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Abstract

Agent-based models are inherently microstructures–with their attention to agent behavior
in a field context–and only aggregate up to systems with recognizable macroeconomic char-
acteristics. One might ask why the traditional Keynes-Kalecki or structuralist (KKS) model
would bear any relationship to the multi-agent modeling approach. This paper shows how
KKS models might benefit from agent-based microfoundations, without sacrificing tradi-
tional macroeconomic themes, such as aggregate demand, animal sprits and endogenous
money. Above all, the integration of the two approaches gives rise to the possibility that a
KKS system–stable over many consecutive time periods–might lurch into an uncontrollable
downturn, from which a recovery would require outside intervention. As a by-product of the
integration of these two popular approaches, there emerges a cogent analysis of the network
structure necessary to bind real and financial agents into a integrated whole. It is seen,
contrary to much of the existing literature, that a highly connected financial system does
not necessarily lead to more crashes of the integrated system.

Keywords: systemic risk; crash; herding; Bayesian learning; endogenous money;
preferential attachment; agent-based models.
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1. Introduction

At first glance, Keynes-Kalecki or structuralist (KKS) macroeconomics and agent-based
models would seem to be strange bed-fellows. Structuralists since Taylor (1983) have in-
tegrated the financial and real sides of the models but mostly through the interest rate
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(Taylor, 1981) and the profit rate (Taylor and O’Connell, 1985). Since then the literature on
“financialization” has emphasized the bloat, waste, and inequality ushered in by growth of
the financial services sector (Epstein, 2005; Palley, 2014). This literature has been less con-
cerned with the central role played by finance in channeling savings into investment. Early
Keynesians were certainly concerned and it was immediately recognized by Robertson (1940)
and later by Chick (1983) that at the core of the Keynesian economy was a well-functioning
financial system capable of creating money.2 The system transfers purchasing power from
those who wish to invest less than they save to their counterparts, those who want to invest
more. Any interruption in this flow of funds spreads through the rest of the economy through
the multiplier-accelerator process, creating havoc.

Constructing convincing models of real-financial interaction, however, has been made
di�cult by the inherent complexity and interlinked nature of the financial system. Recent
advances in agent-based modeling with its focus on concentration and contagion across struc-
tured networks o↵er an opportunity for relatively deep integration with KKS models. This
paper shows how such integration might be accomplished and how the central features of
both approaches can be preserved in the merging of the two schools of thought.

Benefits accrue to both sides: structuralists have traditionally waved o↵ the criticism
that the microfoundations of their models are weak and not explicitly tied to standard op-
timization models (Skott, 2012). Microfoundations in multi-agent models, however, are not
always based on strict rationality. Agents are, by definition, boundedly rational; they are
heterogenous, sometimes myopic and generally incapable of making rigorous inter-temporal
trade-o↵s. Random elements play an important role, as does asymmetric information, incom-
plete contracts and other institutional constraints. These are all features that structuralists
commonly include in their macro models, but by assumption, rather than their having been
derived from some microfoundation. On the other hand, the benefit to standard agent-based
models is the integration of the real side into an explicitly financial model. This has been
ably attended to in the past, of course, but the Keynesian quantity adjustment process, with
its emphasis on aggregate demand, is less visible in the existing literature (Ashraf et al.,
2011; Ga↵eo et al., 2008). Moreover, tracing the flows from surplus firms, those that invests
less than they save, to deficit firms, those that do the opposite, is not as easily seen in the
standard literature as in the model to follow. This perspective shows explicitly the conditions
under which money must be endogenously created and, moreover, allows for animal spirits
to be an explicit driver of the level of economic activity. Prominent and popular financial
models, such as Gai et al. (2011), focus on contagion in the interbank market. The frame-
work presented here is more concerned with the Keynesian features of modern capitalism,
most specifically that an independent investment function drives the level of savings instead
of the reverse as well as the irrepressibility of endogenous money.

Setterfield and Budd (2011) make a first step toward integrating the KKS perspective
with agent-based models. In that model, each agent is essentially its own KKS economy,
with its own aggregate demand and savings-investment balance. Agent interaction is limited

2See also Gibson and Setterfield (2015).
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to a “blackboard” communication system, in which an agent’s incentive to invest is a↵ected
by the performance of its colleagues. Aggregate demand is not shared among firm agents,
however, nor is there any explicit modeling of the financial sector.

