB. The second record, of type TXT, contains the following information about the replica of the root directory that the server maintains:

- The UUID of the cell namespace, in hexadecimal notation
- The type of the replica (master or read-only)
- The global CDS name of the clearinghouse where the replica resides
- The UUID of the clearinghouse, in hexadecimal notation
- The DNS name of the host where the clearinghouse resides

The following example shows a set of AFSDB resource records for a cell that is named \texttt{cs.tech.edu}, in which two replicas of the root directory exist. Note that only the first resource record contains the cell name; the second, third, and fourth records are assumed to be associated with the same cell because they do not contain a cell name. The \texttt{TTL} heading stands for time-to-live, which is a value, in seconds, after which the data is no longer considered valid in a DNS cache. The value shown specifies a default value of 1 week.) The \texttt{IN} class indicates that the protocol is Internet, and the subtype of \texttt{2} indicates that a name server exists on the host named in the record.

\begin{verbatim}
;First Replica:
;Name       TTL   Class  Type  Subtype  Host
cs.tech.edu 604800 IN   AFSDB  2   fox.cs.tech.edu
\end{verbatim}
You can use MX as an alternative to using AFSDB. The following example shows a set of MX resource records for the same cell, `cs.tech.edu`, in which two replicas of the root directory exist.

<table>
<thead>
<tr>
<th>Name</th>
<th>TTL</th>
<th>Class</th>
<th>Type</th>
<th>Preference</th>
<th>Exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs.tech.edu.</td>
<td>604800</td>
<td>MX</td>
<td>1</td>
<td></td>
<td>fox.cs.tech.edu.</td>
</tr>
<tr>
<td>cs.tech.edu.</td>
<td>604800</td>
<td>TXT (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After you configure a cell, you can use the `dcecp directory show` command to display the information that is required to construct resource records like those shown in the previous example. The following is an example `directory show` command that displays output for a cell named `/.../cs.tech.edu`.

dcecp> directory show /.../cs.tech.edu

To create a new resource record in the DNS namespace, use the information from the `directory show` command and place the properly-formatted data into the DNS data file.

### Defining a Cell in an LDAP Server

The `ldap_addcell` utility obtains and dynamically adds DCE cell information to an LDAP server. The `ldap_addcell` command must be run with root authority. The `ldap_addcell` command can:

- Create a new directory object with cell bindings.
- Modify an existing directory object to add the cell bindings.
- Change the values of the cell bindings in a directory object that already exists.
- Delete the cell bindings from a directory object that already exists.
The cell bindings that are added or retrieved from a directory object have the same format used for an X.500 server (GDS) and are stored in 2 attributes:

- CDS_CELL
- CDS_REPLICAS

Authentication information such as userid and password are part of the ldap_addcell utility invocation because it writes to the directory service. The DCE cell information stored in the directory service is the same whether it was written using the X.500 registration utility or the ldap_addcell registration utility.

The ldap_addcell command has the following syntax:

```
ldap_addcell -h ldap_server -a authentication_DN -p password [-o object_class,object_class...] [-d]
```

where:

- **-h ldap_server**
  The name of the LDAP server targeted to hold the cell binding.

- **-a authentication_DN**
  The distinguished name (DN) specified in LDAP name syntax that will be authenticated and used to add cell binding.

- **-p password**
  The password that is used to authenticate the distinguished name (DN).

- **-o object_class**
  Value(s) of the attribute object_class for the entry (the registration) being created or modified. Note that, if you are listing more than one object_class value, you must separate them with commas.

- **-d**
  Deletes the DCE cell information attributes from the entry in the directory. It does not remove the entire directory entry.

The command must be run with root authority and prints a message to stderr.

The following ldap_addcell examples assume the following:

- bermuda.austin.ibm.com is the LDAP server machine name.
- gdatest is a user that has write access to the LDAP server.
- gdatest is also the password of the user gdatest
- An organizationalUnit is allowed to contain the auxiliary object, dceCellInfo.
- The LDAP server does schema checking.

Example 1 shows the normal creation of the cell bindings in the LDAP server.

```
ldap_addcell -h bermuda.austin.ibm.com -a "cn=gdatest,ou=austin,o=ibm,c=us" -p "gdatest"
 -o organizationalUnit,dceCellInfo
```

Example 2 shows the deletion of the CDS_CELL and CDS_REPLICAS attributes.

```
ldap_addcell -h bermuda.austin.ibm.com -a "cn=gdatest,ou=austin,o=ibm,c=us" -p "gdatest" -d
```

Example 3 shows the changing of the CDS_CELL and CDS_REPLICAS attributes in an object that already exists.

```
ldap_addcell -h bermuda.austin.ibm.com -a "cn=gdatest,ou=austin,o=ibm,c=us" -p "gdatest"
```

Most parameters of the ldap_addcell command has a corresponding environment variable which is used when the corresponding parameter is not present on the ldap_addcell command invocation. The ldap_addcell parameters and their
corresponding environment variables are:

<table>
<thead>
<tr>
<th><strong>ldap_addcell parameter</strong></th>
<th><strong>Environment Variable</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>LDAP_SERVER</td>
</tr>
<tr>
<td>-a</td>
<td>LDAP_AUTH_DN</td>
</tr>
<tr>
<td>-p</td>
<td>LDAP_AUTH_DN_PW</td>
</tr>
<tr>
<td>-o</td>
<td>LDAP_OBJECT_CLASS</td>
</tr>
</tbody>
</table>

**Note:** The –d parameter does not have a corresponding environment variable.

If the cell entry is already registered, the CDS_CELL and CDS_REPLICAS attributes are replaced with new values for this cell unless the –d parameter is specified.
Part 5. DCE Distributed Time Service
Chapter 23. Introduction to DCE Distributed Time Service

DTS is a software-based service that provides precise, fault-tolerant clock synchronization for systems in local area networks (LANs) and wide area networks (WANs). The clock synchronization that is provided by DTS enables distributed computing applications to determine event sequencing, duration, and scheduling.

DTS consists of software components on a group of cooperating systems; it conforms to the client/server model that is used in DCE. In the DTS implementation, each server supplies the time to many client systems and applications through intermediaries called clerks. Clerks reside on their client systems. (Note that, throughout this part of this guide, the term entity is used to refer to either the server process or the clerk process when they have the same functions.)

Most DCE nodes have a DTS clerk that adjusts the clock on its client system; clerks use remote procedure calls (RPCs) to obtain time values from one or several servers in the network. The nodes that do not have DTS clerks have DTS servers; in addition to providing time values to clerks, servers also adjust the system clocks on their host systems. Servers are also able to obtain reference time values from sources of standardized time that are outside of the network.

Because no device can measure the exact time at a particular instant, DTS expresses the time as an interval that contains the correct time. In the DTS model, clerks obtain time intervals from several servers and compute the intersection where the intervals overlap. Clerks then adjust the system clocks of their client systems to the midpoint of the computed intersection. When clerks receive a time interval that does not intersect with the majority, the clerks declare the nonintersecting value to be faulty. Clerks ignore faulty values when computing new times, thereby ensuring that defective server clocks do not affect clients.

DTS also permits the importation of time values from outside sources, such as the U.S. National Institute for Standards and Technology (NIST). DTS uses the UTC (Coordinated Universal Time) standard that has largely replaced Greenwich Mean Time (GMT) as a reference. Many standards bodies disseminate UTC by radio, telephone, and satellite; commercial devices (time-providers) are available to receive and interpret these signals. DTS offers a Time-Provider Interface (TPI) that describes how a time-provider process can pass UTC time values to a DTS server and propagate them in the network. The TPI also permits other distributed time services to interoperate with DTS.

DTS provides many other valuable services for computer networks that run distributed applications. The major features and benefits of DTS are the following:

- **Correctness**—DTS maximizes the probability that a client will receive the correct time. DTS uses UTC as a base reference and defines any time interval containing UTC as correct.
- **Quantitative Time Measurement**—DTS uses specific measurement and manufacturer’s specifications to determine the quality of the times that are reported by servers.
- **Fault Tolerance**—DTS reports faulty servers and does not use their time values during clock synchronizations.
- **Management Capability**—The DCE control program (dcecp) enables you to control and monitor the software.
- **Application Programming Interface (API)**—DTS provides an interface that allows applications to obtain, compare, and calculate UTC time values.
• Local Time Translation—When displaying time values, DTS translates the UTC times that it uses internally into local time values.
• Monotonicity—DTS normally provides unidirectional clock adjustment. You can use the DCE control program, though, for nonmonotonic clock adjustment.
• Automatic Configuration—DTS entities use RPC profiles (search tables) to obtain the locations of servers in a local area or cell.
• Efficiency—Complexity is placed in the servers; network overhead is minimal.

DTS Advantages

DTS offers all the features that are normally provided by a time service, but it also has several features that enhance network performance. The following subsections describe these DTS features:
• Applications support
• External time-provider support
• Manageability
• Quantitative inaccuracy measurement

Applications Support

Operating systems and distributed applications require synchronized time measurements to coordinate their processes. DTS synchronizes the system clocks in a network with each other and, in the presence of an external time-provider, to the UTC time standard. Any distributed application that reads the system clock, which is the majority of applications, needs DTS. As the number of distributed applications and systems in a network increases, DTS becomes increasingly vital to process coordination.

There are several types of existing applications that use the synchronized time DTS provides to system clocks. These applications must reference synchronized system clocks in order to coordinate the events that occur throughout the network. Applications use synchronized clocks for the following functions:
• Event Measurement—Applications can read the system clock to start and stop timers and to measure the elapsed time between events.
• Event Reporting—Applications can read the clock when an event occurs and append a timestamp to the event report.
• Event Scheduling—Applications can read the system clock and add a relative time to determine the occurrence of a future event.
• Event Sequencing—Applications can determine the order of events by reading the event report timestamps that are derived from the synchronized system clock.

For new applications, DTS provides an API. This API provides routines that new applications can use to obtain and manipulate binary timestamps. The DTS API supports ANSI C language constructs. (See the IBM DCE 2.2 for AIX: Application Development Guide—Core Components for further information on the DTS API.)

External Time-Provider Support

For most networks, it is desirable to synchronize the system clocks with the UTC time standard. Many commercial devices are available for obtaining the UTC time that is provided by standards organizations; these devices receive signals by short-wave radio, satellite, and telephone. If your network or cell is larger than a
single LAN, it is recommended that you use at least one external time-provider in combination with the DTS software. (See Appendix C for a list of suppliers of time-provider hardware. Sample time-provider programs are available online in `dcelocal/usr/examples/dts`.)

DTS servers can synchronize with time-providers by means of the TPI, which is described in the *IBM DCE 2.2 for AIX: Application Development Guide—Core Components*. The TPI specifies the communications between the DTS server process and the time-provider process.

When a DTS server attempts to synchronize, it uses the TPI to check for a time-provider process. If one is available, the server synchronizes only with the time-provider. If no time-provider is present, the server synchronizes with other servers in the network.

By using a time-provider with a DTS server, you can ensure that the server is closely synchronized with UTC. When other servers request a time from the server with the time-provider (the TP server), the TP server’s precise time is propagated throughout the network. (See “Basic DTS Concepts” on page 240 for further information about time-providers and the server synchronization process.)

**Manageability**

The DTS synchronization functions run as background processes; little or no input is required from system managers to synchronize system clocks after DTS is initially configured. DTS is also fault tolerant. It prevents malfunctioning clocks from providing the wrong time to other clocks in the network. Occasionally, however, system managers may need to perform the following functions:

- Identify system clock problems
- Adjust system clocks
- Change DTS attributes due to varying network conditions
- Modify system configurations when the network topology changes

DTS provides a full-featured management interface that allows system managers to adjust system clocks, change the values of the DTS management parameters, and add or subtract servers from the network.

To aid in solving problems with system clocks, DTS provides event reporting that notifies system operators and managers in the rare event that a system clock is inaccurate or fails to synchronize.

**Quantitative Inaccuracy Measurement**

Unlike other network time services, DTS uses manufacturers’ specifications and direct observation to determine the inaccuracy of system clocks relative to UTC. DTS appends an inaccuracy measurement to each time value that it uses internally. This measurement takes into account cumulative clock error, communications delays, and processing delays. DTS uses combined time and inaccuracy measurements from one or several sources to calculate the most accurate new clock settings for client systems. (See “Synchronizing System Clocks” on page 242 for further information about the DTS synchronization process.)
Basic DTS Concepts

The following subsections describe system clock and network characteristics, DTS synchronization concepts, DTS clock adjustment, and DTS time representations. System managers need to read these subsections to gain a basic understanding of DTS concepts before progressing to Chapter 25, Managing the DCE DTS on page 257.

Time Measurement Factors

The following subsections describe the factors that affect time measurement and explain how DTS handles them.

Clock Error

All system clocks have common properties that contribute to clock error and interfere with the synchronization process. System clock error tends to increase over time; the rate of change of error is known as drift. If each system clock in a network started at the same time and ran at the same rate, the clocks would remain synchronized. Because each system clock drifts at a different rate, however, the system clocks throughout a network become desynchronized.

The difference between any two clock readings is known as the skew, between the clocks. The clocks that are used in many computer systems have a specified maximum drift of a few seconds per day. If uncorrected for several days, the skew between networked system clocks can inhibit the performance of distributed applications.

The DTS server or clerk on each node tracks the drift of its client’s system clock and periodically synchronizes with other DTS nodes to reduce the skew between its client’s time value and those of the other DTS nodes. The DTS server or clerk adjusts the system clock on its client node as the final step in this repeating synchronization process.

Communications and Processing Uncertainties

Communications delays also inhibit the synchronization process, especially when two systems communicate over a WAN or low-speed link. DTS can adjust for the known processing delays that are required to send and receive messages between systems. Due to the varying quality of communications links, however, the time that is required to send, receive, and acknowledge messages varies from one message to the next. These delays cannot be known exactly because transit over the network and the time required to read an incoming timestamp both vary.

Rather than using estimates of communications and processing delays, DTS records all known error factors that accompany a time measurement sent over the network. This measurement enables DTS to determine the relative quality of a time source regardless of its geographic location or changing conditions on communications links.
Inaccuracy Values

In order to synchronize system clocks to the most accurate settings, DTS needs a way to determine the accuracy of time sources relative to each other and to UTC. This section describes how DTS determines the relative accuracy of any time source that is available in the network.

DTS uses an inaccuracy value, or tolerance, to determine the relative precision of time values that it obtains from system clocks and external time-providers. This DTS feature effectively transforms each time value into an interval, or range, rather than a point on a continuum.

Inaccuracy values are determined by the following three factors:

- **Drift** — When reading a clock, DTS calculates the amount of time that the clock may have drifted since DTS previously read the clock. Drift is the largest component of most inaccuracy values.

- **Communications Delay** — The inaccuracy also contains the uncertain portions of the communications delays between systems. Although DTS compensates for processing delays, it cannot predict or directly measure the varying delays that occur on network links. The inaccuracy values that a clerk or server obtains from co-located systems on a LAN tend to be much lower than those obtained from servers outside the LAN.

- **Leap Seconds** — UTC time is measured by atomic clocks, which are extremely stable. The standard, however, keeps time based on the earth’s position. Due to the slowing of the earth’s rotation, it occasionally becomes necessary to advance UTC time by 1 second. These events are known as leap seconds. Leap seconds may occur in the final second of any month, and normally occur about once every 18 months. At the end of each month, DTS accounts for leap seconds by increasing all inaccuracy measurements by 1 second. DTS later adjusts the clocks to remove the extra second of inaccuracy if an external time-provider determines that a leap second did not actually occur.

Without DTS to correct it, a system clock’s inaccuracy is always increasing. For example, suppose that a clock starts with a UTC time of 0:00:00.00 (midnight) and zero inaccuracy. Due to drift, when the clock next shows a time of 0:00:00.00, the inaccuracy is 8 seconds. UTC time may be 23:59:52.00 or 0:00:08.00, but is probably somewhere in between. Therefore, the system time is an interval that contains UTC time and is bounded by the inaccuracy, as shown in Figure 27 on page 243. Using the DTS format for displaying time, the combined time and inaccuracy interval is expressed as follows:

1993-08-03-00:00:00.000108.000.
Synchronizing System Clocks

To maintain uniform system times, DTS servers and clerks periodically synchronize the clocks in all network systems. The DTS entity that is on each system performs these synchronizations by requesting that servers send their combined clock and inaccuracy values (time intervals) to the originating system. The entity then uses the values that are sent by the servers to compute a new system time.

DTS servers and clerks have slightly different synchronization procedures. Before attempting to synchronize with other systems, DTS servers always check that an external time-provider is present on the server system. A given server requests times from other servers if no time-provider is available. When no time-provider is available and a server synchronizes with its peer servers, the server uses its own system time as one of the input values when it computes a new system time.

Most network systems run the DTS clerk process. Clerks cannot have time-providers, and they do not use the system time of their client systems to compute new times. When a clerk is synchronizing its client system’s clock, the clerk uses only the time values that it obtains from servers to compute a new system time.

When a DTS clerk requests time intervals from several servers, it uses them to calculate a new time that is correct (that is, contains UTC) and that minimizes inaccuracy. When the servers respond and the DTS clerk calculates network communications uncertainties and drift for each of the time values, the clerk has a set of intervals (t1 through t4 in Figure 28 on page 243). Since each interval contains UTC, the intersection is the smallest interval the clerk can choose that also contains UTC. This intersection is the computed time. The DTS entity uses the computed time interval to adjust the clock on the system that receives the server values.

In addition to eliminating large inaccuracy values during synchronization, DTS also discards intervals that are received from faulty clocks (t2 in the figure). DTS detects and rejects clock intervals that do not intersect with the majority of the intervals. When DTS detects a faulty interval, it notifies the system manager by displaying an event message, identifying the server that sent the faulty value.
A server that has a high-drift clock or is far away in the network submits its time to the DTS entity (\(t1\) in the figure), but the large time interval is ignored since more accurate times are available. Note that, in Figure 28, the endpoints of correct time (\(t1\)) are further from the computed time midpoint than those of the interval that is declared faulty (\(t2\)).

During the synchronization process, servers with the greatest accuracy have the most influence in determining new system times throughout the network. In the previous figure, the server that submitted time value \(t3\) has the smallest correct interval and is therefore the closest to the computed time. Server systems with external time-providers are usually the servers with the most accurate times. Beyond TP servers, those servers with the highest quality clocks and best communications links tend to influence the time on other systems to the greatest degree.

The synchronization process also reduces the skew between systems. The computed time interval is often smaller than the interval that is supplied by any single clock. Note that the computed time in the previous figure is a smaller interval than any of the source intervals. As the synchronization procedure is constantly repeated on each network system, the skew between systems is reduced and they are more closely synchronized. However, if a time-provider is absent from the network, the clocks may collectively drift away from UTC.

**How DTS Adjusts System Clocks**

Many system clocks are based on an oscillator and operate with a combination of hardware and software. The hardware for each clock contains a timer that sends interrupts to the operating system at fixed intervals; each interrupt is a single tick.
software register that contains the current value of the time is incremented by a fixed amount (for example, 10 milliseconds) at each tick. DTS adjusts the rate of the clock by changing only the incremental value that is added to the software register. It does not directly affect the ticks of the hardware clock.

DTS adjusts system clocks at the rate of 100 to 1; that is, it requires 100 time units to adjust 1 time unit of error. For example, it takes 1 minute and 40 seconds to correct a 1-second error. This rate of adjustment exceeds the normal rate of drift so that synchronization is carried out without further significant interference from the clock.

Figure 29 illustrates how DTS changes the increment to the software register. The top line represents a 10-millisecond increment to the normal clock at every 10-millisecond tick. The middle line illustrates the adjustment to a fast clock; DTS slows the clock by incrementing the register by 9.9 milliseconds instead of 10 milliseconds at each tick. The bottom line illustrates the adjustment to a slow clock; DTS speeds it up by incrementing the register by 10.1 milliseconds instead of the usual 10 milliseconds at each tick.

<table>
<thead>
<tr>
<th>T</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>10.5</td>
<td>20.4</td>
<td>30.3</td>
<td>40.2</td>
<td>50.1</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>9.5</td>
<td>19.6</td>
<td>29.7</td>
<td>39.8</td>
<td>49.9</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

T = Hardware tick

Figure 29. Adjustment of the Clock

It is occasionally preferable to set the system clock immediately, rather than adjusting it gradually. DTS provides this option for the following situations:

- During system startup when you want to set the initial system time
- If it has been a long time since the last synchronization, and you decide that the skews between system clocks are too large to wait for a gradual adjustment
- When a network has had catastrophic hardware problems, causing a large number of the clocks to become faulty
- When the time interval for a given clock does not intersect with the intervals of other clocks, and the error exceeds a predetermined tolerance

**DTS Time Representation**

UTC is the international time standard that has largely replaced GMT. The standard is administrated by the International Time Bureau (BIH) and is in widespread use. For all its internal processes, DTS uses opaque binary timestamps that represent UTC. You cannot read or disassemble a DTS binary timestamp. The DTS API allows other applications to convert or manipulate the timestamps, but they cannot be displayed. DTS also translates the binary timestamps into ASCII text for display on a client system.
Absolute Time

An absolute time is a point on a time scale. For DTS, absolute times reference the UTC time scale. Absolute time measurements are derived from system clocks or external time-providers. When DTS reads a system clock time, the time is recorded in an opaque binary timestamp that also includes the inaccuracy and other information. When you use the DCE control program (dcecp) clock show command to display an absolute time, it is converted to ASCII text, as shown in the following display:

1993-11-21-13:30:25.78523-04:00:00:010:0.0825

DTS displays all times in an ISO-compliant format. The International Organization for Standardization (ISO) format that generated the previous display example is detailed as shown in Figure 30.

In the format example shown in the preceding figure, the relative time preceded by the + (plus sign) or − (minus sign) indicates the hours and minutes that the calendar date and inaccuracy are offset from UTC. The presence of one of these characters in the string also indicates that the calendar date and time are the local time of the system, not UTC. The delineator I indicates the beginning of the inaccuracy component that is associated with the time. You can express the DTS time that you want to display in several ways. The DTS time in BNF format is defined in [Appendix D. DTS Extended BNF] on page 507.

Although the dcecp clock show command displays all times in the previous format (see Figure 30), the interface also accepts the following variations to the ISO format on input, as shown in Figure 31 on page 246.

---

Figure 30. ISO-Compliant Time Format

In the format example shown in the preceding figure, the relative time preceded by the + (plus sign) or − (minus sign) indicates the hours and minutes that the calendar date and inaccuracy are offset from UTC. The presence of one of these characters in the string also indicates that the calendar date and time are the local time of the system, not UTC. The delineator I indicates the beginning of the inaccuracy component that is associated with the time. You can express the DTS time that you want to display in several ways. The DTS time in BNF format is defined in [Appendix D. DTS Extended BNF] on page 507.

Although the dcecp clock show command displays all times in the previous format (see Figure 30), the interface also accepts the following variations to the ISO format on input, as shown in Figure 31 on page 246.
In the preceding example, the delineator T separates the calendar date from the
time, a , (comma) separates seconds from fractional seconds, and the ± (plus or
minus sign) indicates the beginning of the inaccuracy component.

DTS offers a translation feature that changes UTC-based absolute times to your
local time whenever the time is displayed. The local time displayed is derived from
UTC plus a Time Differential Factor (TDF), which can have a positive or negative
value. In the previous example, the string [+/-] hh:mm denotes the TDF. When
installing a system, you select a time-zone rule for the system, which determines
the TDF and any seasonal changes to the TDF. After the initial startup, all
subsequent output times reflect the local time. If an absolute time is displayed by
your system, and it does not contain TDF information, it is a UTC time.

Relative Time

A relative time is a discrete time interval that is usually added to or subtracted from
another time. The TDF that is associated with absolute times is an example of a
relative time. Relative times are normally used as input for commands or system
routines.

Figure 32 on page 247 shows the format for relative time.
The simple relative times that you specify with DTS-related dcecp commands do not use the calendar date nor inaccuracy fields because these fields are associated with absolute times. Positive relative times are not signed, but negative relative times are preceded with a − (minus sign).

The following example shows a relative time used in a typical DTS-related dcecp command:

21-08:30:25.000

Simple relative times are often subtracted from or added to other relative or absolute times. For example, if you say, “I will meet you in an hour,” you add a relative time of +01:00 to the present absolute time. In the case where you add or subtract a relative time and an absolute time, note that the inaccuracy of the input absolute time is carried over to the resulting absolute time. For example, 1993-11-30-00:30:25.0000 equals 1993-11-30-00:30:25.0000.

How DTS Works

DTS has two major software components:
• Clerks
• Servers

The following subsections describe each of these components and tell you how they interact to provide time to client applications and to synchronize system clocks.

Clerks

Any system that is not a DTS server is a DTS clerk. Most network systems run clerk software. Clerks maintain server lists and perform the synchronization functions for DTS client systems.

In order to build server lists and synchronize with the servers on the list, clerks need to be able to locate servers automatically. They discover servers by using remote procedure call (RPC) profiles. Recall that profiles are search tables that contain the following types of entries:
• Server Entries—The CDS names of individual resource providers.
- Service Group Entries—A group of resource providers identified by a single CDS name.
- Profile Entries—The names of other configuration profiles. These entries allow hierarchical nesting of profiles.

Each DTS clerk node contains up to three profiles. When it attempts to locate servers, a clerk first performs an RPC lookup of the entries in a base profile called the node initial profile. The clerk then looks for the LAN profile entry. If the LAN profile entry is not found, the clerk searches for the default profile entry; the default profile may contain the LAN profile entry. When the clerk locates the LAN profile, it reads the server entries to build a list of local servers. This process is repeated at set intervals.

If a clerk does not obtain enough server entries as dictated by the DTS management attribute minservers, it attempts to locate additional servers, usually those outside the LAN. To locate these servers, a clerk locates the cell profile, which has a well-known CDS name. The cell profile contains global server entries; that is, servers that are normally found outside the LAN. (See "Servers" for further information on servers.)

After building a server list with enough entries, a clerk can directly request time values from several of the servers on the list. The clerk then receives these time values and uses them to compute a new system time for its client system.

Servers

Servers provide many of the communications and synchronization functions for DTS. Like clerks, they import information about other servers from LAN and cell profiles. Servers, however, also export bindings to their own CDS namespace entries and export their names to the LAN and cell profiles. (See the following subsections on the server subtypes for further information on how servers are configured and located.)

External time-providers can be connected to servers, which propagate the precise time intervals they obtain from the time-providers throughout the network.

Before one server can obtain time values from another, the servers must have the same epoch number. Epochs divide the DTS implementation into logically separate areas. Servers only synchronize with other servers that have the same epoch number. All servers have the same epoch number when they are created. Infrequently, you may wish to change a server’s epoch number, using the management interface, to isolate it from the network in order to correct a problem.

The Local Server Set

Local servers reside on the same LAN and maintain their clocks by synchronizing with each other. Due to the high throughput on this type of network, the skews between the local servers on a LAN are normally maintained at under 200 milliseconds. If at least one of the servers in the local set synchronizes with an accurate time-provider, inaccuracies at each server may be less.

When a server is first initialized, it exports its binding to its entry in the namespace and adds its name entry to the LAN profile. Every server is automatically entered in...
the LAN profile for the related portion of the network. Local servers also import bindings from the LAN profile to build lists of servers with which they can synchronize.

Local servers perform time interval computations, adjust their clocks, and provide time values to each other for synchronization purposes. Each server attempts to synchronize with every other server in the local set at periodic intervals. At longer intervals, clerks request time values from the local servers. Clerks, however, need only to request intervals from the number of servers determined by the \texttt{minservers} attribute, which is usually a subset of all the local servers.

**The Global Server Set**

Local servers are available only to the servers and clerks that are in a single LAN, but global servers are available throughout a cell. Any server can be configured as either a local or a global server (See the DCE control program \texttt{dts configure} command). The number of global servers is usually small, but global servers have several important functions that enable DTS to synchronize every node in the network. Global servers are necessary in the following situations:

- When a network has multiple LANs or an extended LAN
- When systems that are not on LANs have access to LANs through point-to-point links
- When clerks or local servers cannot access the required number of local servers determined by the \texttt{minservers} attribute

You can reconfigure a local server as a global server by using the \texttt{dcecp dts configure} command with the \texttt{-global} option. Configuring a server as a global server causes the server to export its binding to its entry in the namespace and its name to the cell profile.

Local servers and clerks request time values from global servers when they cannot obtain the number of local server responses that are mandated by the \texttt{minservers} attribute. Certain local servers also regularly request the time from global servers.

**Couriers**

Local servers called \textit{couriers} request time values from one randomly selected global server at every synchronization. When DTS starts up, it automatically sets the server's \texttt{courierrole} attribute value to \texttt{backup}. You can change the server's courier role by manually changing this attribute value. To do this, you use the \texttt{dcecp dts modify} command with the \texttt{-change} option. If a server is connected to an external time-provider, you want to reconfigure it as a courier.

Couriers maintain lists of global servers whose bindings they import from the cell profile. At every synchronization, couriers use the responses of all local servers and one global server when synchronizing their own clocks. Couriers provide network-wide synchronization through the following procedure:

1. Couriers request time values from at least one global server in a remote area and request the balance of values from local servers up to the number determined by the \texttt{minservers} attribute.
2. Couriers use the global server times and local server times to synchronize the clocks that are in their respective systems.
3. Couriers relay newly computed clock times to other servers and clerks on the LAN during future synchronizations.
For a network containing multiple LANs or point-to-point links, one server on each LAN or segment needs to be configured as a courier. This configuration ensures that various portions of the network remain synchronized and are not isolated from each other.

Using the management interface, you can also designate one or more servers to be backup couriers. These local servers temporarily assume courier functions in the event that no courier servers are available on the LAN. In such a case, the backup courier with the lowest ordered Universal Unique Identifier (UUID) regularly synchronizes with global servers until a courier is again available.

If a courier cannot find any global server, then it uses local servers and increments its no global server detected count.
Chapter 24. Planning Your DTS Implementation

Two main categories of personnel interact with the DTS software: system managers and applications programmers. Programmers do not usually need to be involved in the planning stages of the DTS implementation. If you are writing a program to import a source of UTC time into the service, however, you may wish to locate the time-provider at the server that is closest to the programmer. Close proximity to the time-provider helps the programmer when testing the software application with the time-provider hardware.

System managers or network architects usually plan the DTS implementation. They decide which nodes are servers and which are clerks, and they decide how the DTS implementation grows with the network. DTS is scalable for large networks so that expanding an implementation to include new nodes is relatively simple.

System managers also install the software and maintain DTS. As the network grows, system managers ensure that the service is running with acceptable accuracy and install new servers, time-providers, and clerks.

General Planning Guidelines

Consider the following questions as you plan your DTS implementation:

- Is your cell a single LAN, an extended LAN, a WAN, or a combination of LANs and WANs?
- What is the current or proposed network topology (component placement)?
- How many servers will be required? Where will they be located?
- Will global servers be required? Where will they be located?
- Will you need to configure any couriers if you are using global servers?
- Will you use an external time-provider to obtain UTC?

The following sections will help you answer these questions.

Although there are many network configurations that affect DTS planning, several general rules apply regardless of your network configuration or the number of nodes in the network. These guidelines are summarized as follows:

- DTS must be installed with the other DCE components.
- Locate DTS servers on the same nodes as the servers for the other DCE components wherever possible.
- Each cell should have a minimum of three DTS servers; preferably four servers to provide redundancy.
- Each LAN should have at least one server.
- Locate the servers at the sites with the greatest number of nodes.

Although other factors must be considered when you plan your network, these factors depend on network topology and configuration. The following sections present some typical cell arrangements to aid you in implementing DTS on your own network.
Configuring DTS for a LAN

If your nodes are in a single LAN, regardless of the number of nodes, planning your DTS implementation is relatively simple. To detect faulty time servers, configure at least three systems as servers. If you want to provide redundancy for your DTS implementation, plan to install four or more servers in the network. That way, if one of the servers fails, DTS can still synchronize with reliable results.

To ensure the reliability of your DTS implementation, make sure that the network connections between server nodes are stable. If you plan to add WAN links to your LAN, do not move the servers to the remote nodes, since WAN links are usually less reliable than the LAN.

If you have a single LAN, the location of the servers on the LAN is not critical. You can locate one of the servers on a readily accessible node to aid in troubleshooting, but there are no other recommended server locations. Neither global servers nor couriers are required.

If you are planning to use one or more time-providers, locate them at easily accessible systems to ease startup and maintenance. If your network only requires synchronized clocks, but does not need to closely follow a time standard such as UTC, you may not require a time-provider. If you do not use a time-provider, we recommend that you use the DCE control program (dcecp) clock set command to manually set the time approximately once each week.

Figure 33 shows a simplified LAN configuration. Your LAN may be much larger, but the figure should resemble a portion of your network.

![Figure 33. DTS Configuration—LAN](image)

Configuring DTS for an Extended LAN

If your network consists of several LAN segments that are connected by bridges, your network is considered to be an extended LAN. Planning for extended LANs is similar to planning for a single LAN; treat each segment of the extended LAN as though it were a separate LAN. The following guidelines are recommended:

- Create three servers in each segment.
- Use the dts configure command to configure one server on each segment as a global server.
• Use the dts modify command to configure one server on each segment as a courier.
• If you are using time-providers, connect them to the global servers.

Configuring DTS for WANs and WAN Links

Because there are many variations of WAN configurations, especially in combination with LANs and extended LANs, it is impossible to describe every case where a WAN link can be used to disseminate time. This section does not give recommendations for every case involving a WAN link, but it describes how you can set up your DTS implementation by using several generic configurations as examples.

Due to the variable delay inherent in any WAN link, it is difficult to maintain a consistent skew between clocks on opposite sides of the link. DTS synchronizes clocks across WAN interfaces, but larger inaccuracies occur between the clocks to account for the worst case transmission delay during each synchronization.

A reliable and robust DTS installation is important any time WAN links are part of a cell. Because WANs are less reliable than LANs, plan for some redundancy in any DTS installation that involves WAN links. Try to place servers so that there will always be three or more available, even if one of the WAN links goes down.

The following subsections give recommendations for three basic WAN configurations:
• A LAN or extended LAN with WAN links to remote nodes
• LANs that are connected by WAN links
• An all-WAN cell with a central host or cluster

Your cell may not exactly match any of the configurations, but you can plan your cell by following the recommendations for each example.

LANs with WAN Links to Remote Sites

Figure 34 on page 254 shows a LAN that incorporates several remote nodes by using WAN links.
In this configuration, follow the basic recommendations for a single LAN, but also adhere to these rules:

- Configure servers at remote sites as global and courier servers.
- The LAN should have a minimum of three servers.
- If you are using a single time-provider, locate it at one of the global servers on the LAN, rather than at a remote server.

The network configuration that results from the preceding rules concentrates the servers on the LAN; so, clock skews are kept to a minimum and the service is not dependent on remote nodes that may be physically inaccessible to the system manager. Each remote clerk node synchronizes with the global servers to satisfy the `minservers` attribute setting.

**LANs Connected by WAN Links**

The rules outlined for extended LANs that use bridges also apply to LANs that are connected by WAN links. Each LAN in such a network is a separate entity, so several DTS servers must be configured on all of the LANs. Configure each LAN according to the following guidelines:

- Configure at least three DTS servers on each LAN.
- Configure at least one server on each LAN as a courier.
- Configure at least one global server on each LAN.
- If you are using time-providers, install them at the global servers.

These recommendations lead to higher DTS efficiency and availability despite the irregular delays that are associated with WAN links.

**WAN Cells**

Figure 35 on page 255 shows a geographically distributed cell that does not have any LANs. DTS delivers higher clock skews in an all-WAN environment than in an
all-LAN environment, but it still provides synchronization that is adequate for most distributed applications. In such a network, clock skews are typically less than 5 seconds, but they may be as much as 30 seconds if satellite links are used.

Many of the same recommendations for a LAN with WAN links also apply to the network that does not have any LANs. Keep the following considerations in mind when planning your all-WAN network:

- The network should have at least three servers, preferably four or more.
- Every server should be configured as a global server.
- Couriers are not required; however, you can configure any or all of the servers as couriers. The minservers attribute will force each global server to synchronize with at least two others.
- You can place the servers anywhere in the network, but place at least one at the central site; choose the most active remote nodes that are connected by the most reliable links for the rest of the servers.
- If you are using time-providers, which are recommended for this type of network, connect one to a global server node at the central site.

In a geographically distributed WAN network, also consider ease of access to the nodes by system managers or service personnel. If you locate a server at one of two nodes where traffic patterns and link reliability are equal, locate the server at the node that is convenient to your central site or management facility.

Figure 35. DTS Configuration—WAN Networks
Planning for External Time-Providers

To closely synchronize your systems with UTC, you can place one or more time-providers in your network. Time-providers have many forms; they can be radio receivers, software/modem combinations, or satellite receivers. (See the IBM DCE 2.2 for AIX: Application Development Guide—Core Components for additional information about the Time-Provider Interface that you can use to integrate these devices in your network. See “Appendix C. Time-Providers and Time Services” on page 503 for a list of time sources.)

If you plan to use time-providers in your network, you can use one of the sample time-provider programs that are supplied with the DTS software in dcelocal/usr/examples/dts. If you plan to use a time-provider that does not have a sample program available, or you have special requirements, you can write a time-provider program to match the time-provider interface. After you select your time-provider device and program, plan where to install the device in your network.

It is relatively simple to locate time-providers to your best advantage. To do so, observe the following guidelines:

- Always locate a time-provider at a server; if possible, locate the time-provider at a server that is routinely accessed by the majority of servers in your network.
- Regardless of your network configuration, place the time-providers where they will have the highest availability and use.
- If you have several segments to your network, and if you are using global servers to maintain synchronization across the network, locate the time-providers on the global server systems.

Note: You cannot configure a server connected to a time-provider as a courier. A server connected to a time-provider never assumes the courier role because the server process only solicits time values from the time-provider. (See “Chapter 23. Introduction to DCE Distributed Time Service” on page 237 for additional information about courier servers.)
Chapter 25. Managing the DCE DTS

This chapter describes management tasks that you perform for the DCE DTS. The DCE control program (`dcecp`) has commands that you can use for performing these tasks. The chapter contains brief descriptions of these commands. Detailed descriptions of the commands appear in the *IBM DCE 2.2 for AIX: Command Reference*.

Prior to the creation of `dcecp`, the DTS control program (`dtscp`) was used to manage DTS. You can still use this control program, but all of its operations have been incorporated into `dcecp`. Again, you can refer to the *IBM DCE 2.2 for AIX: Command Reference* for detailed descriptions of `dtscp` commands for managing DTS.

Using the DCE Control Program

Since detailed information about `dcecp` and its command syntax appears in "Chapter 1. DCE Control Program Introduction" on page 3 of this guide, this chapter does not repeat the information. It describes only the commands that `dcecp` provides specifically for managing DTS.

The `dcecp` commands for DTS perform various operations on objects representing components of the service. For example, the `dts stop` command stops the server or clerk on the local node. The following subsections describe the DTS objects that `dcecp` operates on and the types of operations that the control program can perform on these objects.

DTS Objects

The DCE control program has functions that operate on the following DTS objects:

- **dts**
  This object represents either of the following:
  - A local or global server that supplies the time to client applications and systems in a distributed computing environment.
  - An intermediary program that plays the role of a clerk on a client system. DTS clerks obtain the time from a DTS server and adjust the clock.

- **clock**
  This object represents the local system's clock and the time that the clock tells.

dcecp Operations for DTS

Table 13 summarizes the operations performed by `dcecp` commands on DTS objects.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>activate</strong></td>
<td>Changes the state of the clerk or server process from inactive to active and causes the object to synchronize its time.</td>
</tr>
<tr>
<td><strong>catalog</strong></td>
<td>Returns a list of DTS servers in the specified cell.</td>
</tr>
</tbody>
</table>
Table 13. dcecp Operations for DTS (continued)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare</td>
<td>Compares the time reported by the local clerk with that of a specified server.</td>
</tr>
<tr>
<td>configure</td>
<td>Configures a server as a global or local server.</td>
</tr>
<tr>
<td>deactivate</td>
<td>Changes the state of a clerk or server process from active to inactive and causes the object to stop synchronizing its time.</td>
</tr>
<tr>
<td>help</td>
<td>Displays a list of operations that can be performed on the clerk, server, or clock, or a verbose description of the specified object.</td>
</tr>
<tr>
<td>modify</td>
<td>Modifies the attribute information for a clerk or server.</td>
</tr>
<tr>
<td>operations</td>
<td>Displays a short list of the operations that can be performed on the clerk, server, or clock.</td>
</tr>
<tr>
<td>set</td>
<td>Sets the clock gradually or immediately to the time specified by the argument (in DTS-style timestamp format).</td>
</tr>
<tr>
<td>show</td>
<td>For a clerk or server, displays information about attributes or counters. For a clock, displays the clock's time in the DTS-style timestamp format.</td>
</tr>
<tr>
<td>stop</td>
<td>Stops the clerk or server process.</td>
</tr>
<tr>
<td>synchronize</td>
<td>Tells dtsd to gradually or immediately synchronize (the -abruptly option) with the DTS servers.</td>
</tr>
</tbody>
</table>

DTS Object Attributes and Counters

DTS clerk and server objects have attributes and counters, which are pieces or sets of data that reflect or affect their operational behavior. Some DTS clerk and server attributes are used internally by the DTS daemon and you are allowed only to view the values (with the dcecp dts show command). Others contain values that you can reset according to the needs of your environment (with the dcecp dts modify command). Counters are used internally by the DTS daemon and contain values that you can only view.

Table 14 lists the server and clerk attributes that you can set. Table 15 on page 259 lists the server and clerk attributes that you cannot set.

For detailed descriptions of both the DTS server and clerk attributes and counters, see the IBM DCE 2.2 for AIX: Command Reference.

Table 14. Settable DTS Object Attributes

<table>
<thead>
<tr>
<th>Servers</th>
<th>Clerks</th>
</tr>
</thead>
<tbody>
<tr>
<td>checkinterval</td>
<td>—</td>
</tr>
<tr>
<td>courierrole</td>
<td>—</td>
</tr>
<tr>
<td>epoch</td>
<td>—</td>
</tr>
<tr>
<td>globaltimeout</td>
<td>globaltimeout</td>
</tr>
<tr>
<td>localtimeout</td>
<td>localtimeout</td>
</tr>
<tr>
<td>maxinaccuracy</td>
<td>maxinaccuracy</td>
</tr>
<tr>
<td>minservers</td>
<td>minservers</td>
</tr>
</tbody>
</table>
Table 14. Settable DTS Object Attributes (continued)

<table>
<thead>
<tr>
<th>Servers</th>
<th>Clerks</th>
</tr>
</thead>
<tbody>
<tr>
<td>queryattempts</td>
<td>queryattempts</td>
</tr>
<tr>
<td>serverentry</td>
<td>—</td>
</tr>
<tr>
<td>servergroup</td>
<td>—</td>
</tr>
<tr>
<td>serverprincipal</td>
<td>—</td>
</tr>
<tr>
<td>syncinterval</td>
<td>syncinterval</td>
</tr>
<tr>
<td>tolerance</td>
<td>tolerance</td>
</tr>
</tbody>
</table>

Table 15. Unsettable DTS Object Attributes

<table>
<thead>
<tr>
<th>Servers</th>
<th>Clerks</th>
</tr>
</thead>
<tbody>
<tr>
<td>actcourierrole</td>
<td>—</td>
</tr>
<tr>
<td>autotdfchange</td>
<td>autotdfchange</td>
</tr>
<tr>
<td>clockadjrate</td>
<td>clockadjrate</td>
</tr>
<tr>
<td>clockresolution</td>
<td>clockresolution</td>
</tr>
<tr>
<td>globalservers</td>
<td>globalservers</td>
</tr>
<tr>
<td>lastsync</td>
<td>—</td>
</tr>
<tr>
<td>localservers</td>
<td>localservers</td>
</tr>
<tr>
<td>maxdriftrate</td>
<td>maxdriftrate</td>
</tr>
<tr>
<td>nexttdfchange</td>
<td>nexttdfchange</td>
</tr>
<tr>
<td>provider</td>
<td>—</td>
</tr>
<tr>
<td>status</td>
<td>—</td>
</tr>
<tr>
<td>tdf</td>
<td>tdf</td>
</tr>
<tr>
<td>timerep</td>
<td>timerep</td>
</tr>
<tr>
<td>type</td>
<td>type</td>
</tr>
<tr>
<td>uuid</td>
<td>uuid</td>
</tr>
<tr>
<td>version</td>
<td>version</td>
</tr>
</tbody>
</table>

DTS Timestamp Format

All responses to `dcecp` commands contain a timestamp that conforms to the input and output format shown in Figure 36 on page 260.
The following example shows a typical DTS time display:
1994-03-16-14:29:47.52000-05:00I000.003

The timestamp uses the DTS format that is explained in "Chapter 23. Introduction to DCE Distributed Time Service" on page 237. In this example, the year is 1994, the day is March 16, and the time is 14 hours, 29 minutes, and 47.52 seconds. A negative TDF of 5 hours and an inaccuracy of 3 milliseconds are included in the timestamp.

Reconfiguring DTS on Nodes

DTS is initially configured during the overall DCE configuration procedure for a node (see the IBM DCE 2.2 for AIX: Administration Guide—Introduction). The DCE configuration procedure automatically creates and activates DTS servers and DTS clerks on designated nodes. You can, however, reconfigure DTS on a node at any time. If you choose to do this, you must perform the following steps:

1. Stop the clerk or server process (DTS daemon) that is currently executing on the node.
2. Run the `dce_config` script to restart the DTS daemon on the node as a clerk or server.
3. Set any clerk or server attribute values as needed.

The following subsections provide detailed instructions for performing each of the reconfiguration steps just listed.

Stopping an Existing Clerk or Server

To stop the existing DTS clerk or DTS server on a node, use the `dcecp dts stop` command. Execution of this command first deactivates the clerk or server (that is, disables the function by which the clerk or server synchronizes the system clock), then stops the process. You enter the `dts stop` command as follows:

dcecp> dts stop
dcecp>
The dts stop command calls the dcecp dts deactivate command to deactivate the clerk or server process. This is the command that you should use whenever you want to deactivate a clerk or server process, but not stop it. You enter the dts deactivate command as follows:

dcecp> dts deactivate
dcecp>

Creating a New Clerk or Server

To create a new clerk or server on the node, use the functions of the dce_config script that configure additional DTS clerks and servers (see the IBM DCE 2.2 for AIX: Administration Guide—Introduction). The dce_config functions for configuring additional clerks and servers restart the DCE daemon (dtsd) as either a clerk or server.

Just as during initial DTS configuration, if you are creating a server, you must tell the dce_config script the type of server that it is to create: global or local. Before you choose the server type, you should consider the role that the server will play in propagating the network time.

Local servers can have a noncourier role (the value of the courierrole attribute is set to noncourier). A noncourier server does not participate in time propagation. Local servers can also have a courier role (the value of the courierrole attribute is set to courier) or a backup courier role (the value of the courierrole attribute is set to backup). Courier servers have primary responsibility for synchronizing the clocks between the nodes in a segment of the network. Backup couriers are secondary links, which propagate the time when no courier server is available. When you create a local server, the courier role is automatically set to backup.

Global servers must play the noncourier role. They cannot be designated as couriers or backup couriers.

“Designating Global and Courier Servers” on page 270 provides more information about server courier roles and instructions for changing the courier role after you create a server.

Setting Clerk and Server Attribute Values

Once you have created a new clerk or server on a node, you will want to set certain of the entity’s attribute values.

If you reconfigure a node to be a server, you need to match the epoch (the epoch attribute value) of the newly created server to the epoch that is shared by the preexisting servers in the network segment. You want to do this so that the new server can synchronize immediately with these servers. Instructions for changing server epoch numbers are given in “Matching Server Epochs” on page 273.

You may also want to check the rest of the attributes that apply only to servers to see that they complement the value settings of the attributes for preexisting servers. For instance, if the server has an external time-provider, you may want to check the checkinterval attribute. This attribute specifies the amount of time that the server waits before synchronizing with the other servers on the LAN.

If you have changed your mind about a server’s courier role since you created the server, you can modify the courierrole attribute value.
If you created a clerk, you may want to check the new clerk’s attribute values against those of the preexisting clerks and servers in the network.

General instructions for modifying the attributes of DTS clerks and DTS servers are covered in "Modifying Clerk and Server Attributes" on page 263.

Temporarily Reconfiguring DTS

From time to time, a situation or problem may arise in your network that requires you to temporarily reconfigure DTS on one or more nodes. Perhaps a node in the LAN is having problems and you need to have another node take over the clerk or server role of the problem node. Rather than adding an unnecessary server or clerk to the network, you can convert the clerk or server so that it plays the needed role.

If you convert a clerk or server, the change is only temporary. When DCE is stopped and restarted on a node, the node will revert to its initial DTS configuration. A node that was initially configured as a DTS server will become a server; a node that was initially configured as a DTS clerk will become a clerk. In order to permanently change the DTS configuration on a node, you must run the dce_config script as discussed in "Reconfiguring DTS on Nodes" on page 260.

To temporarily convert a clerk to a server, or vice versa, perform these steps:

1. Stop the clerk or server process that is currently executing on the node by using the dcecp dts stop command:
   
   dcecp> dts stop
   
   After you stop the clerk or server, quit dcecp.

2. Restart the DTS daemon on the node as a clerk or server by executing the dtsd command with the appropriate option (the -c option for a clerk or the -s option for a server). For example, to create a local server, enter the following command:
   
   dtsd -s

   The example command creates a local server that is a backup courier (the server’s courier role attribute value is set to backup by default). If desired, you can designate another courier role for the server in the dtsd command line by using the command’s -k option. Other than a backup courier, the local server created in the example can be a courier (courier) or cannot have any courier role (noncourier).

   In the following example, the local server is given the role of a courier:
   
   dtsd -s -k courier

   To create a global server, you enter the dtsd command with the -g option:
   
   dtsd -s -g

   **Note:** If you are reconfiguring a node that previously ran a DTS clerk so that it runs a DTS server, you need to perform extra steps. You must create a principal account for the new server in the DCE Security Service registry, and you must add the server’s name to the existing DTS server group (dts-entity). Otherwise, DTS clerks will not be able to find the newly created server. For instructions on creating a principal account, see
3. Set any clerk or server attribute values as needed by using the DCE control program’s `dts modify` command. The following section provides instructions for modifying DTS clerk and server attributes.

### Modifying Clerk and Server Attributes

Many management tasks involve modifying the attributes of DTS clerks and DTS servers. The DCE control program has several commands for displaying and changing the attributes of these entities.

To display the attribute values of a DTS clerk or DTS server, you use the `dts show` command. (The `dts show` command can also be used to view the values of DTS entity counters; however, you cannot modify counter values.

For example, to display the attributes values for all the clients and servers on the local node, enter the following command:

```bash
dcecp> dts show
```

The example display shows the attribute values for the single server located on the local node. The attributes that the `dts show` command displays for a clerk are different. Also, there will be more attributes displayed for a server (see Table 14 on page 258 and Table 15 on page 259).

If you wish to modify the attributes for a DTS clerk or server, you can use the `dcecp dts modify` command. Several examples of this command appear in the following subsections, which describe the settable attributes for clerks and servers. These subsections also offer suggestions for various attribute settings, depending on your network configuration.
The minservers Attribute

The **minservers** attribute specifies how many servers must supply time values to the system before DTS can synchronize the local clock.

The default and minimum recommended value for the **minservers** attribute is 3; your system requires values from three servers in order to compute a reliable new time. Depending on whether it is a server or clerk, the system has different requirements of the other systems in the network:

- A clerk requires values from three servers.
- A server requires values from two other servers. Each server uses its own clock value when computing a new time.

To reset the **minservers** attribute value, enter the **dts modify** command with the **-change** option to set the desired value. The command accepts values from 1 to 10. For example, to increase the required number of servers to 4, issue the following command:

```
dcecp> dts modify -change {minservers 4}
```

Although no direct relationship exists between the **localservers** attribute, which specifies the number of local servers in a LAN, and the **minservers** attribute, the **minservers** attribute value is usually a subset of all the local servers. To see the current values of both or either of these attributes, you can use the **dts show** command. Wait until the DTS nodes on your LAN are running for at least 10 minutes before you issue the command. That way, the **dts show** command is sure to show all of the local servers in your node’s synchronization list. The **dts show** command can be entered either with options (**-attributes** or **-all**) or without them, as follows:

```
dcecp> dts show
{checkinterval +0-01:30:00.000I-----}
{epoch 0}
{tolerance +0-00:10:00.000I-----}
{tdf -0-05:00:00.000I-----}
{maxinaccuracy +0-00:00:00.100I-----}
{minservers 4}
{queryattempts 3}
{localtimeout +0-00:00:05.000I-----}
{globaltimeout +0-00:00:15.000I-----}
{syncinterval +0-00:02:00.000I-----}
{type server}
{courierrole backup}
{actcourierrole courier}
{clockadjrate 10000000 nsec/sec}
{maxdriftrate 1000000 nsec/sec}
{clockresolution 10000000 nsec}
{version V1.0.1}
{timerep V1.0.0}
{provider no}
{autotdfchange no}
{nexttdfchange 1994-10-30-06:00:00.000+00:0010.000}
{serverprincipal hosts/gumby/self}
{serverentry hosts/gumby/dts-entity}
{servergroup subsys/dce/dts-servers}
{status enabled}
{uuid 000013ed-000b-0000-b8ef-03a4fcd00a4}
```

dcecp>
In the previous example, the `minservers` attribute value is set to 4. This setting provides redundancy; in the case where there are no global servers in the network, the system synchronizes even if a local server becomes unavailable.

Whenever the system cannot contact the number of servers specified by the `minservers` attribute setting, the system increments the `toofewservers` counter, logs the event, and displays the event message `Too Few Servers Detected`. Information included in the event message shows the number of servers that are currently available and the number required. If you see this event message displayed, check whether any of the servers have failed, test the communications links to ensure that the system has not been isolated from the servers, or add servers to the network.

You can use the `minservers` attribute in other ways, depending on your network configuration. Consider the following cases:

- If you have only a few systems in your network and you want to synchronize the nodes regardless of server drift, lower the `minservers` attribute value to 1 or 2. Although the resulting synchronized time is a less reliable measure of UTC, you increase the likelihood that the systems will synchronize. If the setting is less than 3, however, the system cannot identify faulty servers. Subsequent server clock drift causes divergence from UTC.
- To increase fault tolerance and ensure that the systems compute reliable times, set the `minservers` attribute value to 3 (the default setting) or higher. The systems can then identify faulty servers and compute the narrowest overlapping interval for the time values that they receive. Remember, however, that your system will not synchronize until there are at least three servers available.

The number of nodes in your network and the types of applications that you use determine whether guaranteed synchronization or reliable times and fault tolerance are more important.

### Use of minservers Attribute with Global Servers

If your network consists of more than a single LAN, it should have a set of global servers. You can create global servers by advertising local servers to the cell profile. (See “Advertising Global Servers” on page 271 for further information.)

The presence of global servers in your network can influence the value that you choose for the `minservers` attribute. If the number of local servers available to a clerk or server is less than the `minservers` attribute setting, the clerk or server automatically searches the cell profile for a global server name. The clerk or server then requests time values from the global and local servers.

You can check to see whether global servers exist by entering the `dts show` command and viewing the `globalservers` attribute value. The `dts show` command can be entered with options (`-attributes` or `-all`) or without any options, as follows:

```
dcecp> dts show
{checkinterval +0-01:30:00.000I-----}
{epoch 0}
{tolerance +0-00:10:00.000I-----}
{tdf -0-05:00:00.000I-----}
{maxinaccuracy +0-00:00:00.100I-----}
{minservers 3}
{queryattempts 3}
{localtimeout +0-00:00:05.000I-----}
{globaltimeout +0-00:00:15.000I-----}
{syncinterval +0-00:02:00.000I-----}
```
The `dts show` displays the name, node ID, and node name for all of the global servers known by the local node.

**Use of minservers Attribute with Systems on Point-to-Point Lines**

If you are using DTS on a system that connects to a LAN through a point-to-point WAN link, the solitary system never has more than one local server available. The recommended `minservers` attribute setting for such a system is 3. If the system is configured as a clerk, it does not have any local servers and must query three global servers to synchronize. If the system is configured as a server, it must query two global servers to synchronize.

**The maxinaccuracy Attribute**

The `maxinaccuracy` attribute specifies the greatest allowable bound on your system’s inaccuracy before DTS causes the system to synchronize. When the system exceeds the bound determined by the `maxinaccuracy` attribute setting, DTS forces the system to synchronize until the inaccuracy is reduced to a level that is at or below the setting. Use the `maxinaccuracy` attribute setting as a trigger for synchronization. You can vary the setting to vary the tolerance of intersystem synchronizations, but be aware that, as the setting becomes lower, network overhead rises. The default setting is 0.10 seconds (100 milliseconds).

The effects of the `maxinaccuracy` attribute setting on the system’s synchronization behavior are the following:

- The system’s clock value accumulates more inaccuracy than the `maxinaccuracy` attribute value and DTS initiates a synchronization.
- DTS computes a new time value.
- DTS adjusts the system clock.
- If the new clock setting still exceeds the `maxinaccuracy` attribute value, or if clock drift later causes the inaccuracy to reach the value, the cycle is repeated.

Note that, if synchronization repeatedly fails to achieve an inaccuracy that is less than the `maxinaccuracy` attribute value, the system can be continuously synchronizing. (See “The syncinterval Attribute” on page 267 for information on how the `syncinterval` attribute prevents this loop.)

The default `maxinaccuracy` attribute value is designed to keep the system accurate enough for most applications without being intrusive to network communications or
system processing. If your network includes one or more time-providers that ensure extremely low inaccuracy, you can lower the `maxinaccuracy` attribute value. Raise the value in the following cases:

- If a time-provider is not used in the network
- If a system is part of a WAN-only network configuration
- If the applications that call DTS do not require the level of precision achieved by the default setting

The following example shows how to change the `maxinaccuracy` attribute value to 0.2 seconds:

```
dcecp> dts modify -change {maxinaccuracy 00-00:00:00.200}
dcecp>
```

The `syncinterval` Attribute

The `syncinterval` attribute prevents your system from synchronizing more often than the specified interval. This attribute prevents the `maxinaccuracy` attribute from causing continuous synchronizations. As mentioned in "The `maxinaccuracy` Attribute" on page 266, the `maxinaccuracy` attribute triggers system synchronization as long as the system’s inaccuracy is above a specified value. The `syncinterval` attribute prevents synchronization from occurring more frequently than the specified interval value. (The `syncinterval` attribute value is randomized to prevent several systems from synchronizing simultaneously and is an average rather than an exact value.)

