Exam I

Math 021 Section Z1

Instructor: Eric Clark

June 2, 2014

• The exam is out of 60 points. There are a total of 6 questions, 10 points each.

• Do not discuss the contents of this exam with anyone. (including Google!)

• You must show all work to receive full credit.

Name______________________________
Problem 1: Continuity.

a: Using interval notation, give the interval where the function is continuous:

\[f(x) = \frac{\ln(x^2 - 4)}{x^2 - 16} \]

b: Find the value of k that makes the function continuous:
\[f(x) = \begin{cases}
 kx^2 + 1 & \text{if } x \leq 2 \\
 x + k & \text{if } x > 2
\end{cases} \]
Problem 2: Evaluate the following limits.

a: \(\lim_{x \to -2} \frac{x^3 - 3x^2 - 10x}{x^2 + 2x} \)

b) \(\lim_{x \to 81} \frac{\sqrt{x} - 9}{x - 81} \)

c: \(\lim_{x \to \infty} \frac{8 - 4x^3}{5x^2 + 7x + 10} \)

d: \(\lim_{x \to \infty} \frac{\sqrt{5x + 3x^4}}{6 + 7x + 4x^2} \)
Problem 3: Suppose the position function of a skier during a run can be modeled by the function: \(s(t) = 3x^2 + 4x \). Where \(t \) is time measured in seconds, the position \(s(t) \) is measured in meters from the base lodge.

(a) Find the velocity function, \(v(t) = s'(t) \), using the formal definition of the derivative

\[
s'(x) = \lim_{h \to 0} \frac{s(x + h) - s(x)}{h}
\]

(b) Find the average velocity between \(t_1 = 1 \) and \(t_2 = 3 \) seconds. (Hint: This is an average rate of change, or the slope of the secant line between these two points: \(s_{\text{avg}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \)
Problem 4: For each of the following functions find the derivative with respect to \(x \).

a) \(\frac{d}{dx}[x^5 + 3\pi^2 x^3 + \ln(6)] \)

b) \(\frac{d}{dx}[\frac{x^2 + \sqrt{x}}{x}] = \)

c) \(\frac{d}{dx}[3x^{\frac{1}{3}} + 2\sqrt{x} - \frac{1}{x}] = \)

d) Let \(f(x) = x^3 + 4x^2 + 5 \). Find \(f'(x) \). Then find the equation of the tangent line when \(x = 1 \) i.e. at the point \((1, f(1)) \)
Problem 5: For each of the following functions find the derivative with respect to \(x \).

a: \(f(x) = (\sqrt{x^3 + 1})(x + 5)^5 \)

b: \(f(x) = \frac{\ln(x^2)}{x^2 + 1} \)

c: \(f(x) = e^{x^3}(x^2 + 1) \)
Problem 6: For each of the following functions find the derivative with respect to x.

a)

$$f(x) = (2x^5 + 3x^3 + 3x + 5)^{10}$$

b)

$$g(x) = e^{(3x^2 + \sqrt{x})^3}$$

c)

$$f(x) = \ln(4x^2 + 3)^{4/5}$$