Beginning with a multi-agent KKS model, this paper integrates a financial sector, inspired
by the agent-based literature (Johansen et al., 2000; Sornette, 2003; Harras and Sornette,
2011; Tedeschi et al., 2012; LeBaron, 2012; Thurner et al., 2012, and many others). The
result is a model of the economy with two agent sets, real sector firms and financial sector
intermediaries. It is seen that financial intermediation can constrain investment spending by
firms, and hence the pace of growth in the real sector. Meanwhile, the profits and savings
generated in the real sector a↵ect the ability and willingness of financial intermediaries to
lend. The microfoundations are based on Bayesian learning (Chamley, 2004) in which a prior
public signal is updated by way of a private signal based on the performance of the firms to
which the financial agent is linked.

The paper is organized as follows. The next section outlines the design concepts and
coordination environment of the two agent sets. Section 3 discusses the main results of the
model, endogenous money and the possibility of a real-financial crisis. It is seen that the
integration of the two approaches allows an important role for network structure, whether
financial agents are linked randomly or by way of preferential attachment. The fourth section
concludes. An appendix contains the pseudo code of the model.3

2. Design concepts

One way to initiate the transition from the pure KKS to a framework that integrates
the multi-agent approach is to individually model workers and capitalists and the full range
of economic decisions they make. This approach could be extended to the government, the
financial sector and the central bank. A fully granular model would show all the inner-
workings of the economy in exquisite detail and one would hope and expect that the agent
model would fully align with all the main features of the structuralist macromodel.

In a closed economy with no public sector, however, the structuralist model often invokes
the assumption that workers do not save and capitalists save out of profits. This confers a
significant degree of simplification since Walras’ law, which implies that the sum of agent
savings is equal to investment, obviates the need to model workers’ behavior directly. In
general, there would be no reason to make the assumption that workers do not save in an
agent-based model. Here, however, the project is to link the structuralist macro and agent-
based methods and so the same assumption is maintained. Workers are still present in the
model, but only implicitly.

This simplification also enables the model to account for the interaction of just two kinds
of agents, firms and financial agents, without the complexity of a full agent-based system

3The replication code for the model (written in NetLogo) is available at
http://www.uvm.edu/⇠wgibson/Research/GS.nlogo. The model can be run in “headless” configura-
tion on a cluster or standalone using only the NetLogo software.
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that might obscure the comparison with the conventional one-sector KKS system. More-
over, structuralist models can already adequately handle issues arising from the interaction
of workers and capitalists. Attention here is paid to another dimension along which the
structuralist model is less competent and well worked out, that of the relationship between
firms and their financial agents.

In an economy with a single firm, the savings generated by that firm must be equal to
total investment. When there are heterogeneous firms, some generate financial surpluses
when they save more than they invest and financial deficits when the opposite is true. The
primary role of the financial system is intermediation, facilitating the flow of funds from
surplus to deficit firms.

As noted, in the model of this paper there are two agent sets: firms, which undertake all
savings and investment, and financial agents that provide intermediation services. Financial
agents neither save nor invest. Simple behavioral rules are defined for these two agent
classes and the macro performance of the model arises as an emergent property of their
interaction. There is no policy authority or explicit monetary policy and all adaptation is
through Bayesian learning.

Figure 1 illustrates the three principal structural features of the multi-agent model, firms,
financial agents, and financial network architecture. Each firm, represented as a square,
operates only one production process, combining capital and labor to satisfy demand for
a homogeneous good.4 The key decision for firms is whether and how much to invest.
Investment is based on expectations about future market conditions and firms’ ability to
cover any short-fall in savings, relative to planned investment, through borrowing from other
firms with the help of one or more financial agents. At each sweep of the model, surplus
firms, shown as dark squares, make deposits with their resident financial agents, represented
by numbered circles. Financial agents must then decide whether to grant loan requests to
deficit firms, shown as light squares. The decision of financial agents is also binary: lend/do
not lend. This decision depends on their forecasts of the probability that the loan will be
paid back, dark for “bullish” and light for “bearish”.