The `maxinaccuracy` and `syncinterval` attributes are interdependent; system synchronization occurs automatically when both of the following conditions are met:

- The inaccuracy of its clock equals or exceeds the `maxinaccuracy` attribute value.
- The time since the last synchronization equals or exceeds the `syncinterval` attribute value (slightly randomized).

Note that, if the system reaches the `syncinterval` attribute setting but has not yet reached the `maxinaccuracy` attribute setting, the system does not synchronize.

The default `syncinterval` attribute value is 2 minutes for servers and 10 minutes for clerks. If you are trying to minimize the skew between systems, you can lower the `syncinterval` attribute value. For example, if you want a clerk to synchronize every 5 minutes if its inaccuracy reaches 100 milliseconds, enter the following command:

```
dcecp> dts modify -change {syncinterval 00-00:05:00.0000}
dcecp>
```

The `syncinterval` attribute does not prevent the `clock synchronize` command from working. You can synchronize a system at any time by entering this command. The `syncinterval` attribute only affects automatic synchronizations triggered by the `maxinaccuracy` attribute. (See the *IBM DCE 2.2 for AIX: Command Reference* for more information.)
The tolerance Attribute

The tolerance attribute determines how DTS reacts if the system clock becomes faulty. A faulty clock is a rare condition, but some causes of faulty clocks include the following:

- Defects in the clock hardware, including clock drift that is greater than the manufacturer’s specifications.
- Malfunctioning time-providers.
- Hardware clock ticks are lost by the operating system.
- The system memory containing the clock value is corrupted.

During the synchronization process, DTS detects that a system’s clock is faulty if the clock value and its inaccuracy fail to intersect with those of the servers used for synchronization. This process is shown in Figure 37, where value t2 is faulty.

![Figure 37. Local Fault](image)

If DTS detects a faulty system clock during synchronization, the severity of the fault and the system’s tolerance attribute setting determine how DTS reacts. When the fault is detected, DTS performs one of the following operations:

- If the faulty time interval that is supplied by the clock is within the bounds of the error tolerance, DTS increases the inaccuracy of the value supplied by the clock and adjusts the clock gradually.
- If the faulty time interval that is supplied by the clock is outside the bounds of the error tolerance, DTS immediately sets the clock to the new computed time.

Before you change the default tolerance setting (5 minutes), determine the requirements of the applications that use the system time. Some distributed
applications, such as the CDS server, require that systems have no more than 5 minutes of inaccuracy. Larger error tolerances may prevent such applications from properly sequencing CDS namespace entries. For these applications, you will want to set the `tolerance` attribute value to 5 minutes or less.

Some applications may require DTS to adjust the system clock gradually and monotonically (forward). You can increase the `tolerance` attribute setting for these applications to ensure that the clock is abruptly set only in the event of a catastrophic error. If you could set the `tolerance` attribute value to infinity, you could guarantee that the clock is never set abruptly. This setting is not available, but you can enter any setting less than 10675199-00:00:00.000 (approximately 29,227.5 years).

The following example shows how to set the `tolerance` attribute value to 3 minutes:

```
dcecp> dts modify -change {tolerance 00-00:03:00.000}
dcecp>
```

### The `localtimeout`, `globaltimeout`, and `queryattempts` Attributes

When a system queries a server, it waits for a response for the period that is specified by the `localtimeout` or `globaltimeout` attribute. The `localtimeout` attribute setting applies when the system attempts to contact a local server; the `globaltimeout` attribute setting applies when the system attempts to contact a global server.

The `queryattempts` attribute determines how many times DTS resets the timeout timer before the system quits trying to contact a given server. Once the timeout setting has elapsed the number of times that is determined by the `queryattempts` attribute, the system quits querying the server. If the system is querying a global server, DTS then generates a `Server Not Responding` event report and removes the server from the system’s list of global servers. If a response from the global or local server is required in order to meet the `minservers` attribute setting, DTS generates a `Too Few Servers` event report, and the system does not synchronize.

The default setting for the `queryattempts` attribute is 3. The following example shows how to set the `queryattempts` attribute value to 4:

```
dcecp> dts modify -change {queryattempts 4}
dcecp>
```

The default setting for the `localtimeout` attribute is 5 seconds, and the default setting for the `globaltimeout` attribute is 15 seconds. The global setting is larger to account for the communications delay on WAN links that are often used to access the global set. It is unlikely that you will have to change the `localtimeout` attribute setting. The `globaltimeout` attribute setting, however, may need to be changed due to the variations in WAN topologies and transmission quality. In the following example, the `globaltimeout` setting is changed to 20 seconds:

```
dcecp> dts modify -change {globaltimeout 00-00:00:20.000}
dcecp>
```

If you continually receive `Server Not Responding` event reports for a global server, increase the `globaltimeout` setting. If you increase the setting and the event reports continue, there may be a problem with the communications link to the server.
The serverentry and serverprincipal Attributes

During the initial configuration of DCE and DTS, one DTS entry name is created for use with CDS, and one DTS name is created for use with the registry service. If you subsequently wish to change the name of a server, you can do this by changing two of the server’s attributes: the serverentry attribute and serverprincipal attribute. The default settings for these dcecp attributes are the same as the default settings for the names that are created during the initial DCE configuration; they are the recommended settings. This section describes additional considerations for the settings of these attributes. If you decide to change the settings of the serverentry and serverprincipal attribute values, be sure that the new values are appropriate. If not, you will experience trouble with DTS.

The serverentry attribute specifies the CDS entry name where bindings for the server are exported. If you change the setting of this attribute, the entry is also modified in the namespace. The following is an example command that sets the serverentry attribute value:

dcecp> dts modify -change {serverentry /.:/hosts/cyclops/dts_ref_node}
dcecp>

The serverprincipal attribute specifies the principal name of the server that is used for authentication. If you change the name by using dcecp, you must create a matching principal name and account in the security service registry. When you do this, you must add the new principal name to the existing DTS server group (dts-servers). The machine principal must be a member of this authorization group. See Chapter 31. Creating and Maintaining Accounts on page 333 of this guide for further information on creating a new principal account and Chapter 30. Creating and Maintaining Principals, Groups, and Organizations on page 319 for information on adding a principal name to an existing server group.

The following example command sets the serverprincipal attribute:

dcecp> dts modify -change {serverprincipal /.:/hosts/ajax/dts_machine}
dcecp>

Management Tasks Specific to Servers

Managing DTS servers involves some special tasks. These tasks include the following:

- Setting a server’s epoch
- Assigning the courier role to a server
- Designating a server as a global server
- Setting the attributes for a connection to a time-provider

The following subsections describe these server-specific tasks.

Designating Global and Courier Servers

If your network has WAN links or is an extended LAN, you may need to use global and courier servers to synchronize the nodes in separate network segments. To synchronize nodes across a network, you assign global roles to some servers and courier roles to selected local servers. (See “Chapter 23. Introduction to DCE...
Distributed Time Service” on page 237 for advice on planning the location of global and local courier servers.) To assign server roles, follow the instructions in the following subsections.

Advertising Global Servers

To assign a server to the global set of servers, you must advertise the server with the `dcecp dts configure` command. Advertising the server simultaneously adds binding information to the server’s CDS name and also adds the server’s entry to the cell profile. Since CDS and the cell profile are available to every node in your network, DTS can perform a lookup in the cell profile to obtain the locations of nodes that it cannot reach on the LAN.

The following command example shows how to advertise a server as a global server, thereby registering it with CDS and entering it in the cell profile:

```
dcecp> dts configure -global
```

The `-global` option designates that a server should be configured as a global server rather than as a local server.

To remove a server’s designation as a global server, use the `dts configure` command, as follows:

```
dcecp> dts configure -notglobal
```

This command unadvertises the global server, removing its entry from the cell profile and its binding information from its CDS name.

Assigning the Courier Role to Servers

Courier servers play an important role in maintaining synchronization between the systems in separate parts of your network. A courier server requests a time value from at least one global server at every synchronization. This procedure enables a courier server to propagate times from remote systems to a LAN or local area, thereby keeping the LAN in synchronization with all the other parts of the network.

There are three courier roles that you can assign to a server (the `courierrole` attribute), as follows:

- `backup`
- `courier`
- `noncourier`

The default courier role for a global or local server at its creation is `backup`.

Use the `courier` setting for the `courierrole` attribute to designate a server as the primary link to other portions of your network. Use the `backup` setting to designate a server as a secondary link to other areas of the network. A backup courier is only effective if no other courier is available on the LAN.

Note that there are no significant processing or overhead penalties associated with the backup courier role; you can designate one of the servers on a LAN as a courier, and designate all the other servers on the LAN as backup couriers. If you
have configured several servers as backup couriers and the courier becomes unavailable, the backup courier with the lowest-ordered UUID becomes the effective courier.

To assign the courier role to a server, enter the following `dcecp` command:

```
dcecp> dts modify -change {courierrole courier}
dcecp>
```

To assign the backup courier role to a server, enter the following command:

```
dcecp> dts modify -change {courierrole backup}
dcecp>
```

### Matching Server Epochs

At startup, a server's epoch number must match those of the other servers with which it schedules. When scheduling, a server disregards clock values that are from servers whose epoch numbers do not match its own.

When DTS servers are initially enabled, the epoch number for each server is 0, so you need not change the epoch numbers at initial installation. Later, if you add a server to an existing network, or change a clerk to a server, ensure that the new server and the preexisting servers have matching epoch numbers. Enter the DCE control program's `dts show` command to find out the epoch number of the server. For example:

```
dts show .:/hosts/orion/dts-server
```

Examine the attributes list that the command returns for the server's `epoch` attribute. If the epoch of the server that you just created matches those of the other servers, the new server can synchronize immediately. If the epochs do not match, however, and you do not change the epoch of the new server, the new server ignores the preexisting servers. The following example shows how to change a server's epoch number after you enable the server:

```
dcecp> clock set -abruptly -epoch 0
dcecp>
```

Once you know that a server is starting up with the proper epoch number, do not change the epoch unless serious system or network problems corrupt all of the server clock values. In the unlikely event that the majority of the server clocks become faulty, use the `dts show` and `clock set` commands to isolate problem servers so that you can perform troubleshooting and maintenance without affecting the rest of the DTS application.

### Setting the `checkinterval` Attribute for Connection to a Time-Provider

If a server is connected to a time-provider, set its `checkinterval` attribute. DTS uses the `checkinterval` attribute to periodically check all the servers on a LAN to make sure that they remain synchronized with the time-provider. When the amount of time specified by the `checkinterval` attribute setting has elapsed, the server with the time-provider (the TP server) performs the following procedure:

1. The TP server requests time values from all the other servers on the LAN.
2. The TP server starts the synchronization process.
3. The TP server identifies the server time intervals that do not intersect with its own.
4. The TP server issues event messages for each faulty server it detects.
In the previous sequence, note that the TP server does not actually set the system clock after it starts the synchronization process. The TP server merely runs the process to detect faulty servers. The DTS software assumes that the time value at the TP server is the most accurate available, so the TP server does not use the values it collects from other servers to change its clock. Instead, the TP server functions as a reference timekeeper for the other servers.

You can set the check interval to a lower value for a more rapid notification of faulty servers, but be aware that lower settings can increase the load on network resources. The following example shows how to set the `checkinterval` attribute value:

```
dcecp> dts modify /./:hosts -change {checkinterval 00-00:00:30.0000}
dcecp>
```

### Changing the System Time

There are three ways you can change the system’s time by using `dcecp` commands. The following subsections describe reasons for changing the system time, and then show examples of the commands that you can use to modify the time and change the system clock.

### Updating the Time Monotonically

If your network does not use time-providers, and the network systems have been running for some time, you may want to update the time on several systems to match UTC or another external reference. When time-providers are absent from your network, the systems remain closely synchronized, but their clocks may drift away from accepted time standards such as UTC.

Use the `dcecp clock set` command when you want to modify the time on a server system to make it more accurate. The DTS synchronization process ensures that the new time you supply with the command is propagated to the other network systems. In order to update the system clock to a new time, the new time and inaccuracy you specify for a system must form a smaller interval than the current system interval.

In order to use the `clock set` command effectively, you must have temporary access to a trusted time reference. Such references can include the time signals that many standards organizations disseminate by radio or telephone. You can also use a clock that you have recently verified as accurate. (See [Appendix C. Time-Providers and Time Services](#) on page 503 for suppliers of UTC time.)

Because it is a manually entered command that is used to modify an absolute time, the `clock set` command is not useful for small inaccuracy settings. The minimum reliable inaccuracy that you can achieve with the command is approximately 1 second. Human error and processing delays combine to make lower settings unreliable. For example, you enter the command and new time and then begin monitoring the reference. When you perceive that the reference has reached the desired time, you press `<Return>` to initiate the command. Your perception of the reference mark and your pressing of `<Return>` do not exactly coincide. Furthermore, once the command is initiated, DTS takes time to interpret and execute the command.
The following example shows how to monotonically update the time on a server system; that is, how to reset the clock and eventually propagate the adjustment throughout the network:

dcecp> clock set 1994-10-07-09:30:15.00101.00

dcecp>

If your systems require synchronization that is closer than 1 second to a standard such as UTC, consider purchasing one of the time-providers listed in [Appendix C] Time-Providers and Time Services” on page 503. All of the time-providers that are described in the listing compensate for transmission and processing delays, and can provide time references that are accurate to the millisecond level.

Updating the Time Nonmonotonically

Use the \texttt{clock set} command with the \texttt{-abruptly} option when you want to abruptly set the time for a server system. The \texttt{clock set} command with the \texttt{-abruptly} option immediately (nonmonotonically) changes the system clock setting to the specified time, rather than gradually (monotonically) adjusting the time.

\textbf{Note:} Exercise caution when changing the system time abruptly. The abrupt adjustment of the time is appropriate at system startup or when the system clock is faulty and you identify and correct the problem. Changing the system time to a setting that falls outside the time intervals of the system’s known servers causes DTS to declare the system faulty at the next synchronization.

Because the \texttt{clock set} command is usually used to correct gross clock errors, it is likely that the time you specify for a given system will appear faulty to the system’s known servers if the system and servers have the same epoch number. You can prevent the systems whose times you are changing from being declared faulty. Use the \texttt{clock set} command’s \texttt{-epoch} option along with the \texttt{-abruptly} option to set the new time to isolate it from the other systems. You can then change the time and epoch for the other systems until all the systems once again share the same epoch. This process is useful in the rare case when the majority of servers in the network are faulty.

In order to use the \texttt{clock set} command effectively, you must have temporary access to an accurate time reference. Such references can include the time signals that many standards organizations disseminate by radio or telephone. You can also use a clock that you have recently verified as accurate. (See [Appendix C] Time-Providers and Time Services” on page 503 for a list of time reference sources.)

Because it is a manually entered command that is used to modify an absolute time, the \texttt{clock set} command is not useful for small inaccuracy settings. The minimum reliable inaccuracy that you can achieve with the command is approximately 1 second. Human error and processing delays combine to make lower settings unreliable. For example, you enter the command and new time and then begin monitoring the reference. When you perceive that the reference has reached the desired time, you press <Return> to initiate the command. Your perception of the reference mark and your pressing of <Return> do not exactly coincide. Furthermore, once the command is initiated, DTS takes time to interpret and execute the command.

The following example shows how to change both the time and epoch for a system:
Forcing System Synchronization

Once you create and enable DTS on all the systems that are in your network, they synchronize without any further intervention. There are situations, however, when you may want to force a system to synchronize immediately rather than waiting for the amount of time that is specified by the `syncinterval` and `maxinaccuracy` attributes. As an example, you may want to synchronize a system with a TP server that you have just added to the network.

To forcibly synchronize the clock on a system, you use the `dts synchronize` command. If you enter the `dts synchronize` command without the `-abruptly` option, the time is adjusted gradually. If you enter the `dts synchronize` command with the `-abruptly` option, the time is immediately adjusted. In the situation posed by our example, you might want to use the command with the `-abruptly` option to have the narrow time interval contributed by the time-provider quickly propagated throughout the network:

```
dcecp> dts synchronize -abruptly
```

Controlling Access to DTS

You can assign privileges that control access to DTS objects by using DCE Authorization Service access control lists (ACLs).

The DTS principal that represents the server on a given system is the primary access control object for DTS. This principal has controlled access by human users and clerk or server processes. The default name that you can use for the DTS object in any `dcecp` command is `/:./hosts/hostname/dts-entity`.

The ACL for the DTS server can contain any type of ACL entry that is valid for a principal (human or process) or authorization group to which this principal belongs. See [Chapter 28. Using Access Control Lists](#) on page 295 of this guide for a discussion of the DCE ACLs facility and descriptions of ACL types and their entries.

To display the ACL entries in the DTS server principal’s ACL, you can use the `dcecp acl show` command. For example:

```
dcecp> acl show /./hosts/Detroit2/dts-entity
{unauthenticated r--}
{user hosts/Detroit2/self rwc}
{group subsys/dce/dts-admin rwc}
{any_other r--}
dcecp>
```

To modify any of the entries in the DTS server principal’s ACL, you can use the `acl modify` command. Instructions for using this command appear in [Chapter 28. Using Access Control Lists](#) on page 295.
Chapter 26. Interoperation with Network Time Protocol

Network Time Protocol (NTP) is an Internet-recommended standard. The NTP synchronization subnetwork is represented by a tree-structured graph with nodes representing time servers and edges representing the transmission paths between them. The root nodes of the tree are designated primary servers that synchronize to a radio broadcast or calibrated atomic clock. Remaining nodes are designated secondary servers that synchronize to other servers (primary and secondary).

The number of subnetwork hops between a particular server and a primary server determines the stratum of that server; that is, the smaller the number of hops, the lower the stratum. A lower-stratum server always has a higher accuracy than a higher-stratum server. All servers have identical functionality and can operate simultaneously as clients of the next lower stratum and servers for the next higher stratum.

Servers, both primary and secondary, typically run NTP with several other servers at the same or lower stratum. A selection algorithm attempts to select the most accurate and reliable server or set of servers from which to actually synchronize the local clock.

NTP and DTS both can be used in large computer networks that have embedded local nets (that is, those connected by routers, gateways, and bridges) and use both broadcast and point-to-point transmission media. DTS and NTP can run simultaneously on the same LAN.

The following sections describe how to give time to and get time from local and remote NTP time sources, and how to prevent loops.

Getting the Time from NTP Time Sources

DTS provides two sample time-provider programs:

- **dts_ntp_provider.c** — Takes the time from an NTP server as it would from a radio receiver. The user specifies the name of the NTP server and the inaccuracy.

- **dts_null_provider.c** — Used on a DTS server whose clock is already synchronized by an external agent, such as NTP. It sets the inaccuracy, but it prevents DTS from setting the time. The user sets the inaccuracy based on local experience with NTP. The null provider may be useful for sites that already have a radio clock that is managed by NTP. Make the node with the radio clock a DTS server and use the null time-provider.

Getting the Time from Local NTP Time Sources

Run the DTS server on a node that is running an NTP clock driver with a clock and the null time-provider. Specify the inaccuracy in a manner that is consistent with the time source; for instance, a radio clock. Other DTS servers will take the time from this source. In this case, since the system is connected to a time source, it is an NTP Stratum 1 server.

Observe the rules and advisories that follow:
• Rule—If this is the only local time source (radio clock) in the subnetwork, ensure that no other DTS node gives the time to NTP. If, however, there are other local time sources, this restriction does not apply.

• Rule—Do not run the null time-provider if there is no local time source.

• Advisory—Use a very small poll rate, about 1 second.

• Advisory—Since NTP makes the `adjtime()` system call, be aware that the local node will occasionally have an unspecified inaccuracy.

Figure 38 shows how a DTS server/client with a local time source takes time from an NTP Stratum 1 server.

Figure 38. Local Time Source

Getting the Time from Remote NTP Time Sources

Run the DTS server with the NTP time-provider (`dts_ntp_provider.c`) on a node with access to an NTP server. Specify the inaccuracy in a manner that is consistent with local NTP experience.

Observe the following advisories:

• Advisory—If links to remote sources are distant, consider having one of the subnetwork nodes run the NTP locally.

• Advisory—Note that the NTP time-provider does not accept time from an NTP node at Stratum 8 or higher.

• Advisory—The NTP node needs to be as close to Stratum 1 as possible.

Figure 39 on page 279 and Figure 40 on page 279 both show a DTS server getting the time from a remote NTP time source, which is a Stratum 3 server. However, in Figure 39 on page 279 (Scenario 1), all of the advisories in this section are followed; in Figure 40 on page 279 (Scenario 2), the first advisory, running NTP locally on one of the subnetwork nodes if the link to a remote source is distant, is ignored.
Figure 39. Getting the Time from a Remote NTP Time Source (Scenario 1)

Figure 40. Getting the Time from a Remote NTP Time Source (Scenario 2)
Giving the Time to NTP Nodes

Any DTS server or clerk that runs the **ntpd** daemon or the **xntpd** daemon with the **-s** option and a special configuration file (**ntp.conf**) can be configured as an NTP server.

For systems running the **ntpd** daemon, the **ntp.conf** configuration file must contain the following line:

```
peer /dev/null DTSS 8 -5 local
```

In addition, add **-s** to the **ntpd** entry in the file `/sbin/init.d/ntpd` or, for systems with **rc.local**, modify the line that starts **ntpd** accordingly.

For systems running the **xntpd** daemon, the **ntp.conf** configuration file must contain the following line:

```
peer 127.127.1.8
```

In addition, add **-s** to the **xntpd** entry in the file `/sbin/init.d/xntpd` or, for systems with **rc.local**, modify the line that starts **xntpd** accordingly.

In this configuration, NTP never sets the clock. NTP can, however, give the time to other NTP clients. Do **not** allow loops between DTS and NTP to form. If NTP gives the time to DTS, then DTS gives the time back to the same set of NTP servers, unexpected results can occur.

The NTP configuration file is set up to ensure that an NTP server that obtains the time from DTS is a Stratum 8 node. In addition, **dts_ntp_provider** is prohibited from accepting time from a node at Stratum 8 or higher.

A DTS (server) node can give time to an NTP node if the following rules and advisories are observed:

- **Rule**—The **ntp.conf** file must declare this node at Stratum 8.
- **Advisory**—Multiple nodes in the set can be running **ntpd -s** or **xntpd -s**.
- **Advisory**—If any DTS-managed system has a local time source, that system should be used as an NTP **-s** server.
- **Advisory**—Although this operation can occur on either a DTS server or a DTS client node, a DTS server is preferred.

**Note:** If null providers are used, the rules in **Getting the Time from Local NTP Time Sources** on page 277 must also be followed since null providers running on NTP nodes can bypass the stratum check.

**Figure 41 on page 281** shows two DTS server nodes running **ntpd -s** and providing time to an NTP subnetwork. The **ntp.conf** file defines these servers at Stratum 8.
Preventing Loops

Do not allow loops, such as NTP → DTS → NTP, to form.

Run the null time-provider (dts_null_provider.c) only if you have a local time source. If you do not have a local time source, you can run the null time-provider, but do not disseminate NTP time anywhere in the local set.

Figure 42 shows a configuration that is not recommended. This configuration works only as long as the remote NTP Stratum 2 node does not fail.
If the remote NTP Stratum 2 node fails, the Stratum 3 node starts accepting time from the Stratum 8 node. Once this occurs, the Stratum 3 node drops to Stratum 9 and the Stratum 4 node drops to Stratum 10, as shown in Figure 43.

The scenario in Figure 43 shows the creation of a loop:

1. From the node that is labeled Stratum 8, proceed to the NTP node that is labeled Stratum 9.
2. From the NTP node that is labeled Stratum 9, continue to the node that is labeled Stratum 10.
3. DTS then feeds the time back to the node that is labeled Stratum 8, creating a loop.

If this occurs, time in the NTP and DTS subnetwork can drift from UTC.
Part 6. DCE Security Service
Chapter 27. Overview of DCE Security

This chapter provides a brief introduction to the DCE Security Service. The DCE Security Service consists of the following services:

- **Registry service** — Maintains the registry database, which is a replicated database of principals, groups, organizations, accounts, and administrative policies.
- **Authentication service** — Handles user authentication or the process of verifying that principals are correctly identified. The authentication service also issues tickets that a principal uses to access remote services. The ticket contains data that is presented by the principal requesting the service to the principal providing the service.
- **Privilege service** — Supplies the user’s privilege attributes, which are used to ensure that a principal has the rights to perform requested operations.

In addition, the DCE Security Service provides the following:

- **Access control list (ACL) facility** — Establishes and grants access rights to an object based on the object’s access permissions.
- **Extended registry attribute (ERA) facility** — Provides tools to extend the registry database schema to define additional attributes and tools to attach those attributes to registry objects.

The DCE host daemon (dced) acts as the security client.

The DCE Registry, Authentication, and Privilege Services are implemented as a single daemon: the security server (secd).

**DCE Authentication Service Servers and Clients**

The authentication service consists of the registry database, security servers, and security clients. A security client communicates with a security server (dcelocal/bin/secd) to request information and operations. The security servers access the registry database to perform queries and updates and to validate user logins. To gain access to the registry database, the authentication service must talk to the registry service. Figure 44 on page 286 is a simplified representation of the relationship between security clients, servers, and the registry database.
Preferred Security Server Replica

Within the Distributed Computing Environment (DCE) it is sometimes desirable to prioritize client use of replicated data. For security server replicas, this can be accomplished by building the `/opt/dcelocal/etc/security/pe_site` file on each client to reflect the desired priorities and configuring each client to use this file to locate the security servers in the cell. To facilitate the management of this task, several enhancements have been provided in AIX DCE 2.2.

1. A script called `setprofile.tcl` is provided with the DCE client. The cell administrator can use this script to associate a priority with each security server in the cell. The preferred replica design relies on the use of RPC profiles for storing this information. In particular, the script will modify the LAN profile for the client specified.

   To run this script do the following: from any full client in the cell, log in as DCE `cell_admin`, and on the AIX command line, run the interactive, stand-alone preferred replica script called `setprofile.tcl`.

   It takes the DCE hostname of the client to update as its only argument. The script will display the list of available security server replicas and allow you to interactively establish priorities. Allowable priorities are 0-7 with 0 as the highest priority for a replica. Note that it is only necessary to run this script once for each LAN profile used in the cell.

   A pointer to a LAN profile is assigned to every DCE client during configuration. To find what profile was configured for a particular client, run the `dcecp` command:

   ```
 rpcprofile list/./hosts/\{dce_hostname\}/profile
   ```

   where `\{dce_hostname\}` is the name used to configure the client into the DCE cell. The AIX default LAN profile is `./:lan-profile`.

   To allow groups of clients to use a specified set of security server preferences, change the default LAN profile. For example, it may be desirable to have a group of clients at geographical location A using a profile called lan-profileA...
which gives priority to a security server at location A, while a group of clients at another location, B, may use a profile called lan-profileB which gives priority to a security server near location B.

Either run the `setprofile.tcl` script again, or use the `dcecp rpcprofile remove` command to remove the priority of a replica from a LAN profile. For example, to remove the security replica called rep1 from lan-profile, issue:

```
rpcprofile remove -i d46113d0-a848-11cb-b863-08001e046aa5,2.0
 -m /./:subsysty/dce/sec/repl
 /./:lan-profile
```

In this example, `d46113d0-a848-11cb-b863-08001e046aa5,2.0` is the interface id of the security server.

2. The DCE host daemon, dced, automatically rebuilds the `pe_site` file every 24 hours. If security server preferences have been established, the `pe_site` file on each full client in the cell will be rebuilt by dced to reflect those preferences. If it is desirable to update the `pe_site` file on a client immediately, run the `dcecp secval update` command.

3. The `TRY_PE_SITE` environment variable is set by default by the client configuration program. When this environment variable is set, processes running on the DCE client will use the information in the `pe_site` file to locate security servers in the cell. If no replica listed in the `pe_site` file can be contacted, the client will then try to locate a replica by using the list of security servers maintained in the DCE Directory Service in `/./sec`.

### The Registry Database

The registry database contains the following information:

- **Principals**—Principals are the users of the system. Principals can be interactive principals (human users) or noninteractive (servers, machines, and cells). Principals can be associated with access permissions.

- **Groups**—Groups are collections of principals that are identified by a group name. Groups can be associated with access permissions.

- **Organizations**—Organizations are collections of principals; these principals are identified by an organization name. Organizations define the policies associated with the principals in the registry. Organizations cannot be associated with access permissions.

- **Accounts**—Accounts contain the passwords and accounting information that allow principals authenticated access to objects within the cell. (Authenticated access can also occur between principals in different cells, as described in the following text.)

- **Policies and Properties**—Policies and properties regulate such things as password length and format and certain authentication requirements.

- **The replist object**—This object is used to manage replicas of the registry database.

- **The xattrschema object**—This object is the extended registry schema created with the ERA facility.

(See [Chapter 42. Accessing Registry Objects](#) on page 453 for a detailed description of the structure of the registry database and the types of information it contains.)
The collection of objects controlled by a registry database is an entity known as a cell. Authenticated communications are possible between cells only if those cells have special accounts in the registry database at the cell they wish to communicate with. These special accounts set up cross-cell authentication, which gives principals from one cell authenticated access to another cell. (See "Chapter 33. Administering a Multicell Environment" on page 371 for information about establishing accounts for cross-cell authentication.)

Physical Security of the Database

The DCE Security Service provides safeguards for network security, protecting information that is transmitted across the network by guaranteeing the identities of principals who engage in cross-machine communications. The security server and the database that it serves, however, reside on a local machine. The registry database is only as secure as the security provided by the machine on which it resides. In addition to ensuring that sensitive data can be accessed on the local machine only by root, you need to provide physical security for the machine on which the security server resides. This can include situating the machine in a locked room, keeping a log of when and by whom the machine is accessed, and any other methods that may be appropriate to your needs.

(See the IBM DCE 2.2 for AIX: Application Development Guide—Core Components for a more detailed discussion of authentication.)

How the Registry Database is Stored

Each security server maintains a working copy of the registry database in virtual memory and a permanent copy on disk. All reads and updates operate on the copy that is in virtual memory. The servers use the copy that is on disk to initialize the copy in virtual memory when they start up. An atomic update log is used to guarantee the database state in the event of server failure.

Figure 45 on page 289 shows the server and the disk and virtual memory copies of the registry database.
Each security server periodically saves its entire database from virtual memory to disk. The database is stored in `dcelocal/var/security/rgy_data`.

**Replicated Databases**

The registry database can be replicated within its cell. Each instance of a security server in a cell maintains a working copy of the database. Throughout this guide, the combination of a security server and its data (the registry database) is referred to as a *replica*. Typically, you create several replicas in a cell to enhance performance and reliability.

The task of keeping the cell’s replicas consistent is handled automatically by the security servers. Any changes that you make are automatically reflected in all replicas, as described in the following section.

**How Updates AreHandled**

Updates are made to only one database, and the changes are propagated to all others. While propagations are pending, all replicas are accessible even if they are not completely up-to-date. In other words, even replicas to which the changes were not yet applied are available. This replication mechanism ensures that all replicas remain available for login validation and for read operations even when changes are in the process of being propagated.

**Master and Slave Replicas**

Only one replica in a cell, the *master replica*, accepts updates to its database from clients. Other replicas, called *slave replica*, accept only reads from clients.
The master replica propagates any updates to the slave replicas. For example, either a master or a slave replica can provide account information to a client program such as `/bin/login`. However, if you are adding an account or changing password information, those updates can be handled only by the master replica.

The process of updating the database differs slightly between the master replica and slave replicas. [Figure 46 and Figure 47 on page 291](#) illustrate the master and slave update processes. The processes are described in the sections that follow the figures.

**Figure 46. The Master Replica Update Process**

- The server applies the update to the database in virtual memory and to its propagation queue. Periodically, the server writes the database in virtual memory to disk.
- The server stores a copy of each update in the log file. This file is used in the event of a server restart to apply all outstanding updates to the disk copy of the database and to re-create the propagation queue.
- For each replica in the cell, the replica list contains the replica's network address and ID, cell-relative name, and the sequence number of the replica's last update.
- The master replica uses its propagation queue to propagate updates to slave replicas. When the master replica restarts, it restores the propagation queue from the log file.
Handling Database Updates

When a master or slave replica receives updates, it applies the updates to its database in virtual memory, and saves a copy of each update in a log file that is stored on disk. Updates accumulate in the log file in sequenced numerical order. If a server restarts unexpectedly, the log file ensures that no updates are lost.

Periodically, the replica writes the database in virtual memory to disk, thus bringing the disk copy up-to-date. Then, if the replica is a slave, it clears the log file of all updates. If the replica is the master, it clears the log file of all updates that have been propagated to the slave replicas. Updates that have not been propagated to the slaves are retained and used to reconstruct the propagation queue, if necessary.

Only the master replica maintains a propagation queue, which is used to hold changes to be propagated to the slave replicas, as described in “Propagating Database Changes” on page 292. When the master replica receives an update, it adds it to the propagation queue in addition to its virtual memory database and its log file. Each update in a propagation queue is identified by a sequence number.
and a timestamp. The sequence number is used internally to track the propagation of updates to slave replicas. The timestamp is provided to show users the date and time of updates.

When a master or slave replica restarts, it initializes its database in virtual memory and then applies any outstanding updates in the log file to its database. If the replica is the master replica, it also recreates the propagation queue from the log file so that any outstanding slave updates can be propagated. This mechanism ensures that no updates are lost when a server is shut down.

Propagating Database Changes

To propagate updates to the slave replicas, the master replica first updates its copy of the database by using the process described in “Handling Database Updates” on page 291. Then, the master replica attempts to propagate the update to each slave replica on its replica list. The replica list contains each slave replica’s ID and network address. It also contains the sequence number of the last update that was made to the slave. The master replica always propagates in sequenced numerical order. By examining the sequence number that is associated with a replica in its replica list, and the sequence numbers of the updates that are in its propagation queue, the master can determine which of the updates on its propagation queue must be propagated to which slave. This mechanism helps ensure that the unavailability of a single slave replica does not interfere with updates to the rest of the slave replicas.

If the propagation of an update does not succeed on the first attempt, the master replica tries periodically until it succeeds. When the update succeeds, the master updates the sequence number that is associated with the updated replica on its replica list. When an update is propagated to all the slave replicas, the master removes the update from its propagation queue.

Master/Slave Authentication

Like all DCE objects, the master and slave replicas must authenticate to each other. To do this, the master carries the identity of dce-rgy, one of the principals that is created when the database is created. Slaves carry the identity of the host machine on which they exist. Note that this identity must have the rights to the /./:sec/replist object described in “Chapter 42. Accessing Registry Objects” on page 455.

The /etc/passwd and /etc/group Files and the Registry

You should maintain standard versions of the /etc/passwd and /etc/group files on local machines to ensure compatibility with UNIX programs. To keep the /etc/passwd and /etc/group files consistent with the registry database, use the passwd_export command. It is advisable to run passwd_export on a regular basis, preferably using cron. (See “Chapter 36. Performing Routine Maintenance” on page 397 for details on passwd_export.)

Note: Unlike standard UNIX behavior, the /etc/passwd and /etc/group files are not used for local login if a security server is unavailable. Instead, the local registry (described in the following section) is used. The /etc/passwd and /etc/group file are maintained only for compatibility with UNIX programs that require their existence.
The Local Registry

The local registry, which resides in the dcelocal/var/security directory on each local machine, contains information about the machine's most recent users and the date and time that they last logged in. If a security server is not available for network login, the authentication service attempts to obtain the information that is required for a local login from the local registry.

When a security server is running on the network, the authentication service automatically creates a local registry the first time anyone logs into DCE from the machine. Thereafter, it updates the local registry each time anyone logs into DCE from the machine. You can edit the local registry by using the rgy_edit command with the -I flag. Note that dcecp does not access the local registry.

Names for Security Objects

Because the security namespace is rooted in the Cell Directory Service (CDS) namespace, security objects have CDS pathnames, which take the following form:

/.../cellname/mount_point/object_name

where:

cellname
Is the name of the cell in which the object resides.

mount_point
Is the name under which the DCE Security Service is registered in CDS.

object_name
Is the name of the registry object assigned when the object is created. If the object resides in a directory, object_name consists of the names of the object itself and any directories that must be traversed to access the object. Note that registry objects generally reside in the principal, group, or organization directory in the registry database. See Chapter 42. Accessing Registry Objects on page 455 for a more complete description of the registry database structure.

For example, the full pathname for the principal bach, which resides in the cell dresden.com, uses the sec (security) mount point and is in the principal directory as follows:

/.../dresden.com/sec/principal/bach

As another example, assume the group east-west resides in sales, which is a subdirectory of the group directory in the registry database in the dresden.com cell. The full pathname for east-west is as follows:

/.../dresden.com/sec/group/sales/east-west

Using Names with dcecp Security Commands

For all the dcecp commands that are used to manage the DCE Security Service, except dcecp acl, you supply only an object name to identify the object you want to manipulate. The object names are stored in the registry database. You are not required to enter a cell name (the local cell is assumed) or mount point (the name registered for the DCE Security Service is assumed).
Using Names with the `dcecp acl` Command

Unlike other `dcecp` security commands, the `dcecp acl` command works with ACLs that can be maintained by DCE services other than security. Like any generic tool that operates on objects that can exist in different namespaces, `dcecp acl` requires the object’s fully qualified CDS pathname instead of just `object_name`.

For example, to use the `dcecp acl` command to change the ACL that is associated with principal `bach`’s registry account, you must enter the following fully qualified name:

```
/.../dresden.com/sec/principal/bach
```

or

```
./sec/principal/bach
```

Note also that, to use `dcecp acl` to manipulate the ACL that is on the principal directory of the registry database, and thus control who can add or delete principals, you must enter the following fully qualified name:

```
/.../dresden.com/sec/principal
```

This cell name can also represent the name of a directory, such as:

```
./sec/principal/vienna.com/violinists_cell
```

For these cases, the `dcecp acl` command provides an option that identifies whether you are entering a directory name or a principal name.
Chapter 28. Using Access Control Lists

You can control access to DCE objects by using the ACL authorization mechanism. ACLs are associated with files, directories, CDS entries, and registry objects. They can be implemented also by arbitrary applications to control access to their internal data objects. Each ACL consists of multiple ACL entries that define who is authorized to do what to the object, specifically:

- Who can access the object
- What kinds of access those principals or groups have to the object
- What kind of access is allowed to unauthenticated users

For detailed information on how a specific DCE component implements the ACL authorization mechanism, see the appropriate part of this guide.

Note: In the discussions of DCE authorization in this chapter and the chapters that follow, the term user is analogous to principal. A principal can be a human user, server, or a machine.

Authorization Overview

An ACL contains a list of entries that specify the principals who can access an object and the operations that those principals can perform. The principals can be named explicitly or be members of a group that is identified in the ACL entry. The ACL is associated with the object it protects. The operations a principal can perform are specified by permissions.

DCE permissions can be set for the following:

- Owner, group, and other
- Specific individual principals in the local cell and in foreign cells
- Specific individual groups in the local cell and in foreign cells
- Any other principals in a specific foreign cell for whom individual permissions have not been set
- Any principals in any cell who have been authenticated by the DCE Authentication Service
- Delegate users, servers, or groups, in local or foreign cells
- Unauthorized users

ACLs also provide a masking capability and a method for integrating protections from DCE versions that are different from the current version.

File systems are frequently designed to provide access permissions for file system objects, such as files and directories. ACLs in DCE are more extensive. In DCE, many objects can have ACLs and be assigned permissions. DCE ACLs control access to objects managed by DCE components, like the Distributed File Service, the DCE Security Service, and the DCE Directory Service.

ACLs for the security service (the component that controls accounts) can, for example, authorize certain principals to change all of the information associated with an account, authorize other principals to change only a subset of the information associated with accounts, and restrict other principals from changing any of the information associated with accounts.
DCE can support particular sets of permissions that correspond to particular types of objects. For example, for containers there can be an insert permission that other objects, such as principals, do not need. This extensive usage of ACLs is in contrast to that of POSIX systems, for example, where only file system objects are protected by permission bits, with a standard set of permissions (read, write, and execute) being used. The DCE control program has a command, `acl permissions`, that shows the permissions specific to the ACL associated with the named object.

**ACL Managers**

An ACL manager is that portion of a server that handles ACLs. One ACL manager can support several different types of ACLs. From a more abstract point of view, each ACL type is supported by a corresponding ACL manager type. Informally, ACL manager types are sometimes called ACL managers. Figure 48 shows ACL managers in servers.

The client side allows you to connect to any server exporting the ACL interface so that one program can manipulate all ACLs. The DCE control program uses this feature.

![Diagram showing ACL Managers in Servers](image)

---

**Figure 48. ACL Managers in Servers**

In addition to the standard DCE components, ACLs can control access to any object for which an ACL manager has been implemented. ACLs can be associated with user-written applications to protect access to the use of the application itself, the files in the application, and even fields in those files.

All of the elements of ACLs described in this chapter are available to ACL managers; however, each manager may implement all or only a subset of the elements. For information on how ACLs are used by specific DCE components, consult the appropriate section in this guide.
**ACL Interpretation**

Part of the information associated with an account is a principal and a set of groups. (The groups are called a *project list* in this context, in honor of its Multics origin.) Together, the principal and project list are called the *privilege attributes* (or client-side access control information) associated with the account.

The principal and each of the groups is represented by both a string name and a UUID. The privilege attribute UUIDs are contained in the credentials that are used in authenticated remote procedure calls (RPCs) or GSSAPI calls. Servers grant access based upon the contents of credentials received. Although servers typically reject unauthenticated calls (calls with no credentials), any server can support a policy of accepting them. In that case, the server’s ACL manager must support the **unauthenticated** mask ACL entry type so that the server can further restrict the access granted to such unauthenticated clients.

When a principal requests access to a DCE object associated with an ACL, the object’s ACL manager compares the UUIDs of the principal and any groups of which the principal is a member (the principal’s privilege attributes) with the UUIDs of the principals and groups listed in the ACL entry. It does this simply by reading through the list of ACL entries. The manager grants the access permissions in the first ACL entry (or entries in the case of groups) it finds that match any of the principal’s privilege attributes. If the permissions in the matching entry allow the requested mode of access, the principal gains access; if not, access is denied.

**Credentials Inherited by Processes**

Processes created or spawned by a principal inherit the principal’s credentials. For example, if you log in, are authenticated, and start an application, the application you start inherits your authenticated credentials and runs as though it were you. The application’s permissions for any given object are the same as your permissions. Processes spawned by the application carry your identity and pass it down to processes they start.

**Note:** Changing the *setuid* permission bit changes only the local operating system identity under which an executable file runs, not the network identity.

Some servers are written to run as separate authenticated principals. For these servers, the system administrator creates an account in the registry database. After you start these servers, the server process authenticates with the registry, receives its credentials, and runs under its own identity, not yours.

**ACL Entries and Masks**

ACL entries are of several different *ACL entry types*, each type being for a particular purpose. All ACL entries are represented in a uniform list syntax.

**ACL Syntax**

The DCE control program uses the command syntax that is supported by the Tcl language. Within Tcl, the list that represents an ACL entry contains either two or three elements, depending on the ACL entry type, and is in the following form: 

\[
\{ \text{type} \ [\text{key}] \ \text{permissions} \}
\]
The three sample ACL entries in Figure 49 are in the format that Tcl accepts for input.

{ user bach rwxid }  { group composers rwxid }  { any-other r-xid }

Figure 49. Sample ACL Entries

The first sample ACL entry sets permissions for a principal in the local cell, named bach. The ACL entry type is user, the key is bach, and the permissions are rwxid. The entry components are separated by the space character.

The second sample ACL entry sets permissions for a group in the local cell, named composers. The ACL entry type is group, the key is composers, and the permissions are rwxid.

The third sample ACL entry sets permissions for all other principals in the local cell or foreign cells (unless they match a more specific entry). The ACL entry type is any-other, there is no key, and the permissions are r-xid. Not all types of ACL entries require a key.

On output, the Tcl format for ACL permissions contains either a permission character or a - (dash) for each possible permission. Two examples are:

{user mozart crwx---}
{user brahms -------}

For input, the output format is acceptable, or you can use a relaxed form that omits the dashes. For input, the same examples can be shortened to:

{user mozart crwx}
{user brahms -}

The single dash is retained to show that user brahms is denied all permissions.

ACL Entry Types for Principals and Groups

ACL entry types let you define entries for the following:

- Principals and groups
  - Principals and groups in the local cell
  - Principals and groups in foreign cells
  - Delegate entries
  - All principals in the local cell for whom individual ACL entries have not been created
  - All principals in the local and all foreign cells whose privilege attributes do not match any of the other ACL entries
- Masks used for authenticated and unauthenticated users
As-yet-undefined entry types that can be copied and displayed (if not interpreted) by dissimilar DCE releases.

If any principal or group is not authenticated, the permissions in the entry are further constrained by the **unauthenticated** mask (described later in this chapter). All entries for authenticated principals, except **user_obj** and **other_obj** entries, are further constrained by the **mask_obj** mask (also described later in this chapter).

The following list shows the entry types for principals and groups, their meaning, and their entry format. All ACLs have a default cell defined in them, as referred to in the table. It is changeable, and serves to define the cell for various data types.

This list uses the following syntax variables:

- **principal_name**
  - The name of a principal in the registry database
- **group_name**
  - The name of a group defined in the registry database
- **cell**
  - The global pathname of a cell in the format /.../name.
- **permissions**
  - The permissions made available by the object's ACL manager.

The principal and group ACL entry types are as follows:

**user_obj**
- Establishes permissions for the object's real or effective user. An example is the owner of a file. The entry format is:
  - `{user_obj permissions}`

**group_obj**
- Establishes permissions for members of the object's real or effective group. An example is the group of a file. The entry format is:
  - `{group_obj permissions}`

**other_obj**
- Establishes permissions for all other principals in the default cell, unless they are specifically named in ACLs of entry type **user**, are members of a group named in an ACL with an entry type of **group**, or match the principal indicated by the **user_obj** or **group_obj** entry. The entry format is:
  - `{other_obj permissions}`

**user**
- Establishes permissions for a specific principal in the default cell of the ACL. This ACL entry type requires a key that is a principal name. The entry format is:
  - `{user principal_name permissions}`

**group**
- Establishes permissions for members of a specific group in the default cell. This ACL entry type requires a key that is a group name. The entry format is:
  - `{group group_name permissions}`

**foreign_user**
- Establishes permissions for a specific principal in a foreign cell, one other than the default cell of the ACL. You must identify the principal by supplying a principal name and cell name as a key. The entry format is:
  - `{foreign_user cell_name/principal_name permissions}`
foreign_group
Establishes permissions for a specific group in a foreign cell, one other than the default cell of the ACL. You must identify the group by supplying a group name and a cell name as a key. The entry format is:
{foreign_group cell_name/group_name permissions}

foreign_other
Establishes permissions for other principals in a specific foreign cell, one other than the default cell of the ACL, that are not specifically named in ACL entries of entry type foreign_user or are members of a group named in an ACL entry of type foreign_group. You must identify the foreign cell by supplying a cell name as a key. The entry format is:
{foreign_other cell_name permissions}

any_other
Establishes permissions for all other principals in local or foreign cells unless they match a more specific entry in the ACL. The entry format is:
{any_other permissions}

user_obj_delegate
Establishes permissions for an intermediary acting for the object’s real or effective user. The entry format is:
{user_obj_delegate permissions}

group_obj_delegate
Establishes permissions for an intermediary acting for members of the object’s real or effective group. The entry format is:
{group_obj_delegate permissions}

other_obj_delegate
Establishes permissions for an intermediary acting for all other principals in the default cell, unless they are specifically named in ACLs of entry type user, are members of a group named in an ACL with an entry type of group, or match the principal indicated by the user_obj or group_obj entry. The entry format is:
{other_obj_delegate permissions}

user_delegate
Establishes permissions for an intermediary acting for a specific principal in the default cell of the ACL. This ACL entry type requires a key that is a principal name. The entry format is:
{user_delegate principal_name permissions}

group_delegate
Establishes permissions for an intermediary acting for members of a specific group in the default cell. This ACL entry type requires a key that is a group name. The entry format is:
{group_delegate group_name permissions}

foreign_user_delegate
Establishes permissions for an intermediary acting for a specific principal in a foreign cell, one other than the default cell of the ACL. You must identify the principal by supplying a principal name and cell name as a key. The entry format is:
{foreign_user_delegate cell_name/principal_name \ permissions}

foreign_group_delegate
Establishes permissions for an intermediary acting for a specific group in a
foreign cell, one other than the default cell of the ACL. You must identify the
group by supplying a group name and a cell name as a key. The entry
format is:

{foreign_group_delegate cell_name/group_name \ permissions}

foreign_other_delegate
Establishes permissions for an intermediary acting for other principals in a
specific foreign cell, one other than the default cell of the ACL, that are not
specifically named in ACL entries of entry type foreign_user or are
members of a group named in an ACL entry of type foreign_group. You
must identify the foreign cell by supplying a cell name as a key. The entry
format is:

{foreign_other_delegate cell_name permissions}

any_other_delegate
Establishes permissions for an intermediary acting for all other principals in
local or foreign cells unless they match a more specific entry in the ACL.
The entry format is:

{any_other_delegate permissions}

Group Permissions and Project Lists

Principals accrue group permissions from their project list, a list of all the groups of
which a principal or alias is a member. When a principal tries to access an object,
the principal has the access rights that accrue from the logical OR of permissions
granted to every group with an entry in the ACL and in which the principal is a
member. Note that the principal accrues rights only from the name or alias with
which the principal logged in, not both names and aliases. (See [Chapter 30.
Creating and Maintaining Principals, Groups, and Organizations” on page 319 for
more information on aliases and project lists.)

For example, suppose an ACL contains the following entries:

{user_obj crwxid-}
{group_obj crwx---}
{other_obj -r-----}
{group composers crwx---}
{user bach crwx---}
{user mozart crwx---}
{group performers --w-idt}

User cole is a member of the group composers and the group performers.
Because cole accrues permissions from both groups, his access permissions are
crwxidt. (The security service provides a method to prevent a group from being
included in a project list, thus preventing the group’s permissions from being
accrued as part of the project list. See [Chapter 30. Creating and Maintaining
Principals, Groups, and Organizations” on page 319 for more information.)

Using Principal and Group ACL Entries

When a security mechanism applies ACLs, the ACL entries are chosen in a
particular order. The most specific ones are chosen before the less specific.

In using the ACL entry types for principals and groups, think of the user_obj,
group_obj, and other_obj types as being similar to the POSIX file permissions of
user, group and other. Use the user and group types to specify permissions for a
specific principal or group.
The user_obj, group_obj, other_objuser, and group entry types apply to principals and groups in the default cell of the ACL. To set permissions for specific principals and groups in a foreign cell, use the foreign_user and foreign_group entries. These entries set permissions in a foreign cell in the same way that user and group entries do in the default cell. Use foreign_other to set permissions for others in the foreign cell, in the same way that other_obj does for others in the default cell.

The any_other entry type sets permissions for all local and foreign principals to which the other entry types do not apply. If any of the other types of entries are set for a local or foreign principal either explicitly or implicitly, the any_other entry will not be applied. This is because once the manager finds a match between a principal and an entry, it stops examining the ACL list and applies the found entry (or in the case of groups, entries). All other ACL entry types, except for mask types (described below), are examined by the ACL manager to see if a match exists before the ACL manager examines the any_other entry type. See "The Checking Sequence for ACL Entries" on page 303 for details of the order of ACL checking.

ACL Entry Types for Masks

Masks in ACL entries establish maximum permissions that can be granted to a principal. There are two masks: the mask_obj mask and the unauthenticated mask. Only permissions given in an ACL entry and the mask are granted. For example, if the ACL entry specifies rwx permissions and the mask specifies only the x permission, the permissions are ANDed with the mask, and only the x permission is granted.

The mask_obj mask, if it exists, applies to all entry types except user_obj and other_obj. The unauthenticated mask is applied to all unauthenticated principals. As the ACL manager derives the permissions from the ACL entries, it filters each one through the mask_obj mask (if one exists), and finally through the unauthenticated mask. The manager grants only those permissions that are in the first matching entry, the mask_obj mask, and the unauthenticated mask.

Note: If you do not create an unauthenticated mask, unauthenticated principals are denied all access to objects. If a user is unauthenticated because that user has no DCE credentials, then the only entry that the user matches is the any_other entry type, which is then masked by the unauthenticated mask. This means that, for such unauthenticated users to have any access to an object, the object’s ACL must contain an any_other type entry and an unauthenticated mask entry.

An example of mask usage follows. For a particular object, there are a great number of ACL entries specifying rw access to that object. You need to restrict the access to read-only, temporarily, but do not want to change all the ACL entries. Simply creating a mask_obj mask of r, and then removing it when you are done, provides the temporary restriction.

ACL Entry Types for Dissimilar DCE Releases

The extended entry type provides a generic format for ACL entries that allows future DCE releases to implement new ACL entry types. Because the new types are packaged in the generic format of the extended entry, earlier DCE releases can copy, display, and print the new entry types even if they cannot interpret their meaning.
An extended ACL entry has the following form:

```
{extended uuid.ndr.ndr.ndr.ndr.number_of_bytes.data permissions}
```

where:

- **uuid**: A UUID that identifies the entry type of the extended ACL entry. (This UUID can identify one of the ACL entry types described in this document or an as-yet-undefined ACL entry type.)

- **ndr.ndr.ndr.ndr**: A network data representation (NDR) format label (in hexadecimal format and separated by dots) that identifies the encoding of data.

- **number_of_bytes**: A decimal number that specifies the total number of bytes in *data*. It is followed by a dot.

- **data**: The ACL data in hexadecimal format. (Each byte of ACL data is two hexadecimal digits.) The ACL data includes all of the ACL entry specification except the permissions. The ACL data is not interpreted; it is assumed that the ACL manager to which the data is being passed can understand that data.

- **permissions**: The permissions to be granted by the entry.

### The Checking Sequence for ACL Entries

An ACL manager reads through a list of ACL entries to find the particular entry that applies to an individual who is trying to perform a particular operation. The ACL manager first looks for a match between the privilege attributes of the principal or process desiring access and the privilege attributes listed in the ACL. When the ACL manager finds a match, it examines the permissions in the matching ACL entry and applies the `mask_obj` mask to it (unless it is an entry of type `user_obj` or `other_obj`) if a `mask_obj` mask exists. Finally, the ACL manager applies the `unauthenticated` mask (if it exists) if the principal is not authenticated. If the permissions that result grant the requested access, the manager grants it to the principal. If not, access is denied.

Because an ACL manager stops checking the ACL entries when it finds a match, it is important to understand the order in which the ACLs are checked. Figure 50 on page 305 shows the order of checking and the masks applied. ACL managers check entries in the following order, with the exception that the initiator principal is not checked against `..._delegate` entries. Delegate principals are checked against all entries.

1. First, the ACL manager checks the user ACL entries, in the following order:
   - `user_obj`
   - `user_obj_delegate`
   - `user`
   - `user_delegate`
   - `foreign_user`
   - `foreign_user_delegate`
The ACL manager stops all entry checking at the first matching user entry it finds and applies the permissions in the entry. The user entries are checked in order as shown in the previous list from most specific to least specific.

2. If the ACL manager does not find a match in the user entries, it checks all of the following group entries:
   - group_obj
   - group_obj_delegate
   - group
   - group_delegate
   - foreign_group
   - foreign_group_delegate

   If any group ACL entries match the principal’s project list, and the logical OR of permissions from these entries grants access, then access is granted and no further checking is performed.

Because principals accrue permissions from all groups listed in the ACL of which they are a member (and for which they are in the project list), all the groups are checked and all the principal’s group permissions are logically ORed. The order of group entry checking is not important. See "Group Permissions and Project Lists" on page 301 or more information on project lists.

3. If the ACL manager does not find a match between the principal requesting permission and a member of a group in the group entries, it checks the other_obj and other_obj_delegate entries. If the ACL manager finds a match, it stops checking ACL entries.

4. If the ACL manager does not find a match between the principal requesting permission and the other_obj or other_obj_delegate entries, it checks the foreign_other and foreign_other_delegate entries. If the ACL manager finds a match, it stops checking ACL entries.

5. If the ACL manager does not find a match between the principal requesting permission and the foreign_other or foreign_other_delegate entries, it checks the any_other and any_other_delegate entries. If it does not find a match in the any_other or any_other_delegate entries, it denies all access to the object.

The final permission is the intersection of the permission of the initiator principal and of each delegate.

Figure 50 on page 305 shows these steps as they apply to the ACL entries. The two columns distinguish between ACL entries that are not masked by mask_obj and those that are masked by it.
The mask_obj Mask and ACL Checking

Before the ACL manager grants any permissions derived from checking the ACL entries, it filters the entry permissions through the mask_obj mask. Only those permissions named in the ACL entry and in the mask are granted. For example, if an ACL entry grants rwx permissions and the mask_obj entry specifies only r and w permission, only r and w are granted. The x permission named in the ACL entry is ignored.

The Unauthenticated Mask and ACL Checking

If an ACL manager receives an access request from an unauthenticated principal, it checks the ACL entries and applies the mask_obj mask, if available, as described previously. It then filters the resulting permissions through the mask for unauthenticated principals (entry type of unauthenticated). Only those permissions specified in the unauthenticated mask, in the ACL entry, and in the mask_obj mask (if it exists) are granted.

Figure 50. Order of Checking ACLs and Applying Masks
The Effect of the Checking Order on Granting Permissions

You can think of the order in which the ACL entries are checked as going from most specific to least specific. For example, assume an ACL contains the following entries:

{user mahler r}
{group composers rwx}

If the principal named mahler, who is a member of the group composers, requests execute (x) access, it is denied. This happens because the order of checking specifies that all user entries (user_obj, user, and foreign_user) are checked before all group (group_obj, group, and foreign_group) entries. Therefore, the first match found by the ACL manager is the match between user mahler and the ACL entry for user mahler. Once a matching user entry is found, checking stops and the found permissions are applied. In this case, checking stops before the group entry, the entry with the more liberal permissions.

Denying Access

When you create an ACL entry for a principal or group, you grant only the permissions you specify in the ACL entry. To deny a principal all access to an object, create an ACL entry that contains a dash in place of the permissions. For example, to deny all access to user mozart, the entry would be:

{user mozart -}

If you choose to deny access to a specific principal or group, select the most specific entry type available. Generally for principals this is an entry type of user or foreign_user; for groups, it is an entry type of group or foreign_group. Note that, if the principal is the object’s owner or a member of the object’s group, you must use the user_obj or group_obj entry types to ensure that access is denied.

To deny access to all unauthenticated users, do not create the unauthenticated mask. If this mask is not created (ACL entry type of unauthenticated), only authenticated principals can access the object. The same behavior is achieved by creating an unauthenticated mask with no permissions (or a dash in place of the permissions). This method also has the additional advantage of illustrating graphically that unauthenticated users have no access rights.

ACL Management Tasks

ACL management involves creating, modifying, and deleting the entries for the ACLs on DCE entities. You can use the DCE control program to do all of these tasks. The control program’s acl command perform the following operations on ACLs:

- Create and modify ACL entries for DCE objects in the local cell and foreign cells. (Note that when objects are created they are associated with initial ACL entries. See [Generating ACLs from Files](page 307) for more information.)
- Display the permissions implemented for an object by the object’s ACL manager.
- Create and modify masks used to restrict allowable permissions.

Note: Standard UNIX tools that display and manipulate UNIX modes have an effect only on the ACLs established for the file system.
For a detailed description of the DCE control program's `acl` command, see the IBM DCE 2.2 for AIX: Command Reference.

### Copying ACLs

To copy an ACL from one DCE object to another, use the DCE control program `acl replace` command with the `-acl` option as shown here:

```
dcecp> acl replace /./:hosts/hermes -acl [acl show /./:hosts/cyclops]
dcecp>
```

The example command replaces the ACL for the host `hermes` with the ACL for the host `cyclops` whose name is specified in the `acl show` command invoked by the `-acl` option. Note how the `-acl show` command in the `-acl` option is enclosed in `[ ]` (brackets). This is required when the `-acl` option value is a command invocation.

If you are copying between cells, use the `acl replace` command's `-cell` option, as well as its `-acl` option. For example:

```
dcecp> acl replace /./:hosts/hermes -acl [acl show /./:hosts/cyclops] \n> -cell [acl show /./:hosts/cyclops -cell]
dcecp>
```

To copy an extended entry type from the domain of one ACL manager to the domain of another ACL manager, use the output of the `dcecp acl show` command as the input to an `acl replace` command. To copy extended entries this way, both ACL managers must support the extended entry type.

### Generating ACLs from Files

A convenient way to create an ACL is to create and edit a text file so that it contains the desired ACL entries, and then generate the ACL from it by using an `acl replace` command.

For example, assume the file `std_acl` contains the following entries:

```
mask_obj:crwxid-
user_obj:crwxid-
group_obj:crwx----
other_obj:---r----
user:litz:crwx----
group:composers:---r-----
user:bach:crwx----
user:mozart:crwx----
```

The following `acl replace` command adds the entries in `std_acl` to an ACL named `./.../dresden.com/my_filesystem/opus`:

```
dcecp> acl replace ./.../dresden.com/my_filesystem/opus -acl [cat std_acl]
dcecp>
```

The `acl replace` command overwrites all ACL entries with the ones from the file `std_acl`. Regardless of what they were before, the ACLs for `opus` now look like this:

```
mask_obj:crwxid-
user_obj:crwxid-
user:litz:crwx----
user:bach:crwx----
```
Container ACLs

The object ACL controls access to the object itself. A container object has, in addition to its object ACL, an initial container ACL and an initial object ACL. These two ACLs are not used for access control as such, but instead for cloning initial ACLs for objects or containers created within the initial container. The initial container ACLs and the initial object ACLs can be edited in the same way as the usual ACL by using the -ic and -io options to the dcecp acl command.

Objects and Containers

The type of ACL used for an object depends on whether the object is a simple object or a container. Containers are objects that hold other objects. The objects they hold can themselves be either simple objects or container objects. Simple objects do not hold other objects. Although any DCE component can have objects and containers, the simplest and most common illustration is the file system. In the file system, there are files and directories. The files are simple objects, and the directories are containers. The directories can hold simple objects (files) and other containers (subdirectories).

The object ACL is associated with simple and container objects. The initial container and initial object ACLs are associated only with container objects.

Initial ACLs for Objects and Containers

Initial ACL entries and the ACL that contains them are applied automatically when an object is created. The entries can be modified at any time with the DCE control program. The types of DCE ACLs used as Initial ACLs for containers and objects are as follows:

- The initial container ACL determines the default ACL for containers created within a container. For example, the file system Initial Container ACL for a directory specifies the default ACL for subdirectories created within that directory.
- The initial object ACL determines the default for objects created within a container. For example, the file system initial object ACL for a directory specifies the default ACL for files created within that directory.

Default ACLs for Objects

When a simple object is created in a container, it inherits the container’s initial object ACL as its object ACL. Figure 51 on page 309 illustrates how the default ACL is assigned to simple objects created in containers.
Default ACLs for Containers

When a container is created within a container (a subdirectory within a directory, for example), it inherits the parent container’s:

- Initial container ACL as its object ACL and as its Initial Container ACL
- Initial object ACL as its initial object ACL

For example, if you create a file named *report* in the directory *marketing*, the system assigns *report* the initial object ACL of the directory *marketing*. If you create a subdirectory in *marketing*, the system assigns the new subdirectory the Initial Container ACL of *marketing*. New subdirectories also receive a set of initial ACLs that match the parent directory’s initial ACLs. In this example, the new subdirectory also receives *marketing’s* initial ACLs as its own ACLs. Figure 52 on page 310 illustrates how the default ACLs are assigned to objects created in containers.
The following example shows how ACLs are initially assigned to containers created within containers.

Assume Container A has the following ACLs:

**Object ACL**

- {user_obj crwxid}
- {group_obj crwxid}
- {other_obj r}

**Initial container ACL**

- {user_obj crwxid}
- {group_obj rw}
- {other_obj r}

**Initial object ACL**

- {user_obj crwxid}
- {group_obj r}
- {other_obj r}

When Container B is created in Container A, it has the following default ACLs:

**Object ACL (container A’s Initial Container ACL)**

- {user_obj crwxid}
- {group_obj rw}
- {other_obj r}

**Initial container ACL (container A’s initial container ACL)**

- {user_obj crwxid}
- {group_obj rw}
- {other_obj r}
Initial object ACL (container A’s initial object ACL)

{user_obj crwxid}
{group_obj r}
{other_obj r}

Effect of Masks When Editing ACLs

If the user specifies a new mask_obj ACL entry, then acl modify uses it. Otherwise, the acl modify command recalculates the mask, using the algorithm shown in the following paragraph, unless the user has specified one of the -mask calc, -mask nocalc, or -purge options. Therefore the mask can change, granting more or fewer permissions, on every acl modify command.

Here is the algorithm that the acl modify command uses when calculating the mask:

1. Retrieve the existing ACL of the file.
2. Perform all requests to remove entries and to reduce the permissions of existing entries.
3. Calculate the union of the actual permissions of all remaining entries.
4. Determine which permissions differ between the actual and effective rights. (This is the logical XOR of the results of steps 3 and 4.)
5. Perform all requests to add new entries to the ACL and all requests to increase the permissions of existing entries.
6. Calculate the union of these newly granted permissions and the old effective permissions (from step 4). This is the candidate new mask value.
7. If there are any permissions in the candidate new mask that are also in the permissions that differ between the original actual and effective rights (from step 5), applying the candidate new mask would unexpectedly grant some new right that the user did not intend. Unless the user specified one of the options -mask calc, -mask nocalc, or -purge, this condition is an error, and the ACL is not modified. Otherwise, the candidate new mask is applied as the new mask.

For the vast majority of ACL operations, such automatic recalculation is safe. In certain rare cases, the recalculation of the mask can grant additional rights that the user did not expect; for instance, a permission granted to an entry that the user did not specify and that was not among the entry’s previous effective rights.

The following example shows the way mask recalculation works, as well as the effect of the options.

Observe that the ACL contains an entry granting rwx permission to some user, but the mask allows an effective permission of r-x. Adding a new rwx ACL entry and recalculating the mask (according to step 6) to rwx is unsafe because the first user’s effective access rights are unexpectedly changed from r-x to rwx. If the acl modify command detects such an unsafe condition, its default action is to issue an error message and not change the ACL.

The initial state, showing the permissions and the effective permissions, is:

dcecp> acl show /.:/concertos
{user vivaldi rwx effective r-x}
{mask_obj r-x}
dcecp>
Adding a user as shown results in an error because the mask recalculation would give *vivaldi* an effective permission of *rwx*:

```
dcecp> acl modify /.:concertos -add {user telemann rwx}
Error: Unintended permissions not granted.
```

Explicit use of the **-mask calc** option allows the recalculated mask to be applied in spite of the new permission granted to *vivaldi*. The mask is set to the union of the permissions granted to the file group class entries on the ACL. This option can result in the inadvertent granting of extra permissions.

```
dcecp> acl modify /.:concertos -add {user telemann rwx} -mask calc
dcecp> acl show /.:concertos
{user vivaldi rwx effective rwx}
{user telemann rwx effective rwx}
{mask_obj rwx}
dcecp>
```

Using the **-mask nocalc** option explicitly retains the *r-x* mask, resulting in reduced effective permissions for *telemann*. The ACL is modified exactly as specified by the user, and no mask calculation or purging of permissions occurs.

```
dcecp> acl modify /.:concertos -add {user telemann rwx} -mask nocalc
dcecp> acl show /.:concertos
{user vivaldi rwx effective r-x}
{user telemann rwx effective r-x}
{mask_obj r-x}
dcecp>
```

Using the **-purge** option replaces the actual permissions with the effective permissions in all entries. More precisely, if the command detects an unsafe condition, then the condition intersects the current value of the mask with all of the existing, unmodified entries in the file group class, replacing all ACL entries (except *user_obj*, *other_obj*, *mask_obj* and *unauthenticated*) with their effective permissions.

```
dcecp> acl modify /.:concertos -add {user telemann rwx} -purge
dcecp> acl show /.:concertos
{user vivaldi rwx effective r-x}
{user telemann rwx effective r-x}
{mask_obj r-x}
dcecp>
```
Chapter 29. Control Programs for Managing the DCE Security Service

You can perform most of the management tasks for the DCE Security Service by using the DCE control program (dcecp). However, some of the components of this service require you to use other control programs provided in DCE.

This chapter provides information about the commands that the DCE control program offers for DCE Security Service management. The chapter also describes the commands that the registry editor program (rgy_edit) provides for maintaining local registries.

Control programs that you use for security-related management tasks from time to time, such as password_export and sec_create_db, are not covered in this chapter. These programs are described in subsequent chapters of this guide along with the instructions for performing the tasks.

Using the DCE Control Program

Since detailed information about the DCE control program and its command syntax appears in "Part 1. The DCE Control Program" on page 1 of this guide, this chapter does not repeat the information. It describes only the commands that the DCE control program provides specifically for managing the DCE Security Service.

The DCE control program creates and maintains principals, groups, organizations, and accounts for the DCE Security Service’s network-wide registry (registry service component). The control program also operates on the keytab files that protect the passwords for security servers on the local node (authentication service component). Additionally, it maintains the ACLs that protect DCE resources (privilege service component). The DCE control program commands for managing the DCE Security Service operate on these security and DCE-wide resources through various objects that it defines. For example, the control program’s acl check command displays the permissions that the ACL for a DCE Security Service object grants to the invoking principal.

The following subsections describe the DCE Security Service objects that the DCE control program operates on and the types of operations that the control program can perform on these objects.

Security Service Objects

The DCE control program has functions that operate on the following security service components:

principal
  This object represents registry principals. These principals can be human users of the network, servers on the network, machines on the network, or cells with which the local cell will engage in cross-cell authentication.

group
  This object represents registry groups. Groups are collections of principals for which you can assign access rights to objects.
organization
This object represents registry organizations. Organizations are collections of principals to whom you can assign policies that expand your areas of administrative control.

account
This object represents the accounts that are established in the registry for principals.

registry
This object represents the registry, or the DCE Security Service's database of account information, in a DCE cell. The registry copy operated on can be either the master replica or a slave replica.

xattrschema
This object operates on the schemas, or the definitions, for extended registry attributes (ERAs) that you specify for DCE Security Service components and data maintained by the host daemon (dced) on the local host.

acl
This object represents the ACLs for all of the DCE entities that can be protected by the ACL facility of the DCE Security Service.

keytab
This object represents the files that store the keys, or passwords, for authenticated server principals in the DCE Security Service.

DCE Control Program Operations for the DCE Security Service

Table 16 lists the operations that dcecp performs on DCE Security Service objects.

Specific instructions for using DCE control program commands to create and maintain principals, groups, organizations, and accounts are given in "Chapter 30. Creating and Maintaining Principals, Groups, and Organizations" on page 319 and "Chapter 31. Creating and Maintaining Accounts" on page 339 of this guide.

Table 16. DCE Control Program Operations for the DCE Security Service

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a principal to a group or organization to a registry replica.</td>
</tr>
<tr>
<td>catalog</td>
<td>Displays the names of all the principals, groups, and organizations in a registry replica. For the registry itself, displays the master and slave replicas existing in a DCE cell.</td>
</tr>
<tr>
<td>check</td>
<td>Displays the permissions that a DCE ACL currently grants to a security principal.</td>
</tr>
<tr>
<td>checkpoint</td>
<td>Resets the registry checkpoint interval.</td>
</tr>
<tr>
<td>create</td>
<td>Creates a new principal, group, organization, or account in a registry replica. Also, creates a new entry for an ERA schema.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a principal, group, organization, or account from a registry replica. For the registry itself, deletes a slave replica. For an ERA schema, deletes entries. For a DCE ACL, removes ACL entries.</td>
</tr>
<tr>
<td>designate</td>
<td>Changes which registry replica is the master.</td>
</tr>
<tr>
<td>destroy</td>
<td>Destroys the specified replica and its copy of the registry database.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the master replica of the registry for updates.</td>
</tr>
<tr>
<td>Operation</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>dump</td>
<td>Displays information on each replica of the registry existing in a cell.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the master replica of the registry for updates.</td>
</tr>
<tr>
<td>generate</td>
<td>Generates a random password for an existing registry account.</td>
</tr>
<tr>
<td>help</td>
<td>Displays help information about a principal, group, organization, account, ERA schema, or DCE ACL in a registry replica, or about the registry replica itself.</td>
</tr>
<tr>
<td>list</td>
<td>Displays the names of the principals belonging to a group or organization in a registry replica.</td>
</tr>
<tr>
<td>modify</td>
<td>Modifies the attribute information in a registry replica for a principal, group, account, ERA schema entry, DCE ACL entry, or for the registry itself. For an organization, also modifies the policy information.</td>
</tr>
<tr>
<td>operations</td>
<td>Displays the operations that can be performed by or on a principal, group, organization, account, ERA schema, DCE ACL, or registry replica.</td>
</tr>
<tr>
<td>permissions</td>
<td>Displays the permissions granted by a ACL on a protected DCE component.</td>
</tr>
<tr>
<td>remove</td>
<td>Removes one or more principals from a group or organization in a registry replica.</td>
</tr>
<tr>
<td>rename</td>
<td>Changes the name of a principal, group, organization, or ERA schema in a registry replica.</td>
</tr>
<tr>
<td>replace</td>
<td>Replaces the entire ACL on a DCE component or the address of a registry replica.</td>
</tr>
<tr>
<td>show</td>
<td>Displays information about the attributes of a principal, group, ERA schema entries, or DCE ACL entries. Also displays information about the policies for an organization, account, or registry replica.</td>
</tr>
<tr>
<td>stop</td>
<td>Stops a security server process.</td>
</tr>
<tr>
<td>synchronize</td>
<td>Instructs the slave replica of the registry to update its contents from the master replica.</td>
</tr>
<tr>
<td>verify</td>
<td>Checks if all of the registry's replicas are up-to-date.</td>
</tr>
</tbody>
</table>

### Using the Registry Editor

Although you can use the DCE control program to maintain the network-wide registry, you can only use the registry editor to maintain the local registries located on the hosts in a cell.

The following subsections explain how to start, stop, and get help for the registry editor and describe the commands to use for local registry maintenance. Specific instructions for using the registry editor to maintain the local registry are given in "Chapter 30. Creating and Maintaining Principals, Groups, and Organizations" on page 319 and "Chapter 31. Creating and Maintaining Accounts" on page 339.
For detailed descriptions of all of the registry editor commands, see the *IBM DCE 2.2 for AIX: Command Reference*.

**Starting, Stopping, and Getting Help**

The registry editor runs in two modes: interactive and command line. In interactive mode, the control program prompts you for the information that it needs. In command-line mode, you enter all of the information that the control program needs on the command line. In command-line mode, you can perform only one operation at a time; however, you may find command-line mode useful for creating shell scripts that execute a sequence of registry editor commands. Most of the examples in this guide are in interactive mode. (See the *IBM DCE 2.2 for AIX: Command Reference* for information on how to invoke and use the registry editor in command-line mode.)

To start the registry editor in interactive mode, enter the following command:

```
$ dceshared/bin/rgy_edit
```

*Note:* If you are not authenticated, the `rgy_edit` command will warn you the binding is not authenticated—Can't establish authentication to registry.

The registry editor responds by displaying the name of the current registry site and the `rgy_edit=>` prompt, as follows:

```
Current site is:
registry server at /.../bayre.com/subsys/dce/sec/oddball
rgy_edit=>
```

If the name service is unable to provide the name, the output is shortened. For example, instead of:

```
registry server at /.../bayre.com/subsys/dce/sec/oddball
```

the display would be:

```
registry server at /.../bayre.com
```

To exit from a `rgy_edit` command, press Return at the command prompt. For example, to exit from the `add` command to add principals, press Return at the Add Principal=> Enter name: prompt.

To exit from the registry editor, enter the `q[uit]` command at the `rgy_edit` prompt:

```
rgy_edit=> q
$
```

The `rgy_edit help` command displays help information. If you enter `help` or `h`, the registry editor displays a list of all commands and available topics. For example:

```
rgy_edit=> help
```

**rgy_edit Commands for Local Registry Maintenance**

To view or to perform any maintenance tasks on the local registry, you must first access it. To access the local registry, invoke the registry editor with the `-l` option:

```
$ rgy_edit -l
rgy_edit=>
```

At the `rgy_edit` prompt, enter the name of the command for the particular operation you wish to perform. [Table 17 on page 317](#) lists the available commands.
<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>del[ete]</td>
<td>Deletes the entries for principals, groups, or organizations.</td>
</tr>
<tr>
<td>prop[erties]</td>
<td>Displays or changes local registry properties.</td>
</tr>
<tr>
<td>pu[urge]</td>
<td>Deletes expired entries for principals, groups, or organizations.</td>
</tr>
<tr>
<td>v[iew]</td>
<td>Displays the entries for principals, groups, or organizations.</td>
</tr>
</tbody>
</table>

For detailed descriptions of all of the registry editor commands, see the *IBM DCE 2.2 for AIX: Command Reference*. 

---

*Table 17. rgy_edit Commands for Maintaining the Local Registry*
Chapter 30. Creating and Maintaining Principals, Groups, and Organizations

This chapter explains how to use dcecp to create and maintain principals, groups, and organizations. It begins with a discussion of the names that are assigned to principals, groups, and organizations and of the Universal Unique Identifiers (UUIDs) used internally by the DCE Security Service to identify registry objects.

Principal, Group, and Organization Names

You must assign a name to each principal, group, and organization in the registry. Although a principal, a group, and an organization can have the same name, no two principals, groups, or organizations can have the same name. For example, two principals cannot be named smith, but a principal can be named smith, a group can be named smith, and an organization can be named smith.

You can assign up to three types of names: primary, full, and aliases.

Primary Names

Primary names are assigned to principals, groups, and organizations. A registry object’s primary name is the name that is used by most system utilities when a human-readable string is needed. When you add a principal, group, or organization to the registry database, you must supply a primary name. The primary name is a key field that you can use as input to the principal show command to query the registry database.

Full Names

Full names can be assigned optionally to principals, groups, and organizations. An object’s full name is for information purposes. It typically describes or expands a primary name to allow easy recognition by users. For example, a principal could have a primary name of jsbach and a full name of Johann S. Bach. An organization could have the primary name moco and the full name Motet Composers.

A full name is a data field only. You cannot use it to query the registry database. You can create the principal’s, group’s, or organization’s full name when you create the principal, group, and organization itself.

Aliases

An alias is an optional alternate name for a primary name. Aliases can be assigned to principals and groups, but not to organizations. Aliases and the primary name for which they are an alternate share the same UUID and UNIX ID. (UUIDs and UNIX IDs are described in Universal Unique Identifiers and UNIX IDs on page 321.) An alias is a key field that you can use to query the registry database.

Because you can create one account for each primary name and each alias, aliases give you the flexibility to establish several accounts for the same principal. For example, assume that for the primary name mahler, you create three aliases: gustav, gus, and gm. You can then create four accounts for the principal mahler:
one for the primary name and one for each of the name’s aliases. The accounts can use different home directories and passwords and can be associated with different groups and organizations.

Because principals accrue only the rights that are associated with the primary name or the alias that they log in with, these multiple accounts for the same person accommodate different access patterns. For example, mahler may be a member of the composers group and gustav can be a member of the music_admin group, which is a group of system administrators. The principal mahler logs in as mahler to perform day-to-day tasks and as gustav to perform administrative duties. To help prevent accidental damage to the system, it is a good idea to set up accounts so that users can log into an account with the least privileges necessary to perform their tasks.

For groups, aliases are useful if you want to associate two group names with the same UNIX number.

See “Creating and Maintaining Aliases for Principals or Groups” on page 336 for information on creating aliases.

### Name Formats

Names in the registry can contain any characters or digits, except the @ (at sign) and the : (colon) characters. Avoid using spaces, {} (curly braces), or "" (quotes) in a name; dcecp might not parse the name correctly.

The maximum number of characters allowed in a name is 1024.

### Reserved Principals and Accounts

Some principals and accounts are reserved for use by various system operations. You cannot delete reserved principals. You can modify, but not directly delete reserved accounts. Note, however, that you may delete reserved accounts indirectly by deleting the group or organization that is specified in the account. (See “Chapter 31. Creating and Maintaining Accounts” on page 333 for details.)

A list of reserved principals and accounts follows. In the list, cell_name is the name of your cell.

- **Reserved Principals:**
  - dce-ptgt
  - krbtgt/cell_name
  - dce-rgy
- **Reserved Accounts:**
  - dce-ptgt none none
  - krbtgt/cell_name none none
  - dce-rgy none none
Object Creation Quotas

You can assign an object creation quota to each principal. This assignment allows you to control the number of registry objects that can be created by the principal. If you allow users to create their own groups, for example, you can use this quota to limit the total number of groups they can create. The default for the object creation quota is unlimited, meaning that no limits are placed on the number of objects the principal can create. A value of 0 (zero) prohibits the principal from creating any registry objects.

Each time a principal creates a registry object, the principal’s object creation quota is decremented by 1. When the object creation quota reaches 0, the principal is prohibited from creating registry objects unless you reset the object creation quota to a number other than 0 by using the dcecp principal modify command. Note that, when an object that is created by a principal is deleted, the principal’s object creation quota is not incremented.

Use the dcecp principal show command to view principals’ current object creation quotas. This command displays the total number of objects that the principal is allowed to create at the current time; that is, the original quota minus the number of objects created by the principal.

Universal Unique Identifiers and UNIX IDs

The DCE Security Service automatically associates a principal’s, group’s, or organization’s primary name with a UUID. UUIDs identify objects, which is a function performed by UNIX numbers (UNIX IDs) in UNIX systems. (The registry database also contains UNIX numbers, but they are used solely for compatibility with UNIX programs.)

Normally, you do not have to be aware of UUIDs. They are created and maintained automatically. However, be aware that, although the DCE Security Service prints names and you can access objects by name, it identifies all objects internally by UUID. If you delete a principal from the registry, you also delete the principal’s UUID. Any objects (files, programs) that are owned by the principal are associated with an orphaned UUID; that is, a UUID with no corresponding name. This means that the object is now owned by a deleted principal. If no other principals were previously given access to the object, the object cannot be accessed.

To solve this problem, use the dcecp principal create command with the -uuid option to associate the UUID with a name and thus adopt the orphaned object. UUIDs are assigned automatically when the object is created by using the DCE control program’s principal create command. Therefore, you cannot simply add a new user and acquire a previously used UUID. You must execute the dcecp principal create command with the -uuid option for this purpose.

UNIX numbers in the registry must fall within the range of numbers you set as a registry property. When you supply a UNIX number in the command line for creating or modifying an account, you should avoid numbers under 100 since these are generally reserved for system accounts.
Adding and Maintaining Principals

Use the `dcecp principal create` command to create principals. A principal must exist before you can create an account for the principal. When you use the `dcecp principal create` command, you must supply the principal’s primary name as an argument. In addition, you can supply the attribute options summarized in Table 18.

Table 18. Attribute Options to Create Principals

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-fullname namestring</code></td>
<td>An optional name that is used to more fully describe a primary name. To include spaces, enclose the full name in braces. The default is blank.</td>
</tr>
<tr>
<td><code>-uid integer</code></td>
<td>The required UNIX ID that is associated with the principal. You can enter this number explicitly or allow it to be generated automatically. If you enter it, the number you enter cannot exceed the maximum allowable UNIX number (the <code>maxuid</code> attribute) set with the <code>registry modify</code> command; however, you can enter a number lower than the low UNIX number (the <code>minuid</code> attribute) set for principals with the <code>registry modify</code> command. If you allow the number to be assigned automatically, it falls in the range defined by the low UNIX number and maximum UNIX number.</td>
</tr>
<tr>
<td><code>-quota quota</code></td>
<td>The number of registry objects that can be created by the principal, known as the principal’s object creation quota. To allow a principal to create an unlimited number of registry objects, enter the text string <code>unlimited</code> to set no quota. To prevent a principal from creating any registry objects, enter a 0. The <code>quota</code> argument defaults to <code>unlimited</code>.</td>
</tr>
</tbody>
</table>

Note: In addition to these standard principal attributes, you can also attach ERA instances to principals to control such aspects of DCE security as preauthentication, password strength and password generation, and handling of invalid logins. See “Chapter 31. Creating and Maintaining Accounts” on page 339 for information on these well-known ERAs. See “Chapter 32. Creating and Using Extended Registry Attributes” on page 359 for information on ERAs in general.

Adding Principals

To add principals to the registry, use the `principal create` command. For example, the following sample command creates a principal with a primary name of `mahler` and a full name of `gustav mahler`:

```
dcecp> principal create mahler -fullname {gustav mahler} -quota 5
```

In the example, the UNIX number defaults to one that is generated automatically. Notice that, because the full name (`gustav mahler`) assigned to the principal contains a space, it is enclosed in braces.
Note that you can create multiple principals with one principal create command. To do so, enclose the principal names in braces, separated by spaces. For example, to create the principals bach, britten, mahler, and satie, you could enter the following:

dcecp> principal create {bach britten mahler satie}
dcecp>

If you create multiple principals, you must allow the principal’s UNIX ID to default to the system assigned ID. This is because, if you include an attribute option in the command line, that attribute value is assigned to each principal. For example, the following sample command creates the principals bach, britten, mahler and assigns each an object creation quota of 5.

dcecp> principal create {bach britten mahler satie} -quota 5

dcecp>

Changing Principals

You can change a principal’s primary name and other information related to the principal. Additionally, you can change a primary name to an alias and an alias to a primary name. If you change a primary name to an alias and do not make an alias the primary name, operations that return names choose one of the aliases at random.

Changing Primary Names

Use the dcecp principal rename command to change a primary name. Enter the command in the following form:

principal rename old_name -to new_name

where:

old_name
  Is the primary name of the principal to be changed.

new_name
  Is the new primary name of the principal.

The following example shows the principal rename command used to change a full name from mahlar to mahler:

dcecp> principal rename mahlar -to mahler
dcecp>

Note that, if you change a primary name, that change is reflected in the membership lists of all the groups and organizations in which the principal is a member.

In the unusual case where you are changing a host’s principal name while the host is logged into a DCE cell, the existing host credentials will become invalid unless you perform extra steps to update the host credentials with the new principal name.

Host credentials are managed by the secval process, which performs security client functions on a DCE host. Normally, just after the host starts, the secval process logs the host into the DCE cell, getting the host credentials and storing them on the host. Deactivate and reactivate the secval process to update these credentials after changing the principal name. The following illustrates these operations on remote host persephone:
Changing Principal Information

Use the `dcecp principal modify` command to change any principal information except the UNIX ID and user ID. The following example shows the `principal modify` command used to change principal `mahler`'s object creation quota to 10.

```
dcecp> principal modify mahler -quota 10
```

Deleting Principals and Aliases

If you delete a principal or an alias, the system automatically deletes any accounts for that principal or alias. For example, if you delete the principal `mahler`, the `mahler composers classic` account is also deleted. If you delete the principal alias `gustav`, you also delete the `gustav music_admin classic` account. If you delete the group alias `music_admin`, you also delete the `gustav music_admin classic` account. Be aware that deleting a principal or a principal’s alias could orphan the objects that are owned by the principal/UUID.

The following example shows the `principal delete` command used to delete the principal named `mahler`:

```
dcecp> principal delete mahler
```

You can delete multiple principals or aliases with one `principal delete` command. To do so, enclose the principal names in braces, separated by spaces. For example, to delete the principals `bach`, `britten`, and `mahler`, you would enter the following:

```
dcecp> principal delete {bach britten mahler}
```

Extended Security Attributes for Principals

You can attach ERA instances to principals to manage several aspects of DCE login and password security. ERAs are available to control:

- The level of authentication security required for principal login requests
- Handling of invalid logins
- Strength of principals’ passwords as well as generation of passwords for principals
- Handling of login attempts by principals with expired passwords

These ERAs are introduced and explained in the following sections. See "Chapter 32. Creating and Using Extended Registry Attributes" on page 359 for information on how to use `dcecp` to attach these ERAs to principals.

DCE Authentication

Authentication addresses certain security deficiencies in the Kerberos V5 authentication protocols, used as the basis for the DCE authentication protocol in versions previous to DCE Version 1.1. These deficiencies result from:
The security server responding to client login requests without verifying that the user knows the password

The use of user passwords, which are notoriously weak, to encrypt plaintext data that is then sent across the network

These practices are subject to attacks in which the attacker obtains network transmissions and proceeds to attack them offline to elicit user’s passwords. These kinds of attacks, if successful, can compromise the security of a DCE cell (and of all other cells in a trust relationship with that cell).

DCE authentication reduces the likelihood of such attacks succeeding by providing for:

- Preauthentication of principals making login requests (that is, by having the DCE Security Service verify the identity of the requestor before responding to the request)
- The use of strong keys to encrypt all network transmissions involving validation between security clients and servers

Four levels of authentication are available, ranging from most to least secure, and representing decreasingly strict preauthentication protocols. By attaching an instance of the pre_auth_req ERA (described in the following section) to the principal, administrators can control the minimum level of preauthentication that the security server will accept when authenticating the principal.

The preauthentication protocols are:

- The public key protocol, which provides the highest level of security. A principal that does not have this level of security at login may not be able to use certain applications that do use public key authentication.
  
  By default, public key login is disabled. To enable public key authentication, see the next section of this chapter.

- The third-party protocol, which provides a high level of security. No lesser level of preauthentication should be specified for any principal unless a reason is compelling enough to do so. (See the comment on cell_admin in the next bulleted item.) DCE Version 1.1 clients always construct authentication requests with this protocol, except in cases where they are unable to because the machine session key, which is required to construct third-party requests, is unavailable (for example, at cell startup or when the secval process is down).

- The timestamps protocol, which provides an intermediate level of security. Timestamps preauthentication should be specified only for principals (such as cell administrators and noninteractive principals) who must be able to operate when the client is unable to construct a third-party authentication request as previously described.
  
  In these cases, the client constructs and forwards a timestamps login request.

  In particular, the cell administrator must have timestamps login capability, since cell_admin must be able to log in to set up the initial machine key during initial configuration of the cell.

- The DCE Version 1.0 (Kerberos V5) protocol, which is used to authenticate pre-DCE Version 1.1 clients only, and provides no preauthentication security.

**Enabling the Public Key Authentication Protocol**

By default, the public key login authentication is disabled. To enable it and to configure it for users, follow these steps:
1. Make sure the public key software is installed on the master DCE Security server and on the replica servers. Public key software is available for DCE Versions 1.2.2 and later.

2. Initialize the cell's public key environment. If the cell is migrating from DCE 1.1 to DCE 1.2.2, follow steps 2a and 3. Otherwise, follow step 2b.

   a. Enable the public key on the master:
      ```
dcecp> registry modify -version secd.dce.1.2.2
```
      The master will propagate the version information to each replica that has the public key software installed. Any replica that does not have the public key software installed will be shut down automatically.

   b. As the cell admin, request that an initial key-pair (public and private keys) be generated for the account of the local cell's krbtgt principal:
      ```
dcecp> account modify krbtgt/cell-name -pkgenprivkey module size\ > -mypwd pwd
```
      The registry will generate a key-pair and store them. The public key portion of the pair will be stored in the DCEPKAuthentication ERA attached to the krbtgt principal for the cell. The private key portion will be stored in the registry under existing password-protection encryption.

      This release supports module size range from 256 to 1024.

      Note that you can also use this command to modify an existing key-pair of the local cell's krbtgt principal. We recommend that the cell key pair krbtgt/cell-name use the default value of 1024.

3. On the cell administrator workstation, configure the user's public key account:
   ```
dcecp> account create name \ > -group none \ > -mypwd cell-admin-password \ > -organization none \ > -password user-password \ > -pkmechanism file \ > -pkkeycipherusage {{generatekey default} {newpassphrase string}} \ > -pksignatureusage {{generatekey default} {newpassphrase string}}
```
   The command does the following to the public key account:
   - Indicates that the private key information should be stored in a file.
   - Randomly generates a new public key-pair, which has an attached new password phrase that you supply for encryption purposes. The public key portion of the key-pair is stored in the ERA, and the private key portion is stored in a file.
   - Randomly generates a new signed key-pair, which has an attached new password phrase that you supply. Again, the public key portion is stored in the ERA and the private key is stored in a file.

4. Move the public key mechanism file from the cell administrator workstation to the user's workstation and change the ownership to the user. Provide the new password phrase to the user but strongly encourage the user to change the password phrase so no one else knows it. To change a password phrase, the user can invoke the `dcecp account modify` command.
By default, only the cell administrator can create or modify a public key account. However, a cell administrator can modify the ACL managers for the public key ERAs, thereby allowing users to change their own key-pairs. To modify the ACL managers:

dccp> xattrschema modify /./sec/xattrschema/DCEPKAuthentication \  
>  -aclmgr {principal {query r} {update u} {test r} {delete m}}

dccp> xattrschema modify /./sec/xattrschema/DCEPKKeyEncipherment \  
>  -aclmgr {principal {query r} {update u} {test r} {delete m}}

Managing User Authentication

You manage preauthentication for a given principal by attaching an instance of the pre_auth_req ERA to the principal and specifying a value to indicate the lowest level protocol the DCE Security Service should accept for the principal, as follows:

0  (NONE) Specifies that the DCE Security Service should accept, from this principal, login requests that use any of the four protocols (including the pre-DCE Version 1.1 protocol.) This is the least secure level and is provided only to enable DCE Version 1.1 servers to accept login requests from pre-DCE Version 1.1 clients. It is most vulnerable to the type of attack previously described.

Warning: Failing to attach an instance of the pre_auth_req ERA to a principal is equivalent to specifying 0 (NONE).

1  (PADATA-ENC-TIMESTAMP) Specifies that the DCE Security Service should accept, from this principal, login requests using the timestamp, third-party, or public key protocol. The timestamp protocol protects against attackers masquerading as security clients and attacking replies from the DCE Authentication Service. The protocol is still vulnerable to attacks by processes capable of monitoring the network.

2  (PADATA-ENC-THIRD-PARTY) Specifies that the only login requests the DCE Security Service will accept from this principal are those using the third-party or public key protocol. This protocol offers a high level of DCE preauthentication and provides protection against the attacks previously described. With third-party preauthentication, all authentication data sent over the network is encrypted with a strong random key known only to the local machine principal and the DCE Security Service.

3  (PADATA-ENC-PUBLIC-KEY) Specifies that the only login requests the DCE Security Service will accept from this principal are those using the public key protocol. This is the highest level of DCE preauthentication.

When the authentication service receives a login request for a principal, it always attempts to respond using the same protocol as the request, unless the pre_auth_req ERA value for that principal forbids it to do so. Table 19 on page 328 provides a matrix describing the actions taken by the authentication service under the various combinations of login (authentication) request type and pre_auth_req ERA value.

For complete information on the details of DCE authentication (including the operation of the preauthentication protocols), see the IBM DCE 2.2 for AIX: Application Development Guide—Core Components.

The following is an example of a dcecp command to modify a principal and attach a pre_auth_req ERA specifying third-party preauthentication:
For further information on how to use `dcecp` to attach ERAs to principals, see "Chapter 32. Creating and Using Extended Registry Attributes" on page 359.

Public Key Interoperability Between DCE Versions

Table 19 describes how login requests are handled between different versions of DCE that are in a single cell.

**Table 19. DCE Version 1.1/Pre-DCE Version 1.1 Authentication Interoperation**

<table>
<thead>
<tr>
<th>Login Request Type</th>
<th>Pre-1.1 Server Response</th>
<th>Versions 1.1 and 1.2 Server Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE Version 1.0</td>
<td>No preauthentication. Returns DCE Version 1.0 (unpreauthenticated) response.</td>
<td>Preauthentication. Checks for pre_auth_req ERA instance: If no ERA exists, or existing ERA has value=0 (NONE), returns DCE Version 1.0 (unpreauthenticated) response. Otherwise, rejects login request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMESTAMPS</td>
<td>No preauthentication. Ignores preauthentication data in request and returns pre-DCE Version 1.1 (unpreauthenticated) response.</td>
<td>Preauthentication. Checks for pre_auth_req ERA instance: If no ERA exists, or existing ERA has value = 0 (NONE) or value = 1 (PADATA-ENC-TIMESTAMPS), returns DCE Version 1.1 TIMESTAMPS response. If existing ERA has value = 2 (PADATA-ENC-THIRD-PARTY), rejects login request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Managing Invalid Login Handling

When you specify a preauthentication level of 2 (PADATA-ENC-THIRD-PARTY) for a principal, the security server is able to detect and track invalid login attempts for that principal. This makes it possible for administrators to limit the possible impact of password guessing attacks by:
• Setting a limit to the number of successive invalid login attempts before the principal’s account is disabled. (A successful login resets the counter.)

• Specifying the period of time the principal’s account will be disabled once that limit is reached.

You do this by attaching instances of two ERAs (max_invalid_attempts and disable_time_interval) to the principal. Specify values for these ERAs as follows:

max_invalid_attempts

   Specifies an integer indicating the number of successive invalid login attempts the security server should accept before marking the principal’s account as disabled.

disable_time_interval

   Specifies an integer indicating the number of seconds the principal’s account should be disabled from login attempts.

The following is an example of a dcecp command to create a principal and attach max_invalid_attempts and disable_time_interval ERAs:

dcecp> principal create smitty -attribute {{max_invalid_attempts 7} {disable_time_interval 60}}

dcecp>

**Note:** At DCE Version 1.1, the invalid login handling functionality accurately tracks login activity in a cell with one master and no replicas, but does not keep accurate counts in replicated cells. This is because:

• Login attempts in a replicated cell are randomly assigned to either a master or replica.

• There is at present no mechanism for replicas to communicate to the master and, therefore, no way for the master to maintain an accurate count.

For further information on how to use dcecp to attach ERAs to principals, see "Chapter 32. Creating and Using Extended Registry Attributes" on page 353.

### Managing Password Strength and Password Generation

The DCE password format policy described in "Chapter 35. Maintaining Policies and Properties" on page 389 enables you to control the following characteristics of user passwords:

• Minimum password length

• Whether a password can be all spaces

• Whether a password can consist of alphanumeric characters only

You can extend these password strength policies in your cell by creating a password management server to perform customized password checking and generation. DCE provides an example password validation/generation server, pwd_strengthd(8sec), which you can use as the basis for a password management server that suits your cell’s requirements. DCE also provides a Password Management API that application developers can use to acquire information about the principal’s password management policy, and to request generated passwords from the password management server. See the *IBM DCE 2.2 for AIX: Application Development Guide—Core Components* for information on the Password Management API.
Having created this server, you can then constrain a principal’s password to be validated by this server when it is created and whenever it is changed. You do this by attaching instances of the `pwd_val_type` and `pwd_mgmt_binding` ERAs to the principal as follows:

**pwd_val_type**

Specifies password creation options for the principal as follows:

- **0 (NONE)** Specifies the principal’s password is subject only to DCE standard policy. (See [“Chapter 35. Maintaining Policies and Properties” on page 389](#) for a description of DCE standard policy.) Specifying **0 (NONE)** is equivalent to not attaching an ERA instance to the principal.

- **1 (USER_SELECT)** Specifies that the principal must supply password text as input to the password management server specified in the `pwd_mgmt_binding` ERA.

- **2 (USER_CAN_SELECT)** Specifies that the principal can either supply password text or specify that the password management server specified in the `pwd_mgmt_binding` ERA generate a password.

- **3 (GENERATION_REQUIRED)** Specifies that the password management server specified in the `pwd_mgmt_binding` ERA should generate a password for the principal.

**pwd_mgmt_binding**

Specifies a binding to your cell’s password management server.

The following is an example of a `dcecp` command to create a principal and attach `pwd_val_type` and `pwd_mgmt_binding` ERAs:

```
dcecp> principal create smitty -attribute {{pwd_val_type 2} \
> {pwd_mgmt_binding \n> {dce /:/pwd_strength pktprivacy secret name} \n> {/:/pwd_mgmt/pwd_strength}}}\n```

For further information on how to use `dcecp` to attach ERAs to principals, see [“Chapter 32. Creating and Using Extended Registry Attributes” on page 359](#). For information on requesting generated passwords when changing a password, see [“Generating Passwords by Using dcecp” on page 331](#).

For information on configuring a password management server, see the following section and the [IBM DCE 2.2 for AIX: Administration Guide—Introduction](#).

Managing a Password Management Server

Part 2 of the [IBM DCE 2.2 for AIX: Administration Guide—Introduction](#) explains how to use `dce_config` to configure a password management server. This section provides additional notes on password management server management.

- To protect password security, and to optimize performance, the password management server should run on the same machine as the master DCE security server.

- The default pathname for the password management server is `$DCELOCAL/bin/pwd_strengthd`. You can change this path name by using the `PWD_MGMT_SVR` environment variable in `config.env`.

While `dce_config` supports configuration of only one password management server in a cell, it is possible to manually configure additional servers. Principal `pwd_mgmt_binding` ERAs can then be set to point to the appropriate server for each principal.

To replace the sample password management server with another version, follow this procedure:
1. Kill `pwd_strengthd`.
2. Rename `$DCELOCAL/bin/pwd_strengthd`.
3. Copy the new server into `$DCELOCAL/bin/pwd_strengthd`.
4. Start `pwd_strengthd`.

Do not unconfigure and reconfigure `pwd_strengthd`. If you do so, `secd` will be unable to communicate with it until `secd` is restarted or the previous server’s keys expire.

The log file for the sample password management server resides in `$DCELOCAL/var/security/pwd_strengthd.log`. This location is built into the server code and is not configurable.

Generating Passwords by Using `dcecp`

If a `pwd_val_type` ERA having the values 2 (USER_CAN_SELECT) or 3 (GENERATION_REQUIRED) exists for a principal, that principal can (or will be required to) request a generated password when he changes passwords. If you are the principal `smitty`, the following sequence of `dcecp` commands can be used to do this:

```
dcecp> set p [account generate smitty]
newgenpwd
```

This command requests a generated password from the password management server, places the new password in the `p` variable, and prints it to the screen (`newgenpwd`). (Be sure to remember the new password.) Next, pass the value stored in `p` as the value of new password in an `account modify` or `account create` command:

```
dcecp> account modify smitty -password $p -mypwd -dce-
```

Warning: Never execute the following `dcecp` command since the password will be changed in the account, but the user will not see the new password:

```
dcecp> account modify smitty -password [account gen smitty] \
> -mypwd -dce-
```

Managing Password Expiration

By default, the DCE Security Service disables logins for principals whose passwords have expired. There may be cases where you would prefer this not to happen; for instance, you probably don’t want `cell_admin` to be locked out of the cell because of an expired password. If the `secd` password expires or if the self principal password expires, `secd` or `dced` will not be able to authenticate and the daemon will not be operational.
The recommended model is to set these limits to "forever" and granulize according to organization or account. If the seed password expires or if the self principal password expires, go into seed locksmith mode and make the necessary changes.

You can manage password expiration checking for a given principal by attaching an instance of the passwd_override ERA to the principal and specifying one of the following values:

0 (NONE) Specifies that password expiration checking for the principal should not be overridden (that is, the principal should not be permitted to log in with an expired password.) Specifying 0 (NONE) is equivalent to not attaching an ERA instance to the principal.

1 (OVERRIDE) Specifies that password expiration checking for the principal should be overridden (that is, the principal should be permitted to log in with an expired password.)

The following is an example of a dcecp command to create a principal and attach the passwd_override ERA:

dcecp> principal
create smitty -attribute {passwd_override 1}
dcecp>

For further information on how to use dcecp to attach ERAs to principals, see "Chapter 32. Creating and Using Extended Registry Attributes" on page 359.

Adding and Maintaining Groups and Organizations

A group or organization must have been added to the registry before it can be used in an account. When you add groups by using the dcecp group create command, you can set a project list inclusion property that controls whether individual groups are included in project lists. (Project lists do not apply to organizations.)

Project Lists

A principal's project list is a list of all the groups in which a principal or alias is a member. When a principal tries to access an object, the principal has the access rights that accrue from membership in every group that is named in the object's ACL. (See "Chapter 28. Using Access Control Lists" on page 295 for a description of ACLs.) For example, assume the ACL for file X contains two entries: one permits group A write access and one permits group B read access. Then, any principal who is a member of both groups A and B can read and write to file X.

Project Lists and Rights

Principals accrue project list access rights only from the groups that are associated with the name or alias with which they log in. They do not accrue rights from their names and all of their aliases. For example, assume that a principal named gustav is a member of groups A and B. Under the alias gus, gustav is also a member of groups C and D. When the principal logs in as gustav, the principal accrues access rights from groups A and B only. When the principal logs in with the alias gus, the principal accrues access rights from groups C and D only.
To display the groups in which a principal (or its alias) is a member, use the `principal show` command described in [Chapter 34. Viewing Registry Information](on page 381).

Prohibiting Inclusion on Project Lists

If a group is prohibited from inclusion in a project list, its rights are not accrued. For example, assume again that file X’s ACL includes two entries: one that permits group A read access to file X and one that permits group B write access to file X. Assume that the project list inclusion property is set to disallow group B from project lists. A principal who is a member of both groups A and B who tries to access file X is allowed only read permissions, not write permissions. If the project list inclusion property allows group B to be on project lists, a member of groups A and B receives both read and write access.

You may decide to prohibit some groups from inclusion on the list. You may, for example, want to prohibit any reserved groups with access rights similar to root from inclusion on any project lists.

Adding Groups and Organizations

Use the `dcecp group create` command to add groups and the `dcecp organization create` command to add organizations. When you add a group or organization, you must specify the group’s or organization's primary name. In addition, you can supply the attribute options listed in Table 20.

Note that, when you use the `dcecp group create` command and `dcecp organization create` command, you can create multiple groups or organizations with one command in the same way that you can create multiple principals. See [Adding Principals](on page 322) for details.

<table>
<thead>
<tr>
<th>Information</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-gid</code></td>
<td>The required UNIX ID that is associated with the group or organization.</td>
</tr>
<tr>
<td><code>-fullname string</code></td>
<td>An optional name that is used to more fully describe a primary name.</td>
</tr>
<tr>
<td><code>-inprojlist value</code></td>
<td>For groups only, whether the group can be on project lists. The default is yes.</td>
</tr>
</tbody>
</table>

Adding a Group

The following example shows how to add a group named `symphonists` to the registry:
In the example, the group UNIX ID is generated automatically, no full name is supplied, and the group is included on project lists.

Adding an Organization

The following example shows how to add an organization named `classic` to the registry:

```dcecp>
organization create classic
dcecp>
```

In the example, the organization UNIX ID is generated automatically and no full name is supplied.

Changing Groups and Organizations

For groups and organizations, you can change the primary name and full name. In addition, for groups you can change whether or not the group can appear in project lists, and for organizations you can change policy. (See [Chapter 35. Maintaining Policies and Properties](#) on page 389 for details on changing organization policy.)

Use the `dcecp group modify` command to modify change groups. The following example shows the use of this command with the `-inprojlist` option to change the group `symphonists`'s project list inclusion property from `yes` (include on project lists) to `no` (prohibit from project lists).

```dcecp>
group modify symphonists -inprojlist no
dcecp>
```

Use the `dcecp group rename` command to change a group’s primary name or the `dcecp organization rename` command to change an organization’s primary name. These commands have the following form:

```
group rename old_name -to new_name
organization rename old_name -to new_name
```

where:

- `old_name` is the primary name of the group or organization to be changed.
- `new_name` is the new primary name of the group or organization.

The following example shows the `group rename` command used to change a primary name from `symphonists` to `symphonists7`:

```dcecp>
group rename symphonists -to symphonists7
dcecp>
```

Note that, if you change a primary name, that change is reflected in the membership lists of all the groups and organizations in which the group or organization is listed as a member.
Deleting Groups and Organizations

If you delete a group or organization, you also automatically delete any accounts that use the group or organization. For example, if you delete the group symphonists, you also automatically delete the accounts vivaldi symphonists baroque and mozart symphonists classic.

Use the dcecp group delete to delete groups and the dcecp organization delete command to delete organizations. The following example shows the group delete command being used to delete the group symphonists:

dcecp> group delete symphonists

dcecp>

The next example shows the organization delete command being used to delete the organization classic:

dcecp> organization delete classic

dcecp>

Note that you can delete multiple groups or organizations with a single group delete or organization delete command by including the names to delete in braces and separated by spaces just as you would to delete multiple principals.

Maintaining Membership Lists

Each group or organization has a membership list, which lists the principals that are members of the group or organization. Members of a group can be principals from the local or foreign cells. Members of an organization must be from the local cell only. Use the dcecp group add command to add members to the membership list and the dcecp group remove command to remove members from the list.

If you delete a member from a group or organization, any accounts for the deleted member that are associated with the group or organization are also deleted. For example, if you delete the principal mahler from the group symphonists, the account mahler symphonists classic is also deleted.

Note that the deleting of a principal from a group or organization can affect the principal's rights to objects. This change takes effect only when the principal's ticket-granting ticket is renewed. See Chapter 31. Creating and Maintaining Accounts on page 339 for more information on ticket renewals.

Effects of Account Creation on Membership Lists

When you create accounts, the principal for whom the account is created must be a member of the group or organization that is named in the account. For example, if you create the account mahler symphonists classic, the principal mahler must be a member of the symphonists group and the classic organization.

Adding and Deleting Group Members

The following example shows the use of the dcecp group add command with the -member option to add mahler to the group symphonists and delete strauss from the group symphonists:
Creating and Maintaining Aliases for Principals or Groups

Use the `dcecp principal create` command to create and maintain aliases for principals and groups. Organizations cannot be given aliases.

Creating Aliases

To create an alias for a principal, enter the `dcecp principal create` command in the following form:

```
principal create name -uid unix_ID -alias yes
```

where:

- `name` is the alias name for the principal or group.
- `unix_ID` is the UNIX ID that is associated with the principal for which you are creating the alias.
- `-alias` indicates that `name` is an alias.

To create an alias for a group, enter the `dcecp group create` command in the following form:

```
group create name -gid group_ID -alias yes
```
where:

\textit{name} \hspace{1em} \text{Is the alias name for the principal or group.} \\
\textit{group_ID} \hspace{1em} \text{Is the UNIX ID that is associated with the group for which you are creating the alias.} \\
\texttt{-alias} \hspace{1em} \text{Indicates that } name \text{ is an alias.}

\section*{Changing Primary Names to Aliases and Vice Versa}

To change an alias to a primary name or a primary name to an alias, use the \texttt{dcecp principal modify} command for a principal or the \texttt{dcecp group modify} command for a group. These commands have the following form:

\begin{verbatim}
principal modify name -alias {yes|no}
group modify name -alias {yes|no}
\end{verbatim}

where:

\textit{name} \hspace{1em} \text{Is the primary name to be changed to an alias or the alias to be changed to a primary name.} \\
\texttt{-alias} \hspace{1em} \text{Specifying } \texttt{-alias yes} \text{ changes the primary name identified by } name \text{ to an alias; specifying } \texttt{-alias no} \text{ changes the alias identified by } name \text{ to the primary name.}

A principal or group can have only one primary name at a time. Before you change an alias to a primary name, first change the primary name to an alias.
Chapter 31. Creating and Maintaining Accounts

All principals have two identities: a network identity that provides the ability to access DCE objects on machines across the network, and a local identity that provides the ability to access objects on the local machine. The two identities exist in tandem, but independently of each other. A principal’s network identity is defined by an account in the network registry. A principal’s local identity is defined by local data, such as entries in the `/etc/passwd` and `/etc/group` files that are stored on the local machine. If the `passwd_export` command is used to update the `/etc/passwd` and `/etc/group` files with data that is stored in the local registry, local identity data is derived from information that is stored in the network registry.

Registry accounts define a network identity by associating a principal with a group, an organization, and related account information, such as the password that is used to authenticate a principal’s identity. You must create a registry account for any principal that engages in communications across the network, regardless of whether the communications are authenticated. The principals for which you must create registry accounts are as follows:

- Each human user who accesses objects across the network; this probably includes all human users unless you are specifically restricting a user to the local machine.
- Each server that accesses objects across the network and runs under its own identity, not the identity of the principal who started it.
- Each machine in the network.
- Any cell with which you engage in authenticated cross-cell communications. (Accounts for cross-cell authentication are special types of accounts that are described in [Chapter 33. Administering a Multicell Environment](#) on page 371.)

This chapter describes:

- Each type of account and how to create and maintain it
- How accounts are authenticated and how to display privilege attributes and tickets
- How to create and maintain the keytab file that stores keys for server principals
- How to maintain the local registry

User Accounts

User accounts are associated with the user’s password and information that is used when the user logs into DCE. Account information includes such things as the principal’s home directory and login shell, and authentication policy, which defines parameters that help control a principal’s access to DCE. Use the `dcecp account create` command to create accounts for human users, the `dcecp account modify` command to modify them, and the `dcecp account delete` command to delete them.
Server Accounts

Servers, which can also be called applications, that engage in communications across the network can run under their own network identity or the network identity of the principal who started them. To run under their own identity, servers must be programmed to perform a login and authenticate that identity. Therefore, you must use the `dcecp account create` command to create registry accounts for these servers.

Passwords for Server Accounts

During login, all principals (human, server, and machine) must pass their password to the DCE Authentication Service, which uses these passwords to generate authentication keys. The most common method for human users is to simply enter their password. A different method must be provided for server principals. The recommended method, which is based on APIs that are supplied with DCE, is to store server keys in a locally protected key table. The default implementation of the DCE-supplied API stores the key table in a keytab file on the server’s local machine and protects the file so that only a principal’s local identity can read or write the file.

You can access the keytab files remotely. On the local machine, store the keytab files in a partition of the machine’s disk that is not exported by any file system.

Except for servers running as root or under the identity of the local machine, a separate keytab file needs to be used for each server. During login, the server can access this file to obtain its key, pass its key to the authentication service, log in, and be authenticated.

Use the `dcecp keytab add` command to add keys for servers to the keytab file and the `dcecp keytab remove` command to delete server keys.

Steps for Creating Server Accounts

To create an account for a server, first run the `dcecp account create` command to create the account and then run the `dcecp keytab add` command to add an entry to the keytab file. The server’s password in the registry and the server’s key in the keytab file must match. You can ensure that these passwords are the same by manually entering the same passwords in both commands, or you can specify that the `keytab add` command should reset the server’s registry password at the same time that it sets the server’s password in the keytab file.

Machine Accounts

All machines must also have accounts in the registry. Machine accounts, like server accounts, are created by first running the `account create` command to create the account and then running the `keytab add` command to add the server’s password to the keytab file. Like server accounts, the password for a machine account in the registry and in the keytab file must match. Principal names in machine accounts must be the same as the machine’s name in the cell namespace. (See the IBM DCE 2.2 for AIX: Administration Guide—Introduction for more information on names in the cell namespace.)
How Identities Represented by Accounts Are Authenticated

When principals log into the DCE, the security client uses the password they supply (or that is supplied for them in the case of a server or machine principal) to derive the principal’s authentication key. A copy of the principal’s authentication key exists also in the registry database, having been stored there when the principal’s account was created (or when the password was changed.) It is thus available to the authentication service.

This key is used by the authentication service to authenticate the principal (that is, to guarantee the principal’s identity) as follows:

1. The security client does the following:
 a. Queries the user for the password and uses it to derive the principal’s authentication key
 b. Prepares a login request, part of which is encrypted using the authentication key
 c. Forwards the request to the authentication service

2. The authentication service does the following:
 a. Receives the login request
 b. Obtains the registry’s copy of the principal’s authentication key
 c. Attempts to decrypt the login request with this key

If the decryption succeeds, the keys are the same; the principal is therefore authenticated and the login is successful.

If the decryption fails, then the password supplied by the principal and used by the security client to derive its version of the principal’s authentication key is invalid (that is, different from the password used to derive the registry’s copy of the principal’s authentication key), and login is denied.

This is a very general introductory description; see the IBM DCE 2.2 for AIX: Application Development Guide—Core Components for a detailed discussion of principal authentication.

Privilege Attributes

After a principal is authenticated, the DCE Security Service helps obtain the principal’s privilege attributes. Privilege attributes consist of UUIDs that represent the principal’s network identity, the groups in which the principal is a member, and any extended attributes associated with the principal. They are used when principals request access to objects to determine their rights to those objects. Privilege attributes that are provided by the DCE Security Service are authenticated. Authenticated privileges are accepted by network services. Unauthenticated privilege attributes may not be accepted. This means that the kinds of access to DCE objects that principals are allowed can differ, depending on whether or not a principal’s privilege attributes are authenticated. (DCE ACLs, which are used to control access to DCE objects based on a principal’s privilege attributes, are described in Chapter 28, Using Access Control Lists on page 295.)
Ticket-Granting Tickets and Tickets to Services

A ticket-granting ticket allows a principal to request and receive tickets to DCE services, such as to a Distributed File System server, to read a file. The tickets that let principals access DCE services are called service tickets.

Both ticket-granting tickets and service tickets have lifetimes that are determined by the settings for individual accounts and registry policies and properties. When a principal's ticket-granting ticket expires, the principal is no longer considered an authenticated user. An unauthenticated principal's access to objects other than those on the local machine is severely curtailed, and the principal's ability to use DCE services becomes extremely limited. To remedy this, the principal must reauthenticate by running the `kinit` command (see the IBM DCE 2.2 for AIX: Command Reference) or by logging out and logging in again to DCE.

The principal's service tickets are renewed automatically by the authentication service, requiring no action on the principal's part. Note, however, that the lifetime allocated to a service ticket can never exceed the time remaining on the principal's ticket-granting ticket (TGT).

Displaying Privilege Attributes and Tickets

DCE cell administrators can use the `klist` command to display a principal's current tickets and privilege attributes. The `klist` command displays three types of information: privilege attributes, expiration information, and service ticket information. DCE users can also run `klist` to display their current and expired tickets. The `klist` command is described on the IBM DCE 2.2 for AIX: Command Reference.

The First Part of the `klist` Display—Privilege Attributes

The `klist` command displays a principal's privilege attributes. This display first lists the fully qualified principal name, followed by the UUIDs and names of the cell, the principal name (without the cell name and DCE global identifier), and all the groups of which the principal is a member. A sample of this section of the `klist` display follows:

```
DCE Identity Information:
  Global Principal: /.../dresden.com/music/mozart
  Cell: 5ad96550-80c4-11ca-b26c-08001e039431 /.../dresden.com
  Principal: 00000066-80c5-11ca-b600-08001e039431 music/mozart
  Group: 00000003-80c4-11ca-b201-08001e039431 composers
```

The Second Part of the `klist` Display—Expiration Dates and Times

The second part of the `klist` display shows the dates and time that the principal's ticket-granting ticket, account, and password expire:

- The first line shows the date and time the ticket-granting ticket expires. Before this happens, the principal should reinitialize it by running `kinit` or logging in again to DCE.
- The second line shows when the principal's account expires. If the account expires, the principal will be unable to log into DCE. To remedy this, DCE administrators must change the principal's account expiration date in the registry.
- The third line shows the date the principal's password expires. Before this happens, the principal should change the password by using `dcecp`. If the
password expires, the principal will be unable to log into DCE. To remedy this, DCE administrators must change the principal's password in the registry.

A sample of the second part of the klist display follows:
Identity Info Expires: 91/10/03:12:07:18
Account Expires: 91/12/31:12:00:00
Passwd Expires: 91/10/31:12:00:00

The Third Part of the klist Display—Tickets

The third and final part of the klist display shows the principal's ticket information and the name of the principal's ticket cache. The first three tickets labeled Server in the following display are the tickets used after the principal logged in and obtained privilege attributes. The display for all principals has these entries.

The remaining tickets labeled Client show the principal's ticket-granting ticket and service tickets. In the listing for each ticket after the word Client, the display shows the name of the privilege server, a server that grants privilege attributes after the principal's identity has been authenticated by the DCE Security Service. The name of the server to which the principal has tickets is shown after the Server entry, and the dates and times these tickets are valid are shown on the following line. For example, in the following sample display, the last line shows that the principal has a ticket to the server named file_server. The lifetime of this ticket is from 1:24 and 2 seconds p.m. on 10/2/91 to 12:07 and 18 seconds p.m. on 10/3/91. (The time is shown in 24-hour format.)

Kerberos Ticket Information:
Ticket cache: /tmp/dcecred_17a80000
Default principal: music/mozart@dresden.com
Server: krbtgt/dresden@dresden.com
valid 91/10/02:12:07:18 to 91/10/03:12:07:18
Server:dce/rgy@dresden.com
valid 91/10/02:12:07:20 to 91/10/03:12:07:18
Server:dce/ptgt@dresden.com
valid 91/10/02:12:07:49 to 91/10/03:12:07:18
Client:dce/ptgt@dresden Server:krbtgt/dresden@dresden.com
valid 91/10/02:12:07:50 to 91/10/03:12:07:18
Client:dce/ptgt@dresden.com Server:dce/rgy@dresden.com
valid 91/10/02:12:07:53 to 91/10/03:12:07:18
Client:dce/ptgt@dresden.com Server:file_server@dresden.com
valid 91/10/02:13:24:02 to 91/10/03:12:07:18

Destroying a Principal’s Tickets

Use the kdestroy command to invalidate the tickets that a principal has acquired. When the principal logs out, the principal’s tickets are not destroyed; they remain valid until they expire. DCE users may want to use kdestroy just before they log out to ensure that no valid tickets remain. However, if the principal has the kernel-resident ticket cache, the principal’s tickets are destroyed when the principal’s last process terminates. This means that it is generally not necessary to run kdestroy at logout.

The kdestroy command is described in the IBM DCE 2.2 for AIX: Command Reference.
Adding Accounts

Use the `dcecp account create` command to add accounts to the registry. Information that is associated with accounts falls roughly into the following two categories:

- User information similar to that typically found in the `/etc/passwd` file.
- Authentication policy that lets you control the account’s access to the network. Authentication policy establishes account and password validity, account expiration policy, and ticket expiration policy. The tighter you control authentication policy, the more secure your cell is, but the more processing overhead you can accrue.

Both types of information are supplied as attributes in standard `dcecp` attribute lists or as attribute options.

Note that authentication policy can also be set for the registry. If the registry policy differs from the policy that you enter for an account, the stricter policy applies. (See "Chapter 35. Maintaining Policies and Properties" on page 383 for more information on contradictory policy.)

Table 21 lists the attribute options used to create accounts. Note that the options described in this table can also be supplied without the dashes in attribute lists.

Table 21. Attribute Options to Create Accounts

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>`-acctvalid {yes</td>
<td>no}`</td>
</tr>
<tr>
<td>`-client {yes</td>
<td>no}`</td>
</tr>
<tr>
<td><code>-description string</code></td>
<td>A text string in portable character set (PCS) format that is typically used to describe the use of the account. No default.</td>
</tr>
<tr>
<td>`-dupkey {yes</td>
<td>no}`</td>
</tr>
<tr>
<td><code>-expdate</code></td>
<td>The date (in ISO timestamp format <code>YY-MM-DD-hh:mm:ss</code>) on which the account expires. To renew an account after it expires, change the date. The default is <code>none</code>, meaning the account never expires.</td>
</tr>
<tr>
<td>`-forwardabletkt {yes</td>
<td>no}`</td>
</tr>
<tr>
<td>Option</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td><code>-goodsince date</code></td>
<td>The date and time (in ISO timestamp format YY-MM-DD-hh:mm:ss) that the account was last known to be in an uncompromised state. Any tickets granted before this date are invalid. Control over this date is especially useful if you know that an account's password was compromised. Changing the password can prevent the unauthorized principal from accessing the system again by using that password, but does not prevent the principal from accessing the system components for which tickets were obtained fraudulently before the password was changed. To eliminate the principal's access to the system, the tickets must be canceled. Set the <code>-goodsince</code> attribute to the date and time the compromised password was changed to invalidate all tickets issued before that time and eliminate the unauthorized principal's system access. When the account is created, the <code>-goodsince</code> attribute is set to the current date.</td>
</tr>
<tr>
<td><code>-group group_name</code></td>
<td>The name of the group that is associated with the account. This attribute must be supplied to create an account; there is no default.</td>
</tr>
<tr>
<td><code>-home dir_name</code></td>
<td>The directory in which the principal is placed at login. No default.</td>
</tr>
<tr>
<td><code>-organization org_name</code></td>
<td>The name of the organization that is associated with the account. This attribute must be supplied to create an account; there is no default.</td>
</tr>
<tr>
<td><code>-password password</code></td>
<td>The required password for the account in plaintext. The system encrypts the password you supply. No default.</td>
</tr>
<tr>
<td>`-postdatedtkt {yes</td>
<td>no}`</td>
</tr>
<tr>
<td>`-proxiabletkt {yes</td>
<td>no}`</td>
</tr>
<tr>
<td>`-pwdvalid {yes</td>
<td>no}`</td>
</tr>
<tr>
<td>`-renewabletkt {yes</td>
<td>no}`</td>
</tr>
</tbody>
</table>
Table 21. Attribute Options to Create Accounts (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-server {yes</td>
<td>no}</td>
</tr>
<tr>
<td>-shell path_to_shell</td>
<td>The shell that is executed when a principal logs in.</td>
</tr>
<tr>
<td>-stdtgauth {yes</td>
<td>no}</td>
</tr>
<tr>
<td>-usertouser {yes</td>
<td>no}</td>
</tr>
<tr>
<td>-maxtktlife hours</td>
<td>The maximum ticket lifetime. This is the maximum amount of time in hours that a ticket can be valid. When a client requests a ticket to a server, the lifetime granted to the ticket takes into account the maxtktlife attribute value for both the server and the client. In other words, the lifetime cannot exceed the shorter of the server’s or client’s maximum ticket lifetime. If you do not specify a maxtktlifet ime attribute value for an account, the maxtktlife attribute value defined for the registry authorization policy is used. (See Chapter 35.)</td>
</tr>
</tbody>
</table>
Table 21. Attribute Options to Create Accounts (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| -maxtktrenew *hours* | The maximum ticket renewable period. This is the amount of time in hours before a principal’s ticket-granting ticket expires and that principal must log into the system again to reauthenticate and obtain another ticket-granting ticket.

The lifetime of the principal’s service tickets can never exceed the lifetime of the principal’s ticket-granting ticket. The shorter you make maximum certificate renewable, the greater the security of the system. However, since principals must log in again to renew their ticket-granting ticket, the time should take into consideration user convenience and the level of security required.

If you do not specify a *maxtktrenew* attribute value for an account, the *maxtktrenew* attribute value defined for the registry authorization policy is used. (See Chapter 35.) Renewable ticket functionality is not currently used by DCE RPC whenrefreshing service tickets. However, it is supported by the DCE Security Server and is useful for Kerberos V5 applications that use the DCE Security Server as a KDC. |

Note: The maximum ticket lifetime and maximum ticket renewable can be set as registry properties for the registry as a whole with the `dcecp registry modify` command. When they are set with the `dcecp account create` or `account modify` commands, they apply only to a specific account.

Setting Ticket Lifetimes

You should be aware of two other options set by the `dcecp registry modify` command, default ticket lifetimes and minimum ticket lifetime:

- **Minimum Ticket Lifetime**—The shortest possible lifetime that can be assigned to a ticket. Note that the actual effective value of minimum ticket lifetime is affected by default certificate lifetime.

- **Default Ticket Lifetime**—The lifetime granted for tickets, unless the principal specifically requests a different lifetime. Although a principal can request a specific lifetime for a ticket, the majority accept the default lifetime. (If a principal requests a ticket lifetime of 0 (zero), the default lifetime is assigned to the ticket.)

Note that the actual effective value of the default ticket lifetime is affected by the maximum certificate lifetime.

The actual lifetimes assigned to tickets depends on rules enforced by the DCE Security Service regarding the settings of the maximum ticket lifetime, default ticket lifetime, and minimum ticket lifetime. These rules are as follows:

- The maximum ticket lifetime can never be larger than the renewable ticket lifetime (in other words, `max_life = min (max_life, renewable_life)`) or less than 60 seconds. If the maximum ticket lifetime is larger than the renewable ticket lifetime, then the renewable ticket lifetime is used as the maximum ticket lifetime.
For example, suppose an account is set to 15 hours. If you set the renewable ticket lifetime to 20 hours, the effective maximum ticket lifetime is not 20, but 15 hours.

- The default ticket lifetime can never be larger than the maximum ticket lifetime (in other words, \(\text{default_life} = \min (\text{default_life}, \text{max_life}) \)) or less than 60 seconds. If the default ticket lifetime is larger than the maximum ticket lifetime, then the maximum ticket lifetime is used as the default ticket lifetime. For example, suppose registry policy specifies a default ticket lifetime of 25 hours. If you set the registry's maximum ticket lifetime to 15 hours, the registry's effective default certificate lifetime is not 25, but 15 hours.

- The minimum ticket lifetime can never be larger than the default certificate lifetime (in other words, \(\text{min_life} = \min (\text{min_life}, \text{default_life}) \)) or less than 60 seconds. If the minimum ticket lifetime is larger than the default certificate lifetime, then the default ticket lifetime is used as the minimum ticket lifetime. For example, suppose registry policy specifies a default ticket lifetime of 10 hours. If you set an account's minimum ticket lifetime to 15 hours, the account's effective minimum ticket lifetime is not 15, but 10 hours.

Although `dcecp` lets you enter values contrary to the rules and displays these values when you view the account's policies (with the `account show` command), the values used are the ones described in the rules, not the ones you entered.

Note: To be exact, clocks in the network must be synchronized for the times that are associated with registry data.

Ticket-Granting Ticket Lifetimes and Service Ticket Lifetimes

The authentication service never grants a principal a service ticket with a lifetime that exceeds the time remaining in the principal's ticket-granting ticket lifetime. For example, if 2 hours remain in the life of a principal's ticket-granting ticket and the principal requests or accepts a default of 4 hours for a service ticket's lifetime, only the 2-hour lifetime is granted.

If the renewable ticket flag (the `renewabletkt` attribute) is set on for a principal's account, the lifetime of the principal's ticket-granting ticket also affects the renewal of service tickets. No service ticket is renewed with a lifetime that exceeds the remaining lifetime of the principal's ticket-granting ticket. Service tickets are normally renewed for the lifetime that is allocated to the original ticket. If the original time exceeds the lifetime of the ticket-granting ticket, the ticket is renewed only for the time remaining to the ticket-granting ticket.

Adding Accounts Example

Use the `dcecp account create` command to create accounts. When you use the `account create` command, you must supply the name of the principal for which the account is being created and the group and organization with which the account is associated. In addition, you must supply your password with the `-mpwd` option to verify your identity. If you do not enter your password, `dcecp` will prompt you. All other attributes can be allowed to default. Note that if you are prompted for the password, the password you type is not displayed on the screen.

Because you are required to enter your password, you must run the `account create` command in interactive mode. You cannot run it in command-line mode where your password cannot be prevented from displaying on the screen.
The following example shows the `dcecp account create` command used to create an account for the principal `mahler`, which is associated with the group `symphonists` and the organization `classic`. All other account attributes are allowed to default.

```
dcecp> account create mahler -group symphonists -organization classic \
  > -password passwd -mypwd cellpwd
dcecp>
```

Note that you may create multiple accounts with one `account create` command. To do so, enclose the names of the principals for whom the accounts are being created in braces, separated by spaces. For example, to create accounts for the principals `bach`, `britten`, and `mahler`, you could enter the following:

```
dcecp> account create \{bach britten mahler\} -group symphonists \ 
  > -organization classic -password music -mypwd cellpwd
dcecp>
```

When you create multiple accounts each account is assigned the same attributes. This means that, in the example, the accounts for `bach`, `britten`, and `mahler` are all associated with the `symphonists` group and `classic` organization, and they are all assigned the password `music`. You may find it useful to create multiple accounts this way for principals that all belong to the same group and organization. Notify users whose accounts were created this way to change their passwords immediately.

Modifying Accounts

The `dcecp account modify` command allows you to modify accounts. You can modify any of the account attributes.

When you modify accounts, you must supply your password with the `-mypwd` option to verify your identity. Note that if prompted for the password, the password you type is not displayed on the screen. If you do not enter a password, you are prompted for it. Because you are required to enter your password, you must run the `account modify` command in interactive mode. You cannot run it in command-line mode where your password cannot be prevented from displaying on the screen.

The following example shows how to use the `account modify` command to specify a new home directory for `mahler`'s account:

```
dcecp> account modify mahler -home /.../music/fs/users/mahler/concert \
  > -mypwd cellpwd
dcecp>
```

Note that you can also use the `-change` option with `account modify` to supply the changes in an attribute list. The `-add` and `-remove` options are not supported with the `account modify` command because each account attribute must be present and must have a value.

Deleting Accounts

The following example illustrates the use of the `dcecp account delete` command to delete the account for the principal `mahler`:

```
dcecp> account delete mahler
dcecp>
```
If you delete a group or organization, you will also automatically delete any accounts that are associated with that group or organization.

You can delete multiple accounts with one `account delete` command. To do so enclose the names of the account principals in braces, separated by spaces. For example, to delete accounts for *bach*, *britten*, and *mahler*, you would enter:

```
dcecp> account delete {bach britten mahler}
dcecp>
```

Creating, Maintaining, and Deleting Keytab Files

The following `dcecp` commands allow you to create, maintain, and delete keytab files:

- **keytab create**
 - Creates keytab files and all their key entries.

- **keytab delete**
 - Deletes keytab files and all their key entries.

- **keytab add**
 - Adds key entries to keytab files.

- **keytab remove**
 - Removes key entries from keytab files.

The following subsections describe how to manage keytab files.

The Keytab File

Keytab files are stored on the same machine as the servers whose keys they contain. You can access them remotely and locally using `dcecp`. For remote access, `dcecp` uses `dced` interfaces. The `-local` option to the `dcecp keytab` command allows you to access the local keytab files without using `dced`.

Because `dced` provides remote access to the keytab files, the files are defined as `dced` objects, and those objects are stored in the `dced`-controlled portion of the namespace under the `keytab` directory. The `dced` keytab object consists of a UUID to identify the object, an optional annotation, and the name of the file that actually stores the server keys on the local machine. This object is usually a file.

Note that actual server keys are not stored in the keytab object, but in the file stored on the local machine.

The pathname of the `dced` keytab object is:

```
/./hosts/hostname/config/keytab/keytab_name
```

where:

- **hostname**
 - Is the name of the host on which the `dced` process resides.

- **keytab_name**
 - Is the name of the keytab file.

The pathname to the local keytab file is:

```
/opt/dcelocal/keytab_path_name
```
where:

$keytab_path_name$

Is the path name to the keytab file on the local node.

Protecting Keytab Files

The local keytab files must be adequately protected, and they must not be available on the network. As they are used in the default DCE implementation, the keytab files contain principal keys, which are the basis of DCE security. If these keys are compromised, network security can also be compromised. The calls that access the keytab file use `rpc_c_protect_level_pkt_privacy`. This protection level performs a Data Encryption Standard (DES) encryption on the data being passed. The `dcecp keytab -noprivacy` option allows you to specify that your site’s default protection level should be used instead.

Create a separate individual keytab file for each server principal that runs on each local node. Servers that share the same keytab file can access each other’s keys and thus impersonate each other. Protect the keytab files so that they are readable only by root. If you do this, the servers must be started by root in order to read their keytab files and obtain their key during login.

When you create or change server keys, you can name a different keytab file for each server that runs on the local node. Protect the file so that it is readable only by the server whose key it contains. Then set the `setuid` bit for the server file to the server’s identity so that the server can access the keytab file and obtain its key.

Server and Machine Key Version Numbers

When keys are added to the keytab file, each is assigned a version number that ranges from 1 to 255. Whenever server or machine keys change (automatically or explicitly), the key’s version number is incremented. Version numbers allow two or more keys to exist for any given server or machine. When keys are changed, any servers or machines that are still using tickets granted under the older unchanged version of the key run without interruption until the ticket expires naturally. When the ticket expires, the server or machine reauthenticates and obtains the new key.

If you use the `-registry` option to the `keytab add` command, old keys are automatically deleted, if possible. If you do not use this option, you should occasionally list the contents of the keytab file by using the `keytab list` command, and use the `keytab delete` command to delete any old versions that are obsolete.

Note: Take care when you are deleting keys from the keytab file. When principal keys are changed, tickets can exist that are based on the key that you deleted. If you delete a key from the keytab file, any active tickets that are based on the deleted key will not be accepted by servers, and clients holding those tickets will get authentication failures.

Creating and Maintaining Keys and Keytab Files

Two commands allow you to create key entries:

- **keytab create**
 - Creates keytab files, the keytab file entries, and the `dced` keytab object.

- **keytab add**
 - Adds key entries to existing keytab files.
When you run both commands, you supply the name of the keytab file to either create or modify.

Table 22 lists the other options you can supply to the `keytab create` and `add` commands.

Table 22. The keytab create and keytab add Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-local</td>
<td>Accesses the keytab file without using <code>dced</code>.</td>
</tr>
<tr>
<td>-entry</td>
<td>Creates only the <code>dced</code> configuration information, not the actual key</td>
</tr>
<tr>
<td></td>
<td>table.</td>
</tr>
<tr>
<td>-noprivacy</td>
<td>Specifies that the protection level used should be the default</td>
</tr>
<tr>
<td></td>
<td>protection level for your site instead of <code>rpc_c_protect_level_PKT_PRIV</code>.</td>
</tr>
<tr>
<td>-member name</td>
<td>The name of the principal (server or machine) whose key you are</td>
</tr>
<tr>
<td></td>
<td>creating or changing. You can supply multiple names in a list. If you</td>
</tr>
<tr>
<td></td>
<td>supply a list, all principals named in the list are assigned the same</td>
</tr>
<tr>
<td></td>
<td>key.</td>
</tr>
<tr>
<td>-key key</td>
<td>The plain text key to the account. This option cannot be used with the</td>
</tr>
<tr>
<td></td>
<td>-random option.</td>
</tr>
<tr>
<td>-random</td>
<td>Generates a random key. If you use this option, you must also use the</td>
</tr>
<tr>
<td></td>
<td><code>registry</code> option to add the randomly generated key to the server's or</td>
</tr>
<tr>
<td></td>
<td>machine's account in the registry. This option cannot be used with the</td>
</tr>
<tr>
<td></td>
<td>-key option.</td>
</tr>
<tr>
<td>-registry</td>
<td>Updates the principal's key in the registry to match the key you enter</td>
</tr>
<tr>
<td></td>
<td>(or generate automatically) for the key in the keytab file. Use it to</td>
</tr>
<tr>
<td></td>
<td>ensure that the principal's key in the registry and the keytab file are</td>
</tr>
<tr>
<td></td>
<td>synchronized when you change a principal's key in the keytab file.</td>
</tr>
<tr>
<td></td>
<td>This option is required when you use the <code>-random</code> option. Using this</td>
</tr>
<tr>
<td></td>
<td>option may require you to run the <code>dcecp login</code> command to ensure your</td>
</tr>
<tr>
<td></td>
<td>network identity is appropriate for modifying the registry database. If</td>
</tr>
<tr>
<td></td>
<td>the user wants to use the <code>--registry</code> option, a password (key) for the</td>
</tr>
<tr>
<td></td>
<td>principal must exist in the key table file.</td>
</tr>
<tr>
<td>-version number</td>
<td>Specifies a version number for the key. It is required if you do not</td>
</tr>
<tr>
<td></td>
<td>use the <code>-registry</code> option.</td>
</tr>
<tr>
<td>-storage local_file_name</td>
<td>The pathname of the local file to be created. This option is used only for the <code>keytab create</code> command. When you add entries to an existing keytab file, you identify the file by its <code>dced</code> object name.</td>
</tr>
<tr>
<td>-data keys</td>
<td>The server principal name and keys in the format: <code>principal_name key_type { version} {key_value}</code></td>
</tr>
</tbody>
</table>

Creating a Keytab File

Use the `keytab create` command to create keytab files, entries in the files, and the corresponding `dced` object. When you use this command, you must supply the pathname of the `dced` object to be created as an argument, the `storage` option to
specify the keytab’s local, the **data** option to specify the name of the server principal and the keys, and any of the appropriate options listed in [Table 22 on page 352](#).

This **data** option is in the form:

```
principal_name key_type {version} {key_value}
```

where:

principal_name

Is the name of the server principal for which the keytab file is being created.

key_type

Is a code that specifies whether the key is stored in plain text or in DES encrypted format:

- **des** indicates DES encryption.
- **plain** indicates plain text.

version

Is the key’s version number. If you supply no version number, the key is assigned a number of 1.

key_value

Unless you specified the **-random** option to randomly generate keys, you must supply a key value. If **key_type** is **plain**, you supply the key in plain text. If **key_type** is **des**, you must supply a DES encrypted key.

The following sample command performs these tasks:

1. Creates the **dced** keytab object `/.:/hosts/music/config/keytab/svr4_key`
2. Creates the keytab file named `/opt/dcelocal/keys/svr4_key` in the **keys** directory on the local machine named `music`.
3. Creates an plain text key entry in the file for principal `mahler` and assigns it a version number of `3`.

```
dcecp> keytab create `.:/hosts/music/config/keytab/svr4_key` -attr
   `{storage /opt/dcelocal/keys/svr4_key}
   > {data {mahler plain 3 mon#Repos}}`
```

Adding Entries to a Keytab File

Use the **keytab add** command to add entries to an existing keytab file. When you use this command, you must supply the name of the keytab file’s **dced** object and any of the options described in [Table 22 on page 352](#).

The following command adds a key to the keytab file named `kfile_3` for the server principal `svr_3`. The key is generated automatically, and the registry is updated to be synchronized with the keytab file.

```
dcecp> keytab add `.:/hosts/foo/config/keytab/kfile_3`
   > -member svr_3 -random -registry
```

Removing Entries from Keytab Files

You can remove entries from a keytab file by using the **dcecp keytab remove** command. When you use this command, you must supply the name of the keytab file’s **dced** object.
When you use the `keytab remove` command, you must supply the name of the keytab file and the name of the principal (or a list of principals) for which to delete keys.

You can also supply the `-version` option to specify the version number of the key or keys to be deleted and the `-type` option to specify the type of keys to be deleted (plain for plain text keys or des for DES encrypted keys). If you use the `-version` or `-type` options, only keys of the specified version or type will be deleted.

The following command removes all DES keys for the principal `svr_2` in the keytab file `/:/hosts/foo/config/keytab/kfile_3`:

```
dcecp> keytab remove /:/hosts/foo/config/keytab/kfile_3 > -members svr_2 -type des
dcecp>
```

Removing Keytab Files

You can remove local and keytab files and their associated `dced` objects by using the `dcecp keytab delete` command.

To delete the local keytab file and the `dced` object, supply the local filename to the command. You can delete multiple keytab files with one command by enclosing the names in braces and separating them with spaces. For example, the following deletes the keytab files and the `dced` objects `/:/hosts/foo/config/keytab/kfile_2` and `/:/hosts/foo/config/keytab/kfile_3`.

```
dcecp> keytab delete {/:/hosts/foo/config/keytab/kfile_2 \ > /:/hosts/foo/config/keytab/kfile_3}
dcecp>
```

To delete only the `dced` object, use the `-entry` option.

For example, the following command removes the `dced` object named `/:/hosts/foo/config/keytab/kfile_3`, but leaves the local file `/opt/dcelocal/keys/kfile_3` untouched.

```
dcecp> keytab delete -entry /:/hosts/foo/config/keytab/kfile_3
dcecp>
```

Changing Server and Machine Passwords in the Keytab File

Passwords for all principals must be changed when they expire. Human principals can use their platform’s `chpass` command to change their password. The `dced` security validation service automatically changes the machine’s password as necessary by assigning a randomly generated password. This daemon is supplied with DCE and runs on each local machine that engages in network access.

Generally, you can assume that servers or applications created by other vendors also automatically change their password as required by randomly generating passwords. However, if a server that runs under its own identity does not automatically update its password, you must do it manually by using the `dcecp keytab add` command, as described in [Adding Entries to a Keytab File](#) on page 353.

Note: Servers that run under the identity of a human principal should not automatically update their own passwords. When such a server updates its password, it also updates the password of the human principal under whose identity it runs. The human principal must then supply this randomly generated password to log into the system and to reauthenticate. Since the
human principal can never know the randomly generated password, the
cannot log into the system and cannot reauthenticate.

Handling Compromised Server or Machine Passwords in the Keytab
File

If a server’s or machine’s password is compromised, you must change it in the
registry and in the server’s local keytab file by performing the following steps:
1. Use the keytab remove command to delete the compromised password.
2. Use the keytab add command to create a new password for the server or
machine.
3. If you do not use the registry option of the keytab add command to update the
server’s or machine’s registry account simultaneously with the server’s or
machine’s keytab file, run the account modify command to change the server’s
or machine’s password in the registry to the match the one in the keytab file.

Maintaining the Local Registry

The local registry allows login from that machine if a network registry is not
available. The local registry is created automatically the first time that a human or
nonhuman user performs a DCE login from the local machine if the network registry
server is running. As users log into the machine, their account information is
automatically added to the local registry.

The following files make up the local registry database:

dcelocal/var/security/lrgy_data
Contains account information entries.
dcelocal/var/security/lrgy_tgts
Contains ticket-granting ticket entries.
dcelocal/var/security/lrgy_lock
Used by the security server to lock the registry for read/write operations.

You must use the security command rgy_edit to maintain the local registry. The
following subcommands are available:

view To view all entries in the local registry.
delete principal_name To delete the principal specified by principal_name from the registry.
properties To set and view properties for the local registry.
help To obtain help information on the local registry.

In addition to the subcommands in the preceding list, the rgy_edit command
provides one additional subcommand, purge, and an additional registry property,
called the registry capacity, to restrict the number of entries that are in the local
registry.

The remainder of this section describes the purge subcommand and the registry
capacity property.
The Registry Capacity Property

The `rgy_edit properties` command lets you set a limit on the number of entries that the local registry can contain. For example, assume that the registry capacity is set to 10 and that the registry contains 10 entries. If a new user logs in from the local machine, an entry is created for that user. This new entry overwrites the oldest of the original 10 entries. As users log in from the machine for the first time, their newly created registry entry overwrites the oldest entry.

Setting the Capacity and Lifespan Properties

You can set a limit on the number of entries that the local registry can contain. This limit is defined by the **Capacity** attribute of the local registry object. Setting the value of this attribute to a moderate number of entries can keep the local registry from growing too large.

For example, assume that the **Capacity** attribute value for the local registry on a machine is set to 10 and that the local registry contains 10 entries. If a new user logs in from the local machine, an entry is created for that user. This new entry overwrites the oldest of the 10 entries currently existing in the local registry. As users log in from the machine for the first time, their newly created registry entry overwrites the oldest entry.

To set the **Capacity** attribute value for the local registry, use the `rgy_edit properties` command.

Note that, when you first enter the command, it displays the current registry capacity and lifespan. In addition, it shows the number of account entries that are in the local registry and the number of TGT entries. There is one TGT entry, which contains the account’s credentials, for each account entry.

```
$ rgy_edit -l
rgy_edit=> properties
Local Registry Properties:
  Capacity: 25 entries
  Contains: 6 account entries
  Contains: 6 tgt entries
  Lifespan: 3w
Do you wish to make changes [y/n]? (n) y
Enter local registry capacity: (25) 50
Enter acct lifespan in days or 'forever': (3w) 12w
```

In the preceding example, **12w** specifies a 12-week lifespan. When you enter the lifespan, you can enter:

- **forever**—To designate that the entry will never expire. The entry can be overwritten if it exceeds the registry capacity, however. Entering **0** (zero) at the Enter acct lifespan in days or 'forever': (3w) prompt has the same effect as entering **forever**.

- A decimal number—To specify the number of measurement units (weeks, days, hours, minutes, seconds). This number is generally accompanied by a measurement unit, as described next. If you enter only a number without an accompanying measurement unit, the measurement unit defaults to days.

- **w, d, h, m,** or **s**—To specify the measurement units:
 - **w** for weeks
 - **d** for days
 - **h** for hours
You can use any combination of the measurement units with their accompanying numbers. For example, to set the lifespan to 12 weeks, 8 hours, and 30 seconds, enter the following command:

```
Enter acct lifespan in days or 'forever': (3w) 12w8h30s
```

If you end a string of numbers and measurement units with a number only, the number with no measurement unit defaults to seconds. For example, if you enter the following, the lifespan is assumed to be 12 weeks and 30 seconds:

```
Enter acct lifespan in days or 'forever': (3w) 12w30
```

Purging Expired Entries

The `rgy_edit purge` subcommand deletes expired entries from the local registry. When the `rgy_edit purge` command is run, the command deletes all entries whose lifespan attribute value indicates are are expired.

In the preceding example, we reset the local registry’s lifespan attribute value to `12w`. With the lifespan set to `12w`, the following `rgy_edit purge` command deletes all local registry entries (account and TGT) that are older than 12 weeks.

```
rgy_edit=> purge
1 account entries purged
1 TGT entries purged
```
Chapter 32. Creating and Using Extended Registry Attributes

The registry stores specific information about principals, groups, organizations, and accounts. This is the information that you create when you use *dcecp* commands to create principals, groups, organizations, and accounts. The kind of information that can be stored in the registry database is defined in the registry schema, which is essentially a catalog of the kinds of data stored in the database. There is a schema entry definition for each type of attribute that can be associated or attached to a registry object. For example, a schema entry defines principal names as a printable character string in DCE PCS format. When you create a principal, you enter a text string that is stored in PCS format.

Using the extended registry attribute (ERA) facility, you can add schema entries that define attribute types of your choosing. These attributes are called *extended attributes* because they extend the registry schema. Once the extended attribute types are defined, you can attach them to a security object with the *dcecp create* or *modify* operations. The extended attribute types you create are used by custom applications that run in conjunction with DCE and are passed to those applications for processing. For example, if you work with an MVS application that requires a user’s MVS name, you could establish an MVS name extended attribute that is stored in the registry. The MVS name can then be passed to the MVS application for appropriate processing.

If a principal has extended attributes, these attributes are carried with the extended privilege attribute certificate (EPAC) obtained when the principal is authenticated.

In this manual, attribute type refers to the schema entry that defines an extended attribute type. Attribute instance refers to an attribute that is attached to a registry object and has a value.

This chapter describes how to create and maintain attribute types and attribute instances. It begins first with a discussion of the *xattrschema* object; then it describes how to define attribute types and attach attributes to objects.

The xattrschema Object

Extended attribute types are stored in the object named *xattrschema* under the security junction point (usually */sec*) in the CDS namespace. Access to *xattrschema* and the attribute type definitions it contains is controlled by an ACL on the *xattrschema* object. The *xattrschema* object is propagated from the master security server to replicas, like other registry data.

Creating and Maintaining Attribute Types

Use the *dcecp xattrschema* command to create and maintain attribute types. As part of the command, you must supply the attribute type’s fully qualified name (for example, */sec/xattrschema/name*) as an argument.

© Copyright IBM Corp. 1997
Creating Attribute Types

Use the `dcecp xattrschema create` command to create attribute types. Attribute options you can supply with this command are summarized below. Note that the options described in this table can also be supplied without the dashes in attribute lists.

Options to Create Extended Attributes

Option Meaning

-aclmgr description
A required list of the ACL manager types that support the objects to which this attribute type can be attached and the permissions supported by those managers. No default. Attribute type ACL managers are described fully in Section 32.2.5.

-annotation string
A PCS text string that annotates the attribute type. If the string contains spaces, enclose it in braces or quotes. The default is blank.

-applydefs
This option is not currently implemented.

-encoding type
The format of the attribute type instance value. Attribute encoding is described more fully in Section 32.2.6.

-intercell
This option is not currently implemented.

-multivalued {yes | no}
An indication of whether or not the attribute is multivalued (`yes`=multivalued; `no`=not multivalued). If an attribute is multivalued, multiple instances of the same attribute type can be attached to a single registry object. For example, if attribute A is coded as multivalued, a single principal can have multiple instances of attribute A. If it is not coded as multivalued, a single principal can have only one instance of attribute A. The default is `no`.

-reserved {yes | no}
An indication of whether or not the attribute is reserved (`yes`=reserved; `no`=not reserved). Reserved attribute types cannot be deleted unless the reserved restriction is removed. The default is `no`.

-scope name
Not implemented in the current release.

-trigtype type
Identifies whether or not a trigger server is associated with the attribute type and, if a trigger server is associated, the type of trigger. Possible values are the following: `none`—A trigger server is not associated with the attribute type. `query`—A query trigger server is associated with the attribute type. `update`—An update trigger server is associated with the attribute type. If the `-trigtype` option is set to `query` or `update`, you must supply the `-trigbind` option to specify the trigger server’s binding. See Section 32.3 for more information.

-trigbind binding
If a trigger server is associated with the attribute type, this option specifies the trigger serving binding.
-unique {yes | no}

An indication of whether or not each instance of the attribute type must be unique within the cell (yes=unique; no=not unique). For example, assume that an instance of attribute type A is attached to 25 principals in the cell. If attribute type A is coded as unique, the value of the A attribute for each of those 25 principals must be different. If it is not coded as unique, all 25 principals can be assigned the same value for attribute A. The default is no.

-uuid uuid

A UUID that identifies the attribute type internally. Note that the name supplied as an argument to the dcecp xattrschema create command is used to access the attribute type. If you do not supply a UUID, the system will generate one.

The syntax of the dcecp xattrschema create command is as follows:

xattrschema create attr_name{attr_options}

where:

attr_name
Is the fully qualified name of the attribute type to create.

attr_option
Is one or more of the options described in the list above.

The following sample command creates the extended attribute type named employee_num and assigns it an ACL manager of principal and an encoding type of integer:

dcecp> xattrschema create /.:/sec/xattrschema/employee_num \
> -aclmgr {principal r r r} -encoding integer

dcecp>

Although this sample uses options to supply information, you can use standard dcecp attribute lists.

Note that you can supply a list of names to create multiple schema entries with one operation. However, you should be aware that, if the command argument contains more than one schema name, you cannot specify a UUID attribute and the attributes you specify are applied to all entries created.

Modifying Attribute Types

Use the dcecp modify command with the -change option to modify attribute types. Only the aclmgr, applydefs, intercell, trigbind, annotation, and reserved schema type attributes can be modified.

The syntax of the xattrschema modify command is as follows:

xattrschema modify attr_name -change new_option

where:

attr_name
Is the fully qualified name of the attribute type to change.

new_option
Is the option that specifies the changes.
The following sample command modifies the MVSname attribute to change its annotation. Note that the fully qualified attribute type name must be supplied to the command.

dcecp> xattrschema modify
/./sec/xattrschema/MVSname -change \n/> {annotation {Use with version 2.3}}
dcecp>

Renaming Attribute Types

Use the `dcecp xattrschema rename` command to change the name of an extended attribute. Enter the command in the following form:

```
xattrschema rename old_name -to new_name
```

where:

- `old_name` is the fully qualified extended attribute name to be changed.
- `new_name` is the new simple extended attribute name.

The following example shows the `xattrschema rename` command used to change an attribute name from `log_name` to `MVSname`.

dcecp> xattrschema rename /.:/sec/xattrschema/log_name -to MVSname
dcecp>

Deleting Attribute Types

Use the `dcecp xattrschema delete` command to delete an extended attribute. Be aware that when you delete an attribute type you also delete all instances of that attribute type. For example, assume that an instance of the MVSname attribute is attached to a principal named Delores. If you delete the MVSname attribute, you also delete the instance of that attribute attached to Delores.

To delete attribute types enter the command in the following form:

```
xattrschema delete attribute_name
```

where `attribute_name` is the fully qualified name of the attribute to be deleted.

For example, to delete the extended attribute named MVSname, the command would be as follows:

dcecp> xattrschema delete /.:/xattrschema/MVSname
dcecp>

Defining the ACL Managers for Attributes

When you define an extended attribute type, you must define the objects to which the attribute can be attached and the permissions to access the attribute. To do this, you associate an attribute type with one or more ACL managers, and you supply the permission sets that control access to attribute instances of that type. The attribute can be attached only to the objects that are supported by the ACL manager types named in its ACL manager set. And, only the permissions named in the ACL manager set are valid for accessing the attribute instance. (Note that these permissions are in addition to the permissions already established by the ACL manager for the object it controls.) For example, suppose an ACL manager set for
an attribute type named **MVSname** lists only the ACL manager type for principals. Then, instances of the attribute type named **MVSname** can be attached only to principals and not any other registry objects. The ACL manager set for the **MVSname** attribute also contains the permissions that control access to the **MVSname** attribute.

Use the `dcecp xattrschema -aclmgr` option to specify an attribute’s ACL manager set. This option has the following form:

```
{mgr_uuid
 queryset updateset testset deleteset}
```

where:

- **mgr_uuid**
 - Is the UUID that identifies the ACL manager to be associated with the attribute type. You can supply either the UUID or one of the following shorthand names (which are converted internally to a UUID) to access the ACL manager types provided by DCE:
 - **policy** To access the ACL manager for the policy object.
 - **principal** To access the ACL manager for principals.
 - **group** To access the ACL manager for groups.
 - **organization** To access the ACL manager for organizations.
 - **secdirectory** To access the ACL manager for directories in the registry database.
 - **replist** To access the ACL manager for the replica list.
 - **xattrschema** To access the ACL manager for the registry schema.
 - **srvrconf** To access the ACL manager for the **dced** object.

- **queryset**
 - Is the permission set to query instances of the attribute.

- **updateset**
 - Is the permission set to modify instances of the attribute.

- **testset**
 - Is the permission set to test instances of the attribute.

- **deleteset**
 - Is the permission to delete instances of the attribute.

To enter a permission set with more than one permission, concatenate the permissions; for example, to enter the permissions `t`, `M`, and `d`, enter `tMd`.

Enclose each ACL manager type’s information in braces and leave a space between each item (except, of course, between items in the concatenated permission sets).

For example, consider the following command to define an addition ACL Manager for the **MVS_name** attribute:

```
dcecp> xattrschema
modify ./sec/xattrschema/MVS_name \
> -aclmgr {18bdad2-23df-l1cd-82d4-080009251352 r w t M d}
dcecp>
```
The command adds an ACL manager identified by the UUID 18dbdad2-23df-11cd-82d4-08000925135 to the MVS_name attribute. The permissions sets for the ACL manager are as follows:

- r is the query permission set.
- w is the update permission set.
- t is the test permission set.
- mD is the delete permission set.

Note that you cannot modify or delete an attribute type’s ACL manager set. However, you can add additional manager types to it.

Defining Attribute Type Encoding

You must define the format of values that can be supplied for an attribute type in the attribute type’s encoding. An attribute can be assigned only those values that are in the format defined in the encoding. For example, the encoding can specify that instances of this attribute type contain values only in the form of UUIDs.

Each attribute type can have only one encoding and that encoding cannot be modified. In addition, a special encoding type lets you create attribute sets.

Use the `dcecp xattrschema -encoding` option to specify an attribute’s encoding. This option has the following form:

```
-encoding type
```

The `type` parameter is one of the encoding types described below.

Encoding Types

<table>
<thead>
<tr>
<th>Encoding Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>The attribute value can take on any encoding. This encoding type is only legal for the definition of an ERA in a schema entry. All instances of an ERA must have an encoding of some other value.</td>
</tr>
<tr>
<td>attrset</td>
<td>The attribute value must be a list of attribute type UUIDs enclosed in braces. This encoding type defines an attribute set. Attribute sets allow for easier attribute search and retrieval. For instance, a query on an attribute set returns all instances of attributes that are members of the set.</td>
</tr>
<tr>
<td>binding</td>
<td>The attribute value must consist of authentication, authorization, and binding information suitable for communicating with a DCE server. Use this encoding if you want to store a name or server binding as an object’s attribute. See “Specifying the Binding Information” on page 363 for more information.</td>
</tr>
<tr>
<td>byte</td>
<td>The attribute value must be a string of bytes. The byte string is assumed to be a pickle or is otherwise a self-describing type. Note that this encoding type allows entry of binary data. See the IBM DCE 2.2 for AIX: Command Reference for more information on entering binary data.</td>
</tr>
<tr>
<td>confidential</td>
<td>Not implemented in this release of DCE.</td>
</tr>
<tr>
<td>i18ndata</td>
<td>The attribute value must be an internationalized string of bytes with a tag</td>
</tr>
</tbody>
</table>
identifying the OSF registered codeset used to encode the data. Note that this encoding type allows entry of binary data. See the *IBM DCE 2.2 for AIX: Command Reference* for more information on how to enter binary data.

integer
The attribute value must be a signed 32-bit integer.

printstring
The attribute instance value must be a character string printable by the PCS.

stringarray
The attribute value must be an array of one of more printstrings. Note that the printstring can be a null.

The attribute value must be an array of one of more printstrings. Note that the printstring can be a null.
The attribute value must be a DCE UUID.

void
The attribute has no value. It is simply a marker that is either present or absent.

Defining Attribute Trigger Servers

Some attribute types require the support of an outside server either to verify input attribute values or to supply output attribute values when those values are stored in an external database. Such a server could, for example, connect a legacy registry system to the DCE registry. The attribute trigger facility provides for automatic calls to outside DCE servers, known as *attribute triggers*.

Trigger servers are invoked automatically when an attribute associated with a trigger server is queried or updated. Note that access to information maintained by a trigger server is controlled entirely by that server.

Note: Update trigger servers are not supported in this release.

To associate an attribute type with a trigger server, use the `-trigtype` and `-trigbind` `dcecp xattrschema` options.

The -trigtype Option

The `-trigtype` options defines whether the attribute type is associated with a trigger server and, if it is, which kind of server. This option has the following form:

```
-trigtype [none | query | update]
```

where:

none Indicates the attribute is not associated with a trigger server. (This is the default.)

query Indicates that the attribute is associated with a query trigger. Query trigger servers can perform only queries.

update Indicates the attribute is associated with an update trigger. Update trigger servers can perform queries and updates.

Note: Update trigger servers are not supported in this release.
Once set the `-trigtype` option cannot be modified.

The `-trigbind` Option

The `-trigbind` option defines authentication information for the trigger server and the trigger binding itself.

The `-trigbind` option has the following format.

```
-trigbind {{auth_info}{binding_info}}
```

The following sections describe how to specify the authentication type and the binding.

Specifying the Authentication Type

The `auth_info` parameter has the following syntax:

```
{auth_serv_type name prot_level authentication_service authorization_service}
```

where:

* `auth_serv_type` Specifies the authentication type, which can be
 * `none`—No authentication is performed.
 * `dce`—Standard DCE authentication is performed.

If you are using no authentication, no other information except the binding itself is required. If you are using the standard DCE authentication type, you must specify all the remaining parameters.

* `name` Specifies the principal name of the trigger server.

* `prot_level` Specifies the protection level that determines the degree to which authenticated communications between the client and the server are protected by the authentication service. The possible protection levels are:
 * `default`—Uses the default protection level of `pkt`.
 * `none`—Performs no authentication: tickets are not exchanged, session keys are not established, client EPACs or names are not certified, and transmissions are in the clear. Note that although uncertified EPACs should not be trusted, they may be useful for debugging, tracing, and measurement purposes.
 * `connect`—Authenticates only when the client establishes a relationship with the server.
 * `call`—Authenticates only at the beginning of each remote procedure call when the server receives the request.

This level does not apply to remote procedure calls made over a connection-based protocol sequence (that is, `ncacn_ip_tcp`). If this level is specified and the binding handle uses a connection-based protocol sequence, the routine uses the `pkt` protection level instead.

* `pkt`—Ensures that all data received is from the expected client.

* `pktinteg`—Ensures and verifies that none of the data transferred between client and server has been modified. This is the highest protection level that is guaranteed to be present in the RPC runtime.
- **pktprivacy**—Authenticates as specified by all of the previous levels and also encrypts each RPC argument value. This is the highest protection level, but it is not guaranteed to be present in the RPC runtime.

authentication_service

Specifies the authentication service. The exact level of protection provided by the authentication service is specified by the protection level. The supported authentication services are as follows:

- **default**—DCE shared-secret key.
- **none**—No authentication: No tickets are exchanged, no session keys established, client EPACs or names are not transmitted, and transmissions are in the clear. Specify `none` to turn authentication off for remote procedure calls made using this binding.
- **secret**—DCE shared-secret key authentication.

authorization_service

Specifies the authorization service. The validity and trustworthiness of authorization data, like any application data, is dependent on the authentication service and protection level specified. The supported authorization services are as follows:

- **none**—Server performs no authorization. This is valid only if the authorization service is set to `none`, specifying that no authentication is being performed.
- **name**—Server performs authorization based on the client principal name. This value cannot be used if the authorization service is `none`.
- **dce**—Server performs authorization by using the client’s DCE EPAC sent to the server with each remote procedure call made with this binding. Generally, access is checked against DCE ACLs.

Specifying the Binding Information

The `binding_info` parameter specifies the binding, which can be a string binding, a server entry name, or a list containing one or more string bindings or server entry names. The following example shows a server entry name binding:

```
./:/hosts主持名/dce实体名
```

The following example shows a string binding in standard syntax:

```
nkadg_udp_ip:130.105.96.3[1234]
```

The following example shows a string binding in TCL syntax:

```
n carn_ip tcp
10-29.58.00 2001
```

Sample Value for the -trigbind Option

The following sample shows the value for a `-trigbind` option. In the sample, the binding has the principal name `MVS_server`, is authenticated with packet-privacy protection level, uses a shared secret key and an authorization service of DCE. The binding is supplied as a server entry name.

```
-trigbind { {dce MVS_server pktprivacy secret dce} \\
{./:/hosts主持名/dce实体名} } 
```
Creating and Maintaining Attribute Instances

Using dcecp, you can attach extended registry attributes to objects, modify the values assigned to those attributes, and delete the attachment just as you would any attribute attached to an object.

You can attach extended registry attributes to any of the following registry objects using the dcecp create and modify operations:

- principal
- group
- organization
- policy

Note: In DCE Version 1.2.1, you cannot attach attributes to the policy object.

- directory
- replist
- xattrschema

Attaching Attribute Instances to Objects

You can attach attributes to objects when you create the objects with the dcecp principal -attribute operation, or you can attach attributes to existing objects with the dcecp modify -add operation.

For example, to create the principal delores and at the same time attach the MVSname attribute with a value of admin, use the following principal create command:

dcecp> principal create delores -attribute {MVSname admin}
dcecp>

To attach the MVSname attribute with a value of admin to the principal named delores, use the following principal modify command:

dcecp> principal modify delores -add {MVSname admin}
dcecp>

To add instances of a multivalued extended attribute, include each value, separated by a space after the attribute name. For example, to attach the multi_name attribute with values of value1, value2, value3, and value4 to the principal named delores, use the following command:

dcecp> principal modify delores -add {multi_name value1 value2
> value3 value4}
dcecp>

Modifying Attribute Instances

Use the dcecp modify -change operation to change the values of attribute instances. Whether an attribute is modifiable is determined by the application that uses the attribute. For example, the following command changes the value assigned to the MVSname from admin to cell_admin for the principal named delores.

dcecp> principal modify delores -change {MVSname cell_admin}
dcecp>
If you use the `dcecp modify -change` command as shown in the previous paragraphs to change the value of a multivalued attribute, all instances of the multivalued attribute are deleted and replaced by the new values specified in the command. For example, to change only a specific value, you must enter all the values. For example, assume that the `multi_name` attribute has the following four values: `value1`, `value2`, `value3`, and `value4`. To change `value4` to `value5`, you must enter the following command:

```
dcecp> principal modify delores -change {multi_name {value1 value2 > value3 value5}}
```

However, you can add and remove individual values from a multivalued attribute. Use the `-add` option to add values. For example, assume that the `multi_name` attribute has values of `value1`, `value2`, `value3`, and `value5`. The following sample command adds `value6` to the `multi_name` attribute.

```
dcecp> principal modify delores -add {multi_name value6}
```

(Use the `remove` option described in the following subsection to delete specific values in a multivalued attribute.)

Note that the following command replaces all instances of the attribute named `multi_name` attached to the principal named `delores` with a single instance with a value of `value1`:

```
dcecp> principal modify delores -change {multi_name value1}
```

For example, if the `multi_name` attribute had the following values:

```
{multi_name value1 value2 value3}
```

then the previous command would change the values as follows:

```
{multi_name value1}
```

Deleting Attribute Instances

Use the `dcecp modify` command with the `-remove` option to delete attribute instances attached to an object. To delete all instances of an attribute from an object, supply the attribute name to the `-remove` option. For example, the following command deletes all instances of the `MVSname` attribute from the principal named `delores`:

```
dcecp> principal modify delores -remove MVSname
```

To remove a single instance of a multivalued attribute, supply the attribute name and the attribute value. For example, the following command deletes only the instance `value5` from the multivalued attribute named `multi-value`. All other values and the attribute itself remain intact.