Each financial agent can at most o↵er direct financing for one production process, the one
with which it is permanently associated. That same agent can, however, be called upon to
provide indirect financing to another firm by way of another financial agent. Thus a bullish
financial agent that lacks su�cient liquidity to meet the demand for loans from its associated
firm, may arrange for a loan from one of its neighbors.

To capture the locality of intermediation, information constraints and boundedness on
the rationality of the financial agents, however, indirect borrowing must be limited to some
degree. This is achieved by imposing a restriction on the connectedness of the system through
the number of plys to which each financial agent has indirect access. A simple but useful
assumption is to limit the number of plys to one, so that financial firms can only borrow from

4This is the easiest way to think about the adjustment mechanisms in the model. Equivalently, there
could be heterogeneous goods with prices adjusting behind the scenes. Price movements would shift investible
surplus from one firm to another, but the overall macro properties of the model would remain unchanged.
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Figure 1: Structural features of the multi-agent model

their linked neighbors. This “one-ply” assumption is the point at which network analysis–
agents dispersed on grid–adds to the standard conceptual framework of the KKS model.
Without the one-ply assumption, firms could chain across the entire grid, borrowing directly
or indirectly from all available sources of savings. No financial system frictions could arise
to interrupt the growth of the system and the model would e↵ectively revert to the standard
one-sector KKS model, in which there is always finance available for any desired investment.5

The linked neighbor may have refused a loan to its own (deficit) firm on the grounds of a
bearish forecast. It is nonetheless willing to accept the indirect request of its neighbor. This
feature of the model is designed to capture the “originate and distribute” characteristic of

5The reader could reasonably wonder whether a two- or three-ply assumption might be more realistic,
coming closer to the way in which financial firms are linked in the real world. On reflection, however, it is
apparent that the crucial distinction is between limited ply borrowing and full grid access. Multi-ply systems
can always be converted to one-ply systems, by “eliminating the middleman”, which has been done here for
simplicity.
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the financial system. Indirect loans are viewed as less risky since deficit firms are vetted by
their own financial agent and indirect financing is, therefore, never refused. Figure 1 shows,
however, that firms can have direct access to more than one financial agent. It may seem
from figure 1 that there are more financial agents than firms, inverting reality. Note, however,
that financial agents are not conterminous with financial firms (which are associations of
financial agents), so that the number of financial firms is not defined within the model. In
any case, the latter would already be included in the agent set “firms”, which earn profits
and pay wages. Consequently, there is no explicit interest rate since prices are not explicit
due to the assumption of a single homogeneous good.

If the number financial agents is less than the number of firms, large deficits of aggregate
demand arise, since many deficit firms are unable to find financing for their projects. A
far less restrictive assumption is that the number of financial agents, m, is greater than
then number of firms, n. This assumption produces reasonably robust growth and prevents
subsets of firms from experiencing very low levels of e↵ective demand and capacity utilization
when the rest of the grid is booming. The two critical assumptions of the model are, then,
the one-ply assumption and m > n, and it should now be clear that the model would behave
in a highly unrealistic way if either of these assumptions were relaxed.

Network architecture is represented by the edges joining the numbered financial agents
in figure 1, and influences how financial surpluses are allocated.6 Suppose that the surplus
firm, shown in dark gray in the first panel of figure 1, makes a deposit with financial agent
0 which is connected to financial agent 1 and through torus wrapping to financial agent 2.
Financial agent 1 is bearish but in any case has nothing to do, since the firm to which it
would lend is already in surplus. Financial agent 2, however, serves a deficit client and is
connected to financial agent 0, associated with a surplus firm. Agent 2 is also connected to
3, who is associated with a deficit firm and has no liquidity. Financial agent 2 then calls on
financial agent 0 to make the surplus available for its client. Savings is thereby channeled
from a surplus to a deficit firm.7

Agent 3 is bearish, but even had 3’s forecast been bullish, it might have been stymied in
its e↵ort to provide indirect financing for its deficit firm. Whether 3 has indirect access to
financial agent 0’s funds is a setting of the model and determines the degree of connectedness
of the financial system. KKS models that have no constraint on interbank borrowing essen-
tially allow each financial agent complete access to all other financial agents on the grid.
This is the assumption that implicitly underpins KKS models without a financial sector,
models in which money is endogenous.

Even under the one-ply restriction, money is still endogenous. To see this, first note
that behavioral decision rules in multi-agent systems are executed asynchronously. This
asynchronicity allows the possibility of collisions, that is, conflicting claims on financial

6Network architecture also influences financial agents’ expectations, which are based (in part) on the
forecasts of their linked network neighbors. See section 2.5.

7Note that financial agent 4 is not linked to agents 0-3, but is connected to financial agents on other parts
of the grid not shown in figure 1.
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resources. This works as follows: At the end of each period, firms deposit their savings out
of profits determined by a given savings propensity. At the beginning of the following period,
financial agents respond to demand for this liquidity from both surplus and deficit firms. If
a deficit firm applies for a loan before the surplus firm has had a chance to invest its funds,
a collision is created. The conflict can only be resolved by allowing financial agents to create
money.8 The endogeneity of the money supply is critical to the macro performance of the
model, since if investment were always constrained by savings, there would be no room for
expectations-driven growth.

The second panel of figure 1 shows the same neighborhood one period later. Note that
the network architecture, the number of firms, and the number and location of financial
agents remains fixed. Observe that the surplus firm of the first period is now in deficit and
the formerly deficit firms in the north-east and south-east positions are now in surplus. This
change occurs because aggregate demand alters the ability of firms to save and their incentive
to invest. The forecasts of financial agents have also changed. Generally, forecasts remain
heterogenous as shown in the third panel of figure 1. It is possible for a grid-spanning cluster
of opinion to arise, however, as illustrated in the fourth panel of figure 1 where all financial
agents are bearish. As explained in detail below, this spanning cluster, or contagion, sets
the stage for a financial, and possibly, a real crash. The probability of the formation of
a grid-spanning cluster measures the systemic risk of the system. The following sections
describe more precisely how firms and financial intermediaries decide whether to invest and
lend, respectively.

The key to understanding the integration of the structuralist and agent-based perspective
lies in the relationship between savings and investment. While it might seem natural to
model agents as making a decision between consumption and investment and then either
accumulating physical or financial assets with their savings, this would lead to a savings
driven economy at the macro level. The alternative, pursued here, is to explicitly model the
investment process, with an exogenous term for animal spirits, and then allow savings to
adjust to investment in equilibrium. The agent making this central decision of the model is
the firm and one of the firm’s drivers is animal spirits, a term not linked to savings.9

2.1. Model synergy: what the ABM perspective adds to KKS

With a network-based financial structure added to the standard KKS macro adjustment
mechanism, the model can be used to study contagion among financial agents that can
severely interrupt the flows of savings into investment. In this respect the unification of the
ABM and KKS approaches confers two benefits. First, it shows how financial contagion can
be reinforced by the interaction of the financial sector with the real economy. Contagion
in the model is based on Bayesian learning in which a prior public signal is updated by

8The model thus reflects the hidden presence of a monetary authority that does not allow credit creation,
except when these collisions occur. See section 3.1 below for a fuller discussion of this assumption.

9In many multi-agent models, such as Ga↵eo et al. (2008), exogenous spending is linked to prior savings
of the unemployed or consumers frustrated in their search for goods and services. Savings, in a sense, still
drives investment even though it is not linked to the current level of output.
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way of a private signal based on the performance of the real-sector firms to which financial
agents are linked (Chamley, 2004). Second, the model shows how contagion resulting from
real-financial interactions depends on network structure, the precise architecture of the links
that are formed between financial agents.

The implications of combining the KKS and ABM approaches run deep. In a standard
structuralist model with no financial sector, a reduction of one unit of aggregate demand
reduces income and employment by way of the multiplier analysis. When attention is given to
the links of this chain, the traditional focus is on unintended inventory accumulation. Since
aggregate demand is the only driver, a unit decrease in aggregate demand always a↵ects the
sum of output and employment in the same way. The method by which the investment is
financed does not always come into the picture. When it does, with, say, an upward sloping
LM schedule, the e↵ect is always to soften the blow of a decline in demand, in response to
which the interest rate falls.