```
dcecp> principal modify delores -remove {multi-value value5}
```

However, if you delete the last instance of a multivalued attribute, `dcecp` will also delete the attribute from the object because an attribute without a value cannot be attached to an object. Note that you cannot combine deleting multivalued attributes and values from multivalued attributes with the same command.
To delete more than one attribute from an object, you must use the `-types` option. This option tells `dcecp` that all the values supplied are the names of attribute types, not attribute values. For example, the following sample command uses the `-types` option to delete the attributes named `MVSname` and `MVSinteger` from the principal `delores`:

```
dcecp> principal modify delores -remove {MVSname MVSinteger} -types
```

Without the `-types` option, `dcecp` will assume that `MVSinteger` is the value for the `MVSname` attribute and, because no such value exists, the command will fail.

Using Attribute Sets

An attribute set is a collection of attribute UUIDs that identify the attribute instances that are members of the set. Attribute sets let you group related attributes instances on an object for easier access. For example, if you use the `dcecp show` operation to display an attribute set, the display expands the attribute set and includes all members of the set in the display output. This attribute expansion works only for `dcecp` commands that display information. The commands to create and modify attribute instances work only on the specific attribute named in the command. Since the attributes that are set members exist independently of the attribute set, they can be manipulated directly like any other attribute.

Each attribute set is attached to an object and, although the system does not enforce it, each attribute that is a member of a set should also be attached to the same object. Attribute sets cannot be nested; a member of an attribute set cannot itself be an attribute set.

To create, modify, and delete members in an attribute set, follow the instructions to create, modify, and delete multi-valued attributes. The attribute instances that are members of the set are identified by UUIDs.
Chapter 33. Administering a Multicell Environment

Previous chapters in this guide described the DCE administration tasks that are performed within individual cells. The administration of a multicell environment, which is one in which principals from foreign cells access objects in the local cell, has additional tasks and considerations that arise from the interaction of principals across different cells.

In fact, you can have two types of system administrators: One for local cell administration and one for intercell administration of the multicell environment. If you set up groups for the two types of administrators, you can set the ACL for the krbtgt directory, which contains cell principals, in the registry database to allow updating only by the group of intercell administrators. Be sure, however, to allow all other users read access to the krbtgt directory or intercell access will be denied to those users. Note that, if you protect the krbtgt directory in this way, ensure that all directories below the krbtgt directory also have the proper ACLs. The easiest way to accomplish this is to change the Object ACL and the Initial Creation ACLs on the krbtgt directory after the registry is created.

This chapter describes the trust relationships between cells that allow principals from foreign cells access to objects in your cell and vice versa.

Trust Relationships

Note: The DCE Version 1.2.2 code does not provide support for the transitive trust relationships discussed in this section.

To give explicit permission for principals in other cells to engage in authenticated access to objects in your cell, you must establish a trust relationship with that cell. You do this using the dcecp registry connect command to create two special accounts: One in your cell’s registry to represent the foreign cell and one in the foreign cell’s registry to represent your cell. Establishing these accounts indicates that you trust the foreign cell’s authentication service to correctly authenticate foreign users and, therefore, you consider all users from this cell to be authenticated if they are marked as authenticated by the foreign cell’s authentication service.

Once the trust relationship is established, you can control foreign principals’ access to specific objects with ACL entries just as you do for principals in the local cell. The trust relationship also allows users in the foreign cell to log into accounts in the local cell and vice versa.

Two kinds of trust relationships allow principals in other cells to engage in authenticated access to objects in your cell. These relationships are direct trust relationships and hierarchical transitive trust relationships. Throughout this chapter, the term transitive trust relationship is used to indicate the DCE implementation of hierarchical transitive trust relationships.

Direct Trust Relationships

In a direct trust relationship, two cells’ authentication services share authentication keys and trust each other to authenticate principals from their respective cells. Therefore, both cells consider all users from each cell to be authenticated if they are marked as authenticated by their respective authentication services. The shared
authentication keys are derived from a single password (one for each cell) that is used by all principals from one cell to be authenticated to the other cell. A direct trust relationship involves only two cells.

Establishing Trust Relationships

Use the `registry connect` command to establish direct trust and transitive trust relationships. Note that, although you can create a direct trust relationship between any two cells, you can create a transitive trust relationship only for those cells connected by a transitive trust path.

This command creates two special accounts: One in your cell’s registry to represent the foreign cell, another in the foreign cell’s registry to represent your cell. The command creates the accounts’ principals at the same time. Once the trust relationship is established, users in the foreign cell can log into accounts in the local cell and vice versa. You control foreign principals’ access to specific objects with ACL entries, just as you do for principals in the local cell.

When the accounts are created, the `registry connect` command performs two tasks that you should be aware of. First, it automatically generates one password that is shared by both accounts. This means that users who log into a cell with which their cell has a trust relationship are seen as the same principal and share the same password. Second, the `registry modify` command generates a UNIX number that is shared by all principals that are in a given foreign cell. This shared UNIX number helps prevent collision between the UNIX numbers of local and foreign principals when objects on a local machine are accessed.

Within the registry and for the purposes of network access, principals are identified by a UUID that represents their fully qualified names; for example, `/.../dresden.com/dce/users/mahler` for the principal `mahler`. However, the local operating system on a local machine identifies principals by UNIX number. Because UNIX numbers are not required to be unique across cells, it is possible for two principals from different cells to have the same UNIX number. Thus, a foreign principal that is accessing files in the local cell could have the same UNIX number as the local principal and be seen by the local system as the owner of the local user’s files on the local machine.

Creating a UNIX number that is applied to every principal from a given cell that accesses the local cell prevents this from occurring. However, you need to be aware that, because the foreign users all have the same UNIX number, the very feature that prevents them from accessing the local user’s files allows them to access each other’s files. Because each user from the same foreign cell is seen as the same user, every file on the local machine that is owned by a foreign user can be accessed by every other foreign user from the same foreign cell.

Constraints on Transitive Trust Relationships

To prevent the widespread proliferation of trust relationships that could result in unwieldy administrative burdens and weakened security, the DCE Security Service imposes the following three rules on transitive trust relationships:

1. Any number of descendent cells can be traversed by a transitive trust relationship, and any number of ancestor cells can be traversed by a transitive trust relationship.
2. No more than one direct trust peer relationship can be traversed by a transitive trust relationship. (A direct trust peer relationship is a direct trust relationship between cells that are neither ancestors nor descendants of each other in the naming hierarchy.)

3. Once a hierarchical trust relationship traverses a direct trust ancestor and an optional direct trust peer, it cannot traverse to an ancestor of the peer cell. In other words, once a transitive trust path goes up and across, it cannot go up.

The ramifications of these rules are explained in the following paragraphs.

Rule 1:

Any number of descendent cells can be traversed in a hierarchical trust relationship, and any number of ancestor cells can be traversed by a transitive trust relationship.

For example, in Figure 53, peer Cells A and B have a direct trust relationship. Cell A has a transitive trust relationship with cells B/C and B/C/D.

![Diagram of trust relationships](image)

Transitive trust relationships between cell A and cells B/C and B/C/D

Figure 53. Direct and Transitive Trust Relationships

The previous configuration also makes possible the transitive trust relationship between B and cell B/C/D shown in Figure 54 on page 374.
Rule 2:

No more than one direct trust peer relationship can be traversed by a transitive trust relationship.

For example, in Figure 55, cells A, B, and C are peer cells. Cell A has a direct trust peer relationship with cell B, and cell B has a direct trust peer relationship with cell C. Cell A does not have a transitive trust relationship with cell C because to do so would traverse more than one direct trust peer relationship (A to B and B to C).

No transitive trust relationship is possible between cell A and cell C because that relationship must traverse more than one direct trust link.

Figure 55. Limited Direct Trust Peer Traversal in Transitive Trust

Note that it is not required to traverse a direct trust peer relationship to have a transitive trust relationship. In Figure 56 on page 373, no direct trust peer relationships are traversed. In the figure, a transitive trust relationship exists between the following:

- B_Division and C_Division and C_organization
- C_Division and B_Division and B_organization
Rule 3:

Once a hierarchical trust relationship traverses a direct trust ancestor and a direct trust peer, it cannot traverse to an ancestor of the cell.

For example, consider Figure 57 on page 376. The A_Conglomerate cell hierarchy and the B_Conglomerate cell are connected by direct trust relationships. Additionally, there is a direct trust relationship between A_product in the A_Conglomerate hierarchy and B_product in the B_Conglomerate hierarchy. In this configuration, no transitive trust relationships are possible because they cannot traverse to an ancestor after traversing a direct trust peer.
The type of trust relationship shown in this figure might be used by two companies that have a very limited agreement to cooperate on product development.

Figure 58 on page 377 shows another transitive trust path.
In the path, the B_product cell has a transitive trust path up to its ancestor, B_Company, and from B_Company to A_Company. But from A_company, the transitive trust path cannot continue up to A_Company’s ancestor, although it can continue down to A_Company’s descendants. Because this transitive trust relationship has traversed up to a trust ancestor (B_Company) and across to a trust peer (A_Company), it cannot then continue by going up to A_Company’s ancestor (A_Conglomerate). This type of relationship might be used by two companies that have decided to combine operations at a very high level.

Note that a principal accessing a foreign cell through transitive trust relationships is not authenticated by each cell transited in the trust path, but only by the target cell itself. The authentication service in a transited cell simply gives the principal a ticket to the next cell in the path, stamping the ticket with the hierarchical name of the transited cell, until the principal acquires a ticket to the target cell.

To determine whether or not to give a principal a ticket to the next cell in a transitive trust path, the authentication service in each transited cell examines the ticket and compares the last cell transited to the next cell in the path and applies the rules of transitive trust described in this section. If the next cell to be transited is consistent with a valid transitive trust path, then the authentication service gives the principal a ticket to the next cell; otherwise, the authentication service refuses to issue a ticket.

Creating Trust Relationships

To create peer-to-peer relationships, follow these steps:
1. Run the registry connect command to create cross-cell authentication accounts (an account in your cell’s registry and another account in the foreign cell’s registry).

2. Optionally, use the account modify command to fine tune the attributes of the account, which were assigned by default when the account was created. For example, the account’s expiration date (expdate attribute) defaults to none. You may want to enter a date to ensure that the account will be actively renewed after a period of time.

3. Ensure that the system administrator in the foreign cell changes the acctvalid flag of the account that represents your cell to yes in order to indicate that the account is valid. If one or both accounts are invalid, no cross-cell communications can take place.

Command Options for the registry connect Command

When you use the registry connect command, you must supply the fully qualified name of the foreign cell with which you will establish a peer-to-peer relationship. This name is stripped of the full pathname, prefixed with krbtgt, and used as the primary name of the account’s principal. For example, if you enter a cell name of /.../dresden.com, the principal name is krbtgt/dresden.com. The unchanged cell name is stored as the principal’s full name.

Note that registry connect uses your local cell name for the primary name of the local cell’s account principal. This name is stripped of the full pathname and prefixed with krbtgt, just as the foreign cell name is.

You can supply the following options to the registry connect command:

- acctvalid, -facctvalid
 The setting that marks an account as being valid. A valid local account (-acctvalid) allows users from the foreign cell to log in to nodes in the local cell. A valid foreign account (-facctvalid) allows users from the local cell to log in to nodes in the foreign cell. The default is invalid for each option.

- expdate
 The time and date that both the local and the foreign cell’s account expires, and the peer-to-peer relationship is ended, prohibiting any further authenticated communications between principals in the two cells. To renew the account, change the date in this field. The default is none.

- facct, -facctpw
 The system administrator in the foreign cell must provide you with the name and password of an account in the foreign cell. The foreign account must have the permissions that are required to create principals and accounts. You need the account to access the foreign registry in order to create the account that represents your cell in the foreign account’s registry. The lifetime and creation quota of this account should be limited to only that necessary to complete the task.

- group, -fgroup
 The group name to be associated with the account in the local cell (-group) and the foreign cell (-fgroup). These groups have no meaning for the accounts and are not associated with any users in the foreign or local cell. You must enter them because it is a requirement of the registry that all accounts be associated with groups. If the group does not exist, it will be created.
The `registry connect` command does not prompt you for a password for the accounts that you are creating; it generates this password randomly. However, you must supply your password with the `--mypwd` option as to validate your identity.

The organization name to be associated with the account in the local cell (`-org`) and the foreign cell (`-forg`). These organizations have no meaning for the accounts and are not associated with any users in the foreign or local cell. You must enter them because it is a requirement of the registry that all accounts be associated with organizations. If the organization does not exist, it will be created.

Creating Cross-Cell Authentication Accounts Example

The following sample `registry connect` command is used to create an account for the foreign cell identified by `/.../dresden.com`. The local account is associated with the group named `cell_group_local`, the organization named `cell_group_dres`, and the organization named `cell_org_dres`. The expiration date for the accounts is allowed to default to `none`.

```
dcecp> registry connect /.../dresden.com -facct cell_log
    -facctpw music \
    > -group cell_group_local -fgroup cell_group_dres \
    > -org cell_org_local -forg cell_org_dres -mypwd cell_admin
```

The Accounts Created by the registry connect Command

The accounts and principals that are created by the `registry connect` command are given default attribute values listed in Table 23. These attributes apply to all foreign principals when they access objects in your cell. Likewise, the attributes of the account created for your cell in the foreign cell apply to all principals in your cell when they access objects in the foreign cell.

<table>
<thead>
<tr>
<th>Information</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Principal Name</td>
<td>The local cell name for the local cell’s account, or foreign cell name for the foreign cell’s account stripped of its full pathname and prefixed with <code>krbtgt</code>.</td>
</tr>
<tr>
<td><code>fullname</code></td>
<td>The cell’s pathname.</td>
</tr>
<tr>
<td><code>quota</code></td>
<td>Set to <code>none</code>. This quota applies to all principals who use the cross-cell authentication accounts to access objects in foreign cells. For example, if you change the object creation quota to 10, the total number of objects that can be created in your cell’s registry by all foreign users who use the account to access your cell cannot exceed 10. It is not 10 per foreign principal. The object creation quota that is set for your cell’s account in the foreign cell places the same restriction on the number of objects that your cell’s principals can create in the foreign cell’s registry.</td>
</tr>
<tr>
<td>description, home, shell</td>
<td>Set to blank.</td>
</tr>
</tbody>
</table>
Table 23. Default Attribute Values of Cross-Cell Authorization Principals and Accounts (continued)

<table>
<thead>
<tr>
<th>Information</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>server</td>
<td>Set to yes; that is, the account is a server that can engage in authenticated communications.</td>
</tr>
<tr>
<td>client</td>
<td>Set to no.</td>
</tr>
<tr>
<td>pwdvalid</td>
<td>Set to yes (valid).</td>
</tr>
<tr>
<td>acctvalid</td>
<td>Set to no (not valid) unless the -acctvalid and -facctvalid options are used.</td>
</tr>
<tr>
<td>postdatedtkt</td>
<td>Set to yes; that is, the account can be issued tickets with a start time in the future.</td>
</tr>
<tr>
<td>forwardabletkt</td>
<td>Set to yes; that is, the account can be issued a new ticket-granting ticket with a network address that is different from the present ticket-granting ticket.</td>
</tr>
<tr>
<td>renewabletkt</td>
<td>Set to yes; that is, the account’s tickets can be renewed.</td>
</tr>
<tr>
<td>proxiabletkt</td>
<td>Set to yes; that is, the account can be issued tickets with a different network address than the present tickets.</td>
</tr>
<tr>
<td>dupkey</td>
<td>Set to yes; that is, the account’s ticket can have duplicate keys.</td>
</tr>
<tr>
<td>goodsince</td>
<td>Set to the date that the account was created.</td>
</tr>
<tr>
<td>maxtktlife</td>
<td>Set to the registry policy.</td>
</tr>
<tr>
<td>maxtktrenew</td>
<td>Set to the registry policy. The maxtktrenew attribute is not currently used by the DCE; any use of this option is unsupported at the present time.</td>
</tr>
</tbody>
</table>

Modifying Cross-Cell Authentication Accounts

You can change the account that is created by the registry connect command at any time using the standard dcecp account operations. However, you should be aware of the following cautions.

Never set the account’s pwdvalid attribute to no (invalid). For standard accounts, setting the attribute to no causes the user to be prompted to change the passwords at the next login. Passwords for cross-cell authentication accounts, however, are shared by the authentication services in two cells. If you change one, this synchronization is destroyed and cross-cell communications end. If you want to change the passwords that are shared by the authentication services, you must rerun the registry connect command to recreate the accounts and create the properly synchronized passwords.

Generally, do not delete the accounts or the account’s principals unless you are breaking the peer-to-peer relationship with the cell. If one of the accounts is deleted, you must run the registry connect command to recreate both accounts and restore the peer-to-peer relationship.
Chapter 34. Viewing Registry Information

Using `dcecp`, you can display information about the following security objects:
- Principals
- Groups
- Organizations
- Accounts
- The registry
- The `xattrschema` object
- ACLs
- Keytab files

The following `dcecp` operations provide these displays:
- The `catalog` command displays the names of all the specified objects.
- The `list` command displays the names of the members of the specified groups or organizations or of the specified key table.
- The `show` command displays information about a specific instance of an object.

This chapter describes how to display the operations available for all security objects except the registry object, which is described in "Chapter 36. Performing Routine Maintenance" on page 397.

Displaying Account Information

Use the `dcecp account catalog` and `account show` commands to display information about accounts. When you use the `account show` command, you must supply the name of the account’s principal to specify the account to display. You can supply multiple principal names by enclosing them in braces and separating them with spaces.

To display all accounts in the registry database in alphabetic order with names prefixed by the cell name, enter:
```
account catalog
```

To display all accounts in the registry database in alphabetic order with names not prefixed by the cell name, enter:
```
account catalog -simplename
```

To display all attributes for a named principal’s account, enter:
```
account show principal_name
```

To display all policies for a named principal’s account, enter:
```
account show principal_name -policies
```

To display all attributes and all policies for a named principal’s account, enter:
```
account show principal_name -all
```

The following example shows the `account catalog` command used without the `-simplename` option:
The following example shows the `account show` command used to display the attributes associated with the account for `mahler`:

dcecp> account show mahler
{acctvalid yes}
{client yes}
{created /.../dresden.com/cell_admin
1994-06-15-18:31:08.000+00:00I-----}
{description {}}
{dupkey no}
{expdate 1995-06-16-00:00:00.000+00:00I-----}
{forwardabletkt yes}
{goodsince 1994-06-15-18:31:05.000+00:00I-----}
{group users}
{home /}
{lastchange /.../dresden.com/cell_admin
1994-06-16-12:21:07.000+00:00I-----}
{organization users}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}
{shell {}}
{stdtgtauth yes}
dcecp>

Note that, if the policy defined for the account is not actually in effect because it is overridden by the registry policy, the policy is followed by the `effective` tag and the actual value in effect.

Displaying Group and Organization Information

Use the `dcecp group catalog`, `group show`, and `group list` commands to display information about groups and the `dcecp organization catalog`, `organization show`, and `organization list` commands to display information about organizations. When you use the `group list`, `group show`, `organization list`, and `organization show` commands, you must supply the name of the group or organization to display. You can supply multiple names by enclosing them in braces and separating them with spaces.

To display all groups or organizations in the registry database in alphabetic order with names prefixed by the cell name, enter:

```
group catalog
```
or:

organization catalog

To display all groups or organizations in the registry database in alphabetic order with names not prefixed by the cell name, enter:

`group catalog -simplename`

or:

`organization catalog -simplename`

To display all members of a specified group or organization in alphabetical order with names prefixed by the cell name, enter:

`group list group_name`

or:

`organization list organization_name`

To display all members of a specified group or organization in alphabetical order with names not prefixed by the cell name, enter:

`group list group_name -simplename`

or:

`organization list organization_name -simplename`

To display all attributes for a group or organization, enter:

`group show group_name`

or:

`organization show organization_name`

To display all extended attribute instances attached to a group or organization, enter:

`group show group_name -xattrs`

or:

`organization show organization_name -xattrs`

To display all regular attributes and all extended attributes for a group or organization, enter:

`group show group_name -all`

or:

`organization show organization_name -all`

The following example shows the `group catalog` command used without the `-simplename` option:

dcecp> group cat
/.../dresden.com/nogroup
/.../dresden.com/system
/.../dresden.com/daemon
/.../dresden.com/uucp
/.../dresden.com/bin
/.../dresden.com/kmem
/.../dresden.com/mail
/.../dresden.com/tty
The following example shows the attributes of the group named users_temporary:

dcecp> group show users_temporary
{alias no}
{gid 5211}
{uuid 0000145b-9362-21cd-a601-0000c08adf56}
{inprojlist no}
{fullname {temporary users}}
dcecp>

Note, in the preceding example, the line that says {alias no}. This indicates that the name users_temporary is the primary name, not an alias name. For an alias, this line would read {alias yes}.

The following group list command displays the members of the group symphonists:

dcecp> group list symphonists
/.../dresden.com/bach
/.../dresden.com/britten
/.../dresden.com/mahler

dcecp>

Displaying Principal Information

Use the dcecp principal catalog and principal show commands to display information about principals. When you use the principal show command, you must supply the name of the principal to display. You can supply multiple principal names by enclosing them in braces and separating them with spaces.

To display all principals in the registry database in alphabetic order with names prefixed by the cell name, enter:

principal catalog

To display all principals in the registry database in alphabetic order with names not prefixed by the cell name, enter:

principal catalog -simplename

To display all attributes for a named principal, enter:

principal show principal_name

To display all extended attribute instances attached to a principal, enter:

principal show principal_name -xattrs

To display all regular attributes and all extended attributes for a principal, enter:

principal show principal_name -all
The following example shows the principal catalog used with the -simplename option:

dcecp> principal catalog -simplename
bach
bin
brahms
britten
cell_admin
daemon
dce-ptgt
dce-rgy
mahler
nobody
root
uucp
cds-server
dcecp>

The following example shows the principal show command used to display information about the principal mahler:

dcecp> principal show /.:/mahler
{fullname {Gustav Mahler}}
{uid 30014}
{uuid 0000753e-f51f-2e0e-b000-0000c08adf56}
{alias no}
{quota unlimited}
{groups {symphonists composers}}
dcecp>

All the information listed by the principal show command is information created when the principal was added to the registry, except the line for groups. This line lists the groups in which the principal is a member.

Displaying xattrschema Information

Use the dcecp xattrschema catalog and xattrschema show commands to display information about the extended attribute types. Note that, to see instances of an extended attribute attached to a principal, use the -xattr option with the principal, group, or organization show commands.

The xattrschema catalog command displays the names of the extended attribute objects defined in a named schema. When you use this command, you must specify the name of the schema for which to display extended attributes. For the registry database, this name is /.:/sec/xattrschema. Your site must supply you with the name of the schema.

The xattrschema show command displays the attributes of named schemas in either the registry schema or a schema in use at your site. When you use this command, you must specify the name of the extended attribute type for which to display information. You can supply multiple names by enclosing them in braces and separating them with spaces.

To display the names of all attribute types in the registry database in alphabetic order with names prefixed by the cell name, enter:

xattrschema catalog /.:/sec/xattrschema

To display all attribute types in the registry database in alphabetic order not prefixed by the cell name, enter:
xattrschema catalog /.:sec/xattrschema -simplename

To display attributes in a schema other than the registry, replace
/.:sec/xattrschema with the fully specified name of the other schema.

To display the attributes of a named extended attribute type, enter:

xattrschema show attr_name

The following example lists the names of all extended attributes in the registry
prefixed by the cell name:

dcecp> xattrschema catalog /.:sec/xattrschema
/.../dresden/sec/xattrschema/pre_auth_req
/.../dresden/sec/xattrschema/pwd_val_type
/.../dresden/sec/xattrschema/pwd_mgmt_binding
/.../dresden/sec/xattrschema/X500_DN
/.../dresden/sec/xattrschema/X500_DSA_Admin
/.../dresden/sec/xattrschema/disable_time_interval
/.../dresden/sec/xattrschema/max_invalid_attempts
/.../dresden/sec/xattrschema/passwd_override
/.../dresden/sec/xattrschema/test_integer

dcecp>

The following example list the attributes of the extended registry attribute named
test_integer:

dcecp> xattrschema show /.:sec/xattrschema/test_integer
{aclmgr {principal {{query r} {update r} {test r} {delete r}}} }
{annotation {test_integer: encoding type integer}}
{applydefs yes}
{encoding integer}
{intercell reject}
{multivalued yes}
{reserved no}
{scope {}}
{trigbind {none {}}}
{trigtype none}
{unique no}
{uuid 5f439154-2af1-11cd-8ec3-080009353559}
dcecp>

Displaying ACL Information

Use the dcecp acl show commands to display ACL entries for a named object.
When you use this command, you must specify the name of the object for which to
display ACL entries. You can supply multiple names by enclosing them in braces
and separating them with spaces.

If this command is not able to determine the name of the object, it will display the
object’s UUID.

To display the ACL entries for a specified object, enter:

acl show object_name

To display the ACL’s default cell, enter:

acl show object_name -cell

To display the ACL managers supported by an object, enter:

acl show object_name -managers
The following example displays ACL entries for the object named **hosts**:

dcecp> acl show /.:/hosts
{unauthenticated r--t---}
{user cell_admin rwdtcia}
{user hosts/absolut/cds-server r wdtcia}
{user root rwdtcia}
{group subsys/dce/cds-admin rwdtcia}
{group subsys/dce/cds-server rwdtcia}
{any_other r--t---}
dcecp>

Displaying keytab Information

Use the **dcecp keytab catalog**, **keytab list**, and **keytab show** commands to display information about accounts. When you use the **keytab catalog** command, you must supply the name of the host for which to display keytab files. When you use the **keytab list** or **keytab show** command, you must supply the name of the **dced** object for which to display keytab information. You can supply multiple names to either command by enclosing them in braces and separating them with spaces.

To display the names of all keytab files on a specified host with names prefixed by the cell name, enter:

```
keytab catalog host_name
```

If you do not supply **host_name**, the display lists keytab files on the current host.

To display the names of all keytab files on a specified host with names not prefixed by the cell name, enter:

```
keytab catalog host_name -simplename
```

To display a list of all principals for which there are entries in a specified keytab file, enter:

```
keytab list file_name
```

To display all principals for which there are entries in a named keytab file, enter:

```
keytab show file_name
```

The information displayed includes only the principal name.

To display the local names of a specified key file, enter:

```
keytab show dced_object_name -entry
```

To display all entries in a key file, including the keys, enter:

```
keytab show dced_object_name -members
```

The following example shows the entries in the keytab file named **svr_3**:

dcecp> keytab show /.:/hosts/music/config/keytab/svr_3 -members
{brahms des 1}
{britten plain 3}
{mahler des 2}
dcecp>

Chapter 34. Viewing Registry Information
Chapter 35. Maintaining Policies and Properties

Registry policies are attributes that can be set registry wide. To provide a finer lever of control, policies can also be set for individual organizations and accounts. An organization’s or account’s policies can override the registry default policies if the organization’s or account’s policies are more restrictive.

Registry properties are attributes that apply to the principals, groups, and organizations created in the registry. They cannot be set for individual organizations or accounts. Properties regulate such things as the range of numbers that can be used for UNIX IDs and whether encrypted passwords are displayed.

You can set both polices and properties with the `dcecp registry modify` command. In addition, you can set policies for an individual organization or account with the `dcecp organization modify` and `dcecp account modify` commands. In all commands, policies and properties to be set are supplied as attributes in standard `dcecp` attribute lists with the `-change` option or as attribute options.

This chapter first describes policies and then properties.

Policies

You can set policies for the following:

- The registry as a whole with the `dcecp registry modify` command. The policies thus apply to all principals, groups, and organizations unless a stricter policy is set for specific organizations or accounts.
- Specific organizations with the `dcecp organization modify` command.
- Specific accounts with the `dcecp account modify` command.

There are two types of policies: standard policy and authentication policy.

Standard Policy

Standard policy regulates such things as account and password lifetimes and password format. It can be set for the registry and for specific organizations. The standard policies you can set are described in the following subsections.

Note: In addition to defining the password policies described in this section, you can exert additional control in such areas as password formats, password generation, invalid login handling, and expired password handling by attaching ERAs to principals. See "Chapter 30. Creating and Maintaining Principals, Groups, and Organizations" on page 319 for more information.

Account Lifespan

The account lifespan that you set determines the period during which the accounts for a specific organization or the registry as a whole are valid. After the period of time passes, the accounts become invalid and must be recreated.

You define the account lifespan as the `dcecp acctlife` attribute in the following form:

`acctlife {time | unlimited}`
where *time* is a number that indicates the number of days the account is valid, and *
unlimited* specifies an unlimited lifespan.

An account's lifespan is also controlled by the account expiration date (**expdate** attribute) that you set when you use the **dcecp account create** or **account modify** command to create or change an account. If you set an account expiration date that is in conflict with the account lifespan policy, the stricter setting applies. For example, if you set the standard policy account lifespan to 40 days, and then you set an account expiration date to the next day, the account expires on the next day because that is the stricter setting.

Note: You can control the validity of accounts at a more immediate level by using the **dcecp account modify** command to mark the accounts as invalid (**acctvalid** attribute).

Password Lifespan

The password lifespan specifies the period of time before account passwords for a specific organization or the registry as a whole expire.

Generally, DCE security disables login for users whose passwords have expired. It is possible, however, to override this policy for a user such as **cell_admin**, in order to prevent the cell administrator from being locked out of the system by an expired password. You do this by attaching an instance of the **passwd_override ERA** to the principal. See [Chapter 30. Creating and Maintaining Principals, Groups, and Organizations](#) on page **319** for information on how to do this.

You define the password lifespan as the **dcecp pwdlife** attribute in the following form:

```
pwdlife {time | unlimited}
```

where *time* is a number that indicates the number of days the password is valid, and *
unlimited* specifies an unlimited lifespan.

You can also set the exact date passwords expire by using the password expiration date policy (**pwdexpdate** attribute).

Password Expiration Date

The password expiration date sets the exact date on which account passwords for a specific organization or for the registry as a whole expire.

Generally, DCE security disables login for users whose passwords have expired. It is possible, however, to override this policy for a user such as **cell_admin** in order to prevent the cell administrator from being locked out of the system by an expired password. You do this by attaching an instance of the **passwd_override ERA** to the principal. See [Chapter 30. Creating and Maintaining Principals, Groups, and Organizations](#) on page **319** for information on how to do this.

You define the password expiration date as the **dcecp pwdexpdate** attribute in the following form:

```
pwdexpdate {date | none}
```

where *date* is the date the password expires in **yyyy-mm-dd** format, and **none** specifies that the password has no expiration date.
You can also set a period of time after which a password expires with the password lifespan policy (pwdlife attribute).

Password Format

The password format policies apply to a specific organization or the registry as a whole. They determine the following:

- The minimum length of passwords, defined by the `dcecp registry modify pwdminlen` attribute in the form:

  ```
  pwdminlen integer
  ```

 Passwords cannot consist of fewer characters than the number you enter for integer. If you specify 0 (zero), no minimum length is in effect.

- Whether or not passwords can consist entirely of spaces, defined by the `dcecp pwdspaces` attribute in the form:

  ```
  pwdspaces {yes | no}
  ```

 If you specify no, passwords cannot consist of all spaces.

- Whether or not a password can consist entirely of alphanumeric characters, defined by the `dcecp pwdalpha` attribute in the form:

  ```
  pwdalpha {yes | no}
  ```

 If you specify no, passwords must contain at least one non-alphanumeric character.

Note: You can exert additional control over password formats by attaching ERAs to principals. For information on how to do this, see "Chapter 30. Creating and Maintaining Principals, Groups, and Organizations" on page 319.

Authentication Policy

Authentication policy regulates ticket lifetimes. You can set authentication policy for the registry as a whole, using the `dcecp registry modify` command, and for individual accounts by using the `dcecp account modify` command. The authentication policies you can set are described in the following subsections.

Note: Be aware that, in addition to the authentication policies described in this section, you can also control preauthentication policy for a principal by attaching an instance of the pre_auth_req ERA to the principal. See "Chapter 30. Creating and Maintaining Principals, Groups, and Organizations" on page 319 for a general discussion of preauthentication and information on preauthentication administration.

Maximum Ticket Renewable Time

Note: Renewable ticket functionality is not currently used by DCE RPC when refreshing service tickets. However, it is supported by the DCE Security Server and is useful for Kerberos V5 applications that use the DCE Security Server as a KDC.

The maximum ticket renewable time (maxtktrenew attribute) that you set determines the maximum amount of time in hours before a principal’s ticket-granting ticket expires and the time the principal must log in again to reauthenticate and obtain another ticket-granting ticket. The shorter you make the maximum ticket...
renewable time, the greater the security of the system. However, since users must log in again to renew their ticket-granting ticket, the time needs to take into consideration user convenience and the level of security that your cell requires.

You define maximum ticket renewable time with the `dcecp maxkttrenew` attribute in the following form:

```
maxkttrenew hours
```

where `hours` is a number that indicates the number of hours before a principal’s ticket-granting ticket expires.

Note that you can set this time for individual accounts by using the `account modify` command.

Maximum Ticket Lifetime

The maximum ticket lifetime (`maxktlife` attribute) is the maximum amount of time in hours that a ticket issued to a principal is valid. When a client requests a ticket to a server, the lifetime that is granted to the ticket takes into account the maximum ticket lifetime that is set for both the server and the client. The lifetime that is granted will not exceed the shorter of the server’s and client’s maximum ticket lifetime.

You define maximum ticket lifetime with the `dcecp maxktlife` attribute in the following form:

```
maxktlife hours
```

where `hours` is a number that indicates the number of hours that a ticket issued to a principal is valid.

The shorter you make the maximum ticket lifetime, the greater the security of the system. However, extremely frequent renewal can cause processing overhead. The maximum ticket lifetime that you set needs to take into consideration system performance and the level of security that you require.

Note that you can set this time for individual accounts by using the `account modify` command.

Handling Conflicting Policies

Different standard and authentication policies can be in effect for the registry as a whole and for individual organizations (for standard policy) and accounts (for authentication policy). If the policy that is set for the registry as a whole differs from the policy that is set for an individual organization or account, the stricter policy applies. For example, suppose registry policy specifies a minimum password length of six characters and policy for the organization named `classic` specifies eight characters. If you create the account `bach cantata classic`, the stricter policy (in this case, the organization policy) applies, and the account password must be at least eight characters long. Table 24 lists the stricter policy for each policy type.

<table>
<thead>
<tr>
<th>For This Type of Policy...</th>
<th>This Is the Stricter Policy...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password expiration date</td>
<td>The shorter expiration period.</td>
</tr>
<tr>
<td>Password lifespan</td>
<td>The shorter lifespan.</td>
</tr>
</tbody>
</table>

Table 24. Stricter Standard Policies
Table 24. Stricter Standard Policies (continued)

<table>
<thead>
<tr>
<th>For This Type of Policy...</th>
<th>This Is the Stricter Policy...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account lifespan</td>
<td>The shorter lifespan.</td>
</tr>
<tr>
<td>Password length</td>
<td>The greater length.</td>
</tr>
<tr>
<td>Password consisting of all spaces</td>
<td>The password cannot consist of all spaces; it must include some characters</td>
</tr>
<tr>
<td>Password consisting of all alphanumerics</td>
<td>The password cannot consist of all alphanumerics; it must include some nonalphanumeric characters</td>
</tr>
<tr>
<td>Maximum ticket renewable</td>
<td>The shorter time (Note: Renewable ticket functionality is not currently used by DCE RPC when refreshing service tickets. However, it is supported by the DCE Security Server and is useful for Kerberos V5 applications that use the DCE Security Server as a KDC.)</td>
</tr>
<tr>
<td>Maximum ticket lifetime</td>
<td>The shorter time.</td>
</tr>
</tbody>
</table>

When the registry is created, standard policies are by default at their most permissive state; that is, the password expiration date is none, password and account lifespans are unlimited, the minimum password length is 0, and passwords can consist of all spaces and all alphanumerics. The maximum ticket lifetime is set to 10 hours. (Maximum ticket renewable is not currently used.) To implement stricter policies, you must use the registry modify command.

The Effects of Changes on Existing Policies

Except for the password format policies described in "Password Format" on page 391, policy changes affect all existing accounts and all accounts that you create after the change.

Changes to password format policies, such as password length, whether passwords can consist of all spaces, and whether passwords can consist of all alphanumerics characters, affect only passwords for those accounts that are created after the policy is changed. The changes have no effect on existing passwords. For example, if you change the minimum password length policy to enforce a longer length password, existing passwords that are shorter than the length specified by the new policy are unaffected. They do not need to be changed, but any new passwords that are created must adhere to the new policy. However, the next time you change an existing password, the longer length policy is enforced.

Displaying and Setting Standard and Authentication Policies

To display policy:
- For the registry as a whole, use the dcecp registry show command with the -policies option.
- For an individual organization or account, use the dcecp organization show command with the -policies option (for standard policies) or the dcecp account show command with the -policies option (for authentication policies).

To set policy:
For the registry as a whole, use the `dcecp registry modify` command. The following sample command uses the `pwdlife` option to set the password lifespan policy for the registry as a whole to 180 days:

```
dcecp> registry modify -pwdlife 180
```

For an individual organization or account, use the `dcecp organization modify` command for standard policies or the `dcecp account modify` command for authentication policies. The following sample command uses the `-pwdlife` attribute option to set the password lifespan policy for the organization `classic` to `unlimited`:

```
dcecp> organization modify classic -pwdlife unlimited
```

Note that the previous examples all use attribute options. You can also set policy by using the `dcecp registry modify`, `dcecp account modify`, and `dcecp organization modify` commands with the `-change` option and attribute lists. For example, to use an attribute list to set the password lifespan policy for the organization `classic` to `unlimited`, the command would be as follows:

```
dcecp> organization modify classic -change {pwdlife unlimited}
```

Properties

The `dcecp registry modify` command sets properties for the registry as a whole. The properties that you can set are described in the following subsections.

Default Ticket Lifetime Property

The default ticket lifetime is the default lifetime in hours for tickets that are issued to principals in the registry.

You set default ticket lifetimes with the `dcecp deftktlife` attribute in the following form:

```
deftktlife hours
```

where `hours` a number indicating the number of hours in the lifetime.

Hidden Password Property

The hidden password property determines whether encrypted passwords are displayed or not. You set the hidden password property with the `dcecp hidepwd` attribute in the following form:

```
hidepwd {yes | no}
```

where `yes` displays an * (asterisk) in place of the encrypted password in command output and in files where passwords are displayed, and `no` displays the hidden password.

Minimum Group ID Property

The minimum group ID property is the starting point for group IDs that are automatically generated by the DCE Security Service when a group’s account is
added to the registry. (You can explicitly enter a lower group ID than this number; it applies only to automatically generated numbers.)

You set the minimum group ID property with the\textit{dcecp mingid} attribute in the following form:

\texttt{mingid integer}

where \textit{integer} is the starting ID number.

Minimum Organization ID Property

The minimum organization ID property is the starting point for organization IDs that are automatically generated by the security service when an organization's account is added to the registry. (You can explicitly enter a lower organization ID than this number; it applies only to automatically generated numbers.)

You set the minimum organization ID property with the\textit{dcecp minorgid} attribute in the following form:

\texttt{minorgid integer}

where \textit{integer} is the starting ID number.

Minimum UNIX ID Property

The minimum UNIX ID property is the starting point for UNIX IDs that are automatically generated by the security service when a principal's account is added to the registry. (You can explicitly enter a lower UNIX ID than this number; it applies only to automatically generated numbers.)

You set the minimum organization ID property with the\textit{dcecp minuid} attribute in the following form:

\texttt{minuid integer}

where \textit{integer} is the starting ID number.

Maximum UNIX ID Property

The maximum UNIX ID property (\textit{maxuid} attribute) lets you set the highest number that can be supplied as a UNIX ID when the accounts for principals are created. This maximum applies to both the system-generated and user-entered UNIX IDs.

You set the maximum UNIX ID property with the\textit{dcecp maxuid} attribute in the following form:

\texttt{maxuid integer}

where \textit{integer} is the starting UNIX ID.

Minimum Ticket Lifetime Property

The minimum ticket lifetime is the minimum amount of time in minutes before the principal's ticket must be renewed. This renewal is performed automatically with no intervention on the part of the user. The shorter you make the minimum ticket lifetime, the greater the security of the system. However, extremely frequent
renewal can degrade system performance. The minimum ticket lifetime that you set needs to take into consideration system performance and the level of security that your cell requires.

You set the minimum ticket lifetime with the `dcecp mintktlife` attribute in the following form:

```
mintktlife integer
```

where `integer` is a number that indicates the number of minutes in the minimum ticket lifetime.

The minimum ticket lifetime can be set only as a registry property. It cannot be set for individual accounts. (Contrast this with the maximum ticket lifetime property, which is set with the `dcecp registry modify` or `account modify` commands.)

Displaying and Setting Properties

To display registry properties, use the `dcecp registry show` command.

To set registry properties, use the `dcecp registry modify` command. The following sample command uses the `maxuid` option to change the the maximum UNIX ID property to 67899:

```
dcecp> registry modify -maxuid 67899
```

Note that the previous example uses an attribute option. You can also set properties by using the `dcecp registry modify` command with the `-change` option and attribute lists. For example, to use an attribute list to set the maximum UNIX ID property to 67899, the command would be

```
dcecp> registry modify -change {maxuid 67899}
```
Chapter 36. Performing Routine Maintenance

This chapter describes security maintenance procedures that should be performed on a regular basis, such as:

- Adding new users to the registry
- Creating overrides for individual machines
- Changing the master key
- Backing up and restoring the database
- Updating the `/etc/passwd` and `/etc/group` files so that they are consistent with the registry

Adding Accounts

To add new user accounts to the registry, you must have the appropriate permissions to the registry (see "Chapter 42. Accessing Registry Objects" on page 455). Once you have the appropriate permissions, you can proceed as follows to add accounts:

1. If the principal to be used in the account does not already exist, execute the `principal create` command to add the principal.
2. Execute the `group create` command to add the group to be used in the account if this group does not already exist.
3. Execute the `organization create` command to add the organization to be used in the account if this organization does not already exist.
4. Finally, execute the `account create` command to add the account.

Overriding Entries in the Local Registry

You can override registry entries for local machines. By using overrides, you can, for example, prevent individuals and groups from logging into a particular machine, establish local root passwords, and tailor local user environments. The override information is in effect for the local machine only and has no effect on the account information that is stored in the registry.

The override mechanism provides a high level of local autonomy and allows individual users to control their own machines. For example, an administrator who is responsible for a group of machines can use the override facility to restrict access to those machines. The administrator can allow access to specific groups, or the administrator can allow access to everyone except specific groups or principals.

How Overrides Work

The `passwd_override` administrative file that is stored in the local machine's `/opt/dcelocal/etc/group_override` directory contains override information. By using this file, you can enter overrides for the following:

- Passwords
- GECOS information
- Home directories
- Login shells
- Group memberships
UNIX IDs for principals

The override information that you enter is in effect only for the local machine, which is the machine on which the `passwd_override` file is stored. When a user logs into a machine with an override file, any information for the user’s account in the override file replaces the pertinent information obtained from the registry.

For example, assume that the registry account for `bach` specifies a Korn shell at login. Since `bach` normally logs into a machine that can run a Korn shell, this is fine for a majority of situations. However, `bach` occasionally works for another department and logs into a machine that cannot run a Korn shell. To accommodate `bach`’s needs, you can create an override file on the machine that cannot run the Korn shell. The override can specify a Bourne login shell. Then, if `bach` logs into the machine that can run a Korn shell, registry data is used and a Korn shell is invoked. When `bach` logs into the machine that cannot run a Korn shell, override data is used and a Bourne shell is invoked.

The `passwd_override` File Format

Entries in the `passwd_override` file have the following format:

```
principal_name:passwd:principal_uid:group_uid:GECOS:home_dir:shell
```

where:

`principal_name`
A keyfield that contains a principal name that identifies the principal to whose account the override applies. Enter `principal_name` to apply the override only to the account for the principal’s primary name and not to any accounts for the principal’s aliases.

You must enter one of the keyfields (`principal_name`, `principal_uid`, or `group_uid`) to identify the account(s) to which the override applies.

`passwd`
The encrypted password. If you specify an override, the password that you enter here is in effect for this local machine only.

You can also specify `OMIT` in the `passwd` field to disallow login on the local machine. The use of `OMIT` in conjunction with an option to the `passwd_export` command prevents the inclusion of the user in the password file created by `passwd_export`. (See "Omitting Users from the Local Password Files" on page 402.)

`principal_uid`
The `principal_uid` field, which contains a UNIX ID that specifies the local identity of a principal, can function as a keyfield when the `principal_name` keyfield is not entered, or as a field containing an override when entered in conjunction with `principal_name`.

Enter `principal_uid` and not `principal_name` when you want to apply the overrides to all of a principal’s accounts, including any accounts for the principal’s aliases. The `principal_uid` keyfield is especially useful for overrides to `root`. For example, if `root` has an alias of `virtuoso`, an override that is keyed by principal name applies only when root logs in as `root`. An override that is keyed by root’s `principal_uid` applies when root logs in as `root`, as `virtuoso`, and under any other alias.
Enter principal_uid and principal_name to override the UNIX ID of the named principal.

`group_uid`

The `group_uid` field, which contains a group UNIX ID, can function as a keyfield when no other keyfields are entered, or as a field containing an override when entered in conjunction with principal_name or principal_uid.

Enter group_uid and no other keyfield (principal_name or principal_uid) to apply the override to all members of the group that is identified by group_uid. In this instance, the group_uid field functions as a keyfield, identifying the accounts to which to apply the overrides; that is, accounts whose principal is a member of the specified group.

Enter group_uid and principal_name to change the group of the principal that is identified by principal_name to the group that is identified by group_uid. The change applies only to the account for the principal's primary name, not to any accounts for the principal's aliases. Enter group_uid and principal_uid to apply the group override to all of the principal's accounts, including any for the principal's aliases. In these instances, the group_uid field functions as a field that supplies override information, not as a keyfield.

`GECOS`

The account's GECOS field. If you specify an override, it is reflected in the information that is displayed by the UNIX `finger` command.

`home_dir`

The account's home directory. If you specify an override, the directory that you specify is the account's home directory on this machine only.

`shell`

The shell that is invoked when the account logs in. If you specify an override, the shell that you specify is invoked at login to this machine.

The group_override File Format

This section explains the `group_override` file.

Description

The `/opt/dcelocal/etc/group_override` administrative file lets you override the UNIX group ID for a group similar to the way in which the `passwd_override` file permits overriding information in the network registry database.

The `group_override` file is stored on each machine. Any changes you make to it are in effect for the local machine only; they have no effect on the centralized registry. You might find working with file `group_override` especially useful in overriding the default group definitions supplied with the registry if they do not match your local UNIX system.

File Format

The format of the entries in file `group_override` is similar to the format of the entries in the UNIX `group` file. This format is:

```
group_name:passwd:group_uid:members
```

In this entry, `group_name` and `group_uid` are keyfields. You must enter one to identify the group to which the override applies. The keyfield is used to perform a lookup in the override file when you use the `passwd_export` command. The lookup
is performed in order as the entries are specified in an override file: first by group
name, then by group UNIX ID. If you specify both keyfields in an override entry, the
group name is used as the lookup key; subsequent fields are used as overrides.

Field Descriptions

The following list describes each entry in the file group_override:

group_name
A keyfield that contains the name that identifies the group to which the
override applies.

passwd
This field specifies the encrypted password. If you specify an override in
this field, the password you enter is in effect for this local machine only.

The use of OMIT along with an option to the passwd_export command
prevents the inclusion of this group in the group file created by the
passwd_export command. This effectively disallows newgrp commands to
this group on the local machine. (See Using OMIT for details.)

group_uid
A UNIX group ID. This field can function as a keyfield when no other
keyfields are entered. It can also function as a field containing an override
when entered along with group_name. The group_uid value specifies the
local override of the group ID supplied by the network registry server.

members
This field specifies a comma-separated list of members of the group. The
contents of this field will override information in the registry when the
passwd_export command creates an /etc/group file. Note that, to specify
a null membership, as opposed to indicating that no override is required,
use an * (asterisk) for this field.

Leaving Fields Blank

If you do not want to override an item, leave its field blank, separating each blank
field with a : (colon). Note that, to override a group with a null membership list,
enter an asterisk for the members field.

Using OMIT

If you specify OMIT and issue a passwd_export command with the -x option, then
the named group will not appear in the /etc/group file produced by the
passwd_export command. Subsequent to this, users will not be able to issue a
newgrp command to this group on the local machine.

The ls command is likewise affected. For example, the following command
accesses the group file to obtain additional information about a group:

ls -lg

If the group is omitted, no group entry will exist and no information will be available.
For this reason, you should use OMIT to omit groups from file /etc/group only if
your user community is very large and either of the following conditions occur:

• The group file is taking up too much space.
• Group ID-to-name mapping is too slow (during an ls -lg command, for example).
Examples

To override the group ID of group kmem to be 3, use the following entry:

kmem::3:

To override the group password and membership for group system to the single account root, use the following entry:

system:*::root

Creating Override File Entries

To create override file entries, edit the passwd_override file and supply the override entries. The entry must identify the account (or accounts) to which the override applies by specifying one of the following keyfields:

principal_name
The name of the specific principal to which to apply the overrides. The override applies only to the account for the principal's primary name. For example, if you specify mahler as the principal name in an override entry, the overrides apply only to principal mahler's account, and not to any accounts for mahler's aliases.

principal_uid
A UNIX ID that identifies the accounts to which to apply the override if principal_name is not specified. The override is applied to all accounts for the principal that is identified by principal_uid, including any accounts for the principal's aliases. For example, suppose that principal mahler has a UNIX ID of 2195. If you specify 2195 as the key of the entry, the overrides apply to all accounts that are associated with that UNIX ID. Because a principal's primary name and aliases carry the same UNIX ID, this means that the overrides apply to accounts for the principal's primary name and all aliases.

group_uid
A UNIX ID that identifies the group to which to apply the overrides if neither principal_name nor principal_uid are specified. The overrides are applied to all accounts for all principals that are members of the identified group.

The principal_name field always acts as the keyfield and cannot be overridden. If you enter principal_name, it identifies the specific account to be overridden. The principal_uid or the group_uid field can act as the keyfield or they can act as override fields. Only one of the possible keyfields is used as a key for any one entry; the others (if entered) are used as override fields. The principal_name field takes precedence, followed by principal_uid, and finally group_uid.

For example, if you enter principal_uid and do not enter principal_name, principal_uid is used as the keyfield. If you enter principal_uid and principal_name, principal_name is used as the keyfield and principal_uid is used as an override field.

If you enter the group_uid field and do not, enter any other keyfields (principal_name or principal_uid), group_uid is used as the keyfield, and the overrides apply to the accounts of all members of the group. If you enter principal_name and group_uid, principal_name is used as the keyfield, and the group affiliation of the named principal is overridden by the group that is identified by the group UNIX ID.
Leaving passwd_override File Fields Blank

If you do not want to override an item in the passwd_override file, leave its field blank, separating each blank field with a : (colon). You must enter one of the keyfields, however, to identify the principal or group for which you are creating overrides. For example, an entry to override the home directory for the account identified by mozart looks like this:

mozart::::::/aria/wolfgang:

You must enter the colons that are associated with any blank trailing fields. In the preceding example, a colon is required for the shell field, which is the remaining field after the home directory field.

Specifying Passwords for a Specific Machine

Manually edit the password entry in the passwd_override file on the local machine to create an entry in the override file to override passwords on the local machine. The password that you enter must be encrypted, but you can copy the encrypted password from the /etc/passwd file or you can write a program that generates encrypted passwords.

When you override a principal's password, only the principal's local credentials are obtained at login, not the principal's network credentials. Without network credentials, the principal cannot access the network registry and obtain the information that is normally provided at network login. Therefore, you must supply all of this information in the password_override file entry. For overrides to passwords, you must enter all of the fields in the override entry, including all keyfields.

The following example shows a passwd_override file entry that changes a specific machine’s password for user mozart’s account:

mozart:sq1Rc1Urrb1L6:678:893:Wolfgang A. Mozart:/aria/wolfgang:/bin/csh

Note: If your password is overridden and you then use rlogin or rsh to log in remotely to the machine with the overrides, you are prompted for a password, regardless of what is in either the /etc/hosts.equiv or .rhosts file.

Preventing Login to a Machine

To prevent users from logging into a machine, create an override entry with an invalid string in the passwd field. Because the passwd field contains an encrypted password, any character string that is not exactly 13 characters in length can be used as an invalid password. For example, the following entry in the passwd_override file supplies exclude as a password. This string of less than 13 characters prevents members of the group that is identified by a UNIX ID of 25 from logging in.

:exclude::25:::

Omitting Users from the Local Password Files

An invalid password entry in the passwd_override file prohibits users from logging into the machine on which the file exists. However, the invalid entry OMIT has a special meaning. Just as with any other invalid password, if you enter OMIT, the user cannot log in. Additionally, however, if you maintain the standard /etc/passwd
and `/etc/group` files and used the `passwd_export` command to keep these files consistent with the registry database, you can specify that users with a password of OMIT be excluded from the `/etc/passwd` file. (See “Ensuring Consistent Local Files” on page 407 for more information on the `passwd_export` command.)

Also, be aware that, if you have omitted users from the `/etc/passwd` file, information about those users is not available to any programs that use the password file. For example, the `ls -l` and the `finger` commands both access the password file to obtain further information about a user identified by a UNIX ID. If the user is omitted, no password entry exists and no information is available on that user.

Specifying a Home Directory and Login Shell for a Machine

To change an account’s home directory and login shell for a specific machine, create an override entry with a home directory name and a login shell name. For example, the following entry changes the home directory and login shell for user `mozart`'s account:

```
mozart:::rondo/mozart:/bin/ksh
```

Overriding a Principal’s Group Affiliation

To override a principal’s group affiliation, create an override entry that contains the principal's name or UNIX ID as a key and the UNIX ID of the group that is to be used as the override. Use the principal’s name as a key to apply the overrides only to the account for the principal’s primary name. Use the principal’s UNIX ID as a key to apply the overrides to all of the principal’s accounts, including any accounts for the principal’s aliases. For example, the following entry overrides the group that is normally associated with the account for principal `mozart`:

```
mozart:::356:::
```

This override does not apply to any accounts for any of `mozart`'s aliases. To apply the overrides to those accounts, the entry must be keyed by `mozart`’s UNIX ID (567), as follows:

```
::567:356:::
```

Applying Overrides to All Members of a Group

To apply overrides to all members of a specific group, create an override entry that contains the group’s UNIX ID as a key and the items to override. For groups, you can override passwords, GECOS information, home directories, and shells. For example, the following entry makes `/sonata/piano` the home directory for all members of the group that is identified by UNIX ID 356:

```
::356::/sonata/piano:
```

Be sure not to include the `principal_name` or `principal_uid` keyfields. If you do, the principal name or UNIX ID that you supply will be used as a keyfield, and the group UNIX ID will be used to override that principal’s group affiliations.
How passwd_override Handles Multiple Override Entries

When more than one override entry applies to an account, the entry with the most specific account identifier (that is, either a principal UNIX ID, a group UNIX ID, or a principal name) is selected. Principal names are the most specific, followed by the principal UNIX ID and group UNIX ID.

For example, assume that the override file contains the following two entries that override the login shells:

mozart::::::/bin/ksh
:::25:::/bin/csh

If a principal logs in as mozart, the override that is keyed by mozart is in effect. In this case, the principal (mozart) is more specific than the group (25).

Changing the Registry’s Master Key

All passwords stored in a registry are encrypted by a master key. Note that the master key is created when you create the registry database during system configuration.

You can use the dcecp registry modify command with the -key option to change the registry’s master key and to reencrypt all passwords with the new master key. Each replica (master and slave) maintains its own master key to access the data in its copy of the registry.

You should change each replica’s master key on a regular basis. Before you run either program to do this, ensure that you are logged into an administrative account.

The following command line changes the master key and reencrypts all the passwords for the replica art_server_1:

dcecp> registry modify /.../giverny.com/subsys/dce/sec/art_server_1 -key

dcecp>

Validating the Authenticity of the DCE Security Service

The secval process within the DCE daemon can confirm that the DCE security server is an authentic server. An illegitimate DCE security server could give a malicious user root access on a machine by returning a counterfeit local system identity. A secval ping operation confirms the authenticity of the DCE security server by performing an authenticated RPC to the secval process. A successful return (1) indicates that the security server used all of the correct passwords needed for the authenticated RPC to succeed.

You can perform a secval ping operation on the local host or you can supply an argument to operate on a remote host. Because remote hosts might use different security servers, performing secval ping operations on remote hosts provides a way to test the authenticity of other security servers operating in a cell.

The following example illustrates a secval ping operation to the secval process on remote host charon:

dcecp> secval ping /.:/hosts/charon/config/secval
1
dcecp>
Backing Up and Restoring the Registry Database

Use the exact procedures that are described here to back up the registry database to prevent backups from arriving at the master during the backup.

Only the master replica database and its master key file need to be backed up. Use the procedures that are described in the following subsections when you back up the entire disk on which the master replica and its master key are stored, and when you back up only the master's database files and its master key file.

Procedures for Backing Up the Registry Database

To run the backup procedures, ensure that you are logged into DCE via an administrative account. Then, run the DCE control program to do the backup. The backup steps are as follows:

1. Enter the `registry disable` command to set the master replica to the maintenance state. The following command sets the master registry in the cell `giverny.com` to maintenance state:

   ```
   dcecp> registry disable /.../giverny.com/subsys/dce/sec/oddball
   dcecp>
   ```

 Setting the master replica to the maintenance state causes the master to save its database to disk and refuse all updates.

2. Back up the master registry by backing up either the entire volume or the `dcelocal/var/security/rgy_data` tree (the registry) and the `dcelocal/var/security/.mkey` file, which is the file that contains the master key used to encrypt all keys in the registry. Note that, because the `dcelocal/var/security/.mkey` file contains the master key, restoring a backup of the registry database is useless unless the `dcelocal/var/security/.mkey` file is also restored.

 The exact commands that are used for the backup are a matter of personal preference. However, if you write both the database and the master key file to the same tape, store the tape in a locked area with restricted access. Alternatively, you can write the database and the key file to separate tapes and store each tape in a different location.

3. When the backup completes, take the master replica out of maintenance state, as follows:

   ```
   dcecp> registry enable /.../giverny.com/subsys/dce/sec/oddball
   dcecp>
   ```

 The security server resumes accepting updates.

Note that the previous examples supplied the name of the registry master site to the `registry enable` and `registry disable` commands. If you do not supply a registry site name, the commands use the site named in the `_s(sec)` variable. If this variable is not set, the commands use the master registry of the machine's default cell. See "Setting the `_s(sec)` Variable" on page 406 for more information.

Procedure for Restoring the Registry Database

This section provides instructions for restoring the master replica's database files and master key file. The procedure assumes that the database is being restored to the same machine from which it was backed up, and that you are using the DCE
control program. If you are moving the database to a different machine, follow the instructions in Chapter 37, Handling Network Reconfigurations on page 409.

To restore the registry database to a machine, perform the following steps:

1. Log in as root at the master registry site.
2. If secd is running, stop it by issuing the registry stop command. When you use this command, you must supply the fully qualified name of a specific replica as an argument. The following sample command stops the secd named oddball:

 dcecp> registry stop /.../giverny.com/subsys/dce/sec/oddball

 dcecp>

3. Copy the backup files from the backup media to the machine. If you have backed up only the registry data files and the master key files, be sure to copy the registry database to dcelocal/var/security/rgy_data and the master key file to dcelocal/var/security/.mkey. Note that, because the dcelocal/var/security/.mkey file contains the master key, restoring a backup of the registry database is useless unless the dcelocal/var/security/.mkey file is also restored.

4. Restart the server by invoking secd with the -restore_master option, as follows:

 dcelocal/bin/secd -restore_master&

 This command starts secd and causes the master to mark all slaves to be reinitialized.

5. Verify that secd starts automatically at system startup.

 Note: If you are restoring only a master key file and have not changed the master key, you can simply copy the master key file from the backup media without performing all of the other steps that are in the restore procedures.

Setting the _s(sec) Variable

You can supply the name of the registry site to bind to as an argument to the dcecp commands that operate on the registry. If you do not supply a name, the command binds to the replica named in the _s(sec) variable. If this variable is not set, the command binds to the cell’s master replica. You can set the _s(sec) variable and then use that replica as the default replica for dcecp registry commands. To do so, use the set command as shown in the following sample that sets the default replica to the master replica (named slave_3) in the cell giverny.com:

 dcecp> set _s(sec) /.../giverny.com/subsys/dce/sec/slave_3

 dcecp>

 The name of the new default replica that you supply as an argument to the set command can be in any of the following forms:

 - A cell name (for example, /.../dresden.com)

 If you enter a cell name, the named cell becomes the default cell. The DCE control program randomly chooses a replica to bind to in the named cell, and that replica becomes the default replica.

 - The global name given to the replica when it was created (for example, /.../dresden.com/subsys/dce/sec/rs_server_250_2)

 A global name identifies a specific replica in a specific cell. That cell becomes the default cell, and that replica becomes the default replica.
• The replica’s name as it appears on the replica list of the current default replica (that is, its cell-relative name; for example, subsys/dce/sec/rs_server_250_2)
 That replica becomes the default replica, and the cell in which the replica exists becomes the default cell.
• The network address of the host on which the replica is running (for example, ncadg_ip_udp:15.22.144.248)
 The replica on that host becomes the default replica, and the cell in which the host exists becomes the default cell.

Some of the dcecp commands can act only on the master replica and thus require binding to the master. If you execute a command that acts only on the master and the master is not the default replica, in most cases dcecp automatically attempts to bind to the master replica in the current default cell. In other cases, dcecp displays an error message, and the command fails.

Ensuring Consistent Local Files

The passwd_export command makes the standard /etc/passwd and /etc/group files on the local machine consistent with the registry database. Run the passwd_export command on a regular, but staggered, basis preferably as part of cron processing. If passwd_export succeeds in creating the new password and group files, it saves the current files as backups that are named passwd.bak and group.bak. If it fails, it leaves the current files as is.

The passwd_export command has the following syntax:

 passwd_export [-n] [-d directory_name] [-x] [-m max_entries] [-s] | [-h [elp] [-v]]

where:

- **-n** Specifies that passwd_override and group_override file entries should be ignored. Without this flag, passwd_export applies the override entries from both files to the local password and group files that it creates.

- **-d directory_name**
 Specifies the name of a directory in which to store the local password and group files that are created by passwd_export. If you do not enter this option, the files are stored by default in the /etc directory on the local node.

 For example, to store the files in the directory that is called /etc/locals, enter the command in the following form:

 dceshared/bin/passwd_export -d/etc/locals

- **-x** Prohibits the creation of entries for users with password or group overrides (on the local machine) that specify OMIT as their encrypted password. Use the -x option to exclude omitted users or groups from the password and group files that are created by passwd_export. To omit a user, you must create an override entry for the user and enter the word OMIT as the user’s password field entry. Omitted users are unable to log into the local machine. (See “Omitting Users from the Local Password Files” on page 402.) To omit a group, create an override entry for the group and enter the word OMIT as the group’s password field entry.

- **-m max_entries**
 Sets the maximum number of registry entries that are put in the /etc/passwd and /etc/group files.
-s Sorts the entries in the /etc/passwd and /etc/group files by UNIX number. If this option is not specified, the entries are in the random order in which they are retrieved from the registry.

-h[elp] Displays help information.

-v Runs in verbose mode.
Chapter 37. Handling Network Reconfigurations

This chapter describes the procedures to handle network reconfigurations that change the locations of registry replicas. Specifically, this chapter covers the following:

- Changing the master registry site
- Removing a node from the network
- Handling network address changes

To perform the procedures in this chapter, you must be logged into the network registry account via an administrative account.

Changing the Master Replica Site

The machine that runs the master replica server must be available at all times. If you are planning to remove this machine from your network or to shut it down for an extended period, you need to change the site of the master replica.

The preferred method for changing the master registry site is to use the `dcecp registry designate` command to reverse the roles of the master server and a slave server. In other words, make the master the slave and the slave the master. For more information, see 439.

When you invoke the `dcecp registry designate` command, the following occurs:

1. The current master sends all pending updates and its propagation queue to the replica designated as the new master.
2. The designated new master reads the current master’s replica list to obtain information required for it to manage propagation to the slaves.
3. When the designated new master has obtained all necessary information from the current master, it becomes the new master, and the current master becomes a slave.

Because this orderly and complete transfer of information ensures that no data is lost, the `dcecp registry designate` command is the preferred method to move the master registry to another machine when the registry servers at the master and slave sites are operating normally. Note that the `dcecp registry designate -master` command is also available to change a replica from a slave to the master. However, because the `dcecp registry designate -master` command can cause data to be lost, use it only when the current master has been destroyed. It is not recommended in instances when the master is unreachable because of a network failure or because the master has gone down temporarily. For more information on how to designate a new master security replica when the current master has failed or been destroyed, please refer to "Designating a New Master Replica When the Current Master Replica Has Failed" on page 439 of this guide.

Follow these steps to change the site of a master replica:

1. Choose the new master site. A slave replica must exist at this site. If necessary, use the `dce_config` command or your platform’s equivalent to configure a slave machine.
2. Issue the Tcl `set` command to set the default replica to the current master replica. In the following example, the master replica is set to the replica named `oddball` in the cell `giverny.com`:

© Copyright IBM Corp. 1997
3. Issue the `registry designate` command to reverse the roles of the master and slave. This command takes the name of the replica to be made the new master as an argument. The following example makes the replica named `/.../giverny.com/subsys/dce/sec/music` the new master:

```bash
dcecp> registry designate /.../giverny.com/subsys/dce/sec/music
```

4. Verify that the master site changed. Do this by issuing the `registry show -replica` command.

Removing a Server Machine from the Network

Note: The following are manual instructions for deleting a replica. Follow these instructions only when the replica you want to delete has become permanently unavailable or destroyed. For DCE 2.2, the recommended method for deleting a replica is to use the `unconfig.dce` command on the host which has the replica you want to delete. Specify the `sec_rep` component with `unconfig.dce` to unconfigure the replica.

If you are planning to remove a machine that runs a slave replica from the network or to shut the machine down for an extended period, delete the replica at that site.

If you are removing a node running the master server, you must change the master server site as described previously before you remove the node.

Use the `dcecp registry delete` command to delete a slave replica. When execute this command, the master performs the following actions:

1. Marks the replica as deleted.
2. Propagates the deletion to all replicas on its replica list.
3. Delivers the delete request to the replica.
4. Removes the replica from its replica list.

The following sample command deletes the slave replica named `/.../giverny.com/subsys/dce/sec/art_1`:

```bash
dcecp> registry delete /.../giverny.com/subsys/dce/sec/art_1
```

When you issue this command, `dcecp` binds to the master replica that is in the current cell, if necessary; then the master replica instructs the slave replica to delete itself.

To verify that the slave is deleted, issue the `dcecp registry catalog` command. When the master has received the request to delete the slave, the slave appears on the replica list as marked for deletion. When the replica has actually been deleted, it no longer appears on the list.

Handling Network Address Changes

When `secd` starts, master and slave replicas can detect address changes and can perform the necessary updates to the master’s replica list and to the cell namespace. Generally, all that is required on your part to handle network address changes is to update the `pe_site` file. However, if the network address of the
master and a slave replica change simultaneously, your intervention is required. This subsection describes how to update the pe_site file and how to handle simultaneous address changes.

Updating the pe_site File

Whenever the master’s or a slave’s network address changes, you must update the /opt/dcelocal/etc/security/pe_site file on that host before restarting secd. This file, which exists on each machine in the cell, is required for binding by the DCE Security Service to itself. For the master replica, the file contains the cell name and the name of the master. For slave replicas, the file contains the cell name, the name of the master replica, and the name of the replica itself.

If the master replica address changes, update the pe_site file on every node in the cell that runs a security server (including the master) with the new address for the master. If a slave address changes, update only that slave’s pe_site file to reflect its changed address.

Handling Simultaneous Address Changes

If an address change occurs simultaneously for the master replica and a slave replica, the master and slave will not be able to reach each other while both are trying to notify the other of the changed address. To avoid this problem, make sure the address change of one replica (either master or slave) is propagated to all replicas before the other address is changed. Make one address change. Then, use the \texttt{dcecp registry show -replica} command to view the replica list at both the master site and the slave replica site. When the new address is displayed, on both replica lists, it is safe to proceed with the next network address change.

If you are unable to prevent simultaneous network address changes for the master and a slave, the only way to restore communication between the master and slave is to delete the slave, then recreate it. Delete the slave by using one of the following methods, depending on your circumstances:

- If you anticipate a simultaneous address change, while the master and slave are still communicating, use the \texttt{set} command to bind to the master and then the \texttt{dcecp registry delete} command to delete the slave replica.
- If secd is running at the master and slave sites, but the master and slave are not communicating, first use the \texttt{set} command to bind to the slave and then the \texttt{registry destroy} command to destroy the slave. Then use \texttt{set} to bind to the master and the \texttt{registry delete -force} command to remove the replica list entry for the slave.
- If secd is not running at the slave site or if you are unable to bind to the slave site, use the procedure for recreating a replica described in “Chapter 40. Troubleshooting Procedures” on page 429.
Chapter 38. Setting Up the Registry

This chapter describes the steps that you take to set up the registry in the DCE Security Service. Some of these steps are automatically handled by the dce_config script during DCE installation and configuration; others are performed by you, using the DCE utilities and control programs. The steps for setting up the registry are as follows:

1. Plan where the security service components are to be located in your network.
2. Create the master registry database (performed by the dce_config script during system configuration).
3. Start the master replica (performed by the dce_config script during system configuration).
4. Populate the registry database (performed by you using the dcecp rgy_edit command).
 • Set policies and properties.
 • Add names and accounts.
5. Create a slave database and start the slave replica (performed by the dce_config script during system configuration).
6. Set up cron to run passwd_export on all of the DCE-based machines to ensure that the local password and group files are kept consistent with the registry (performed by you using standard UNIX commands). The passwd_export command is described in Chapter 36. Performing Routine Maintenance on page 397.

Because the registry uses the Cell Directory Service (CDS) to obtain information about network resources, this chapter assumes that your network is configured properly for CDS operation.

Planning Sites for DCE Security Service Components

The first thing that you do to configure the security service in your network is choose the sites for the master replica and any slave replicas of the registry. These sites will run secd, the security server. Machines running secd must be up and available at all times. It is especially important that the machine where the master replica runs be available throughout the network.

The machine size that is required to run secd depends on the platform and operating system. As a very general rule, choose machines large enough to accommodate future growth of the registry database. The machines must have enough disk space for the registry database and enough backing store so that processes do not thrash.

When you run the dce_config script, it will configure the master replica site to run the DCE host daemon (dced), which provides the endpoint mapper service for the local host, and any required CDS servers.
Creating the Master Registry Database

When you initially configure your cell’s security server, the dce_config script invokes the dcelocal/bin/sec_create_db command to create the master replica. When sec_create_db creates a new master replica, it initializes its database with names and accounts. Note that you must be root to run sec_create_db.

The sec_create_db command also creates a registry configuration file, which is named dcelocal/etc/security/pe_site, that contains the cell name and network address of the master replica. This file supplies the binding address of the secd server to clients running on that machine, if the CDS is unavailable.

In the event that you ever need to create a new master registry database, you can invoke sec_create_db directly. Note that you must be root to run sec_create_db. Note also that it is highly unusual to recreate a master database, but you may need to recreate a slave database if the slave is destroyed. The following subsections describe how to use the sec_create_db command.

The sec_create_db Command Format

The sec_create_db command has the following format:

```
sec_create_db {-master | -slave} -my[name] my_server_name \ 
[-k[eyseed] keyseed] [-c[r]eator creator_name] \ 
[-c[unix_id] creator_unix_id] [-u[uid] cell_uuid, ] \ 
[-p[erson_low_unix_id] unix_id] \ 
[-g[roup_low_unix_id] unix_id] \ 
[-o[rg_low_unix_id] unix_id] [-m[a]x_unix_id unix_id] \ 
[-p[assword] default_password] [-v[erbose]]
```

where:

- **-master**
 Specifies that the master replica’s database should be created. All other sec_create_db options can be used with the -master option.

- **-slave**
 Specifies that a slave replica’s database should be created. Only the -myname, -keyseed, and -verbose options can be used with the -slave option.

- **-my[name] my_server_name**
 This is a name that you assign to the security server (secd) on this machine. It is used by the name service to locate this cell’s security server.

- **-k[eyseed] keyseed**
 This is a character string that you enter to seed the random key generator in order to create the master key for the database that you are creating. It should be a string that cannot be easily guessed. The master key is used to encrypt all account passwords. Each instance of a replica (master or slave) has its own master key. You can change the master key by using the dcecp registry modify command or sec_admin master_key command. (See Chapter 36, Performing Routine Maintenance, on page 397 for information on the use of the dcecp registry modify command for modifying the master key.) If you do not enter this option, sec_create_db prompts you for it.

- **-c[r]eator creator_name**
 This is the name of the registry creator. The registry creator is the initial privileged user of the registry database. Note that you can give equivalent
privileges to another user at any time by using the `dcecp acl modify` command or `acl_edit modify` command to change the registry database ACL. When the registry is created, default ACL entries for registry objects are also created. These entries give the most privileged permissions to the principal that is named in the `-cr` option. If the principal that is named as the registry creator is not one of the reserved names, `sec_create_db` adds the principal and an account for that principal. If you do not enter this option, the initial privileged user of the registry database is `root`.

-`cu[nix_id]` *creator_unix_id*
 This is a UNIX number that you specify to be assigned to the registry creator. If you do not enter this option, the registry creator’s UNIX number is assigned dynamically.

-`u[uid]` *cell_uuid*
 This is the cell’s UUID. If you do not enter this UUID, it is assigned dynamically.

-`p[erson_low_unix_id]` *unix_id*
 This is the starting point for UNIX IDs that are automatically generated when a principal is added by using the `dcecp registry modify` command or `rgy_edit properties` command. Note that you can explicitly assign a lower UNIX ID than this number; this lower limit applies only to automatically generated UNIX IDs.

-`g[group_low_unix_id]` *unix_id*
 This is the starting point for UNIX IDs that are automatically generated when a group is added by using the `dcecp registry modify` command or `rgy_edit properties` command. Note that you can explicitly enter a lower UNIX ID than this number; this lower limit applies only to automatically generated UNIX IDs.

-`o[rg_low_unix_id]` *unix_id*
 This is the starting point for UNIX IDs that are automatically generated by the security service when an organization is added by using the `dcecp registry modify` command or `rgy_edit properties` command. Note that you can explicitly enter a lower UNIX ID than this number; this lower limit applies only to automatically generated UNIX IDs.

-`ma[x_unix_id]` *unix_id*
 This is the highest number that can be assigned as a UNIX ID when a principal, group, or organization is added. No UNIX IDs higher than this number are assigned automatically, and you cannot specifically enter numbers higher than this number. The maximum UNIX ID stays in place until you change it with the `dcecp registry modify` command or `rgy_edit properties` command.

-`pa[ssword]` *default_password*
 This is the default password that is assigned to the accounts created by `sec_create_db`. If you do not specify a default password, `-dce-` is used. Note the accounts `hosts/ local_host_name/principal_name none`, `krbtgt /cell_name none`, and `nobody none none` are not assigned the default password, but instead a randomly generated password.

-`v[erbose]`
 Runs in verbose mode and generates a verbose transcript of all activity.

An sec_create_db Run Example

The following example shows the `sec_create_db` command that is run to create the master database and the information that `sec_create_db` displays as it runs. Note
that, because the -k option is not entered, sec_create_db prompts you for the master key seed string. This string is not displayed as it is entered.

```
/work/krb/sec_create_db -v -myname /.../dresden.com/subsys/dce/sec/master -master
```
Enter keyseed for initial database master key: <enter up to 1024 characters>

SECD Checkpoint on Tue Sep 27 11:44:12 1994
.... saving rgy
.... saving acct
.... saving person
.... saving group
.... saving org
.... saving replicas
.... saving acl
End SECD Checkpoint on Tue Sep 27 11:44:13 1994
SECD Checkpoint on Tue Sep 27 11:44:15 1994
.... saving rgy
.... saving acct
.... saving person
.... saving group
.... saving org
.... saving acl
End SECD Checkpoint on Tue Sep 27 11:44:17 1994

The Results of sec_create_db

The master registry database that is created by sec_create_db contains the principals, groups, and organizations listed in Table 25.

```
<table>
<thead>
<tr>
<th>Principal</th>
<th>Group</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>bin</td>
<td>none</td>
</tr>
<tr>
<td>daemon</td>
<td>daemon</td>
<td></td>
</tr>
<tr>
<td>dce-ptgt</td>
<td>kmem</td>
<td></td>
</tr>
<tr>
<td>dce-rgy</td>
<td>mail</td>
<td></td>
</tr>
<tr>
<td>krbtgt/local_cell_name</td>
<td>nogroup</td>
<td></td>
</tr>
<tr>
<td>hosts/local_host/self</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>mail</td>
<td>system</td>
<td></td>
</tr>
<tr>
<td>nobody</td>
<td>tcb</td>
<td></td>
</tr>
<tr>
<td>root</td>
<td>tty</td>
<td></td>
</tr>
<tr>
<td>sys</td>
<td>uucp</td>
<td></td>
</tr>
<tr>
<td>tcb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uucp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>who</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The accounts that sec_create_db command creates are:

- bin bin none
- daemon daemon none
- dce-ptgt none none
- dce-rgy none none
- hosts/local_host/self none none
- `krbtgt/cell_name` none none
- `nobody` nogroup none
- `root` system none
- `uucp` uucp none

Some of the objects that were initially created by `sec_create_db` are reserved and cannot be deleted. These are indicated in the following list.

- The reserved principals are:
 - `dce-ptgt`
 - `krbtgt/cell_name`
 - `dce-rgy`
- The reserved accounts are:
 - `dce-ptgt` none none
 - `krbtgt/cell_name` none none
 - `dce-rgy` none none

When you run the `sec_create_db` command to create the master registry database, you can name the principal who has the most privileged access to the registry. This person is known as the registry creator. If the registry creator you name is not one of the default principals, `sec_create_db` adds the account `rgy_creator` none none, where `rgy_creator` is the principal you named as the registry creator. If you do not name a registry creator, `sec_create_db` assigns the most privileged registry access to the `root system` none account.

With one exception, all of the accounts created by the `sec_create_db` command are assigned randomly generated passwords and are marked as invalid. Before these principals can log into these accounts, you must change the account passwords and mark the accounts as valid. You can do this by using the `dcecp account modify` command. [Chapter 31. Creating and Maintaining Accounts] on page 339 provides instructions for using the `dcecp account modify` command to change all of the attributes for a principal’s account in the registry, including the principal’s password. Also, `dcecp` has options to randomly generate new passwords.

However, the exception is that the account created for the registry creator is valid and is assigned the DCE default password (`-dce-`). Change the default password to ensure the security of the registry creator account.

In addition to the group memberships implied by the accounts that are created by `sec_create_db`, the principals are also made members of the groups listed in Table 26.

Table 26. Group Memberships Created by sec_create_db

<table>
<thead>
<tr>
<th>The principal...</th>
<th>Is a member of the group...</th>
</tr>
</thead>
<tbody>
<tr>
<td>who</td>
<td>bin</td>
</tr>
<tr>
<td>root</td>
<td>system</td>
</tr>
<tr>
<td></td>
<td>kmen</td>
</tr>
<tr>
<td></td>
<td>tty</td>
</tr>
<tr>
<td>sys</td>
<td>kmem</td>
</tr>
<tr>
<td>mail</td>
<td>mail</td>
</tr>
</tbody>
</table>
Table 26. Group Memberships Created by sec_create_db (continued)

<table>
<thead>
<tr>
<th>The principal...</th>
<th>Is a member of the group...</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcb</td>
<td>tcb</td>
</tr>
</tbody>
</table>

[Chapter 30. Creating and Maintaining Principals, Groups, and Organizations](#) on page 319 provides instructions for adding principals to groups.

Starting the Master Replica

After `dce_config` creates the master replica, it starts the master replica. To start the master replica explicitly, use the following steps:

1. Log in as `root` on the machine that will run the master replica.
2. Use `ps` to ensure that a `dced` is running on the machine. If one is not, start one. To do so, ensure you are `root` and enter:

   ```
   dceshared/bin/dced
   ```
3. Start the master replica by entering:

   ```
   dcelocal/bin/secd
   ```

Set up `secd` so that it starts automatically when the machine is rebooted.

Populating the New Registry Database

Once the master replica has been created and started, you must populate the database by setting policies and procedures and adding accounts.

Setting Policies and Properties

Use the `dcecp registry show` and `dcecp registry modify` commands to view policies and properties and to change them as desired.

Adding Accounts

After a new registry database is created, it contains only the principals, groups, organizations, and accounts that were added as initial information by `sec_create_db`. Use the `dcecp account create` command to add any other names and accounts that your site requires. You can do this now or at any time later. See [Chapter 31. Creating and Maintaining Accounts](#) on page 339 for information about adding accounts by using `dcecp`.

Creating Slave Replicas

After the master replica database has been created and started and its database has been populated, you run `dce_config` at the slave sites to create the slave replicas and start them. To create and start a slave replica, `dce_config` first ensures that the sites are running `dced`, and the appropriate CDS servers. It then executes the following `sec_create_db` command:

```
 dcelocal/bin/sec_create_db -slave
  -myname my_server_name
```
First, the command creates a database for the new slave replica. The database consists of only stub files. The command then locates the master replica and adds the new slave to the master’s replica list. The master marks the new replica for initialization. Finally, the `dce_config` script starts `secd` and ensures that it starts automatically each time the machine reboots.

You must run `dce_config` to configure a slave replica at each machine where you want to run a slave replica.

Verifying that the Replicas Are Running

After the master and slave replicas are in place and started, perform the following steps to ensure that they are running:

1. Get a list of names of security servers running in the cell:
   ```
dcecp> registry catalog
   /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6
   /.../dc.cell.ch.hp.com/subsys/dce/sec/dce5
   dcecp>
   ```

2. Look at the propagation information kept by the replica:
   ```
dcecp> registry show /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6
   -replica
   [name /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6]
   [type slave]
   [cell /.../dc.cell.ch.hp.com]
   [uuid 07f5c1dc-80ef-11cf-b60c-0800095f6636]
   [status enabled]
   [lastupptime 1996-09-17-13:06:53.000-04:00]
   [lastupdseq 0.33826]
   [addresses
     {ncadg_ip_udp 15.22.51.49}
     {ncadn_ip_tcp 15.22.51.49}]
   [masteraddr
     {ncadg_ip_udp 15.22.48.183}
     {ncadn_ip_tcp 15.22.48.183}]
   [masterseqnum 0.15724]
   [masteruuid 90067612-d3f6-11ce-b773-0800095a49d8]
   [supportedversion
     secd.dce.1.0.2
     secd.dce.1.1]
   dcecp>
   ```

3. Look at the propagation information that is kept by the master for each slave:
   ```
dcecp> registry show /.../dc.cell.ch.hp.com/subsys/dce/sec/dce5
   -master
   [name /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6]
   [uuid 07f5c1dc-80ef-11cf-b60c-0800095f6636]
   [type slave]
   [addresses
     {ncadg_ip_udp 15.22.51.49}
     {ncadn_ip_tcp 15.22.51.49}]
   [propstatus update]
   [lastupptime 1996-09-17-13:06:53.000-04:00]
   [lastupdseq 0.33826]
   [numupdtogo 0]
   [commstate ok]
   [lastcommstatus {Successful completion}]
   [name /.../dc.cell.ch.hp.com/subsys/dce/sec/dce5]
   [uuid 90067612-d3f6-11ce-b773-0800095a49d8]
   [type master]
   dcecp>
   ```
{addresses
 {ncadg_ip_udp 15.22.48.183}
 {ncadn_ip_tcp 15.22.48.183}}
dcecp>
Chapter 39. Importing UNIX Accounts to DCE

The passwd_import command creates entries in the registry that are based on information in the /etc/passwd and /etc/group files. It provides a method of ensuring account consistency between machines that use the DCE Security Service and those that do not, and a means of adding an existing UNIX user base to the registry.

How passwd_import Works

When passwd_import processes entries, it compares group and password file entries to registry entries. It can find two types of conflicts:

Name Conflicts

These conflicts arise when the same name string is defined in the registry and the group or password files. The names joe 102 and joe 555 exemplify such a conflict. The duplicate name can represent the same user or two different users.

UNIX ID Conflicts

These conflicts arise when the same UNIX ID is defined in the registry and the group or password files for users with different names. The names joe 102 and ann 102 exemplify such a conflict.

These conflicts can be found separately, as in the preceding examples, or together. For example, a registry entry of joe 102 and a UNIX entry of joe 102 are in conflict. When a conflict is found, you must either supply the information that is used to change the password and group file entries or inform passwd_import not to import that entry. The passwd_import command makes no changes to existing registry principals, groups, or accounts; but, if you so specify, it will create new principals, groups, and accounts in the registry that are based on the group and password files.

The passwd_import Processing Steps

As passwd_import processes entries, it performs the following steps in sequence:

1. It opens the group and password files and establishes a connection to the registry.
2. It compares the group file entries to groups in the registry. If there are no conflicts, it creates groups in the registry that correspond to the groups in the group file.
3. It compares the entries in the password file to principals in the registry. Again, if there are no conflicts, it:
 • Creates principals in the registry that correspond to the entries in the password file.
 • Adds the newly created principals to the appropriate groups.
 • Creates accounts for the newly created principals.
4. It reexamines the group file and adds the principals as members of any additional groups that it finds there.
The changes to the registry are made individually as each step is processed. If you specify the -o option, passwd_import adds all newly created registry principals to the specified organization. If you do not specify the organization, the principals are added to the organization none.

Registry Entries Created by passwd_import

If an entry exists in the password or group file but does not exist in the registry, passwd_import creates a new registry entry. For additional registry information, passwd_import takes the following values:

- For Principal and Group Entries:
 - Alias/Primary Name = If the password file contains two entries with the same UNIX number, passwd_import creates a primary name entry for the first UNIX number it finds and an alias for each occurrence of the same UNIX number.
 - Full Name = A blank string; no full name is added for the entry.
 - Membership List = For new groups only, all principals that are listed in the group file and all principals with registry accounts that are associated with that group.
 - Project List = Yes (for groups only).

- For Account Entries:
 - Account Expiration Date = None.
 - Account-Valid Flag = No. Use the dcecp account modify command to change this flag to y after the password is set.
 - Client Flag = Yes.
 - Duplicate Certificate Flag = No.
 - Forwardable Certificate Flag = Yes.
 - GECOS = The same value as the entry in the principal’s GECOS field in the etc/passwd file.
 - Good Since Date = Time of the account creation.
 - Home Directory = The same value as the principal’s home directory entry in the /etc/passwd file.
 - Login Shell = The same value as the principal’s login shell entry in the /etc/passwd file.
 - Maximum Certificate Lifetime = Set to the registry authentication policy.
 - Maximum Certificate Renewable = Set to the registry authentication policy.
 - Password = Randomly generated. Note that you must modify or reset randomly generated passwords before user authentication is possible.
 - Password Date and Time Modified = Set to the date and time passwd_import was run.
 - Password-Valid Flag = No.
 - Postdated Certificate Flag = No.
 - Proxiable Certificate Flag = No.
 - Renewable Certificate Flag = Yes.
 - Server Flag = Yes.
 - TGT Authentication Flag = Yes.

Note that passwd_import does not set usable passwords for the accounts it creates. You must use the dcecp account modify command to set passwords.
before authentication is possible. You must also ensure that the account is made valid. You can do this at the same time you set a new password by specifying the —acctvalid option on the dcep account modify command, as in the following example:

dcep> account modify John_Hunter -acctvalid {yes}

Failure to do so results in the principals’ inability to use dce_login

The passwd_import Command Syntax

The passwd_import command has the following syntax:
dceshared/bin/passwd_import [-h] [-c] -d pathname [-i] [-o org] \
[-p password] [-u username] [-v]

where:
-h Displays usage information.
-c Runs in check mode; processes the command showing conflicts, but makes no changes to the registry.
-d pathname The path to the directory containing the password and group files to be imported.
-i Specifies that identical name strings are not in conflict, but represent the same identity.
-o org The name of the organization to be assigned to all principals that are added to the registry. The default is the organization named none.
-p password The password for the account with whose privileges passwd_import will run. If you do not use the -i option, passwd_import prompts you to resolve the name conflict.
-u username The principal name of the account with whose privileges passwd_import will run. This account must have the privileges to access the registry and add principals, groups, accounts and organizations, and members to groups and organizations. The principal name and password are used to obtain network authentication. If you do not supply them, passwd_import prompts you for them, even if you have already performed a network login.
-v Runs in verbose mode, generating a verbose transcript of all activity.

Using passwd_import

To use passwd_import, the security server must be running. The following subsections describe how to use the passwd_import command and its options.

Using the Identical User Option

The -i option lets you specify that duplicate names are not in conflict but instead represent the same identity. When passwd_import finds duplicate name entries, it processes them as though they are the same user and skips to the next entry.
Using Check Mode

Run `passwd_import` first in check mode by using the `-c` option. In this mode, `passwd_import` attempts to simulate the results of a processing run, showing the conflicts that are encountered when `passwd_import` is run without the `-c` option.

Check mode gives you a good idea of the quantity and complexity of the potential conflicts. However, check mode does not make any changes to the registry. When you run `passwd_import` without the `-c` option and make changes to resolve conflicts, these changes can in turn create further conflicts not readily apparent in check mode.

If you encounter numerous conflicts in check mode, it is more efficient to edit manually either the registry or the UNIX group and password files to resolve some obvious conflicts before you run `passwd_import`.

Resolving Conflicts

The `passwd_import` command prompts you for instructions on how to resolve the conflicts it finds. You have the following choices:

- You can create an alias to resolve a UNIX ID conflict. This action creates an alias for the registry object that is in conflict. This alias is assigned the same name as the conflicting entry in the group or password file. For example, if the entry `joe 555` exists in the registry and the entry `tim 555` exists in the password file, this option creates the alias `tim` for `joe 555`.
- You can generate a new UNIX ID automatically or enter a new one explicitly to resolve a UNIX ID conflict. For example, if there is a conflict between the entry `joe 555` in the registry and `tim 555` in the password file, you can generate a new UNIX ID for `tim`.
- You can enter a new name to resolve a name conflict. For example, if there is a conflict between the entry `joe 555` in the registry and `joe 383` in the password file, you can generate a new name for `joe 383`. This new name will be added to the registry.

In addition, you are given the option of ignoring the conflict and skipping the entry.

Answering Prompts

When you run `passwd_import`, you can be prompted for names and numbers (UNIX IDs). Names can contain any characters or digits except the @ (at sign) and : (colon) characters, and they must not exceed 1024 characters in length.

If you enter a name or number in an incorrect format, `passwd_import` ignores your entry and prompts you again.

Sample `passwd_import` Session

This section shows a simplified `passwd_import` session. The sample session uses the following registry group and password entries and the UNIX group file and password file entries. For convenience, the registry entries are shown in the password and group file format although they are not stored that way in the registry database.

Registry Group and Password Entries
Group Entries

- wheel::0:
- daemon::1:
- none::2:
- backup::3:user
- locksmith::4:
- login::5:
- mail::6:bin
- bin::7:root
- server::8:
- sys::9:root
- staff::10:
- sys_admin::11:user
- sys_proj::12:
- tgroup::35:

Password Entries

- root:sq1RclUrrb1L6:0:10::/
- daemon:sq1RclUrrb1L6:1:2::/
- none:sq1RclUrrb1L6:2:2::/
- user:sq1RclUrrb1L6:3:2::/
- lp:sq1RclUrrb1L6:4:7::/
- sys_person:sq1RclUrrb1L6:5:2::/
- admin:sq1RclUrrb1L6:6:2::/
- uucp:sq1RclUrrb1L6:7:2::/usr/spool/uucppublic:
- bin:sq1RclUrrb1L6:8:7::/

UNIX Group and Password File Entries

Group File Entries

- system::0:root
- other::1:
- bin::2:root, bin, daemon
- sys::3:root, bin, sys, adm
- adm::4:root, adm, daemon
- mail::6:root
- rje::8:rje, shqer
- daemon::12:root, daemon
- tgroup::35:
- diags::48:brown, smith, jones
- cheetah::50:root, daemon
- mkt_dev::52:roberts, anderson, hill

Password File Entries

- root::0:1:0000-Admin(0000)::/
- daemon::1:0000-Admin(0000)::/
- bin::2:2:0000-Admin(0000)::/bin:
- sys::3:3:0000-Admin(0000)::/usr/src:
- adm::4:4:0000-Admin(0000)::/usr/adm:
- uucp::5:5:0000-uucp(0000)::/usr/lib/uucp:
- rje::18:18:0000-rje(0000)::/usr/rje:
- trouble::70:1:trouble(0000)::/usr/lib/trouble:
- lp::71:2:0000-lp(0000)::/usr/spool/lp:
- setup::0:0:0:general system administration::/usr/admin::/bin/rsh
- powerdown::0:0:general system administration::/usr/admin::/bin/rsh
- sysadm::0:0:general system administration::/usr/admin::/bin/rsh
- checkfsys::0:0:check diskette file system::/usr/admin::/bin/rsh
- makefsys::0:0:make diskette file system::/usr/admin::/bin/rsh
- mountfsys::0:0:mount diskette file system::/usr/admin::/bin/rsh
- umountfsys::0:0:unmount diskette file system::/usr/admin::/bin/rsh

Invoking passwd_import

In the sample session, the following **passwd_import** command is entered at the shell prompt:
passwd_import -d sys5.3_tapes/adm -i
-v -u cell_admin

This command specifies that:
- Identical names represent the same identity (-i).
- The UNIX group and password files are in the sys5.3_tapes/adm directory.
- The command will not run in check mode (-c is not specified).
- The command will run in verbose mode (-v is specified).
- The principal whose account should be used for authentication is cell_admin.
- The command prompts you for the cell_admin account's password because the -p option is not used.

After the command is invoked, the system prepares for passwd_import processing by displaying the following:
Preparing import files. (dce / sad)
Setting up registry information. (dce / sad)
Verifying that the necessary Organization exists. (dce / sad)
Creating group objects from group file. (dce / sad)

As passwd_import reads the UNIX group and password files, it informs you of any conflicts and prompts for their resolution.

Examining the Group File

The passwd_import command first checks the group file for name and then UNIX ID conflicts. When you resolve the conflict by answering the prompt, passwd_import creates the groups in the registry if it is so directed.

The following steps show how UNIX ID group conflicts are handled:

1. The passwd_import command first finds a conflict between UNIX IDs, as shown in the preceding sections. The name wheel in the group file and the name system in the registry both have UNIX IDs of 0. The passwd_import command prompts you for how to resolve the conflict, as follows:
 CONFLICT: (wheel 0) - Import Group's UNIX id exists in registry. (dce / sad)
 (system 0) is the conflicting entry from the registry.
 Do you wish to resolve the conflict (y) or skip this entry (n):

2. If you enter an n to skip the entry, passwd_import continues processing. If you enter a y to resolve the conflict, passwd_import prompts you for how to resolve the conflict. In the following example, the conflict is resolved by creating an alias of wheel for the system entry in the registry:
 Do you wish to resolve the conflict (y) or skip this entry (n): y
 Select one of: (a)lias, (g)enerate, (e)nter, (s)kip entry, (h)elp: a
 >> Adding Group entry for: wheel 0

Because it is running in verbose mode, passwd_import describes the actions it is taking. Each action description is prefaced with the >> (redirection symbols).

If you are running passwd_import in check mode, you are not prompted to resolve the conflict. Instead, you are informed of the conflict and processing continues. The message looks like the following display:
CONFLICT: (wheel 0) - Import Group's UNIX id exists in registry. (dce / sad)
 (system 0) is the conflicting entry from the registry.
Would need new UNIX id to resolve conflict. (dce / sad)
3. If `passwd_import` does not find conflicts that you must resolve, it displays the
group entries as it processes them and, because it is running in verbose mode,
the actions it is taking. In the following example, you are not prompted to
resolve the name conflict because `passwd_import` was invoked with the `-i`
option.

CONFLICT: (tgroup 35)
- Group name exists in registry and UNIX ids match.
 (dce / sad)
>> Import Group: - Ignoring name conflict, as instructed
 (dce / sad)
>> Adding Group entry for: diags 48
>> Adding Group entry for: cheetah 50
>> Adding Group entry for: mkt_dev 52

As `passwd_import` continues through the UNIX group file, it finds two other
UNIX ID conflicts: UNIX entries `adm 4` and `rje 8`, which are in conflict with
registry entries `locksmith 4` and `server 8`, respectively.

Examining the Password File

The `passwd_import` command then proceeds to examine the password file for
conflicts. As it begins, it displays the following:

Creating principal entries and accounts from password file.
(dce / sad)

When an entry is processed with no conflicts, `passwd_import` creates the principal
in the registry, adds the principal to the appropriate group and organization, and
creates an account for the principal. As it does this, it displays the following:

>> Adding Principal entry for: rje
>> Adding account for rje none.

The following example shows the warning message that is displayed when
`passwd_import` finds a conflict:

CONFLICT: (bin 2)
- Principal name exists in registry and UNIX ids match.
 (dce / sad)
>> Import Principal: - Ignoring name conflict, as instructed
 (dce / sad)

This message notifies you that the account for `bin` exists in the registry. Both
accounts remain unchanged even though the UNIX password file entry contains
information that differs from the registry account.

Because the `-i` option is specified in the command used in the sample session,
name conflicts are ignored. The following example shows the prompt from a name
conflict that was found when `passwd_import` was run without the `-i` option:

CONFLICT: (daemon 1)
- Principal name exists in registry and UNIX ids match.
 (dce / sad)
Do you wish to resolve the conflict (y) or skip this entry (n):

If you enter an `n`, the entry is skipped and processing continues. If you enter a `y`,
`passwd_import` prompts you for the new name for the foreign principal, as follows:

Enter new name for principal "daemon" "1":

Adding Members to Groups

When `passwd_import` completes the processing of the UNIX password file, it reexamines the group file and adds the newly created principals to any additional groups that it finds there. As it does, it displays the following:

Add memberships from imported group file. (dce / sad)
>> Add root as member of group with UNIX id: 0
>> Add root as member of group with UNIX id: 2
>> Add daemon as member of group with UNIX id: 2

Completing Processing

When `passwd_import` completes processing, it displays the following:

Closing import files. (dce / sad)
Closing connection to registry. (dce / sad)
Chapter 40. Troubleshooting Procedures

This chapter contains procedures for troubleshooting the security servers. Use these procedures only when network or hardware failures disrupt operation of the registry or when you encounter problems that can be remedied in no other way. These procedures tell you how to:

- Mapping of dce daemon core locations and how to symlink to a separate filesystem
- Restart a security server
- Back up and recovery of the system after failure in the security server
- Restart a security server in locksmith mode
- Restore replicas from a backup
- Forcibly delete a slave replica
- Adopt a registry object that was orphaned because its owner was deleted
- Access a server registered with user to user protocol

Before you run the procedures, ensure that you are logged in via an administrative account.

Mapping of DCE Daemon Core Locations and How to Symlink to a Separate Filesystem

Here is a mapping of daemons and where they dump core.

- secd - /var/dce/security/adm/secd
- dced - /var/dce/adm/dced
- cdsd - /var/dce/directory/cds/adm/cdsd
- gad - /var/dce/directory/cds/adm/gdad
- csdadv - /var/dce/adm/directory/cds/csdadv
- cdsclerk - /var/dce/adm/directory/cds/cdsclerk
- dtsd - /var/dce/time/adm/dtsd
- dceunixd - /var/dce/security/adm/dceunixd

If using dfs also:

dfsbind - /var/dce/dfs/adm/dfsbind

I would recommend a scheme like the following:

Create a new filesystem called /cores/dce using smit. Issue the following so /cores/dce will contain individual directories for each of the above directories.

- mkdir /cores/dce/secd
- mkdir /cores/dce/dced
- mkdir /cores/dce/cdsd
- mkdir /cores/dce/gdad
- mkdir /cores/dce/csdadv
- mkdir /cores/dce/cdsclerk
- mkdir /cores/dce/dtsd
- mkdir /cores/dce/dceunixd
If using dfs also do:
mkdir /cores/dce/dfsbind

Check to see if you need to save any data in any of these directories first and if you do, save the data, i.e. log files or whatever.

For example, issue
mv /var/dce/security/adm/secd/* /cores/dce/secd

for any directories that have data you wish to save.

Remove the original directories.
- rmdir /var/dce/security/adm/secd
- rmdir /var/dce/security/adm/dceunixd
- rmdir /var/dce/adm/dced
- rmdir /var/dce/directory/cds/adm/gdad
- rmdir /var/dce/directory/cds/adm/cdsd
- rmdir /var/dce/adm/directory/cds/cdsadv
- rmdir /var/dce/adm/directory/cds/cdsclerk
- rmdir /var/dce/time/adm/dtsd

If using dfs also do:
rmdir /var/dce/dfs/adm/dfsbind

Symlink the core locations to the new, separate filesystem.
- ln -s /cores/dce/secd /var/dce/security/adm/secd/
- ln -s /cores/dce/dceunixd /var/dce/security/adm/dceunixd/
- ln -s /cores/dce/dced /var/dce/adm/dced/
- ln -s /cores/dce/gdad /var/dce/directory/cds/adm/gdad
- ln -s /cores/dce/cdsd /var/dce/directory/cds/adm/cdsd
- ln -s /cores/dce/cdsadv /var/dce/adm/directory/cds/cdsadv
- ln -s /cores/dce/cdsclerk /var/dce/adm/directory/cds/cdsclerk
- ln -s /cores/dce/dtsd /var/dce/time/adm/dtsd

If using dfs also do:
ln -s /cores/dce/dfs/bind /var/dce/dfs/adm/dfsbind

Restarting Security Servers

To restart a security server (master or slave), enter the following command:
dcelocal/bin/secd&

For convenience, set up the server to start automatically whenever the machine reboots.

Back up and Recovery of the System after Failure in the Security Server

The following procedures should be used if there is a catastrophic failure in the security server.
Backing up the registry

1. Enter the registry disable command to set the master replica to the maintenance state. The following command sets the primary registry in the cell giverny.com to maintenance state:

```
dcecp> registry disable /.../giverny.com/subsys/dce/sec/master dcecp>
```

Setting the master replica to the maintenance state causes the master to save its database to disk and refuse all updates.

2. Back up the primary registry by backing up either the entire volume or the `/opt/dcelocal/var/security/rgy_data` tree (the registry) and the `/opt/dcelocal/var/security/.mkey` file, which is the file that contains the master key used to encrypt all keys in the registry. Note that, because the `/opt/dcelocal/var/security/.mkey` file contains the master key, restoring a backup of the registry database is useless unless the `/opt/dcelocal/var/security/.mkey` file is also restored.

The exact commands that are used for the backup are a matter of personal preference. However, if you write both the database and the master key file to the same tape, store the tape in a locked area with restricted access. Alternatively, you can write the database and the key file to separate tapes and store each tape in a different location.

3. Use tar to back up the following:

```
/opt/dcelocal
/var/dce
/krb5
/etc/dce
```

4. When the backup completes, take the master replica out of maintenance state, as follows:

```
dcecp> registry enable /.../giverny.com/subsys/dce/sec/master dcecp>
```

The security server resumes accepting updates.

Note: The previous examples supplied the name of the registry primary site to the `registry enable` and `registry disable` commands. If you do not supply a registry site name, the commands use the site named in the `s(sec_)` variable. If this variable is not set, the commands use the primary registry of the machine’s default cell.

Restoring the registry

Note: This procedure is used assuming that the old security server is no longer powered up.

1. Install a new machine into the network, giving it the same IP address and hostname as the old security server.

2. Install DCE on the machine, but do not configure.

3. Untar the saved directories:

```
/opt/dcelocal
/var/dce
/krb5
/etc/dce
```

4. Restart the system.
Restarting the Master Server in Locksmith Mode

The `secd -locksmith` option starts `secd` in locksmith mode. This option can be used only on the master replica. In locksmith mode, the principal name that you specify to `secd` becomes the locksmith principal. As the locksmith principal, you can repair malicious or accidental changes that prevent you from logging in with full registry access privileges.

When you bring up a security server in locksmith mode, `secd` automatically creates a locksmith account, or if the locksmith account exists, it lets you supply a new password for that account. Once the security server is running, you can log into the locksmith account by using the newly changed password if you changed it and access the registry to change the account or policy information that may have prevented you from accessing the registry by using your normal credentials.

In locksmith mode, all principals with valid accounts can log in and operate on the registry with normal access checking. The locksmith principal, however, is granted special access to the registry: No access checking is performed for the authenticated locksmith principal. This means that, as the locksmith principal, you can operate on the registry with full access.

Automatic Changes to the Locksmith Account

If the locksmith account exists when you start the security server in locksmith mode, the security server checks certain account and registry policy information and makes the changes shown in Table 27 and Table 28 on page 433. These changes ensure that, even if account or registry policy was tampered with, you will now be able to log into the locksmith account. For example, if an intruder changes the account lifespan registry policy to 1 minute, the locksmith account will never be valid long enough to be used. Therefore, if the security server finds that the account lifespan registry policy is set to less than what is required for the locksmith account to be valid for at least 1 hour, it changes the account lifespan policy to be the time difference between the creation time of the locksmith account and the time 1 hour from the current time.

<table>
<thead>
<tr>
<th>If the security server finds the...</th>
<th>It changes the...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password-Valid Flag is set to no</td>
<td>Password-Valid Flag to yes</td>
</tr>
<tr>
<td>Account Expiration Date is set to less than the current time plus 1 hour</td>
<td>Account Expiration Date to the current time plus 1 hour</td>
</tr>
<tr>
<td>Client Flag is set to no</td>
<td>Client Flag to yes</td>
</tr>
<tr>
<td>Account-Valid Flag is set to no</td>
<td>Account-Valid Flag to yes</td>
</tr>
<tr>
<td>Good Since Date is set to greater than the current time</td>
<td>Good Since Date to the current time</td>
</tr>
<tr>
<td>Password Expiration Date is set to less than the current time plus 1 hour</td>
<td>Password Expiration Date to the current time plus 1 hour</td>
</tr>
</tbody>
</table>
Table 28. Registry Policy Changes Made by the Security Server

<table>
<thead>
<tr>
<th>If the security server finds the...</th>
<th>It changes the...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Lifespan is set to less than the difference between the locksmith account creation date and the current time plus 1 hour</td>
<td>Account Lifespan to the current time plus 1 hour minus the locksmith account creation date</td>
</tr>
<tr>
<td>Password Expiration Date is set to greater than the time the password was last changed but less than the current time plus 1 hour</td>
<td>Password Expiration Date to the current time plus 1 hour</td>
</tr>
</tbody>
</table>

Starting a Security Server in Locksmith Mode

Use the following form of the secd command to start a security server in locksmith mode:

```
dcelocal/bin/sec [ -locksm[ith] pname [ -lockpw ] [ -rem[ote] ] ]
```

where:

- **-locksm[ith]**
 Starts a security server in locksmith mode.

- **pname**
 Specifies the name of the locksmith principal. If no registry account exists for this principal, secd creates one.

- **-lockpw**
 Prompts for a new locksmith password. This option allows you to specify a new password for the locksmith account when the old one is unknown.

- **-rem[ote]**
 Allows the locksmith principal to log in remotely. If this option is not used, the principal must log in from the local machine on which secd will be started.

Restarting a Security Server in Locksmith Mode

To restart a security server in locksmith mode, perform the following steps on the node on which the master replica is running. You must have root access to this node.

1. Shut down the security server.
 a. If you cannot log in with administrative privileges and access dcecp to shut down the server, log in as root on the machine on which the server is running and kill the security server process.
 b. If you are able to log in with administrative privileges, use the dcecp registry stop command to shut down the security server. When you use this command, you must supply the fully qualified name of the replica to stop as an argument. The following sample command stops the replica named slave_3:

```
dcecp> registry stop /.../giverny.com/subsys/dce/sec/slave_3
dcecp>
```

2. Start the security server in locksmith mode. The following example shows the security server started with the locksmith account that was created for the
principal named master_admin. The -remote option is also supplied to allow master_admin to log in from a remote node; otherwise, master_admin must log in from the node on which the security server was started.

dcelocal/bin/secd -locksmith master_admin -remote

If the locksmith account exists but you have lost its password, use the -lockpw option to cause secd to prompt you for a new locksmith password and replace the existing password with the one you enter.

The security server normally runs in the background. When you start a security server in locksmith mode, it runs in the foreground so that you can answer prompts.

Once the security server is started in locksmith mode, you can use the dcecp registry modify command to change the registry so that the standard privileged account can access it. After these changes are made, you should do the following:

1. Shut down the security server that is running in locksmith mode.
2. Restart a security server according to your standard procedures.

Recovering the Master Replica

To recover a master replica because the master’s database is damaged, you can use either of the following methods:

- Use the dcecp registry designate command to make a slave replica the master replica and create a slave replica on the host of the former master. This method is described in the following subsection.
- Restore the master from a backup. This method is described in “Chapter 36. Performing Routine Maintenance” on page 397.

The method you choose depends on whether the master replica’s backup database or the slave replica’s database is more current.

Determining the Most Current Database

To determine whether the backup of the master replica’s database or a slave replica’s database is more current, run the dcecp registry show -replica command for the replica. The output of this command lists the last update sequence number and the update date and time. Compare the replica’s last update sequence number and the update date and time with the sequence number and date and time of the master’s backup. If the replica is more current, make the replica the new master as described in the following section. If the master’s backup is more current, restore the master from the backup as described in “Chapter 36. Performing Routine Maintenance” on page 397.

Converting a Slave to a Master

This subsection describes how to use the dcecp registry designate command to convert a slave to a master. Be aware that, because the registry designate -master command can cause data to be lost, the registry designate command without the -master option is the preferred means of designating a different master replica. Use the registry designate -master command only if the master replica is irrevocably damaged and you are unable to use the registry designate command without the -master option.

Follow these steps to convert a master replica to a slave replica:
1. Choose the slave replica that will become the new master.

2. Issue the following `registry designate -master` command to change the default host to the master registry:

   ```
   dcecp> registry designate/.../musee.com/subsys/dce/sec/art -master
   dcecp> registry show -replica
   ```

3. Use the `registry show -replica` command to verify the change.

4. Use standard UNIX commands to delete the old master replica's database and `.mkey` file by deleting the directory `dcelocal/var/security/rgy_data` and the file `dcelocal/var/.mkey`.

5. Use the `registry delete` command with the `-force` option to remove the old master from the replica list. The following example deletes the old master named `history` from the replica list:

   ```
   dcecp> registry delete /.../musee.com/subsys/dce/sec/history -force
   ```

Recovering Slave Replicas

Because slave replicas are not backed up, you must recreate a replica to restore a replica that is corrupted. To do so, use the following procedure:

1. Use standard UNIX commands to manually delete the replica’s database files and master key file. To do this, delete all the files in the following locations:

 - `opt/dcelocal/var/security/rgy_data`
 - `opt/dcelocal/var/security/.mkey`

2. Use the `set_s(sec)` command to bind to the master and then the `dcecp registry delete -force` command to delete the replica from the master’s replica list. The next two commands show how to bind to the master and then delete the replica.

   ```
   dcecp> set_s(sec) /.../musee.com/subsys/dce/sec/master
   dcecp> registry delete /.../musee.com/subsys/dce/sec/art -force
   ```

3. Use standard UNIX commands to copy the file
 `opt/dcelocal/etc/security/pe_site` from the machine running the master to the machine that will run the replica.

4. Use `/etc/dce_config` (or your provider’s equivalent) on the replica machine to do the following:

 a. Stop DCE daemons.
 b. Start DCE daemons.
 c. Configure a security server replica. This configuration creates the replica’s database and starts `secd`.

5. When you configure the replica in the previous step, you assign it a name. If you did not give this replica the same name that it previously had, the old name must be deleted from CDS by performing the following steps:

 a. Deleting the replica's server entry name from `./subsys/dce/sec`
 b. Deleting the replica's name from the CDS group `./sec`

Converting a Master to a Slave

Use the following procedure to convert a master replica to a slave. Use this procedure only if you have more than one master running on your network or on the Internet, which is a highly unusual condition.

1. Choose the master replica that will become a slave.
2. Issue the following `registry designate -slave` command to change the chosen master to a slave:

 dcecp> registry designate /.../dublin.com/subsys/dce/sec/lit -slave
 dcecp>

3. Use the `registry show -replica` command to verify the change.

Forcibly Deleting a Slave Replica

The procedure described in this section explains how to forcibly delete a slave replica. Use this drastic method only when the ordinary method of deletion described in Chapter 37, Handling Network Reconfigurations on page 409 fails.

To forcibly delete a slave replica, use the `dcecp registry delete -force` command. This command deletes the slave replica from the master’s replica list. The master then propagates the delete request to the other replicas. Since this operation never communicates with the deleted replica, use the `-force` option only when the replica dies and cannot be restarted. If a forcibly deleted replica continues operation, use the `registry destroy` command to stop the server and delete its database. You can also simply stop `secd` (by using the `dcecp registry stop` command) and delete or rename its database.

To forcibly delete a registry replica, issue the `registry delete` command with the `-force` option, supplying the name of the registry to delete as an argument. The following sample deletes the replica at `/.../giverny.com/subsys/dce/sec/lit_server_2`:

 dcecp> registry delete /.../giverny.com/subsys/dce/sec/lit_server_2
 -force
 dcecp>

 If the default replica is not the master, `dcecp` automatically binds to the master.

 If a forcibly deleted replica continues operation, use the `registry destroy` command to stop the server and delete its database. When you use the `registry destroy` command, you must enter the name of the replica that you want to stop. The following example shows the `registry destroy` command used to delete the replica at `/.../giverny.com/subsys/dce/sec/lit_server_2`:

 dcecp> registry destroy /.../giverny.com/subsys/dce/sec/lit_server_2
 dcecp>

 Alternatively, you can simply stop `secd` (by using the `dcecp registry stop` command) and destroy the replica by deleting or renaming its database.

Restoring a Duplicate Master

This section describes how to recover from a very unusual problem. Do not use the methods described here to resolve the problem unless it is absolutely necessary.

Occasionally the replica that you want to be the master will have a master sequence number that is lower than (or equal to) another master sequence number in the system. When the master detects that its master sequence number is lower than another one in the system, it marks itself as a duplicate master and its process exits. Each time you start the master replica, it will notice that it has been deemed a duplicate master, and its process will again exit.
To force this duplicate master to become the master and not exit, restart its `secd` process with the `-master_seqno` option in the following format:

```
secd -master_seqno new_master_seqno
```

where `new_master_seqno` is a new master sequence number to assign to the replica. Make this number one digit higher than the highest master sequence number in the system.

Use the `dcecp registry dump` command to find the highest master sequence number.

Adopting Registry Orphans

Although `dcecp` displays object names and you identify registry objects by name, the DCE Security Service uses UUIDs to identify objects internally. When you create a registry object, the DCE Security Service automatically sets up an association between the object name and a UUID that it uses to identify the object. When you delete registry objects, you delete the association between the registry object and the UUID that identifies the object.

Orphans are objects owned by UUIDs that are not associated with a principal or group because the principal or group has been deleted. For example, if you delete a principal from the registry, you also delete the association between the name used to identify the principal externally and the UUID used to identify the principal internally. Any objects (files, programs) owned by the deleted principal are now owned internally by a UUID no longer associated with a principal. If no other principal, group, or organization has access rights to the object, the object cannot be accessed at all and is now an orphan.

To solve this problem, you can use the `dcecp principal create`, `group create`, and `org create` commands with the `-uuid` option to create a principal, group, or organization with the same UUID as the UUID that owns the orphaned object and thus adopt the orphaned object.

Note: When you create a new registry object, you have no way of specifying the UUID associated with the object; therefore, you cannot simply add a new registry object of the same name to adopt the orphan.

The `-uuid` option creates a principal, group, or organization and lets you specify the UUID with which it should be associated instead of assigning it automatically. Except for the manner in which it is created, a principal, group, or organization created by these commands is no different from any other principal, group, or organization. The following examples show how to use this option to create a principal, group, or organization to adopt an orphaned registry object.

To create a principal associated with the UUID that owns the orphaned object, use the following command:

```
principal create name -uuid uuid [-fullname fullname] \ 
    [-quota object_creation_quota] [-uid UNIX_number]
```

To create a group associated with the UUID that owns the orphaned object, use the following command:

```
group create name -uuid uuid [-fullname string] \ 
    [-inprojlist [yes no]] [-gid UNIX_number]
```
To create an organization associated with the UUID that owns the orphaned object, use the following command:

```
organization create name -uuid uuid
[-fullname string] [-orgid UNIX_number]
```

where:

- **name**
The principal’s, group’s, or organization’s primary name.

- **uuid**
The UUID number to be assigned to the principal, group, or organization. This UUID should be the one that owns the orphaned object (that is, the one that was associated with the deleted registry object). The UUID is specified in RPC print string format as 8 hexadecimal digits, a hyphen; 4 hexadecimal digits, a hyphen; 4 hexadecimal digits, a hyphen; and 12 hexadecimal digits. The format is as follows:

```
nnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnn
```

- **string**
The principal’s, group’s, or organization’s full name.

- **UNIX_number**
For cell principals, *only* the UNIX number to be associated with the name. If you do not enter this option, the next sequential UNIX number is supplied. For all principals other than cells, the UNIX number is extracted from information that is embedded in the principal’s UUID and cannot be specified here.

- **object_creation_quota**
For principals, *only* the principal’s object creation quota. If you do not enter this option, the default is *unlimited*.

- **-inprojlist**
For groups, *only* yes turns off the project list inclusion so that groups are not included in project lists. If you enter no, the group is included in project lists.

Note: In the current implementation of DCE, UNIX numbers are embedded in UUIDs. If you try to create a group or organization to adopt an orphaned object and fail, it could be because the embedded UNIX number is invalid because it does not fall within the range of valid UNIX numbers set for the cell as a registry property. If this is the case, you must reset the range of valid UNIX number to include the UNIX number embedded in the UUID and then try again to adopt the object. See Chapter 35, Maintaining Policies and Properties on page 389 for information on setting the valid range of UNIX numbers.

Accessing a Server Registered with User to User Protocol

If a server has been stopped and restarted, a client with an unexpired ticket to the old, stopped server cannot perform authenticated RPCs with the new restarted server. The client must either wait for the current ticket to expire or obtain a new ticket by destroying the current credentials (kdestroy) and performing a new dce_login.
Designating a New Master Replica When the Current Master Replica Has Failed

If the Master Security Replica has failed and will be unavailable for an extended period, use the following steps to designate an existing slave replica as the new master replica:

1. Choose the new master site. A slave replica must already exist on the host you choose.
2. Login on the host which will be the new master replica and obtain DCE cell administrator credentials.
3. Issue the registry designate command to set the new master replica. When you issue this command, you supply the name of the replica to be made the new master as an argument. The old master is not contacted during this operation.

   ```
   dcecp> registry designate /.../henry.com/subsys/dce/sec/cheyenne -master
   dcecp>
   ```
4. Issue the `registry show` command to verify that the new master replica has become the master:

   ```
   dcecp> registry show /.../henry.com/subsys/dce/sec/cheyenne
   dcecp>
   ```
5. Issue the `rpcgroup remove` command to delete the old master replica from the security rpc groups `./:sec` and `./:sec-v1`.

   ```
   dcecp> rpcgroup remove ./:sec -member /.../henry.com/subsys/dce/sec/bourbon
   dcecp>
   dcecp> rpcgroup remove ./:sec-v1 -member /.../henry.com/subsys/dce/sec/bourbon
   dcecp>
   ```
6. Issue the `directory remove` command to delete the `cds` object for the old master replica from the cds namespace:

   ```
   dcecp> directory remove ./:/subsys/dce/sec -member bourbon
   dcecp>
   ```
7. Issue the `acl modify` command to remove the host of the old master replica from the replica list ACL:

   ```
   dcecp> acl modify ./:/sec/replist -remove {user hosts/bourbon/self -i-m-I}
   dcecp>
   ```
Chapter 41. AIX/DCE Security Integration

In this release, the AIX base operating security services have been integrated with the DCE security services. This integration is designed to present the typical end user with a single-system image, rather than separate images of a local AIX system and a remote DCE system. There are some limitations to the integration, explained in "More Detailed Information—Security Integration"; however, most users can acquire DCE credentials through AIX commands (such as login and su), can change their DCE passwords through the AIX passwd command, and can retrieve AIX-type information from the DCE registry through the standard AIX libc.a routines--getpwnam(), getpwuid(), getgrnam(), and getgrgid(). The more general routines, getpwent() and getgrent(), are not DCE-aware at this time.

More Detailed Information—Security Integration

We strongly recommend that users and groups in the DCE registry and individual system /etc/passwd and /etc/group files be synchronized as closely as possible. Synchronization can be facilitated with the passwd_export and passwd_import utilities after initial cell configuration. Any users who are not synchronized between the cell registry and the local files cannot realize the full benefit of the integration feature. On the other hand, this flexible integration scheme supports wandering users (users who are defined in the DCE registry but not in a local system). If a machine is configured to allow it, those wandering users can log onto the system and obtain DCE credentials and local access based on UNIX-relevant information in the registry.

The nonintegrated DCE security command dce_login (for logging onto DCE) and the dcecp program (for DCE changing passwords and querying the registry) are still available. Of course, local access is prerequisite to using these commands.

The local administrator must set up the system to enable AIX/DCE security integration. This administrator should perform the steps in this section as local user root. The system should already be configured as a DCE client machine.

Enabling DCE Access

The /etc/security/user file defines attributes for both specific users (those who have a stanza) and other users (those who use the default stanza). To support AIX/DCE security integration, two new user attributes have been defined—SYSTEM and registry. Use the SYSTEM attribute to allow or deny DCE access for particular users or for the system as a whole. Use the registry attribute to force password operations either locally or to DCE.

It is important to note that these and other user attributes are applied on a domain-relative name basis. That means that a wandering DCE user who logs onto a system as jane, ./jane, or /.../this_cell/jane is affected by any user attributes that can be present in a stanza for a local user jane in /etc/security/user.

The SYSTEM Attribute

The SYSTEM attribute describes the method(s) used to authenticate a user to the system. The valid values for this attribute are boolean expression strings made up of the following tokens:
files Authenticate through the local /etc/passwd file only.
compat Authenticate through the local files and/or the NIS database.
DCE Authenticate through the DCE registry.

The value for the SYSTEM attribute can be a complex expression formed from the methods (tokens) above and the AND and OR boolean operators. Moreover, the SYSTEM expression can specify different results from the methods; the syntax is method [result]. Valid results are UNAVAIL (the authentic service was unavailable), NOTFOUND (the user was not found in the database), FAILURE (authentication failed for a different, unspecified reason), or SUCCESS (implicit in a method with no result).