In the conjoined ABM-KKS structure, the scenario could unfold very di↵erently. Depend-
ing on the economic structure that exists when the aggregate demand shock materializes,
the impact could be attenuated or amplified by the financial system. Figure 1 above shows
how either could happen. If the demand shock hits surplus firm j, the deposited surplus
falls; less finance is available for deficit firm k and now the investment plans for the latter
are blocked by the financial structure. Aggregate demand is now lower in some parts of the
grid and a negative public signal begins to emerge that contradicts the private signal that
other financial agents receive from their own firms. A refusal to propagate loans on the part
of these financial agents may spread to the rest of the grid as the outlook of financial agents
turns bearish. Whether this happens depends on the structure of the economy, as embodied
in network linkages among financial agents and the assumptions about how agents learn.
There are now two channels through which the negative demand shock might propagate,
the real side (as in the standard KKS model) and the financial sector (as modeled in the
stand-alone financial sector agent-based finance literature).

On the other hand, the financial system may counteract the negative demand shock,
attenuating its impact on the real economy. A surplus firm that fails to invest as a result of
the demand shock now deposits what would have been spent on investment goods, raising
the available finance for deficit firms that might otherwise have been frustrated. A stronger
public signal could emerge that frees finance for other deficit firms who then further amplify
the signal, with the result that the initial contraction in aggregate demand is o↵set or even
reversed.

2.2. Macrofoundations: what KKS adds to ABMs

The traditional KKS perspective invokes microfoundations that are not linked to strict
optimizing behavior. They are rules of thumb, behavioral rules, that apply to a class of
individuals rather than an individual. These rules of thumb can change as circumstances
warrant. The ABM approach is wholly consistent with this view in that few employ formal
dynamic optimization models to guide individual behavior. More commonly applied are
principlies of behavioral economics, or appeals to limited or costly computational capacity
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on bandwidth on the part of agents. Rules of thumb can be more numerous, varied, and
complex in ABMs, but conceptually the approach adds nothing new to the KKS system.

What the KKS system imposes upon the microeconomy, populated by autonomous
agents, is perhaps far more valuable. Structure in an economic system is, at the most gen-
eral level, ossified agency, the product of past decisions made by pre-existing agents (some
of whom survive to the present). These evolving structures may be viewed as macrofoun-
dations, constraints imposed on agents by the structure itself, that impinge on the further
evolution of the system. A simple example of a macro constraint is the notion of a “public
signal” itself. The overall macroeconomy provides a data stream of information that not only
enters into individual decision making but also, by virtue of its very boundedness, constrains
the behavior of individual agents, both firms and financial agents. Workers, meanwhile, are
constrained by their class identity in the KKS, and cannot choose to become firms or finan-
cial agents. Indeed, they are so “macroeconstrained” that they have few choices to make
and can therefore be left out of the modeling e↵ort.

2.3. Firms as decision-making agents

The firm agent’s data structure is described in tables 1 and 2. Firms are instantiated and
initialized as shown in table 1, where it is seen, for example, that capital-output ratios vary
according to a uniform probability distribution over the range 2-4. Saving rates, however,
are initially normally distributed, within the 2 SD range as shown.10

[TABLES 1 & 2 HERE]

As noted, firms produce a single homogeneous good in the model by way of a Leontief
production function. The technology, which depends on a capital-output ratio and labor
coe�cient, is fixed once firms are instantiated. Aggregate demand depends only on spending
on consumption and investment. The usual assumption in KKS models is that all labor
income per unit of output, li, is spent on consumption while a fraction, si, of capitalists’
income, ⇡i = 1� li, is saved. Let Xit be the output of firm i in period t. Aggregate demand
in period t is then

Yt =
nX

i=1

[(1� si⇡i)Xit + Iit�1]. (1)

The output of each firm is determined by a share of aggregate demand, �it, such that

Xit = �itYt (2)

where
Pn

i=1 �it = 1. Investment is given by an independent function for each firm

Iit = gitKit (3)

10They are then scaled to give total savings equal to total investment so that the initial solution for the
model as a whole is in macroeconomic equilibrium.
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where Kit denotes the capital stock and git is an accumulation function that depends on
animal spirits, capacity utilization, and the rate of profit, or

git = ↵0i + ↵1iuit + ↵2irit (4)

where the a’s are constants and the rate of profit is

rit = ⇡iXit/Kit�1. (5)

The values assigned to the parameters of this equation are shown in the lower part of table
1. The animal spirits term, ↵0i, is fixed for each firm, but given the randomness of other
settings in the model animal spirits is uncorrelated with any of the endogenous variables of
the model.

It might seem more natural to model the firm in its traditional role of profit maximizer,
combing the factors of production in variable proportions to achieve least cost per unit of
output. In fact, technical e�ciency in the multi-agent perspective is second order and it is
rather the interaction of many firms and financial agents that attracts the attention of the
agent-based method.

The methods by which firms update their data structures are shown in table 2. The
basic rationality behind the firm’s decision-making is to increase (rather than maximize)
profits by investing, creating productive capacity through capital accumulation. This avoids
loss of market share because of capacity constraints. When firms are capacity constrained,
aggregate demand they cannot satisfy is allocated to other firms in an iterative processes
within each sweep of the model, described in more detail below.

Capacity utilization, uit, is the firm’s variable that signals the need for more or less
investment and is defined as

uit = Xit/Qit�1 (6)

where and capacity output, Qit, is
Qit = Kit/vi (7)

where Kit is a state variable determined by the usual stock- flow relationship, as shown in
table 2. Here Qit is the maximum quantity of production given the capital stock, Kit. Thus

Xit  Qit�1 (8)

or equivalently, uit  1. Firms adapt to changes in the utilization of capacity by adjusting
their rate of investment.11

Note that there are, implicitly, multiple layers of decision-making for the firm agent.
Entailed in the behavior of the firm are incomes, both of workers and owners. Consumer
behavior depends on these incomes and so indirectly depends on firm agents. Aggregate

11Since the rate of profit can also be written as rit = ⇡iuit/vit, equation 4 is a function of the single
signaling variable, uit.
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demand depends on the sum of these indirect e↵ects together with the exogenous component
of animal spirits in the investment function.

Typically, an agent-based model would take advantage of this multi-layered structure
to endow the consumers with their own choice points. Consumers may respond to spacial
availability and price as they do in Ga↵eo et al. (2008). They may decide to quit or change
jobs, to accumulate human capital, retire, emigrate or join the informal sector (Gibson,
2012). In the hybrid model of this paper, these decisions are all directly linked, as they are
in the KKS framework, to the decision to invest.

Here the system-wide distribution of aggregate demand endows each firm with a quantity
of savings that may or may not be su�cient to finance its planned investment. Inter-agent
communication for firms depends on the financial surplus, Fit, defined as

Fit = si⇡iXit � Iit�1

8
><

>:

< 0 deficit

= 0 balanced

> 0 surplus

(9)

for i = 1, 2, ..., n. The designation of surplus/deficit is temporary and depends on t, since
in order to execute planned investment, a deficit firm must first locate a surplus firm from
which to borrow. If this proves impossible, the deficit firm flips to surplus, as described in
more detail below, and aggregate demand falls. In a model with perfect information, zero
transactions costs, and endogenous money, nothing inhibits the flow of funds from surplus
to deficit firms. Inter-agent communication is fast, e↵ective, costless and complete. In real-
location economies, however, interagent communications is less perfect and may breakdown,
potentially reducing aggregate demand bringing about real-financial crisis.

2.4. The coordination environment of firm agents

Productive capacity is a state variable in the model, evolving along with the capital stock.
In the current model, capacity, Qi, may limit the amount of savings a firm generates, causing
a surplus firm to flip and become a deficit firm.

So far, there is nothing in the model preventing the distribution of aggregate demand
from causing output, Xi, to exceed capacity, and therefore ui to rise above 1. To prevent this
unrealistic outcome, a coordination mechanism is built into the model such that aggregate
demand is shared and no firm exceeds its own capacity to produce.