The default stanza is created with SYSTEM = compat. The local administrator must then change this stanza or a specific user stanza for any user who requires another authentication scheme. The local user root should always have SYSTEM = compat (as well as registry = files); in that way, superuser is not dependent on nonlocal authentication mechanisms.

Please refer to the AIX documentation for further discussion of the SYSTEM user attribute and its legal values.

The registry Attribute

The registry attribute defines the database where a user’s password is administered. This attribute determines where password queries and changes take place. The valid values for this attribute are:
files The user’s password is administered in local files.
NIS The user’s password is administered in an NIS database.
DCE The user’s password is administered in the DCE registry.

There is no default value for registry and, as explained later, the administrator can choose to leave the default undefined. Notice that the local user root should always be defined as registry = files (as well SYSTEM = compat). In that way, superuser password operations are not dependent on nonlocal mechanisms.

Please refer to the AIX documentation for further discussion of the registry user attribute and its legal values.

Protecting Local Resources

The local system administrator must protect any local resources. As stated previously, we highly recommend the DCE registry and local /etc/passwd and /etc/group files be synchronized as closely as possible. In some cases however, it can be desirable not to synchronize a local user with the registry (the local user root is a good example). In those cases, the local administrator must see to it that any nonsynchronized names and/or IDs are protected.

The local administrator should take measures to protect any name (user or group name) or ID (UID or GID) known to not be synchronized with the DCE registry and that can have data on the local system. For example, if user joe exists on the local machine and a different user joe exists in the DCE registry, the local administrator should ensure that DCE joe cannot gain access to the machine.
The following sections describe various ways to protect local resources.

Protecting Local Resources with the /etc/security/user File

Any user who is known not to be synchronized with a user of the same name in the registry should be defined by his SYSTEM and registry attributes in the /etc/security/user file as a local (or NIS) user.

To prevent any wandering DCE user from gaining access to the local system, the default stanza should exclude DCE from the SYSTEM attribute:

```
default: SYSTEM = compat
   registry = files
```

Local users who are synchronized with the DCE registry can still acquire DCE credentials at login by having DCE specified as an authentication method in their individual stanzas.

Protecting Local Resources with the passwd_override and group_override Files

The standard DCE passwd_override functionality is in effect for integrated authentication. That is, the local administrator can prevent DCE authentication from succeeding on the basis of user name, UID, or GID by putting the appropriate entry in the /opt/dcelocal/etc/passwd_override file. For example, the following passwd_override entry prevents DCE authentication by user joe:

```
joe:OMIT:::::::
```

Similar passwd_override entries, keyed by UID or GID, can prevent DCE authentication by users having the specified ID.

For base DCE, the /opt/dcelocal/etc/group_override file is used for modifying group entries created during a passwd_export operation. On a system with AIX/DCE integrated security features, the group_override file can also be used to prevent local access by DCE users. To do so, specify a group name and OMIT in a group_override entry. Then, any user who is a member of that group is denied local access. For example, the entry

```
temps:OMIT::
```

prevents any DCE user that belongs to the temps group from logging onto the local system. It does not matter whether temps is the user’s primary group or an arbitrary group in the user’s groupset. Access denial by the group_override file is in effect only for integrated BOS functions (not DCE-only functions like dce_login) and denial is only on a group name basis. To deny access based on GID, use the passwd_override file mechanism.

In this release, the dced daemon implements the override functionality. Because the override functionality is integral to protecting local resources, DCE authentication is designed to fail if the dced daemon is unavailable. The local administrator must ensure that local access is still possible through other authentication methods, if necessary. See the DCE for AIX Administration Command Reference for a full discussion of the passwd_override and group_override files.
Note: Because dced is not available on a slim client configuration, the passwd_override and group_override functionality is also not available on a slim client configuration.

Note: For performance reasons, it is preferable to protect local resources with the /etc/security/user file (if possible) rather than the DCE override file.

Configuring DCE Access on a Per-User Basis

The following sections provide specific details about configuring access on a per-user basis.

Configuring and Protecting the Local Root User

Authentication of the local superuser should not depend on any nonlocal mechanisms. Therefore, /etc/security/user should always contain a root stanza with the following entries:

```
root: SYSTEM = compat
      registry = files
```

In this way, all authentication and password operations are directed to local files. This also prevents the DCE user root from logging onto DCE on this system (unless, oddly, the password for DCE user root matches the root password).

You can also choose to use the passwd_override facility to prevent other DCE users with UID 0 from logging onto the system. This should only be necessary if you enable wandering DCE user authentication on your system and if the cell administrator has created an alias for the DCE user root. You can determine if an alias exists by viewing the accounts in the DCE registry with dcecp.

Configuring and Protecting a Local-Only User

A local-only user is a user who is defined on the local system but is not synchronized with any principal in the DCE registry. Therefore, there can be DCE users whose name or ID collides with the local user. Such a user should have specific stanza in /etc/security/user defining the SYSTEM and registry attributes as follows:

```
joe: SYSTEM = compat
      registry = files
```

Note: If appropriate, SYSTEM can be set to files and registry set to NIS. The objective is to expressly exclude DCE from the attributes.

Therefore, local user joe does not depend on DCE for authentication or password operations. This also prevents any DCE user joe from logging onto DCE on the system.

You can also choose to protect a local-only user’s system resources by creating passwd_override entries keyed by UID or GID, or by creating group_override entries keyed by group name.
Configuring a Synchronized User

In a well-integrated cell, most users are defined and administered in the DCE registry and any user that exists locally should be synchronized with a DCE user. The `passwd_export` utility can be used to synchronize all local user information except for passwords with the DCE registry. The AIX `passwd` command or the `pwdadm` administrative command should then be used to synchronize passwords.

Any synchronized user can use the AIX BOS commands and have them directed toward the DCE registry. To do this, the user's stanza (whether a specific stanza or the default) in `/etc/security/user` should have a `SYSTEM` attribute that defines DCE as the first authentication method to try, as in the following examples:

- `SYSTEM = "DCE OR (DCE [UNAVAIL] AND compat)"
- `SYSTEM = "DCE OR (DCE FAILURE) AND compat"
- `SYSTEM = "DCE AND compat"

Note: For synchronized users, do not set the registry attribute.

In the above examples, DCE is the first authentication method tried. If authentication passes, the user is granted access; all UNIX-type information (UID, GID, home directory, login shell) as well as DCE credentials are obtained through DCE. In the first example, if DCE fails because of unavailability, local authentication is attempted. The second example attempts local authentication if DCE authentication fails for any reason. The third example requires both DCE and local authentication to succeed before the user is allowed access to system.

A user's `AUTHSTATE` environment variable is set to the first authenticated method that succeeds, and subsequent operations are directed toward the registry defined by `AUTHSTATE` (see "Access Method Identification" in this section).

Do not set the `registry` attribute for synchronized users; the `AUTHSTATE` environment variable is consulted for the proper registry where password operations should be directed. In other words, if `AUTHSTATE` is `DCE`, `registry` is `DCE` and if `AUTHSTATE` is `files` or `compat`, `registry` is `compat`. If the registry attribute is explicitly set to a registry that conflicts with `AUTHSTATE` of the user, password operations can fail.

Supporting Wandering DCE Users

Wandering DCE users are users defined in the DCE registry but not defined on the local machine. You can enable wandering users to log onto DCE from any machine by setting the default `SYSTEM` attribute as follows:

```bash
default:
    SYSTEM = "DCE OR compat"
```

Any DCE user can log onto DCE from any machine thus configured by supplying his or her DCE name and password. Of course, if local users with colliding names or IDs exist and have been protected either by their own stanzas entries in the `passwd_override` or `group_override` files, a wandering user is denied system access.
Access Method Identification

After authentication, an **AUTHSTATE** variable is set in the user’s environment. This variable defines the authentication mechanism implemented by the user to gain access to the system and can have the value of **files**, **NIS**, or **DCE**. The **AUTHSTATE** variable determines the first database accessed for a user’s subsequent operations. However, if the user’s **registry** attribute is defined, password operations are directed toward the database defined by **registry**, regardless of the user’s **AUTHSTATE**. The local administrator should make sure that a user’s **registry** attribute does not conflict with the user’s **AUTHSTATE**, which is determined indirectly by the **SYSTEM** attribute. One method is to leave the **registry** attribute undefined for all but local-only users. Local-only users (such as **root**) should always be defined as **registry = files**.

Changing Passwords

Password operations are directed toward the registry defined by the **registry** user attribute or, in the absence of a registry attribute definition, the **registry** defined by the **AUTHSTATE** environment variable. Password operations are not directed to both local and DCE registries. Changing passwords for a DCE-only user is done through **dcecp**, but changing passwords (both DCE and local) for a synchronized user can be done with AIX **passwd** command in a two-step procedure:

```
$ AUTHSTATE=DCE passwd
$ AUTHSTATE=compat passwd
```

The user should echo the **AUTHSTATE** value before changing it and should set it back to the original value after changing is complete.

Note: Passwords must be kept synchronized for synchronized users. If they are not, either DCE or the local authentication fails. Also, if a user exists locally on more than one machine, the local password must be synchronized on all machines.

Troubleshooting

The following describes some potential situations that can arise, requiring the administrator’s attention. Any problems related to a BOS command can also adversely affect the system users as well.

dceunixd will not start, issuing the message (dceunixd) Ensure that valid machine credentials exist and that the **KRB5CCNAME** environment variable is not set.

Cause: This can occur if the existing credentials (as determined by the **KRB5CCNAME** environment variable) are nonexistent.

Action: If **KRB5CCNAME** is set in the environment, unset it. Also verify that the machine credentials (/opt/dcelocal/var/security/cred/dcecred_ffffffff) exist. You might need to start (or restart) **dced** to create new machine credentials.

dceunixd will not start, issuing the message (dceunixd) Detected another instance of dceunixd, pid XXXXX (where XXXXX represents a process ID).

Cause: This can happen if **dceunixd** is already running on the machine.
Action: Make sure the `dceunixd` process with the stated process ID is running. If it is, a second `dceunixd` cannot be started. If no such process exists, remove the following files:

```
/opt/dcelocal/var/security/adm/dceunixd.skt
/opt/dcelocal/var/security/adm/dceunixd.pid
```

and then reinvoke `dceunixd`.

The dceunixd process grows very large.

Cause: This can happen when a large number of authentication requests place on a machine. Each DCE authentication causes growth in the authentication process and, because `dceunixd` authenticates on behalf of many clients, it can grow quite large (depending on system activity).

Action: If system performance is degraded because `dceunixd` is consuming a great deal of memory, stop and then restart the daemon. You should consider running a `cron` job where `dceunixd` is stopped and restarted on a regular basis.

An AIX command will not run, issuing the message `Security method "DCE" could not be loaded`.

Cause: This can happen if the machine is not properly configured for AIX/DCE security integration.

Action: Ensure that the local `dceunixd` daemon is running and that the module `/usr/lib/security/DCE` is installed on the machine. It should have the following ownership and permissions:

```
-rwxr-xr-x 1 root system
```

See “Steps —Security Integration” for other configuration information.

The `ls -l` command maps a UNIX ID to the wrong user or group name, or it fails to map an ID to a name.

Cause: This can occur if the `AUTHSTATE` environment variable points to an unexpected database.

Action: Check the `AUTHSTATE` environment variable. All `getpw*` and `getgr*` operations (except `getpwent()` and `getgrent()`) are first directed toward database indicated by `AUTHSTATE`. That is, if `AUTHSTATE = DCE`, queries go to the DCE registry. If the name or ID is not found in DCE, the local/NIS databases is queried. Alternatively, if `AUTHSTATE = compat`, the local database is queried before DCE. Therefore, the behavior of the query operations can affect the output of ID-to-name mapping commands, such as `ls -l` or `id`. There should be mismapping or ambiguity only on systems where a local user ID collides with a DCE user ID (nonsynchronized users).

Authentication (for example, su, login, telnet, ftp) fails.

Cause: This can happen for a variety of reasons, depending on the system and user configuration.

Action:
1. Check the user’s `SYSTEM` attribute. The user (or default) stanza in `/etc/security/user` must specify the correct authentication mechanism. For a
synchronized user (a user defined both locally and in DCE), the **SYSTEM** attribute should be defined so that local-only authentication takes place if DCE authentication fails.

2. Wandering users should try authenticating on a different machine. Access can be denied because of explicit protective measures on the local system.

3. Check that **dced** is running. DCE authentication fails if **dced** is not available.

Registry object not found

Cause: The command may actually have completed successfully.

For example, consider a machine that is configured with security operations being directed to **DCE OR compat** by default (that is, the **SYSTEM** attribute in `/etc/security/user`'s default stanza equals **DCE OR compat**). If you try **su** to a local-only user on that machine, the DCE registry is queried in the course of login (since that is the first authentication mechanism specified in the **SYSTEM** attribute).

A legitimate "not found" message is returned from DCE and the **su** process displays it before continuing to the next authentication method (**compat**), which should succeed. Issue an **id** command to validate that the authentication took place.

Users should be aware that any given system may be configured so that security operations are directed first to DCE, then to the local system. Consequently, operations (such as **su** and **login**) on local-only users may result in a DCE error message displaying before it actually succeeds in the local case.

Steps—Security Integration

Use the following steps to configure a system for integrated security operations:

1. Ensure that the module `/usr/lib/security/DCE` is installed on the machine.

2. Edit the `/etc/security/login.cfg` file to include the following lines:

   ```
   DCE:
   
   program = /usr/lib/security/DCE
   ```

 This defines the authentication method DCE to the system.

3. Ensure that the daemon **dceunixd** is running on the machine. This daemon communicates to the DCE servers **secd** and **dced** on behalf of the BOS commands. Refer to the **dceunixd** reference page in the DCE for AIX Administration Command Reference for more information.

4. Edit the `/etc/security/user` stanza file to allow and/or deny DCE access for users. See “Enabling DCE Access” under “More Detailed Information — Security Integration” for instructions on editing this file.

5. Create or edit the `/opt/dcelocal/etc/passwd_override` and `/opt/dcelocal/etc/group_override` files to explicitly prevent DCE access by certain users. See “Protecting Local Resources” under “More Detailed Information—Security Integration” for instructions on editing this file.

Restrictions—Security Integration

In this release, there are certain restrictions on the integrated functions and the users that can take advantage of them. These restrictions are:

- Any DCE credentials obtained through the AIX base commands (such as **login**, **su**, or **telnet**) maintain DCE semantics. That is, they expire as determined by
DCE registry policy and cannot last for the duration of the local login session.
You must be careful when running rpxcred; credentials established at login and
active in many windows can be deleted and complete login must be performed to
regain consistent (cross-window) DCE credentials.

- If you are using DFS, the DFS client should be configured and running on your
 machine before dceunixd is started. Any user that instigates integrated login or
dce_login to obtain DCE credentials before DFS is running will not have
authenticated access to DFS files.

- Any DCE user with a cell-relative name longer than eight characters cannot take
advantage of the integration feature. The eight-character limit is UNIX-imposed.

- Any DCE user with a cell-relative name containing a slash (/) cannot take
advantage of the integration feature. Therefore, the DCE user mary can take
advantage of integrated features; the DCE user writers/mary cannot.

- Only local cell users are supported; foreign principals cannot use integrated
operations. Foreign principals can still use dce_login and dcecp for intercell
access.

- Certain AIX-generated data for local users can be misrepresented on systems
that allow wandering DCE user login and where local users have not been
sufficiently protected. This data includes last login time and information in the
system audit trails. Information for a local user is affected if the system is
accessed by a DCE user having the same name. For example, consider a
scenario where a local system defines a user joe and this user differs from a
DCE user joe. Assume that there are no collisions between UIDs or GIDs on the
local system and the DCE registry. The local administrator has failed to override
login by DCE user joe (through the passwd_override file) and has enabled
wandering user login by setting the default SYSTEM value in /etc/security/user
to be compat OR (compat [FAILURE] AND DCE).
If DCE user joe logs into this system, he gains access and has the UID and GID
as obtained from the DCE registry. Therefore, DCE joe cannot access local joe’s
files because they are owned by local joe’s UID and GID. However, the local
system still knows the user as joe and it cannot distinguish the domain to which
he belongs (DCE or local) in some circumstances. Therefore, data logged is
attributed to joe regardless whether DCE joe or local joe generated the data.
The administrator should guard against this problem by synchronizing all local
users possible with the DCE registry, and by adequately protecting any
unsynchronized users (by applying local overrides for colliding names and IDs
and by configuring the /etc/security/user stanzas properly).

- The local root user cannot su to a DCE user and obtain DCE credentials. This is
because the local root user is not prompted for a password, is necessary for
DCE login. In fact, any command that does not prompt for a password (for
example, rcp, rsh, or rlogin when an .rhosts file is present) cannot be used to
acquire DCE credentials. BOS commands acquiring DCE credentials are
dCE-aware in that they use the DCE registry for user and password information.
They do not use the underlying Kerberos authentication protocol.

- The AIX passwd command changes the DCE password only for those DCE
users whose pwd_val_type extended registry attribute specifies a user-selected
password. It cannot change the password for those DCE users whose
pwd_val_type era specifies a system-generated password.

- The local DCE registry is not sufficient to pass DCE authentication. If the DCE
security server is unavailable and DCE is defined as a required authentication
method by the SYSTEM attribute, the user cannot access the system.

- Password operations are directed toward either the DCE registry or the local
files, not both. Therefore, changing the password for a user who exists in both
DCE and on a local system (as a synchronized user) is a two-step process. You can use the AIX `passwd` command to first change the password in one registry and then in another. For example:

```bash
$ AUTHSTATE=DCE passwd
$ AUTHSTATE=compat passwd
```

Some AIX BOS commands that rely on `/etc/passwd` or `/etc/group` information are not DCE-aware. These commands include the `finger`, `quot`, `lsuser`, and some administrative commands (such as `mkuser`, `rmuser`, `mkgroup`, and `rmgroup`).

Examples—Security Integration

- **User joe** (whose local `/etc/passwd` information is synchronized with DCE registry) can have a stanza configured so that he obtains DCE credentials and local access at login. His stanza can look something like this:

  ```
  joe:
  SYSTEM = "(DCE AND compat) OR (DCE[UNAVAIL] AND compat)"
  ```

 This indicates that joe must pass both DCE and `compat` authentication or he must fail DCE authentication due to DCE unavailability and pass `compat` authentication to successfully log onto the system.

- As another example, wandering DCE user **bob** can try to log onto a system (on which he is not defined locally) where the default stanza contains the following:

  ```
  default:
  SYSTEM = "DCE OR (DCE [UNAVAIL] AND compat)"
  ```

 This indicates that a default user must pass DCE authentication or fail DCE authentication due to DCE unavailability and pass `compat` authentication to gain access to the system. Of course, if the user is a wandering user and has no local entry in `/etc/passwd`, the user cannot pass `compat` and is denied any access in the event DCE is unavailable.

- The stanza for local user **joe** would include the following entries if he is known not to be synchronized with a user of the same name in the registry:

  ```
  joe:
  SYSTEM = compat
  registry = files
  ```

 The stanza for NIS user **jane** would include the following entries:

  ```
  jane:
  SYSTEM = compat
  registry = NIS
  ```

 The objective is to expressly exclude DCE from the attributes. If **joe** or **jane** wanders up to the machine, the only way they can log on is to provide the password that makes `compat` (local or NIS) authentication succeed.

- If user **jane** accesses the local system through DCE, her `AUTHSTATE` variable is set to **DCE**. If she then executes an `ls -l` command on some file, the DCE registry is queried to map the UID and GID to names. If the IDs do not exist in the DCE registry, the `ID query` operation falls back to `compat`, and the local `/etc/passwd` and `/etc/group` files are queried. Users should be aware that IDs can be mismapped, depending on the database preferentially queried and the file system being accessed (DFS or local).
Intercell Considerations— Security Integration

AIX/DCE security integration can be used to allow a DCE user from a foreign cell to login and obtain their foreign cell DCE credentials. This is accomplished by creating shadow principals in the local cell registry. A shadow principal is a principal with a new extended registry attribute attached to it. This ERA contains a fully-distinguished DCE cell name which represents the cell where the foreign user’s account is defined. The home cell ERA value is then used by security integration to contact the foreign cell and authenticate the user during login. The shadow principal acts as a pointer which redirects authentication to the foreign cell indicated in the home cell ERA.

The user logs in by specifying the name of the shadow principal and gives the password for the foreign cell account pointed to by the home cell ERA. The user is then authenticated, and if successful receives DCE credentials for the foreign cell user. In the following example, the user henry has an account defined in the cell wildwest.austin.ibm.com but wants to login on a host configured in the cell windsor.austin.ibm.com. A shadow principal the windsor.austin.ibm.com cell might be defined as follows:

Name: henry
Full Name: Henry D. Shadow
UNIX ID: 112
UUID: 00000070-e63f-21cf-88-02608c2f5cec
Home Cell ERA: /.../wildwest.austin.ibm.com

A successful login by shadow user henry results in the login user having DCE credentials for user henry in the cell wildwest.austin.ibm.com.

The home cell ERA may also contain a fully-distinguished DCE user name, containing both the global cell name and the user name of the foreign cell user. This allows the shadow principal to represent a foreign cell user with a different name. Using the preceding example, if the home cell ERA were /.../wildwest.austin.ibm.com/joe then a successful login by henry obtains DCE credentials for user joe in the cell wildwest.austin.ibm.com.

Intercell Administration— Security Integration

Local AIX user and group information is retrieved from the DCE registry during a login with security integration. Because of this, the administrator needs to understand how to configure and administer DCE users and groups for use with security integration in an intercell environment.

UNIX IDs for shadow principals

In addition to having the home cell ERA for the foreign cell user, the shadow principal is also used to obtain the login user’s local UNIX ID. This allows remapping of user IDs when IDs in the local cell conflict with those in the foreign cell. The shadow principal need not have the same user ID as the foreign cell user pointed to by its home cell ERA. The user logs in and receives the user ID of the shadow principal.

Account Information

If an account is created in the local cell for a shadow principal (a shadow account) it will be used to obtain local AIX account information. This includes the user’s
primary group, group set, login shell, home directory and gecos information. Otherwise, account information for the shadow principal is retrieved directly from the foreign cell by way of the home cell ERA. If the local cell administrator trusts the foreign cell registry, there is no need to create local shadow accounts.

Even if a shadow principal has a shadow account, when they login using security integration they are authenticated through the foreign cell account pointed to by the home cell ERA.

Shadow Groups

If a user’s group set is obtained from their foreign cell account (i.e. they do not have a shadow account in the local cell), then shadow groups must be created in the local cell registry for all groups in the user’s group set. Shadow groups are similar to shadow principals, and have a home cell ERA which points to the foreign cell where the group is actually defined. Shadow groups have no members themselves. A shadow group must also have the same group ID as the foreign group pointed to by its home cell ERA.

If the user has a local shadow account, their group set is obtained from the local account. The groups must exist in the local cell.

Manage UNIX IDs across cells

If security integration will be used extensively in an intercell environment, it recommended to segment the user and group UNIX IDs across cells if possible. Each cell assigns DCE user and group IDs only within a particular range which is unique to a cell. This makes administration of shadow groups and users much easier. Shadows can be created in any foreign cell with the same ID as in its home cell, without concern that the ID may be already assigned.

Use the following steps to set up intercell security integration:

1. Establish the trust relationship between the DCE cells
 To use AIX/DCE security integration in an intercell environment you must set up the trust relationship between the affected cells.

2. Start the dceunixd daemon with the intercell flag
 The dceunixd daemon must be started with the -i 1 flag to enable it to recognize home cell ERAs and contact foreign cells for intercell operations. Add the -i 1 flag to the options specified for dceunix. If the daemon is already running, stop it and restart it.

3. Define the schema for the home cell extended registry attribute
 Before you can attach any instance of the home cell ERA to a shadow principal or group, the ERA’s schema must be defined in the registry. This needs to be done only once in a cell, and only in the cell where shadows will be created. The following dcecp command will create the home cell ERA. You must enter the command using the values exactly as specified in the following example. You must also have cell_admin privileges in the cell to perform the command.
   ```
   xattrschema create /.:/sec/xattrschema/shadow_home_cell -attribute {
   {aclmgr
   {{principal r m m m}
   {group r m m m}}}
   {annotation {ERA for intercell integrated security} }
   {applydefs no}
   {encoding printstring}
   {intercell accept}
   ```
You must use this uuid: "35c6cba-e3d2-11cf-b772-268c2f5cce" when creating a shadow_home_cell schema.

4. Create shadow principals in the local cell

Shadow principals are like ordinary DCE principals, but have an instance of the home cell ERA attached to them which points to the foreign cell user. Once the shadow principal is created, you can attach the home cell ERA to them using the dcecp command.

dcecp> principal modify name -add "shadow_home_cell /.../cellname"

5. Create shadow groups in the local cell

If account information for a shadow principal will be obtained from their foreign cell account, create shadow groups for the groups in the user’s group set. Shadow groups have an instance of the home cell ERA attached to them which points to the foreign cell where the group is actually defined. You can attach the home cell ERA to them using the dcecp command.

dcecp> group modify name -add "shadow_home_cell /.../cellname"

Shadow groups must be created with the same group ID as the foreign group pointed to by their home cell ERA.

6. Create shadow accounts in the local cell

Account information for shadow principals is taken from their foreign cell account, unless an account is created for them in the local cell. If the cell administrator trusts the account information in the foreign cell registry, there is no need to create shadow accounts.

7. Configure integrated security operations.

See "Steps — Security Integration:" for more information on how to configure a system for integrated security operations.

Security Integration on a Slim Client Configuration

In order to use the security integration functionality on a slim client configuration the dceunixd daemon must be started with the "—s" flag. If you try to start the dceunixd daemon on a slim client configuration without this flag you will get the following error:

dceunixd: (dceunixd) Ensure that the valid machine credentials exist and that the KRBSCCNAME environment variable is set.

Because dced does not run on a slim client configuration, there is no certification service available. Starting dceunixd with the "—s" flag will validate users identities but will not certify them.

The passwd_override and group_override functionality will not be available on a system with a slim client configuration.
Security Integration with Multiple Dceunixd Daemons

Up to 5 dceunixd daemons may be started with the “—n numdaemons” flag. The default (without the “—n numdaemons” flag) is 1 dceunixd daemon. Multiple dceunixd daemons increase the capacity of security integration for those systems with a large number of users.

In the current release, multiple dceunixd daemons are not monitored by the process. This means if for any reason dceunixd needs to be killed; an administrator would need to manually kill all dceunixd daemons that might have been previously started with the dceunixd “—n numdaemons” flag.

The “—n numdaemons” and the “—d level” flags are mutually exclusive.
Chapter 42. Accessing Registry Objects

This chapter describes the permissions that apply to objects in the registry. Because the permissions that are granted are based on the way the registry database is structured, this chapter first briefly describes the structure of the registry database. It then describes the permissions for each object in the registry database, the registry ACL managers, and the initial registry ACLs.

Both dcecp and the acl_edit command have functions for creating, modifying, and deleting ACL entries for registry objects. See each command in the IBM DCE 2.2 for AIX: Command Reference for a description of the operations it performs on ACL entries.

The Registry Database

The registry is structured into the following main directories:

- The principal directory—Contains information about principals
- The group directory—Contains information about groups
- The org directory—Contains information about organizations

In addition to the directories, the registry contains the policy object, the replist object, and the xattrschema object, all of which are created when the registry is created during machine configuration. The policy object contains information that applies to registry properties and policies and organization policies; the replist object contains information about the replicas in the DCE cell; and the xattrschema object contains information about extended registry attributes (ERAs). You can modify policy and replica information at any time by using the dcecp registry commands. The xattrschema object is modified by using the dcecp xattrschema commands.

When you create simple objects in the principal, group, or org directory, subdirectories are created as needed. For example, if you add a principal such as preludes/villa/lobos, the subdirectories preludes and villa are created. You can use these subdirectories to help organize your data. When you delete all objects in a subdirectory, the subdirectory itself is deleted. (You cannot delete the principal, group, or org directory.)

The permissions that are granted to objects in the registry depend on where the object fits in the structure of the registry database. Figure 59 on page 456 illustrates the registry database. The boxes represent container objects (directories). The ovals represent simple objects. Figure 59 on page 456 shows only the top level principal, group, and org directories. Your registry can have subdirectories if you create them.
Registry Permissions

Table 29 lists the permissions that can be granted for the object types found in the registry.

<table>
<thead>
<tr>
<th>Permission</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Executes commands that act on replicas (sec_admin).</td>
</tr>
<tr>
<td>a</td>
<td>Modifies authentication information.</td>
</tr>
<tr>
<td>c</td>
<td>Modifies ACLs on objects. All registry ACLs must have one entry that specifies c (control) permission.</td>
</tr>
<tr>
<td>d</td>
<td>Deletes from an object’s contents.</td>
</tr>
<tr>
<td>D</td>
<td>Deletes an object from the registry.</td>
</tr>
<tr>
<td>f</td>
<td>Modifies a principal’s, group’s, or organization’s full name.</td>
</tr>
<tr>
<td>g</td>
<td>Adds a principal to a group.</td>
</tr>
<tr>
<td>i</td>
<td>Adds to a object’s contents.</td>
</tr>
<tr>
<td>m</td>
<td>Modifies management information.</td>
</tr>
<tr>
<td>M</td>
<td>Adds and deletes members from this group or organization. To add a member to a group, you must also have g permission for the principal to be added.</td>
</tr>
<tr>
<td>n</td>
<td>Modifies the name of a directory, a principal, a group, or an organization.</td>
</tr>
<tr>
<td>u</td>
<td>Modifies user information.</td>
</tr>
<tr>
<td>r</td>
<td>Views management, authentication, and user information.</td>
</tr>
<tr>
<td>t</td>
<td>Tests the group or organization membership of a named principal.</td>
</tr>
</tbody>
</table>

Management, Authentication, and User Information

The registry contains three different kinds of information about the objects in it: Management information, authentication information, and user information. The specific items of information that are kept for each object type are summarized in the following subsections.
Management Information

Management information includes the following categories:

- For registry policies and properties:
 - The account lifespan
 - The password minimum length
 - The password lifespan
 - Whether or not passwords can contain spaces
 - Whether or not passwords can consist of all nonalphanumeric characters
 - The password expiration date
 - The minimum ticket lifetime
 - The default ticket lifetime
 - A number that defines the lowest UNIX ID that is supplied automatically when principals, groups, or organizations are created
 - A number that defines the highest number that can be supplied (either automatically or manually) as a UNIX ID when principals, groups, or organizations are created
 - Whether or not encrypted passwords are displayed (the shadow password property)

- For principals:
 - The account, group, and organization names
 - Text string showing the full name of the principal
 - Object creation quota for the principal
 - Whether the principal can change primary names to aliases and aliases to primary names
 - User identifier (UID) of the principal
 - Unique user identifier (UUID) of the principal
 - The expiration date for the principal’s account
 - The Account-Valid Flag for the principal’s account
 - Flags that indicate whether the account is for a principal that can act as a client or as a server

- For groups:
 - Primary name of the group
 - Text string showing the full name of the group
 - Whether the group’s primary name can be changed to an alias and its aliases to its primary name
 - Group Identifier (GID) for the group
 - The project list inclusion property
 - UUID of the group

- For organizations:
 - Primary name of the organization
 - Whether the organization’s primary name can be changed to an alias and its aliases to its primary name
 - Text string showing the full name of the organization
 - Organization Identifier (ORGID) for the organization
 - UUID of the organization
 - The account lifespan
– The password minimum length
– The password lifespan
– The password expiration date
– Whether or not passwords can contain spaces
– Whether or not passwords can consist of all nonalphanumeric characters

• For the xattrschema object:
 – Whether or not the xattrschema can be modified

Authentication Information

Authentication information includes the following categories:

• For registry policies and properties:
 – The maximum ticket lifetime
 – The maximum time for which tickets can be renewed

• For principals:
 – The maximum ticket lifetime for the principal’s account
 – The maximum time for which tickets that are issued to the principal’s account can be renewed
 – The date and time that the principal’s account was last changed (Good Since Date)
 – The date and time that the principal’s account was enabled (Last Changed Date)
 – The creator of the principal’s account and account creation date
 – Description of the account’s use
 – Whether the principal’s account can be issued postdated tickets, forwardable tickets, renewable tickets, or proxiable tickets
 – Whether the DCE Authentication Service can issue tickets to the principal’s account based on ticket-granting ticket authorization or whether principals must obtain tickets directly for the service
 – Whether the principal’s account can be issued duplicate session keys

User Information

User information includes the following information pertaining to a principal’s account:

• Password
• Home directory
• Miscellaneous information (GECOS information)
• Login shell
• Password-Valid Flag

Permission Required to Create Principals, Groups, or Organizations

Figure 60 on page 459 shows the permission that is required to create principals, groups, or organizations.
To create a principal, group, or organization, you must have i permission on the directory in which you create the principal, group, or organization. For example, to create the principal `preludes/villa/lobos`, you must have i on `villa`.

Permissions Required to Delete Principals, Group, or Organizations

Figure 61 shows the permissions that are required to delete principals, groups, or organizations.

To delete principals, groups, or organizations, you must have the following permissions:

- The d permission on the directory in which the principal to be deleted exists
- The rD permission on the principal, group, or organization to be deleted

For example, to delete the principal `preludes/villa/lobos`, you must have the d permission for the `preludes/villa` directory, and rD permissions for the principal `preludes/villa/lobos`.

Permissions Required to Add Accounts

When you add accounts, by using the `user create` command, `dcecp` adds the principal to the group or organization that is named in the account, if the principal is not already a member of the group and/or organization. For this reason, the permissions that are required to add an account may include the permissions that are required to add a member to a group or organization. The following topics are covered in the discussion of the permissions required to add accounts:

- The permissions that are required to add an account and at the same time add the principal as a member of the group and organization that is named in the account. (See [Permissions Required to Add Accounts](#))
• The permissions that are required to add an account for which the principal is already a member of the named group and organization. (See "Adding an Account for Which the Principal is Already a Member of the Group and Organization" on page 461.)

• The permissions that are required to add an account and add the principal only to the group that is named in the account (because the principal is already a member of the organization). (See "Adding an Account and the Principal to the Group Only" on page 461.)

• The permissions that are required to add an account and add the principal only to the organization that is named in the account (because the principal is already a member of the group). (See "Adding an Account and the Principal to the Organization Only" on page 462.)

Adding an Account and the Account Principal to the Group and Organization

Figure 62 shows the permissions required to add an account and the account principals to the group or organization.

![Figure 62. Permissions Required to Add an Account and the Account Principal to the Group and Organization]

To add an account and add the account’s principal to the group and the organization named in the account automatically, you must have the following permissions:

• The maug permissions on the account’s principal
• The tM permissions on the group that is named in the account
• The rtM permissions on the organization that is named in the account
• The r permission on the registry policy object

For example, to create an account for the principal preludes/villa/lobos associated with the group composers and the organization pianists, you must have the following permissions:

• The maug permissions on preludes/villa/lobos
• The tM permissions on the group composers
• The rtM permissions on the organization pianists
• The r permission on the registry policy object
Adding an Account for Which the Principal is Already a Member of the Group and Organization

Figure 63 shows the permissions that are required to add an account for which the principal is already a member of the group or organization.

To add an account that does not require adding the account's principal to the group and the organization named in the account, you must have the following permissions:

- The mau permissions on the account principal
- At least one permission of any kind on the group that is named in the account
- The r permission on the organization that is named in the account
- The r permission on the registry policy object

For example, to create an account for the principal preludes/villa/lobos associated with the group composers and the organization pianists, you must have the following permissions:

- The mau permissions on preludes/villa/lobos
- At least one permission of any kind on the group composers
- The r permission on the organization pianists
- The r permission on the registry policy object

Adding an Account and the Principal to the Group Only

Figure 64 on page 463 shows the permissions that are required to add an account and the principal to the group only.
To add an account and add the account’s principal to the group (the principal is already a member of the organization named in the account), you must have the following permissions:

- The **maug** permissions on the account’s principal
- The **tM** permissions on the group that is named in the account
- The **r** permission on the organization that is named in the account
- The **r** permission on the registry **policy** object

Adding an Account and the Principal to the Organization Only

Figure 65 shows the permissions that are required to add an account and the principal to the organization only.

To add an account and add the account’s principal to the organization (the principal is already a member of the group named in the account), you must have the following permissions:

- The **mau** permissions on the account’s principal
- At least one permission of any type on the group that is named in the account
- The **rtM** permissions on the organization that is named in the account
- The **r** permission on the registry **policy** object
Permissions Required to Delete Accounts

Figure 66 shows the permissions that are required to delete accounts.

To delete accounts, you must have the \texttt{rmau} permissions for the principal that is named in the account. For example, to add or delete the account for the principal named \texttt{preludes/villa/lobos}, you must have the \texttt{rmau} permissions for \texttt{preludes/villa/lobos}.

Permissions Required to Add Members to Groups

Figure 67 shows the permissions that are required to add members to groups.

To add members to groups, you must have the following permissions:

- The \texttt{rM} permissions on the group to which the principal is being added
- The \texttt{rg} permissions on the principal to be added

For example, to add the principal \texttt{preludes/villa/lobos} to the group \texttt{composers}, you must have the following permissions:

- The \texttt{rM} permissions on the group \texttt{composers}
- The \texttt{rg} permissions on the principal \texttt{lobos}

Permissions Required to Add Members to Organizations

Figure 68 shows the permissions that are required to add members to organizations.

For example, to add the principal \texttt{preludes/villa/lobos} to the group \texttt{composers}, you must have the following permissions:

- The \texttt{rM} permissions on the group \texttt{composers}
- The \texttt{rg} permissions on the principal \texttt{lobos}
To add members to organizations, you must have the following permissions:

- The rM permissions on the organization to which the principal is being added
- The r permissions on the principal to be added

For example, to add the principal preludes/villa/lobos to the organization pianists, you must have the following permissions:

- The rM permissions on the organization pianists
- The r permission on the principal lobos

Permissions to Delete Members from Groups or Organizations

Figure 69 shows the permissions that are required to delete members from groups or organizations.

To delete members from a group or organization, you need the rM permissions on the group or organization from which the principal is being deleted and the r permission on the principal being deleted.

For example, to delete the principal preludes/villa/lobos from the group composers, you must have the following permissions:

- The rM permissions on the group composers
- The r permission on the principal lobos

Permissions Required to Change a Principal’s, Group’s, or Organization’s Full Name

Figure 70 shows the permissions that are required to change a principal’s, a group’s, or an organization’s full name.

To change a principal’s, group’s, or organization’s full name, you must have the r permission for the principal, group, or organization for which you are making the change.
Permissions Required to Change Management Information for Principals, Groups, or Organizations

Figure 71 shows the permissions that are required to change management information for principals, groups, or organizations.

To change management information for a principal, a group, or an organization, you must have the \textit{rm} permissions for the object for which you are changing management information.

Permissions Required to Change Management, Authentication, and User Information (Except Passwords) for Accounts

Figure 72 shows the permissions that are required to change management, authentication, and user information (except passwords) for accounts.

To change all management, authentication, and user information (except passwords) for accounts, you must have the following permissions for the principal that is named in the account:

- The \textit{ra} permission to change authentication information
- The \textit{rm} permission to change management information
- The \textit{ru} permission to change user information

Permissions Required to Change Passwords for Accounts

Figure 73 on page 466 shows the permissions that are required to change passwords for accounts.
To change passwords for accounts, you must have the following permissions for the principal that is named in the account:

- The ru permissions on the account’s principal
- The r permission on the registry policy object

Permissions Required to Change Authentication and Management Information for Registry Policies and Properties

Figure 74 shows the permissions that are required to change authentication and management information for registry policies and properties.

To change management or authentication information for the registry by using the dcecp registry modify command, you must have the ra permission to change authentication information or the rm permission to change management information for the registry policy object.

Permissions Required to Execute Commands That Act on Replicas

Figure 75 shows the permissions that are required to execute commands that act on replicas.

To execute any of the commands that act on replicas, you must have the following permissions on the replist object:

- The A permission to execute all commands except for those that display replica information, which require no permissions on the replist object.
• The d permission to execute the commands that delete replicas.

Permissions Required to Create Extended Registry Attribute Types

Figure 76 shows the permission that is required to create ERA types.

`xattrschema object`
`i permission`

Figure 76. Permissions Required to Create Extended Registry Attribute Types

To create an ERA type in the registry schema, you must have i permission on the `xattrschema` object.

Permissions Required to Delete Extended Registry Attribute Types

Figure 77 shows the permissions that are required to delete ERA types.

`xattrschema object`
`d permission`

Figure 77. Permissions Required to Delete Extended Registry Attribute Types

To delete ERA types, you must have d permission on the `xattrschema` object.

Permissions Required to View Extended Registry Attribute Types

Figure 78 shows the permission that is required to view one or more ERAs in the registry’s schema database (with the `dcecp xattrschema show` command).

`xattrschema object`
`r permission`

Figure 78. Permissions Required to View Extended Registry Attributes

To view ERA types, you must have r permission on the `xattrschema` object.

Permissions Required to Modify Extended Registry Attribute Types

Figure 79 on page 463 shows the permission that is required to modify ERA types.
To modify ERA types, you must have m permission on the xattrschema object.

Permission Required to Change ACLs on Registry Objects

Figure 80 shows the permissions that are required to change ACLs on registry objects.

To modify ACLs on registry objects, you must have the c permission on the object whose ACL you are changing. The registry object can be the policy object or a principal, group, or organization.

Permissions Required by Slave Replicas

In order to initialize and function properly, slave replicas must have the i, m, and I permissions for the replist object (/./sec/replist). A slave server runs under the indentity of the machine on which it runs. A machine name is the local host principal name in the following form:

host/hostname/self

The required ACL entry is added when the dce_config tool initially configures the DCE cell’s security server and when you use the tool to create new slave replicas. The entry has the following form:

user:host/hostname/self:mmI

Registry ACL Manager

The registry ACL manager consists of five manager types, which are used to handle different ACL semantics that are required by the five types of objects in the registry. For example, the principal ACL manager type controls the ACLs on all principal objects in the registry. Because group objects require a set of permissions that are different than those of a principal object, there is a separate group ACL manager type that controls the ACLs on group objects.

Not all permissions nor all ACL entry types are valid for each ACL manager. Table 30 on page 469 summarizes the valid and invalid permissions and the invalid ACL entry types for each ACL manager.
Table 30. ACL managers and Valid Permissions and ACL Entry Types

<table>
<thead>
<tr>
<th>Manager Type</th>
<th>Controls</th>
<th>Valid Permissions</th>
<th>Invalid ACL Entry Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>dir</td>
<td>directory objects</td>
<td>rcidDn</td>
<td>user_obj, group_obj</td>
</tr>
<tr>
<td>policy</td>
<td>the policy object</td>
<td>rcma</td>
<td>user_obj, group_obj</td>
</tr>
<tr>
<td>principal</td>
<td>principal objects</td>
<td>rcDnfmMaug</td>
<td>group_obj</td>
</tr>
<tr>
<td>group</td>
<td>group objects</td>
<td>rctDnfmM</td>
<td>user_obj</td>
</tr>
<tr>
<td>org</td>
<td>org objects</td>
<td>rctDnfmM</td>
<td>user_obj, group_obj</td>
</tr>
<tr>
<td>replist</td>
<td>replica lists</td>
<td>cidmIA</td>
<td>user_obj, group_obj</td>
</tr>
<tr>
<td>xattrschema</td>
<td>ERA types</td>
<td>rcidm</td>
<td>user_obj, group_obj</td>
</tr>
</tbody>
</table>

Initial Registry ACLs

When the registry database is created, the principal, group, and org directories and the policy, replist, and xattrschema objects are given initial ACLs. As new objects are created in the registry, they inherit their ACLs from the principal, group, and org directory ACLs. The ACL entry key for those initial ACL entries that require a key is the name of the principal that creates the registry database (supplied to the sec_create_db command as the registry creator), or root if no name is supplied. (See Chapter 38. Setting Up the Registry on page 413 for more information on sec_create_db and the registry creator.)

The initial ACLs that are created when the registry database is created are described in the following list. In the list, rgy_creator signifies the principal that is named as the registry creator.

Note: Your platform’s configuration tool may update these initial ACLs.

- For principal objects:
 - unauthenticated: r--------
 - user_obj: r-f--ug
 - user: rgy_creator: rcDnfmMaug
 - other_obj: r--------
 - any_other: r--------

- For group objects:
 - unauthenticated: r-t-----
 - user: rgy_creator: rctDnfmM
 - group_obj: r-t-----
 - other_obj: r-t-----
 - any_other: r-t-----

- For org objects:
 - unauthenticated: r-t-----
 - user: rgy_creator: rctDnfmM
 - other_obj: r-t-----
 - any_other: r-t-----

- For the policy object:
 - unauthenticated: r----
 - user: rgy_creator: rcma
 - other_obj: r----
 - any_other: r----

- For directory objects:

Chapter 42. Accessing Registry Objects 469
unauthenticated:r-----
user:rgx_creator:rcidOn
other_obj:r-----
any_other:r-----

- For the **replist** object:
 user:cell_admin:cidmA-

- For the **xattrschema** object:
 unauthenticated:r-----
 user:cell_admin:rcidm
 other_obj:r-----
 any_other:r-----
Chapter 43. DCE Audit Service

Auditing plays a critical role in distributed systems. Adequate audit facilities are necessary for detecting and recording critical events in distributed applications.

Auditing, a key component of DCE, is provided by the DCE Audit Service. This chapter provides an introduction to the DCE Audit Service.

Features of the DCE Audit Service

The DCE Audit Service has the following features:

- An audit daemon (auditd) performs the logging of audit records based on specified criteria.
- Application programming interfaces (APIs) can be used as part of application server programs to record audit events. These APIs can also be used to create tools that can analyze the audit records.
- An administrative command interface to the audit daemon directs the daemon in selecting the events that are going to be recorded based on certain criteria. This interface is accessed through the DCE control program (dcecp).
- An event classification mechanism allows the logical grouping of a set of events for ease of administration.
- Audit records can be directed to logs or to the console.

Components of the DCE Audit Service

The DCE Audit Service has these basic components:

- Application programming interfaces (APIs)

 Provide the functions that are used to detect and record critical events when the application server services a client. The application programmer uses these functions at certain code points in the application server program to actuate the recording of audit events. Other APIs can be used to create tools that examine and analyze the audit event records.

- Audit daemon

 The audit daemon provides the following services:
 - Maintains the filters and the central audit trail file.
 - Exports an RPC interface with which it can be controlled by the DCE control program (dcecp).

DCE Audit Service Concepts

This section describes some of the concepts that are relevant to the administration of the DCE Audit Service.

Audit Clients

All RPC-based servers are potential audit clients; DCE servers and user-written application servers. The DCE Security Service and the Distributed Time Service are auditable. That is, code points (discussed in the next section) are already in place in these services.
Note: Due to the central nature of the audit subsystem, generating audit events from an RPC client that does not also function as an RPC server is not recommended. Auditing on the server side limits the number of places where audit records will reside and makes gathering information from audit trails easier because there will likely be far fewer servers than clients for a typical client-server application.

However, client-side auditing does work as long as the client does not try to use filters (started with `DCEAUDITFILTERON` set in the environment). RPC clients that are not also RPC servers cannot use filtering because they have no way of knowing when the status of the filters changes and cannot adapt to reflect that change. This is an ability critical to the functional requirements of the audit subsystem.

The audit daemon can also audit itself.

Audit clients should have the `log` permission to the audit daemon object to be able to use the central audit trail file. Permissions to the audit daemon are discussed in [Chapter 44. DCE Audit Service Administrative Tasks](#) on page 483.

Code Points

A code point is a location in the application server program where DCE audit APIs are used. Code points generally correspond to operations or functions offered by the application server that requires audit. For example, if a bank server offers the cash withdrawal function `acct_withdraw()`, this function may be deemed to be an auditable event and be designated as a code point.

Code points are already in place in the DCE Security Service, Distributed Time Service, and Audit Service code. Code points and their associated events for the DCE Security Service are documented in the *IBM DCE 2.2 for AIX: Command Reference*. Code points and their associated events for the DCE Distributed Time Service are documented in the *IBM DCE 2.2 for AIX: Command Reference*. Code points and their associated events for the DCE Audit Service are documented in the *IBM DCE 2.2 for AIX: Command Reference*.

Audit Events

An audit event is any event that an audit client wishes to record. Generally, audit events involve the integrity of the system. For example, when a client withdraws cash from his bank account, this can be an audit event because it can involve a possible security violation on the bank account.

An audit event is associated with a code point in the application server code.

Event Numbers

Every audit event is assigned an event number by the application programmer. The event number is a 32-bit integer, such as 0xC0000000. Event numbers are discussed in more detail in the *IBM DCE 2.2 for AIX: Application Development Guide—Core Components*.
Event Classes

Audit events can be logically grouped together into an event class. Event classes provide an efficient mechanism by which sets of events can be specified by a single value. Generally, an event class consists of audit events with some commonality. For example, in a bank server program, the cash transactions (deposit, withdrawal, and transfer) may be grouped into an event class. Event classes are also discussed in Chapter 44, “DCE Audit Service Administrative Tasks” on page 483.

Event Class Files

Event classes are defined in event class files. All event class files must be created in the $dcelocal/etc/audit/ec$ directory.

Default event class files are provided to classify auditable events from the DCE Security Service, Time Service, and Audit Service. They are installed on the host system when any of these services is installed.

The name of an event class is the same as its filename. Each event class is defined within an event class file.

You can define new event classes by removing or adding event numbers in the event class files, or by creating new event class files.

Event Class Names

Each event class has a symbolic name assigned to it. Following is the suggested name format of event classes that vendors should follow:

```
ec_org_product_class
```

where:

- **org** Is the name of the organization or company that defines the event class.
- **product** Is the name of the product for which the event class is defined.
- **class** Is the characterization of the event class.

The following are two examples of event class names:

- **ec_osf_dce_authentication**—Defines an authentication event class for OSF’s DCE core components.
- **ec_transarc_encina_update**—Defines an update event class for Transarc’s Encina.

You can also define event classes to meet your own auditing needs. The following is the suggested name format for these event classes:

```
dce_server-name_class
```

where **class** is a characterization of the event class.

Event Class Numbers

If you define your own event classes, you must associate it with an event class number. Event class numbers are 32-bit integers. Each event class number is a tuple made up of a set ID and the class event ID. The set ID corresponds to a set of event classes and is assigned by OSF to an organization or vendor. The class
event ID identifies an event class within the set of event classes. The organization or vendor manages the issuance of the class event ID numbers to generate an event class number.

The structure and administration of event class numbers can be likened to the structure and administration of IP addresses. Recall that an IP address is a tuple of a network ID (analogous to the set ID) and a host ID (analogous to the class event ID).

Event Class Number Formats

Event class numbers follow one of five formats (A to E), depending on the number of event classes in the organization. The format of an event class number can be determined from its four high-order bits.

Format A can be used by large organizations (such as OSF or major DCE vendors) that need more than 16 bits for the class event ID. This format allocates 7 bits to the set ID and 24 bits to the class event ID. Format A event class numbers with zero (0) as its set ID are assigned to OSF. That is, all event class numbers used by OSF have a zero in the most significant byte.

Format B can be used by intermediate-sized organizations that need 8 to 16 bits for the class event ID.

Format C can be used by small organizations that need less than 8 bits for the class event ID.

Format D is not administered by OSF and can be used freely within the cell. These event class numbers cannot be unique across cells and should not be used by application servers that are installed in more than one cell.

Format E is reserved for future use.

The numbers with 110 in the most significant bits (that is, 0xC0000000 to 0xDFFFFFFF) are reserved to be used locally within a cell.

The event class number formats are illustrated in [Figure 81](#) (class event IDs are labeled “event-id”).

<table>
<thead>
<tr>
<th>Format</th>
<th>Set ID</th>
<th>Event ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format A</td>
<td>0 set-id</td>
<td>event-id</td>
</tr>
<tr>
<td>Format B</td>
<td>1 0 set-id</td>
<td>event-id</td>
</tr>
<tr>
<td>Format C</td>
<td>1 1 0 set-id</td>
<td>event-id</td>
</tr>
<tr>
<td>Format D</td>
<td>1 1 1 0</td>
<td>event-id</td>
</tr>
<tr>
<td>Format E</td>
<td>1 1 1 1</td>
<td>reserved</td>
</tr>
</tbody>
</table>

Figure 81. Event Class Number Formats

The cell administrator is responsible for administering and assigning local event class numbers and their names.
Filters

Once the code points are identified and placed in the application server, all audit events corresponding to the code points will be logged in the audit trail file, irrespective of the outcome of these audit events. However, recording all audit events under all conditions may neither be practical nor necessary. Filters provide a means by which audit records are logged only when certain conditions are satisfied. The administrator defines filters using the DCE control program.

A filter is composed of filter guides that specify these conditions. Filter guides also specify what action to take if the condition (outcome) is met.

A filter answers the following questions:
- Who will be audited?
- What events will be audited?
- What should be the outcome of these events before an audit record is written?
- Will the audit record be logged in the audit trail file, or displayed on the system console, or both?

For example, for the bank server program, you can impose the following conditions before an audit record is written:

“Log audit records on all withdrawal transactions (the audit events) that fail because of access denial (outcome of the event) that are performed by all customers in the DCE cell (who to audit).”

Filter Subject Identity

A filter is associated with one filter subject, which denotes to whom the filter applies. The filter subject is the client of the distributed application who caused the event to happen. The filter subject has two parts: The filter type and the key.

There are eight filter types:
- principal—DCE principal in the local cell.
- foreign_principal—DCE principal in a foreign cell.
- group—DCE group in the local cell.
- foreign_group—DCE group in a foreign cell.
- cell—DCE cell in the network.
- cell_overridable—DCE cell in the network. This type can be overridden by a more specific filter type.
- world—All clients of the distributed application.
- world_overridable—All clients of the distributed application. This type can be overridden by a more specific filter type.

The key is the specific name of the principal, foreign_principal, group, foreign_group, cell, and cell_overridable filter types. The world and world_overridable filter types have no keys.

Filter Guides

A filter contains one or more guides. A filter guide contains three elements: audit condition, audit action, and event class.
An audit condition specifies the required outcome (or outcomes) of the event before an audit record is written to the audit trail. These outcomes are not mutually exclusive. The audit conditions are:

- **success**—Records only if event succeeds.
- **failure**—Records only if event fails.
- **denial**—Records only if event failed because of access denial.

An audit action specifies where the audit record is written. The audit actions are:

- **alarm**—Displays the audit record on system console.
- **log**—Logs the audit record through an audit daemon or directly to an audit trail file.

The audit actions are not mutually exclusive; you can specify both.

The third element of the filter guide specifies the event class or event classes to which the filter will apply (for the specific filter subject identity).

Example of Filter Guides

The following is an example of a filter with two guides:

```text
filter type: foreign_principal
key: /.../cell_x/foo
guide 1:
  audit conditions - denial
  audit actions - log
  event classes - Confidential
guide 2:
  audit conditions - denial
  audit actions - alarm, log
  event classes - Restricted
```

Guide 1 specifies that an audit record will be logged for any event in event class **Confidential** if the user is the foreign principal `/.../cell_x/foo` and the event failed because of access denial. Guide 2 specifies that an audit record will not only be logged but also be displayed on the system console for any event in event class **Restricted** for the same user and event outcome.

Filter Rules

Filter rules are used to resolve overlapping guides from different filters. There are two filter rules: the override and the high-water-mark.

Under the override rule, filters that are overridable (that is, **cell_overridable** and **world_overridable** types) are nullified by more specific filters. The override rule serves as a mechanism that allows for complementary filters. A filter for a principal or a group is more specific than a filter for a cell or for the world.

The high-water-mark rule is applied after the override rule. If multiple filters are applicable to a client, the union of the actions (log or alarm) specified by these filters is applied.

A filter is applicable to a client if its principal, groups, or cell identity matches the key of the filter. The **world** and **world_overridable** filters have no keys and are applicable to all clients. If there are multiple filters that are applicable to a client, then the union of the actions (log or alarm) specified by these filters is taken.
Example of Using Filter Rules

The use of overridable filters is described in the following scenario:

Alice in Company (cell) X is responsible for activating some operations (event class **critical_transactions**). Other principals in the company are also authorized to activate the same operations, but only under certain conditions; for example, when Alice is not available. The system administrator wants to log an audit record regardless of the event outcome (that is, audit conditions = all) or who activates these operations. The administrator also wants to generate an alarm if the activator is not Alice. This specification is implemented by the following two filters:

Filter 1:

```
filter type: principal
guideline 1:
  audit conditions - all
  audit actions - log
  event classes - critical_transactions
```

Filter 2:

```
filter type: cell_overridable
guideline 1:
  audit conditions - all
  audit actions - log, alarm
  event classes - critical_transactions
```

When Alice invokes events in the **critical_transactions** event class, the principal filter (filter 1) is applicable because its key matches Alice’s identity. The principal filter is more specific than the cell filter. Although the cell filter (filter 2) is also applicable to Alice (Alice belongs to cell X), it is overridden by the principal filter because the cell filter is overridable. For other principals in Company (cell) X, the only applicable filter is the cell filter (filter 2). Thus, these same events will cause an audit record to be logged and also raise an alarm.

Nonoverridable world and cell filters are also useful. Without them, an administrator, for example, would have to delete all filters for groups and principals of a cell in order to make a cell-wide filter effective to the whole cell. (System administrators may want to introduce a temporary, nonoverridable cell filter when a cell is suspected to be the source of a security problem.)

Figure 82 illustrates the override relations between different types of filters. An arrow from filter type X to filter type Y means that X overrides Y.

Figure 82. Override Relations Between Filter Types
DCE groups are generally defined for the purpose of granting access permissions. A group filter specifies auditing the intent to use the group’s privileges, instead of specifying auditing the principals that belong to the group. That is, a group filter would not have auditing effects on a member principal of the group unless the principal has the intent to use the group’s privileges (by including the group in the PAC). Because group filters are defined to audit the intention of using a group’s privileges, they are independent of other filters and are not overridable.

Audit Trail File

The audit trail file contains all the audit records that are written by the audit daemon. You can specify either a central audit trail file or a vocal audit trail file.

The central audit trail file is created by the audit daemon when it is started. By default, if the `dce_aud_open()` function does not specify a name for an audit trail file, all audit records are sent to the audit daemon, which stores them in the central audit trail file.