To see how this coordination mechanism functions in the model consider a simple two-
agent system in which the share of aggregate demand for firm one is � and for firm two is
1 � �. There are not yet any financial agents in the model. The equilibrium conditions set
consumer and investment demand equal to the supply of each good

X1 = � [(1� s1⇡1)X1 + (1� s2⇡2)X2 + I]

X2 = (1� �) [(1� s1⇡1)X1 + (1� s2⇡2)X2 + I]

where I = I1 + I2 is taken as a given parameter determined in the previous period. The
system can then be written explicitly as a function of aggregate demand as

11



u2 = 1

u1 = 1

good 1

good 2

�0

�1 > �0

Figure 2: The demand redistribution coordination method

Since u2 > 1
1. set u2 = 1
2. set Y (u1, u2) = Y (u1, 1)
3. set u1 = �Y (u1, 1)
4. reset � = u1/

P2
j=1 uj

5. If u1  1 and u2  1 halt

else repeat for u1 > 1

Figure 3: Pseudo code for coordination method in figure 2 (Q1 = Q2 = 1)

u1 = �Y (u1, u2)

u2 = (1� �)Y (u1, u2)

where Y =
P2

i=1[(1� si⇡i)Xi + Ii] and Q1 = Q2 = 1 to simplify. Figure 2 shows a graphical
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solution for this set of equations in the two unknowns, u1 and u2. The solid lines in the
diagram show an initial solution in which the capacity constraint is exceeded by the second
firm. The demand sharing coordinating mechanism operates as described in the figure and
accompanying pseudo code in figure 3. The share of aggregate demand allocated to firm 1,
�, rises until the level of capacity utilization in firm 2 falls to 1. At the same time, the share
of aggregate demand allocated to firm 1 rises, as shown in figure 2. The intersection of the
dotted lines indicates a feasible solution with both u1  1, and u2  1.12

In the process of demand reallocation, Y may increase, decrease or stay constant. The
intuition is derived from standard macroeconomic reasoning: the sum of savings is equal to
investment before and after the reallocation of demand. Investment has not changed since
the adjustments are taking place within one sweep of the model. Therefore if the savings per
unit of output by firm 2, s2⇡2, is greater than of that of firm 1, a unit of aggregate demand
shifted from firm 2 to firm 1 will result in an increase in aggregate demand.13

Nothing prevents the redistribution from causing both firms to exceed the capacity con-
straint. If this were to occur, the closure of the model would endogenously change from
Keynesian to supply constrained model. One might think that price is the logical adjusting
value here when demand exceeds supply, but there is no price in the model as currently con-
figured. Other options have been employed in multi-agent models, such as an adjustment in
inventories, imports, or the saving rate as noted above.

The introduction of the demand reallocation process obviates the need for such a variable,
since full capacity utilization for the economy as whole is never reached. There is one
exception. As a thought experiment, consider the special case in which the savings per unit
of output is the same in both firms. Now shifting a unit of aggregate demand from firm 2
to firm 1 does not change the total. If capacity is now exceeded in firm 1, the algorithm will
try to shift the unit of aggregate demand back to firm 2! This chattering solution cannot be
ruled out and in practice prevents the sweep from converging on a feasible distribution of
the ui.14

There are a number of common elements of the agent-based approach that are intention-
ally ignored in this treatment of the real side of the model. Firm agents could, for example,
learn to combine factors of production more e�ciently, or invest in research and development
to adjust their Leontief technologies, or use sophisticated models to forecast demand and
therefore alter their investment decision away from equation 4. None of these features is
implemented in the current version of the model since this would diminish the connection
to the original KKS model, in particular the role of aggregate demand. Many are, however,

12These adjustments are taking place within a single sweep of the model and therefore the t subscript is
suppressed.

13This is the so-called paradox of costs that is emblematic of KKS type models. It is, for example, the key
to “wage-led” growth, the well-know stagnationist argument that holds that redistribution of income from
capitalists to workers will cause an increase in capacity utilization, ceteris paribus. Here the redistribution
takes place by way of a change in the composition of firms rather than within any one firm, but the e↵ect
is, of course, the same.

14This would cause the simulation to be removed from the data.
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implemented on the financial side. There, financial agents learn, communicate with one
another, and forecast behavior of other agents using sophisticated models, all of which can
significantly a↵ect firm investment.

2.5. Financial decision-making agents

The discussion of firm agents above has set the stage for the introduction of financial
agents, who operate between surplus and deficit firms. The parameters defining this agent
set are shown in table 3. While there are n = 676 firms, the table indicates that there are
m = 1, 000 financial agents, so that on average there are approximately 1.5 financial agents
per firm. Financial agents are randomly allocated to firms such that each firm is linked to
between one and 10 financial agents.