If the `dce_aud_open()` function is invoked with a name for the trail file, this name becomes the pathname to the local audit trail file and all audit records are sent to that file.

Administration and Programming in DCE Audit

Many of the DCE Audit Service administrative tasks are related to the tasks performed by the application programmer. To understand these administrative tasks, you should be familiar with some programming aspects of the DCE Audit Service. This section describes a typical DCE Audit Service programming and administrative scenario and their tasks.

A banking server example illustrates this scenario.

Programmer Tasks

The application programmer uses the DCE audit APIs to enable auditing in the application server program. Specifically, the programmer performs the following tasks:

1. Identifies the code points corresponding to the audit events in the application server program.

 For example, a banking server program can have these functions: `acct_open()`, `acct_close()`, `acct_withdraw()`, `acct_deposit()`, and `acct_transfer()`. Each of these functions can be designated as a code point, meaning that these are possible audit events that can be recorded (depending on the filter):

   ```
   acct_open( ) /* first code point */
   acct_close( ) /* second code point */
   acct_withdraw( ) /* third code point */
   acct_deposit( ) /* fourth code point */
   acct_transfer( ) /* fifth code point */
   ```

2. Assigns an event number to each code point. The event numbers are used as parameters by the `dce_aud_open()` API, which opens an audit trail, and the `dce_aud_start()` API, which initializes the audit record for the code point. The programmer may want to define these event numbers in the server’s header file.

 For example:
/* event number for the first code point, acct_open() */
#define evt_vn_bank_server_acct_open 0x01000000

/* event number for the second code point, acct_close() */
#define evt_vn_bank_server_acct_close 0x01000001

/* event number for the third code point, acct_withdraw() */
#define evt_vn_bank_server_acct_withdraw 0x01000002

/* event number for the fourth code point, acct_deposit() */
#define evt_vn_bank_server_acct_deposit 0x01000003

/* event number for the fifth code point, acct_transfer() */
#define evt_vn_bank_server_acct_transfer 0x01000004

3. Adds a call to the **dce_aud_open()** API to the application server’s initialization routines. This opens the audit trail file. This function uses the event number of the lowest numbered event, (in this case **acct_open()**) as one of its parameters. For example:

```c
main()
/* evt_vn_bank_server_acct_open is the lowest event number */
dce_aud_open(aud_c_dce_trl_open_write, description,
     evt_vn_bank_server_acct_open,
     5, &audit_trail, &status);
```

4. Adds Audit event logging functions to every code point in the application server code. These functions perform the following at each code point:

- Initializes an audit record by using the **dce_aud_start()** API. This function assigns the event number to the code point representing an event. Thus, this function uses the event number as one of its parameters.
- Adds event-specific information to the audit record by using the **dce_aud_put_ev_info()** API.
- Commits the audit record using the **dce_aud_commit()** API. This function writes the audit record to the audit trail file.

Following is an example of how these APIs are used on the code points of the bank server program:

```c
acct_open() /* first code point */
/* Uses the event number for acct_open(), */
/* evt_vn_bank_server_acct_open */
dce_aud_start(evt_vn_bank_server_acct_open,
    binding,options,outcome,&ard, &status);
if (ard) /* If events need to be logged */
    dce_aud_put_ev_info(ard,info,&status);
if (ard) /* If events were logged */
    dce_aud_commit(at,ard,options,format,&outcome,&status);
acct_close() /* second code point */
/* Uses the event number for acct_close(), */
/* evt_vn_bank_server_acct_close */
dce_aud_start(evt_vn_bank_server_acct_close,
    binding,options,outcome,&ard, &status);
if (ard) /* If events need to be logged */
    dce_aud_put_ev_info(ard,info,&status);
if (ard) /* If events were logged */
    dce_aud_commit(at,ard,options,format,&outcome,&status);
```

5. Closes the audit trail file when the server shuts down, using the **dce_aud_close()** API in the main server routine. For example:

```c
dce_aud_close(audit_trail, &status);
```
Administrator Tasks

The administrator uses the event numbers representing the different code points in the audit client application server program to create event class files and filter guides in the following manner:

1. The administrator obtains the event numbers of the code points (representing each audit event) from the application server programmer. In our example, these code points were assigned the following event numbers:

 - `acct_open()` 0x01000000
 - `acct_close()` 0x01000001
 - `acct_withdraw()` 0x01000002
 - `acct_deposit()` 0x01000003
 - `acct_transfer()` 0x01000004

 (Note that event numbers should be entirely sequential. That is, no missing members of the sequence are allowed.)

2. The administrator decides to create two event classes: the `account_creation_operations` class comprised of `acct_open()` and `acct_close()`, and the `account_balance_operations` class comprised of `acct_withdraw()`, `acct_deposit()`, and `acct_transfer()`. The administrator assigns the event class `account_creation_operations` the event class number 0xC0000006. Event class `account_balance_operations` is assigned the event class number 0xC0000007.

 To create the event classes, the administrator creates and edits two files, one for each event class. The name of each of these files will be the same as the event class that each represents. Each file will contain the numbers of the events in each event class.

 The file with the name `account_creation_operations` is edited as follows (lines that begin with # (number sign) are comment lines):

   ```
   # Event class number of account_creation_operations
   ECN = 0xC0000006

   # Event number of acct_open( )
   0xC1000000

   # Event number of acct_close( )
   0xC1000001
   ```

 The file with the name `account_balance_operations` is edited as follows:

   ```
   # Event class number of account_balance_operations
   ECN = 0xC0000007

   # Event number of acct_withdraw( )
   0xC1000002

   # Event number of acct_deposit( )
   0xC1000003

   # Event number of acct_transfer( )
   0xC1000004
   ```
The administrator stores both files in the `dcelocal/etc/audit/ec` directory.

3. The administrator decides to create two filters: one for all users within the cell (for the cell `./torolabcell`), and the other for all other users.

The filter for all users within the cell has the following guides:

- Audit the events in the event class `account_balance_operations` only, subject to the next condition.
- Write an audit record only if an operation in that event class failed because of access denial.
- If the first condition is fulfilled, write the audit record in an audit trail file only.
- The administrator then uses the DCE control program's `audfilter create` command to create this filter:

  ```
  dcecp> audfilter create {cell ./torolabcell} -attribute \\
  > {account_balance_operations denial log}
  dcecp>
  ```

The filter for all other users has the following guides:

- Audit the events in both event classes, subject to the next condition.
- Write an audit record if an operation in that event class succeeded, failed, or failed because of access denial.
- Write the audit record both in an audit trail file and the console.

Following is the `dcecp` session for creating this filter:

```
  dcecp> audfilter create world -attribute \\
  > {account_balance_operations,account_creation_operations alarm,log all}
  dcecp>
  ```

"Chapter 44, DCE Audit Service Administrative Tasks" on page 483 provides detailed information about the DCE control program's `audfilter create` command.
Chapter 44. DCE Audit Service Administrative Tasks

This chapter outlines the basic steps to start using DCE auditing. In addition, the chapter describes the following administrative tasks that are performed for the DCE Audit Service:

- Setting the DCE audit environment variables.
- Starting (and stopping) the DCE audit daemon.
- Controlling access to the DCE audit daemon.
- Creating and maintaining event classes to logically group a set of audit events. Event classes are created by editing event class files.
- Creating and maintaining filters that set the criteria for recording audit events in an audit trail file.
- Enabling and disabling the audit logging service of the DCE audit daemon.
- Modifying and querying the attributes of the DCE audit daemon.
- Controlling and displaying the audit trail file.
- Using the DCE serviceability routing file.

Using DCE Auditing on AIX

The following procedure is intended to help a DCE cell administrator quickly and easily start using DCE auditing on AIX. It deals with the default audit events provided with the DCE servers and is not intended to describe how to use DCE auditing in your own application. Auditing the DCE security server daemon is the primary focus, although the concepts apply to DCE auditing in general.

Configure the auditd daemon

Run the following command to configure the DCE auditd daemon:

```
config.dce audit
```

The auditd daemon should be configured at least on the hosts where security servers are configured. You can show the status of local audit daemon using the following dcecp command:

```
dcecp -c aud show
```

A DCE audit client performs auditing using the services of the auditd daemon, which is notified of audit events from the client and writes audit records to audit trails. For example, the dtsd time daemon and secd security server daemon are audit clients.

Stop and restart the DCE servers

The DCE servers must be restarted with the DCEAUDITON environment variable set to enable them to use the auditing services of auditd:

```
start.dce
export DCEAUDITON=1
stop.dce
```
Collect auditing records

The auditd daemon is now collecting auditing records and storing them in audit trails. The auditd daemon uses filters to determine which audit events to create audit records for and which to write to the audit trail. By default, the auditd uses the world filter to collect audit records (its is created when the auditd daemon is configured).

The audit trail for security server events is stored in

```
/opt/dcelocal/var/security/sec_audit_trail
```

Display audit trail

The goal of using auditing is to display the audit trail. Examining the audit trail can help improve the security of your DCE cell by showing what critical events occurred, when they occurred and by whom they were executed.

You display the audit records in an audit trail using the following dcecp command on the audit trail file:

```
/opt/dcelocal/var/security/sec_audit_trail
```

Setting DCE Audit Environment Variables

There are three environment variables that are related to the operation of the DCE Audit Service. The DCE audit environment variables should be set before running the application server (that is, the DCE audit client). The environment variables are as follows:

- **DCEAUDITOFF**—If this variable is declared at the time the application is started, auditing is turned off. By default, this variable is not declared.
- **DCEAUDITFILTERON**—If this variable is declared at the time the application is started, filtering is enabled. By default, this variable is not declared; that is, there is no filtering and all audit events are recorded.
- **DCEAUDITTRAILSIZE**—Sets the maximum size of the audit trail.

Starting the Audit Daemon

The DCE Audit Service is not a distributed application. The audit daemon (auditd) does not need to run on all DCE hosts even if a client application is making use of the audit service. The audit daemon only needs to run on a host if the audit logs are to go to the central trail file or if filters are to be installed on the host. This is because the audit daemon controls access to the central trail file and also manages the audit filters. However, since the DTS daemon and the security server daemon are audit clients, you may want to consider running the audit daemon on all hosts in the cell.

You must be **root** to be able to start the audit daemon.

Use the following command to start the audit daemon:

```
auditd
```

This command uses flags that influence the behavior of the daemon. For more details on these flags, see the *IBM DCE 2.2 for AIX: Command Reference*.
Controlling Access to the Audit Daemon

You must control access to the audit daemon to prevent unauthorized application servers (the audit clients) from using it. If an unauthorized server is able to log its audit records, the audit storage space would be exhausted.

You control access to the audit daemon by editing the ACL of the audit daemon object, ./hosts/hostname/audit-server, using dcecp.

DCE Permissions Supported by the DCE Audit Service

The DCE Audit Service supports the following DCE permissions that can be used to define the ACL of the audit daemon:

- **r** Read permission. Allows a principal to read the filters.
- **w** Write permission. Allows a principal to modify the filters.
- **c** Control permission. Allows a principal to control the audit daemon. This includes the ability to enable or disable the logging service, and to modify the ACL of the audit daemon.
- **l** Log permission. Allows a principal to write audit records in the audit trail file.

Initial ACL of the Audit Daemon

The initial ACL of a host’s audit daemon contains the following entries:

- {unauthenticated -r--}
- {user hosts/nodoz/self crwl}
- {group subsys/dce/audit-admin crwl}
- {any_other -r--}

The first entry allows any unauthenticated user only read access to the filters. The second entry allows the host principal (hosts/<hostname>/self) to query and modify the filters, control the audit daemon, and to write to the audit trail file. The third entry allows the members of the group subsys/dce/audit-admin the same access rights as the host principal. The last entry allows all other principals only read access to the filters. You can modify this ACL to suit your security requirements by using dcecp.

Giving Permissions to Audit Clients and Administrators

Using dcecp, you can add entries to the ACL of the audit daemon that will grant audit clients the log permission to the audit trail file. You can create a DCE security group that consists of the servers on the host that are authorized to generate audit records. For example:

```
group/hosts/<hostname>/audit-clients
```

Give this group the log permission to the audit daemon. For example:

```
dcecp> acl modify ./hosts/machine1/audit-server \
> -add {group hosts/machine1/audit-clients l}
dcecp>
```

All audit clients can then be made members of this group and inherit its permissions to the audit daemon.
ACL entries must also be added to grant designated administrators the read, query, and control permissions to the audit daemon. For example, for the administrator’s group `group/hosts/machine1/audit-admin`:

```
dcecp> acl modify /.:/hosts/machine1/audit-server \\
>   -add {group hosts/machine1/audit-admin rwc}
dcecp>
```

Defining Event Classes

Individual audit events can be grouped together to form event classes. The event class provides an efficient mechanism by which sets of events can be logically grouped and selected using a single value.

DCE audit event classes are configurable. You can add or remove events of an existing event class or define new event classes.

The ability to define local event classes is useful in simplifying the management of audit services in multiple DCE applications. Administrators can design their own audit event classes reflecting their security requirements and trail storage resource constraints.

Temporary event classes can also be created to track down security violations.

Steps in Defining an Event Class

To define an event class, follow these steps:

1. Obtain an event class number for the event class from your cell administrator. A range of event class numbers should have been allocated to your organization by OSF. If not, contact OSF.

2. Create an event class file in the `dcelocal/etc/audit/ec` directory. Edit the file as follows:
 a. Declare the event class number (ECN) by adding a line with the following format:
      ```
      ECN=_event_class_number
      ```
 b. Optionally, you can add a server event prefix (SEP) line in the file. The SEP line contains the event number prefixes of each server. The event number prefix is the lowest event number in each server. The SEP line has the following format:
      ```
      SEP=_event_number1 event_number2 event_number3 ...
      ```
 You can put the SEP line anywhere in the file. The SEP line speeds up the scanning of audit clients by skipping irrelevant event class files.
 c. From the application, obtain the event numbers for the code points that you want to include in the event class.
 d. Add the event numbers corresponding to the events that you want to include in the event class, one number per line.

In the event class file, empty lines are ignored and comments are designated by a # (number sign) preceding the comment text.

Example Event Class File

Following is a sample event class file named `ec_local_cell_critical_events`:
Creating and Maintaining Filters

Creating Filters

The following is an example `audfilter create` command for creating a filter:

dcecp> audfilter create {group trust} \
> -attribute {ec_local_bank_audit denial log}
dcecp>

The example command specifies that a filter type `group` be created for the DCE group named `trust` in the local cell.

The `-attribute` option is required. The argument to the option is a filter guide or list of guides. Each filter guide is made up of three elements: an event class name or list of names, an audit condition or list of conditions, and an audit action or list of actions.
The event class name corresponds to the name of the event class file for which you are creating a filter.

The audit condition is the condition required for the event to be audited. Valid conditions are `success`, `denial`, `failure`, `pending`, and `all`.

The audit action is the action to take if the event being generated matches the audit condition specified. Valid actions are `log`, `alarm`, `ems`, and `all`.

Modifying Filters

You can modify an existing audit filter by adding or deleting one or more of the filter’s guides. The following is a sample `dcecp` command for modifying an existing filter:

```bash
dcecp> audfilter modify world -add {Monetary_Transfers denial log}
dcecp>
```

The example command adds a guide with an event class of `Monetary_Transfers`, an audit condition of `denial`, and an audit action of `log` to the existing filter type `world`. Note that the filter type `world` does not take a key.

The DCE control program does not use commas. Multiple guides and multiple filters are specified in the standard `dcecp` list format: `{x y}` for single arguments or `{{x y} {a b}}` for multiple arguments.

In order to execute the `audfilter modify` command, you must have write (`w`) permission to the audit daemon’s ACL.

Deleting Filters

You can delete one or more of the audit filters for a DCE client by using the `audfilter delete` command. The following is an example `audfilter delete` command:

```bash
dcecp> audfilter delete {foreign_principal/.../foreign_cell_name/jedwards}
dcecp>
```

The example command deletes the audit filter for the DCE principal `jedwards` in the foreign cell `/.../foreign_cell_name`.

You can specify more than one filter to be operated on in the `audfilter delete` command. As with the previous example of modifying filters, when deleting multiple filter, you must use the standard `dcecp` syntax.

In order to execute this command, you must have write (`w`) permission to the audit daemon’s ACL.

Default Filters

During the configuration of the host (using `dce_config`), the following `audfilter create` commands (using `dcecp`) are executed to create filters for the security daemon, the DTS daemon, and the audit daemon:

```bash
audfilter create world -at {dce_sec_modify success log}
audfilter create world -at {dce_sec_modify {failure denial} all}
audfilter create world -at {dce_sec_server success log}
```
Enabling Audit Filters

If you want to enable the audit filters, you must first set the DCEAUDITFILTERON environment variable. You must set this variable before starting the server (that is, the audit client).

Removing the Update Binding File

If a server (audit client) is running with filters enabled (that is, DCEAUDITFILTERON was set), libaudit (which is linked to the server) obtains the server’s binding information and stores it in the following:

/opt/dcelocal/var/audit/client/pid-of-server/update_binding_file

where pid-of-server is the process ID of the server.

If the server ends abnormally, this file must be removed manually. If this is not removed, you will receive an error message the next time you restart the server with DCEAUDITFILTERON. The message indicates that the audit daemon is unable to inform the audit client of filter updates:

unable to inform process
/opt/dcelocal/var/audit/client/pid-of-server/update_binding_file about esl update.

You can also check for stale update binding files by checking what servers are running (for example, using ps -e) and comparing their process IDs with the pathnames of the update binding files. Because the pathname of these files contain a pid-of-server component, you can determine what files correspond to nonexistent servers.

Both the binding information file and the directory containing it (pid-of-server) must be removed.
Buffering of the Audit Trail

The operating system buffers the audit trail data while it is written before writing it to disk. For this reason, the growth of the audit trail file will not become apparent until the data is flushed to disk.

Enabling and Disabling the Audit Logging Service

Use `dcecp` to enable or disable the audit record logging service of the audit daemon. The `aud enable` command enables the logging service, and the `aud disable` command disables it.

You may want to disable the logging service when the audit trail file becomes too large, and then enable it again after the audit trail has been backed up and rewound (using the `aud rewind` command).

Using the enable or disable commands enable or disable audit record logging to the central audit trail file. Applications such as the security server and the time server use their own audit trail files and are not affected by use of enable or disable.

The `aud stop` command stops the audit daemon.

Modifying and Querying Audit Daemon Attributes

The DCE audit daemon has two attributes that relate to the audit trail file:

- **stostrategy**—Specifies the storage strategy when the size of the audit trail file has reached its limit. You can specify either of the following storage strategies:
 - `save` If the specified trail size limit is reached, the audit daemon saves the current trail file to a new file (renaming it to its original name with a timestamp appended at the end of the name). The audit daemon then deletes the contents of the original trail file and continues auditing from the beginning of this file. This is the default value for `stostrategy`.
 - `wrap` The audit daemon will overwrite the old audit trails.

- **state**—Indicates whether the audit daemon is servicing audit record logging requests from audit clients. The possible values for this attribute are enabled (default value) or disabled.

You can use `dcecp` to see the value of these settings, as follows:

```
dcecp> aud show
{state enabled}
{stostrategy save}
dcecp>
```

Use the `aud modify` command to change these attributes.

Controlling and Displaying Audit Trails

Audit daemons log audit records sent from audit clients into an audit trail file. If the audit daemon is started without any argument, then the default audit trail file used is `dcelocal/var/audit/adm/central_trail`. You can also direct the audit trail to another file by using the `-t` option of the `auditd` command when starting daemon; the `trail` argument to the `-t` option specifies the pathname of the file to which the logs should be written.
Displaying Audit Trail Files

Use the `dcecp auditrail show` command to examine the contents of an audit trail file. You can display the contents of either the central or local audit trail file.

For example, you can use the following command to see the contents of the audit trail file `central_trail`:

```
dcecp> audtrail show /opt/dcelocal/var/audit/adm/central_trail
```

--- Start of an event record ---
Event Number: 275
Event Name: LOGIN_getinfo
Event Outcome: success
Server: /.../stp.gburg.ibm.com/hosts/dceos2
Client: /.../stp.gburg.ibm.com/hosts/drinkernisti/self
Number of groups: 0
Authorization Status: Authorized with a pac
Date and Time recorded: 1994-12-19-19:02:27.037-05:00I-----
1 Event(s) specific:
- item number 1 hosts/drinkernisti/self
--- End of an event record ---

--- Start of an event record ---
Event Number: 275
Event Name: LOGIN_getinfo
Event Outcome: success
Server: /.../stp.gburg.ibm.com/hosts/dceos2
Client: Unknown client and cell uuids
Number of groups: 0
Authorization Status: Authorized with a pac
Date and Time recorded: 1994-12-19-19:02:28.819-05:00I-----
1 Event(s) specific:
- item number 1 dce-rgy
--- End of an event record ---

If you prefer to have the audit trail data put into a file instead of displayed on your screen, include the `-to` option in the `audtrail show` command line. This option prints the audit trail file’s contents to a specified filename. Using this option is strongly recommended for large trail files.

Controlling the Audit Trail Size

By default, audit trail files are limited to a size of 2 MB. When the audit service detects that the trail file will grow larger than this value, it closes the file, creates a new unique name for the file by using timestamp information, and then opens a new trail file with the original name. It then proceeds to write new audit logs to this file. When this file grows too large, this process is repeated.

If you wish to change the size of the audit trail file, you must set the environment variable `DCEAUDITTRAILSIZE` to the size you require before starting the application that is using the audit service. Setting this environment variable overrides the default 2 MB size limit.

For example, if you wish to use a trail file size of 5 MB, the value of `DCEAUDITTRAILSIZE` should be as follows:

```
DCEAUDITTRAILSIZE 5000000
```

You can also allow the audit daemon to wrap around the central trail file when its limit (the default 2 MB or set by `DCEAUDITTRAILSIZE`) is reached. To do this, you should start the audit daemon with the `-wrap` option:

```
auditd -wrap
```

--- End of an event record ---
You may also want to use this option if old audit records have little or no value and you want to keep only relatively recent records.

A trail size limit can also be set using the -s option of the auditd command. The limit set using this method overrides the default 2 MB limit.

If for any reason you desire to take a snapshot of the audit trail before it reaches the limit, you can use the dcecp aud disable command to disable logging and then copy the file. You can then use the dcecp aud rewind command to rewind the central audit trail file. (Note that, if required, you can back up this audit file at this time. But, if backup is desired, it is best to let the audit service automatically create new trail files and back these up.) Then use the aud enable command to enable the audit daemon’s logging service again.

Changing the Audit Trail File Storage Option

The storage strategy option can be changed while the audit daemon is running. This can only be performed on the central audit trail file.

The following example shows how the aud modify command is used to cause the audit trail to wrap when it reaches the limit of the file:

```
dcecp> aud modify -stostrategy wrap
```

This example command changes the value of the audit daemon’s storage strategy attribute to wrap.
Chapter 45. Kerberos Interoperability with DCE and Secure Remote Utilities

The authentication portion of the DCE Security Service is primarily based on Version 5 of the Kerberos network authentication system, which is described in Internet Engineering Task Force (IETF) RFC 1510. For the most part, this basis has allowed the DCE Security Server to operate as a Kerberos Key Distribution Center (KDC) for Kerberos V5 clients. In prior releases of DCE (Versions 1.2.1 and earlier), this interoperability was not officially supported or documented.

This chapter explains interoperability features and configuration of DCE and Kerberos V5. The following main features are provided with the current release of DCE:

- KDC interoperability: The DCE Security Service can be used as a Kerberos KDC for Kerberos V5 clients.
- Credential cache and keytab file compatibility: DCE and Kerberos V5 applications are able to share credential cache and keytab files without losing data.

KDC Interoperability

IETF RFC 1510 defines the mandatory interoperability requirements of a Kerberos V5 implementation. Although the DCE Security Server can be used as a DCE KDC for Kerberos V5 clients, the following restrictions still apply:

- Algorithms not supported by the DCE KDC are the following:
 - DES-CBC-MD5 encryption
 - CRC-32 checksum
 - DES-MAC checksum
 - DES-MAC-K checksum
 - DES-MD5 checksum
- Interrealm communication, including transitive trust between a DCE cell and a Kerberos V5 realm, is not supported.
- Kerberos V5 does not support DCE third-party preauthentication. Therefore, a principal is unable to retrieve a TGT from a DCE KDC if the pre_auth_req ERA attached to a principal has a value of 2 (PA-ENC-THIRD-PARTY).

Credential Cache and Keytab File Compatibility

In order for a DCE client and a Kerberos V5 client to coexist on the same host, they may need to be able to share credentials and keys. DCE Version 1.2.2 provides compatible credential and keytab file formats to allow for this coexistence.

As of the fifth beta release of Kerberos V5, three versions of formats for the credential cache file and two for the keytab file exist.

Not all of the file formats are compatible with one another. For example, an older Kerberos V5 client that writes credential cache files in the Version 1 format will not be able to read credential caches in a Version 2 or 3 format. Table 31 on page 494 and Table 32 on page 494 describe the compatibility of credential cache and keytab files.
Table 31. Credential Cache Files

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE 1.0 or Kerberos V5 beta 1</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Kerberos V5 beta 2-3</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>DCE 1.1-1.2.1 or Kerberos V5 beta 4</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>DCE 1.2.2 or Kerberos V5 beta 5-7</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

A defect in the Beta 2 and Beta 3 releases of Kerberos V5 prevented compatibility with files created in the Version 1 format, which was fixed in Beta 4.

Table 32. Keytab Files

<table>
<thead>
<tr>
<th>Release</th>
<th>Kerberos V5 (Version 1)</th>
<th>Kerberos V5 (Version 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE 1.0 or Kerberos V5 beta 1</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Kerberos V5 beta 2-3</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>DCE 1.1-1.2.2 or Kerberos V5 beta 4-7</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

The credential cache and keytab file format that DCE clients use can be set with the `dcecp hostvar set` command. The default format for both files is Version 1. You may change this on a per-host basis to allow Kerberos V5 applications to run on your DCE client and to share keytab and credential files.

For example, use the following `dcecp` command to set the version number format of the Kerberos V5 credential cache file to 3:

```
dcecp> hostvar set -krbccachevno 3
```

To set the version number format of the Kerberos V5 keytab file to 2:

```
dcecp> hostvar set -krbktvno 2
```

To display the current settings:

```
dcecp> hostvar show -krbccachevno -krbktvno
```

See the *IBM DCE 2.2 for AIX: Command Reference* for more information. For the changes to take effect, stop and restart the DCE daemons on the host.
Appendix A. Valid Characters and Naming Rules for CDS

This appendix discusses the valid character sets for the DCE Directory Service names as used by CDS interfaces. It also explains some characters that have special meaning and describes some restrictions and rules regarding case matching, syntax, and size limits. It is not a comprehensive reference for CDS and DNS, but instead gives an overview of some key points to remember about each service. For specific information on valid characters in DNS names, see the documentation for each technology.

The use of names in DCE often involves more than one directory service. For example, CDS interacts with either DNS to find names outside the local cell.

Note: Because CDS and DNS all have their own valid character sets and syntax rules, the best way to avoid problems is to keep names short and simple, consisting of a minimal set of characters common to all three services. The recommended set is the letters A to Z, a to z, and the digits 0 to 9. In addition to making directory service interoperations easier, use of this subset decreases the probability that users in a heterogeneous hardware and software environment will encounter problems in creating and using names.

Figure 83 on page 496 details the valid characters in CDS names, and the valid characters in DNS names as used by CDS interfaces:

- Characters in white boxes are valid in all three kinds of names.
- Characters in light shaded boxes are valid only in CDS names.
- Characters in dark shaded boxes are valid only in CDS names.
Although spaces are valid in CDS names, a CDS simple name containing a space must be enclosed in "" (quotes) when you enter it through the CDS control program. Additional interface-specific rules are documented where they apply.
Metacharacters

Certain characters have special meaning to the directory service; these are known as metacharacters. Table 33 lists and explains the CDS and DNS metacharacters.

Table 33. Metacharacters and Their Meanings

<table>
<thead>
<tr>
<th>Directory Service</th>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDS</td>
<td>\</td>
<td>Used where necessary in front of a \ (backslash) to escape the character; indicates that the following character is not a metacharacter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>=</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>DNS</td>
<td>.</td>
<td>Separates elements of a name.</td>
</tr>
</tbody>
</table>

Some metacharacters are not permitted as normal characters within a name. You can use other metacharacters as normal characters in a name, provided that you escape them with the backslash metacharacter.

Additional Rules

Maximum Name Sizes

Table 34 lists the maximum sizes for directory service names. Note that the limits are implementation specific, not architectural.

Table 34. Maximum Sizes of Directory Service Names

<table>
<thead>
<tr>
<th>Name Type</th>
<th>Maximum Size (characters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDS simple name (character string between two slashes)</td>
<td>254</td>
</tr>
<tr>
<td>CDS full name (including global or local prefix, cell name, and slashes separating simple names)</td>
<td>1023</td>
</tr>
<tr>
<td>DNS relative name (character string between two dots)</td>
<td>64</td>
</tr>
<tr>
<td>DNS fully qualified name (sum of all relative names)</td>
<td>255</td>
</tr>
</tbody>
</table>
Appendix B. Object Identifier Files

The X/Open Directory Service (XDS) interface offers client application programmers the ability to create and maintain names in either CDS. Programmers can also create new CDS attribute names attribute type labels. In the DCE Version 1.1 Directory Service, every CDS attribute name has a corresponding unique number called an object identifier (OID).

CDS provides a method for translating between object identifiers and human-readable names. This translation capability enables users to enter names instead of object identifiers at the DCE control program (dcecp) interface. Also, dcecp displays the names rather than object identifiers in command output. CDS attribute names and their corresponding identifiers are stored in a file called cds Attributes. (See the IBM DCE 2.2 for AIX: Administration Guide—Introduction and the OSF DCE Porting and Testing Guide for the full pathnames of all CDS files.)

This appendix describes the contents and usage of both the cds_attributes and cds_globalnames files and explains how application developers or directory service managers can update the files with the object identifiers of new attributes.

Origin of Object Identifiers

The purpose of object identifiers is to ensure uniqueness among the attribute types that many different applications generate and use. Object identifiers are typically obtained from a hierarchy of allocation authorities, the highest being the International Organization for Standardization (ISO) and the International Telegraph and Telephone Consultative Committee (CCITT). Individual application developers do not usually have to contact ISO or CCITT directly to obtain unique numbers. Application developers are more likely to request object identifiers from a person within their company who is in charge of allocating them. The company authority would in turn contact a higher authority to obtain a unique company prefix.

The hierarchy of allocation authorities is indicated by dots that separate portions of an object identifier. Each string of numbers delineated by dots represents a level of the allocation hierarchy, going left to right from the highest authority down. For example, the object identifier 1.3.22.1.1.2 consists of the following levels:

1 ISO
3 Identified organization
22 Open Software Foundation
1 Distributed Computing Environment
1 Remote procedure call
2 RPC object UUIDs

The cds_attributes File

The cds_attributes file contains object identifiers for CDS attributes and object classes. The following is a sample portion of the default contents of the file:

```
# OID LABEL SYNTAX
#
1.3.22.1.3.10 CDS_Members GroupMember
```
The first column contains the OID, the second column contains a label (the name to which the identifier is mapped), and the third column indicates the data type.

Descriptions of the CDS data types are in the `cdsclerk.h` header file. (See the IBM DCE 2.2 for AIX: Administration Guide—Introduction and the OSF DCE Porting and Testing Guide for the full pathnames of all CDS files.)

Application programmers should never need to modify, except for the purpose of foreign language translation, the CDS labels associated with the unique OIDs in the `cds_attributes` file. However, programmers can obtain new OIDs from the appropriate allocation authority, create new attributes for their own object entries, and then append them to the existing list.

Modifying the Files

When a programmer develops an application that uses the directory service, the directory service manager or the application developer needs to obtain unique identifiers for any new CDS attribute names that the new application uses and then update the appropriate file.

If the application stores names in CDS, edit the `cds_attributes` file. (Refer to the `cdsclerk.h` file for the list of appropriate data type descriptors.)
Note: If you modify the OID values for standard attributes in the `cds_attributes` and `cds_globalnames` files, you may encounter problems interoperating with other directory service implementations.

Modifying a CDS Entity’s Attributes

Every CDS entity has attributes, which are pieces or sets of data that are associated with that entity. Attributes can reflect or affect the operational behavior of an entity, record the number of times a particular event or problem occurred since the entity was last enabled, and uniquely distinguish an entity for any other entity.

CDS attributes are identified by ISO OIDs. Every CDS attribute name maps to an OID and a corresponding data type. Usually, client applications define the name of an attribute and its data type. Application programmers should never need to modify (except for the purpose of foreign language translation) the existing CDS labels associated with the unique OIDs in the `cds_attributes` file. However, programmers can obtain new OIDs from the appropriate authority, create new attributes for their own object entries, and then append them to the existing list. The OID and data type of each attribute are stored in the file `cds_attributes`. Descriptions of the CDS data types that applications can use are in the `cdsclerk.h` file.

Adding a New Attribute

Use the `dcecp modify` operation with the `-add` option to add a new attribute to an object entity.

To add a new attribute, you must have previously added the new attribute to the `cds_attributes` file on each host in the cell. You must also have write permission to the entity to which you are adding new attributes.

For example, the following command adds the single-valued attribute (`owner`) to a directory (`./admin`) and assigns a value of `Leland` to the new attribute:

```
dcecp> directory modify ./admin -add {owner Leland}
dcecp>
```

The following command adds a new multivalued attribute (`vegetables`) to an object (`./admin/garden`) and assigns values of `carrots` and `lettuce` to the new attribute:

```
dcecp> object modify ./admin/garden -add {vegetables {carrots} {lettuce}}
dcecp>
```

Modifying the Value of an Existing Attribute

Use the `dcecp modify` operation with the `-change` option to modify the value of an existing attribute.

To modify the value of an attribute, you must have write permission to the name whose attributes you are modifying.

For example, the following command changes the value of the owner attribute of the `./admin` directory from `Leland` to `Peters`:

```
dcecp> directory modify ./admin -change {owner Peters}
dcecp>
```
Removing an Attribute

Use the `dcecp modify` operation with the `-remove` option to remove an attribute from an object entity.

To remove an attribute, you must have write permission to the name whose attribute you are removing.

To remove an attribute, use the `modify` command with the `-remove` and `-types` options. For example, the following command removes the owner attribute from the `./:/admin` directory:

```
dcecp> directory modify ./:/admin -remove owner -types
```

To remove a single value from a multivalued attribute, use the `-remove` option and specify the value to be removed. For example, the following command removes the `carrots` value of the `vegetables` attribute from the `./:/admin/garden` object:

```
dcecp> object modify ./:/admin/garden -remove {vegetables carrots}
```
Appendix C. Time-Providers and Time Services

This appendix explains the criteria to use when selecting a time-provider, and describes time dissemination services, time-providers (hardware and software) and their interaction with DTS. The appendix also contains a world time zone map.

Criteria for Selecting a Time Source

Before you select a time source for your network, ask the following questions:

• How accurate is the time that is provided?
 Accuracy is affected by the time source itself, as well as the transmission media. As long as the inaccuracy is known, it can be compensated for.

• How reliable is the time source?
 The time source must be available. If it is not, the server connected to the time-provider uses times from other servers and compensates for any time difference when the source again becomes available.

• What is the extent of coverage?
 The time source must be available in the geographical area where the time-provider server is located.

• What is the level of known inaccuracy?
 If this is known, DTS can compensate for it. Most sources have known inaccuracy levels.

• What is the cost?

• Does the source conform to the operating environment?
 The available power supply and physical conditions must be compatible with the source; consult the supplier for the specifications.

Table 35 summarizes the selection criteria for each type of time source.

Table 35. Time-Provider Selection Criteria

<table>
<thead>
<tr>
<th>Type</th>
<th>Coverage</th>
<th>Inaccuracy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIST</td>
<td>Regional</td>
<td>10 msec.</td>
<td>Variable fee per call</td>
</tr>
<tr>
<td>Radio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSF</td>
<td>Europe</td>
<td>10 msec.</td>
<td>$1K to 2K</td>
</tr>
<tr>
<td>WWV</td>
<td>North America</td>
<td>100 msec.</td>
<td>$1K to 2K</td>
</tr>
<tr>
<td>WWVB</td>
<td>North America & Europe</td>
<td>10 msec.</td>
<td>$1K to 2K</td>
</tr>
<tr>
<td>WWVH</td>
<td>Eastern & Central North Pacific</td>
<td>100 msec.</td>
<td>$1K to 2K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOES</td>
<td>Worldwide</td>
<td>1 msec. corrected</td>
<td>$2K to $20K</td>
</tr>
<tr>
<td>GPS</td>
<td>Worldwide</td>
<td>< 100 nsec.</td>
<td>$15K to $20K</td>
</tr>
</tbody>
</table>
Sources of Coordinated Universal Time

There are several sources of UTC time, including telephone, radio, and satellite, as described in the following subsections.

Telephone Services

Telephone time-provider services require the time-provider to dial a centralized UTC time source through a modem. Modem speeds and line delays can affect the accuracy of the time returned.

Telephone services are usually provided by standards agencies. For example, in the United States this service is offered by the National Institute of Standards and Technology (NIST). There is a per-call fee for the service in addition to the cost of the modem software.

Radio Transmissions

DTS can obtain time from a radio time source. Commercial receivers that monitor time and frequency broadcasts can return time values through the Time-Provider Interface (TPI) to the DTS server. The NIST operates the following U.S. time and frequency stations:

- **WWV**
 Transmits at 2.5, 5.0, 10.0, 15.0 MHz to North America and South America.

- **WWVB**
 Transmits at 60 kHz primarily to the United States, providing high-quality frequency information because atmospheric propagation effects are relatively minor.

- **WWVH**
 Transmits at 2.5, 5.0, 10.0, 15.0 MHz to Alaska, Hawaii, Australia, New Zealand, Japan, and Southeast Asia.

The following stations are available in Europe:

- **MSF**
 Broadcasts from England at 60 kHz.

- **DCF77**
 Broadcasts from Germany at 77.5 kHz.

In addition to the stations previously listed, more than 30 radio stations worldwide provide UTC time. Consult the national standards organization in your country for further information.

Network Time Protocol

Nodes that have Internet access can use the Network Time Protocol (NTP) as a source of UTC time for DTS. (See [Chapter 26. Interoperation with Network Time Protocol](page 273) for an explanation of how to use NTP as a time-provider.)
Satellite

Satellites have worldwide availability; they can provide relatively precise times if their delays are known and compensated for. See the following list for satellite sources of UTC:

- GOES
 Geostationary Operational Environment Satellite
- TRANSIT
 A U.S. Navy satellite system consisting of four tracking systems and two ground satellite communications sites
- GPS
 Global Positioning System, a satellite receiver

World Time Zone Map

Figure 84 shows a map of the world time zones, including the following:

- UTC reference zone
- Odd-numbered and even-numbered zones
- Half-hour zones
- Countries and areas that have not adopted the zone system or where time differs other than a half hour from the neighboring zone
Appendix D. DTS Extended BNF

This appendix defines the Distributed Time Service (DTS) syntax in extended Backus Naur Format (BNF) notation.

The BNF for DTS time conversion has four parts: year, day, tdf, and inaccuracy. For any part whose value is not explicitly expressed, the conversion default value is taken as that of the current day. The BNF for the DTS time conversion is as follows:

dts_time : year_part day_part tdf_part inacc_part
 | year_part day_part tdf_part
 | year_part day_part
 | year_part day_part inacc_part
 | year_part inacc_part
 | year_part
day_part : partial : partial : partial
 | partial : partial
 | partial

year_part : number - number - number -
 | number - number - number T
 | number - number T

day_part : partial : partial : partial
 | partial : partial
 | partial

tdf_part : sign number : number
 | sign number

sign : -
 | +

partial : number
 | number frac
 | number frac number
 | frac number

frac : .
 | ,

inacc_part : I
 | I partial
 | I infinity

infinity : 'i''n''f'
 | '-'
number: DIGIT
| number DIGIT
;

Appendix E. Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make them available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Subject to IBM’s valid intellectual property or other legally protectable rights, any functionally equivalent product, program, or service may be used instead of the IBM product, program, or service. The evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

- AIX
- FFST
- FFST/2
- IBM

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service marks of others.
Index

Special Characters
.
decprc
 example of 17
 use of 16
/.
 prefix 146
/etc/group file 292, 407
/etc/passwd file 292, 407
dts_ntp_provider.c 277
dts_null_provider.c 277
gdad command 230
gdad process 230
krbtgtd directory
 in multicell environment 371
passwd_override file
 format 398
 scope 397

A
abbreviations 7, 13
absolute time 245
access control list 175
accounts
 about 287, 339
 changing 349
 changing passwords 465
 changing registry information 465
 creating 344, 459
 deleting 349, 463
 displaying registry information 381
 expiration information 342
 for foreign cells 371, 380
 importing 421
 lifespan 389
 machine 340, 350
 membership lists 335
 reserved 320, 417
 server 340, 350
 user 339
ACL entry types 299
 compared to ACL types 308
 in future DCE releases 302
ACL facility 285
ACL manager
 for registry database 468
 role in checking sequence 303
 role in granting access 296
 scope of support 296
 support for entry types 302
ACLs
 checking sequence 303
 components and scope of entries 297
 control programs for managing 306
 copying to other objects 307
 default 308
 denying access 306
 (continued)
 displaying 386
 entry types 177
 for local names (CDS) 175
 function 295
 in DTS 275
 inheritance 192
 keys 297
 permissions for krbtgtd directory 371
 registry objects 468
 scope 295
 scope compared to UNIX permission bits 296
 types 175
 types of, editing 308
administration objects 4
 adding new objects 18
aliases
 changing 337
 creating 336, 337
 deleting 324
 on project lists 332
 rights accrued 319
any_other entry type 300, 301
applications
 using DTS 238
arithmetic functions in dcecp 30
attribute 156
attribute schema
 defined 359
attribute types
 access control 359
Attribute Value Assertions 148
attributes 150
 identifier file 499
 in CDS and X.500 names 150
audit 471
 clients 471
 code point 472
daemon 484, 485, 490
 event 472
 event class 473, 486
 event class file 473, 486
 event class name 473
 event class number 473, 474
 event number 472
 filter 475, 476, 487
 filter rules 476
 service 471, 478, 480, 483, 485
 trail file 478, 491, 492
authentication
 managing 327
 preauthentication 324
 public key protocol 324
 third-party protocol 324
timestamps protocol 324
authentication policies 342, 458
authentication service 285
 about 285

© Copyright IBM Corp. 1997
511
authentication service (continued)
 how it works 341
shared authentication keys 371
authorization groups
 adding members 184
 creating 184
AVA 148

B
background skulk time 170
backup couriers 271
Backus Naur format (BNF) notation 507
BIND namespace
 structure 151
browser
 about 159

C
CDS 413
 about 143
 appending directories 210
 attribute 501, 502
 browser 201
 clerk 153
 clerks 165, 185, 186, 187, 227
 components 153
 concepts 153
 configuration (figure) 154
 control programs for managing 171
 controlling local management operations 179
dcecp operations on objects 172
deleting nonreplicated directories 222
deleting replicas 222
displaying attribute values 203
how it works 154
listing contents of directories 203
managing directories 191
merging directories 208
monitoring network traffic 185
object attributes 172
object types 171
restoring merged directories 213
security 158
servers 147, 153, 157, 183, 185, 186, 187
user interfaces 159
 viewing the namespace 201
cds_attributes file 501
cdsclerk.h file 501
Cell Directory Service 143
cell names
 about 145
cell object
 extending 71
cell-relative names
 about 146
cells
 about 288
 access between 371, 380
 backing up servers 67
 contacting foreign 231
cells (continued)
 extending the cell task object 71
 managing with cell task object 65
 naming environments 144
 testing operation of 66
child
cells 157
pointers 157, 164
clearinghouses
 about 154, 155
 communications with CDS clerks 185
deleting 226
 object entries 156, 162
 preserving after server upgrades 187
 relocating 223
 viewing contents 186
 viewing counters 185
clients
 showing in a cell 65
clock set command 273, 274
clocks
 adjusting 273
 adjustment mechanism 243
 correcting malfunctions 268
 errors 240
 forcing synchronization 275
 restricting synchronization cycles 267
 synchronizing 242
code point 472
command-line editing 10
command substitution
 used in dcecp 21
commands
dcecp 183, 257
comments
 in dcecp scripts 24
computed time 242
configuration
 of public key authentication 325
 password management server 330
 configuring public key authentication 325
containers
 definition of 308
control programs 306
convenience variables
 CDS confidence level 30
 current cell name 25
 current host name 26
 current principal name 25
 DCE server names 28
 in dcecp scripts 24
 last security server used 29
 most recent argument 26
 most recent error code 30
 most recent object name 27
 most recent return value 27
 parent of last argument 27
 Coordinated Universal Time 237
couriers
 about 249
 designating 271
Index 513

D

DCE control program 3
 abbreviations 7
 adding new objects 18
 administration objects 4
 benefits of 3
 command-line editing 10
 command-line operations 5
 commands for managing ACLs 306
 commands for managing DTS 257
 creating audit filters 487
 customizing 16
 description of 3
 enabling and disabling audit logging 490
 extending 49
 history 12
 initialization files 16
 invoking operations 5, 7
 its use of Tcl 3
 language 19
 modifying and querying audit daemon attributes 490
 modifying filters 488
 multiple operations 6
 starting and stopping 5
 uses of 7

DCE control program language 19
 command substitution 21
 comments 24
 conditional if statements 33
 controlling scripts 32
 convenience variables 24
 creating procedures 37
 error handling 42
 error information 42
 evaluating commands 36
 expressions 30
 extending 49
 files 44, 45
 grouping elements 21
 lists 31, 38
 loops 33, 34, 35
 mathematic functions 30
 pattern matching 35
 reading other files 37
 reissuing errors in 44
 strings 39, 40, 41
 subprocesses 46
 trapping errors in 43
 variables 20, 38
 writing scripts 49

DCE daemon 95
 starting and stopping 96

dcecp
 commands for managing CDS 171
 DCE control program 257

dcecp (continued)
 description 171
 permissions for using security commands 466
 use with CDS 159

dcecp CDS commands
 show 204

dcecp commands
 account catalog 381
 account create 348
 account delete 349
 account modify 349, 392
 cdsclient show 204
 clearinghouse create 225
 clearinghouse delete 226
 clearinghouse disable 224
 directory delete 221
 directory modify 218
 directory show 232
 group create -uuid 437
 group list 384
 keytab delete 354
 keytab remove 353
 link create 215
 link modify 216, 217
 list 203
 modify 501
 org create -uuid 437
 principal catalog 385
 principal create 322
 principal create -uuid 437
 principal modify 323
 properties 396
 registry modify 389, 393
 registry show 393
 remove 502
 required permissions 180
 show 203

default filters 488

DFS
 interaction with directory service 141

DIB 148
 about 148

direct trust relationships 371

directories
 about 147
 access control (CDS) 176
 appending errors 212
 checking the ACLs for 192
 child 147
 child pointers (CDS) 157, 164
 controlling access to 295
 convergence (CDS) 198
 creating 192
 merging (CDS) 191
 merging errors 212
 merging into foreign cells 213
 overriding default 403
 parent 147
 permissions needed to create 191
directories (continued)
 updating (CDS) 196
 upgrading the cell root directory version 193
 upgrading the directory version 193
Directory Information Base 148
Directory Information Tree 148
directory service
 cell environment 142, 143, 144
 how used 142
 names outside 152
Directory System Agent 148
disable_time_interval ERA 328
Distinguished Names 148
distinguished value 149
Distributed File Service 141
Distributed Time Service 141
DIT 148
DN 148, 150
 about 148
 structure (figure) 150
DNS
 about 143, 151
 defining cell names 231
Domain Name System 143
drift 240, 241
DSA 148
 about 148
DTS
 access control 275
 BNF notation 507
 clerks 237, 242, 247, 262
 configuring 251
 creating a new clerk or server 261
dcecp operations for managing 257
 how it works 247
 interaction with directory service 141
 interoperation with NTP 277
 managing 239, 257
 reconfiguring on nodes 260
 servers 237, 242, 248, 262, 264, 269, 270, 272
 temporary reconfiguration on a node 262
dtscp commands
 clock set 273, 274

E
 editing
 command lines 13
 DCE control program 10
 using the history facility 12
 EMS consumers, managing 85
 EMS daemon, managing 88
 EMS event queues, managing 87
 EMS events, logging 84
 enabling public key authentication 325
 endpoint maps
 about 121
 endpoints
 purging obsolete 122
 entities
 about 159
 in DTS 237
 environment variables 18
 epochs
 about 248
 matching 272
 ERA 359
 deleting 467
 disable_time_interval 328
 facility 285
 invalid login handling 324
 max_invalid_attempts 328
 modifying 467
 passwd_override 331
 password management 324
 permissions to create 467
 pre_auth_req 327
 preauthentication 324
 public key protocol 324
 pwd_mgmt_binding 329
 pwd_val_type 329
 security 324
 third-party protocol 324
timestamps protocol 324
 viewing 467
 errors
 handling in dcecp 42
 reissuing in dcecp 44
 trapping in dcecp 43
 evaluating commands in dcecp 36
 event class 473
 defining 486
 file 473
 name 473
 number 473
event filters, managing 86
event number 472
 exceptions
 handling in dcecp 42
 reissuing in dcecp 44
 trapping in dcecp 43
 extended ACL entry type
 form and function 302
 extended registry attribute 359
 extending
 cell task object 71
dcecp 49
the host task object 77
the user task object 82

F
 files
 controlling access to 295
 reading and writing in dcecp 45
 specifying in dcecp 45
 working with in dcecp 44
 filter 475
 creating and maintaining 487
default 488
guides 475
filter (continued)
 subject identity 475
foreign_group entry type 300
foreign_other entry type 300, 301
foreign_user entry type 299, 300
full names 148, 150, 319

G
GDA
 how it works 227
 managing 230
GECOS information
 overriding 397
global names 148, 150
 about 145, 146
 attributes 150
 outside directory service 152
 X.500 format 148
global servers 249
 advertising 271
 changing required 265
globaltimeout attribute 269
group entry type 299, 300
group IDs
 setting in registry 394
group_obj entry type 299, 300
group_override file
 format 399
 grouping dcecp elements 21
 groups
 about 287
 accrual of permissions 301
 ACL entry types 299
 adding members 428, 463
 adding to organization 333
 adding to registry 458
 aliases 319
 changing full names 464
 changing management information 465
 changing registry information 334
default memberships (table) 417
deleting 335, 459
deleting members 464
displaying registry information 382
 excluding from project lists 301
 management information 457
 membership lists 335
 naming restrictions 319
 overriding memberships 403
 project lists 332, 334

H
help
 accessing reference pages 15
history
 DCE control program 12
 host object
 extending 77
 host services 95
 starting and stopping 96

hosts
 configuring 75
 extending the host task object 77
 listing in a cell 73
 managing with the host task object 73
 removing from a cell 76
 showing in a cell 65
 showing servers configured on 74
 starting processes on 75
 stopping processes on 75
 testing availability of 74

I
if statements in dcecp 33
inaccuracy values
 determining 241
 example 260
init.dcecp
 use of 16
init.tcl
 use of 16
 Initial Container ACL 176, 308
Initial Object ACL 176, 308
initialization files
 example in dcecp 17
 use of in dcecp 16
interface
 RPC identifier 132
interim file 207
interval 237
IP Address
 changing IP Address 68

J
junctions 152

K
kdestroy command 343
key entries
 deleting from keytab file 353
key tables
 displaying registry information 387
keys
 deleting from keytab file 351
 machine and server accounts 355
 version numbers 351
keytab file
 adding keys 351
dced object 350
deleting 354
 protecting 351
klist command 342

L
LAN 252
leap seconds
 inaccuracy values 241
lists in dcecp 31
 nested 38
local 149, 150
 identity 339
 names 149, 150, 161, 175, 495
 registry 355, 356, 357
 servers 248
localtimeout attribute 269
locksmith account 432
locksmith mode 432
logging EMS events 84
login 324
 changing defaults 403
 invalid 328
 preventing 402
login shells
 overriding 403
lookups
 between cells 227
 how they work 154, 161
loops in dcecp 33
 for 34
 foreach 33
 terminating 35
 while 34

M
managing EMS consumers 85
managing EMS event filters 86
managing EMS event queues 87
managing the EMS daemon 88
mask_obj entry type
 effect on ACL checking 305
masks
 types and use of 302
master keys
 backing up 405
 changing 404
 restoring 405
mathematical functions in dcecp 30
max_invalid_attempts ERA 328
maxinaccuracy attribute 266
membership lists 335
merging
 overview of procedure 207
merging CDS directories
 overview 207
minimum ticket lifetime
 setting in registry 395
minservers attribute
 changing 264

N
namespace 148
 about 147
 access by CDS servers 183
 access control 184
 backing up 188
 compared to X.500 hierarchy 148
 namespace (continued)
 files for backup 189
 logical and physical structure (figure) 162
 maintenance operations 170
 restructuring 215
 updating 169
 viewing 159
 network identity 339
 Network Time Protocol 277
 NTP
 getting time from 277
 giving time to 280
 interoperation with DTS 277
 preventing loops 281
 number formats in registry 321
O
Object ACL 176, 308
object identifier 501
 files 499
objects
 about 156
 controlling access to 295
 creating 51
 dcecp administration 4
 entries 156
 quotas for creating 321, 379
 types of 308
OID 501
OMIT entry
 in passwd_override file 402
operating system commands
 executing from dcecp 46
operations
 invoking 5
 invoking within dcecp 7
organization IDs
 setting in registry 395
organization name 345
organizations
 about 287
 adding members 463
 adding to registry 333, 458
 changing full names 464
 changing management information 465
 changing registry information 334
 deleting 335, 459
 deleting members 464
 displaying registry information 382
 management information 457
 membership lists 335
 naming restrictions 319
 policies 394
orphans
 adopting 321, 437
other_obj entry type 299, 300
overrides 397
P
parent cells
 and child pointers 157
Index

parsing arguments in dcecp scripts 57
strings in dcecp 40
passwd_override ERA 331
password 324
changing 465
changing in cross-cell authorization accounts 380
default 417
effects of policy changes 393
encrypting 394
expiration date 390
expiration information 342
format 391
lifespan 390
management server 330
managing expiration of 331
managing generation of 329
managing strength of 329
overriding 401
permissions 465
pathnames
for registry objects 293
for security objects 293
in commands 293
pattern matching in dcecp 35
permissions
accred 301, 332
accred, effect on ACL checking 305
ACL entry syntax 299
CDS objects 159, 178
checking sequence 303
dcecp for CDS 180
deny 306
granting, effect on ACL checking sequence 306
inheriting 297
principals and groups 299
propagation 176
registry objects 456
restrict 302
scope of UNIX permission bits 296
setting default 308
setuid bit 297
use of 295
policies
authentication 391
authentication information 458
changing 466
handling conflicting 392
standard 389
POSIX
scope of permissions and DCE ACLs 296
pre_auth_req ERA 327
preauthentication 324
interoperability 328
pre_auth_req ERA 327
public key 324
third-party 324
timestamps 324
preferred security server replica 286
primary names (continued)
changing 337
conflicting 421, 423
format 320
principals 79
about 287
accounts for foreign 371, 380
accred of group permissions 301
ACL entry types 299
add from foreign cells 335
adding to registry 322, 458
authenticating 341
authentication information 458
changing full names 464
changing management information 465
changing registry information 323
deleting 321, 324, 459
displaying registry information 384
group memberships (table) 417
locksmith 432
logical identity 293
management information 457
name format 320
naming restrictions 319
network and local identities 339
object creation quotas 321
overriding group memberships 403
overriding UNIX IDs 397
permissions 184
registry creator 417
reserved 320
unauthenticated 184
privilege attributes
about 341
viewing 342
privilege service 285
procedures, controlling the context of 39
procedures, creating in dcecp 37
profiles
role in lookups 247
programming
CDS object identifier files 499
project lists
about 332
definition 301
excluding groups from 301
in ACL checking sequence 304
propagation queues 291
properties
authentication information 458
changing 466
setting 394
public key authentication
enabling and configuring 325
public key authentication protocol 324
pwd_mgmt_binding ERA 329
pwd_val_type ERA 329
queryattempts attribute 269
quotas
for creating registry objects 321, 379
strings in dcecp (continued)
 parsing 40
subprocesses
 creating in dcecp 46
substitutions 13
subtrees
 merging 207
synchronization
 about 237
 how it works 240
synchronizing CDS server clocks 197
syncinterval attribute 267
system time
 changing 273
 updating nonmonotonically 274

T
 task objects
 about 63
 cell 65, 71
 creating 51
 host 73
 listed 64
 user 79, 82

Tcl 3
third-party authentication protocol 324
tick 243
ticket cache name 343
tickets
 about 342
 deleted passwords 351
 destroying 343
 expiration and renewal 342
 setting lifetimes 347, 395
 status when process halts 343
 ticket-granting ticket validity 391
 ticket lifetime 392
 viewing information 343
time
 display formats 244
 inaccuracy values 266
 setting abruptly 274
 setting gradually 273
 standards 237
 translating UTC to local 246
time-provider
 checking server synchronization 272
 determining accuracy 241
 in DTS configuration 256
 selection criteria 503
 support 238
timestamps
 format 259
 manipulating 244
 use by CDS 170
timestamps authentication protocol 324
timezones
 world map 505
tolerance attribute 268

Tool Command Language
 its use in dcecp 3, 19
 trail file 478
 transitive trust relationships 371
 trust relationships 371

U
 unauthenticated mask
 effect on ACL checking 305
 inappropriate use of 306
 unique universal identifiers 321
UNIX accounts
 importing 421
UNIX IDs
 conflicting 421
 for foreign users 372
 importing 423
 overriding 397
 setting in registry 395
update propagation 169
Update Timestamp (UTS) 170
user entry type 299, 300
user information 458
user_obj entry type 299, 300
user object
 extending 82
users
 creating 79
 extending the user task object 82
 managing with the user task object 79
 removing from a cell 81
 showing information about 80
UTC
 about 244
 and local time 246
 commercial providers 504
UUID
 and deleted principals 321

V
 variables
 convenience, in dcecp scripts 24
 error information in dcecp 42
 global, in dcecp 38
 global error information in dcecp 42
 importing, in dcecp 38
 local, in dcecp 38
 used in dcecp 20

W
 WAN 253
 wide area network 253

X
 X.500 148, 150
 DCE implementation 148, 150
 searching via attributes 150