[TABLE 3 HERE]

Each financial agent begins life with one unit of liquidity, their initial capitalization. To
simplify matters, the capital stock of the firms to which each financial agent is randomly
associated is the sum of the initial liquidity of the associated financial agents.15 Thereafter
strict balance sheet consistency is imposed on financial agents: since there is no currency or
reserves, loans must be equal to deposits plus initial capitalization. Financial agents cannot
fail or die; they can only run out of liquidity and must then refuse a loan request.

As noted above, financial agents only borrow to meet the needs of a deficit firm to
which they could not otherwise provide financing. This approach di↵ers from the traditional
treatment as in Gai et al. (2011), for example, in that this paper focuses primarily on bank
intermediation, rather than whether banks can acquire needed liquidity through short-term
interbank borrowing. Here there is no lender of last resort that might respond to a short-term
liquidity crisis. Neither can financial agents freely create money.16

In the hybrid KKS model studied here, the decision financial agents make is whether to
extend loans to deficit firms. This decision depends on two factors: availability of liquidity
and willingness to lend. Conditional on having su�cient liquidity (direct finance) or access
to liquidity through the interbank market (indirect finance), a financial agent will provide
finance to a client firm if the financial agent is optimistic that the value of these shares will
rise over time. Financial agents make the decision to allow or disallow loans to deficit firms
based on a relatively sophisticated forecast composed of two parts: a private signal based on
private information and a public signal, based on the forecasts of their linked neighbors, which
is public information. The relative weights the financial agents place on these two sources of
information change depending upon the confidence they have in their own forecasting ability
relative to that of linked neighbors. Table 3 shows that the initial confidence is set at 0.5,
which means that financial agents initially weigh private and public information equally.

15Thus, a firm connected to two financial agents is instantiated with two units of capital and a firm with
seven agents has seven units of capital. An initial correlation of firm size, measured by their capital stock,
with the number of financial agents is then established.

16As explained in more detail below, money can be created but only when financial agents are forced to
do so by the asynchronicity of the system.
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Financial agent interaction is based on the Bayesian rational network learning model.
In this approach financial agents update priors determined by their linked neighbors by
reference to the real-side performance of their own client. In the Gaussian version of the
Bayesian model, this means that each financial agent has a subjective probability distribution
of the change in share prices, in other words, the state of the world. Assume that ✓t is an
observation from the stationary distribution of share price changes, distributed as N(✓̄, �2).
The jth financial agent has a prior subjective distribution N(�pj, 1/⇢pj), where ⇢pj is the
precision of the prior signal, the inverse of the variance.

As in standard Gaussian Bayesian updating, each financial agent then receives an infor-
mative private signal from its firm, not observable to other financial agents

µjt = ✓jt + "jt

with "jt ⇠ N(0, 1/⇢"j) where, ⇢"j, is the precision of the private signal. Each financial agent
uses this signal to update and improve their prior precision

⇢jt = ⇢pj + ⇢"j.

To implement this Bayesian updating scheme in the hybrid KKS model, let the private
signal be a function of the current capacity utilization of the financial agent’s client. Here
the financial agent records the level of capacity utilization in a private data list dj(ujt) and
then forms a forecast by regressing a subset, ⌧j, of these utilization rates on time according
to

ujt = �̂0j + �̂1jt+ ✏jt (10)

with t = 1, 2, ..., ⌧j and with ✏jt as a random error term. Since di↵erent financial agents
weigh history di↵erently, the size of the subset, ⌧j, varies randomly between 3 and 13 time
periods as seen in table 3. The private signal, µjt, is thus

µjt = �̂1jt

the trend regression slope coe�cient. A positive trend is associated with a bullish private
signal. The mean of the prior distribution, �pj, is determined by the weighted average of the
forecasts of the financial agent’s J 0 linked neighbors

�pj =
J 0X

i=1

!i�i (11)

where the subscript i, previously used for firms, is employed here to identify a linked neighbor
of the jth financial agent and !i is the weight that the jth financial agent applies to the
network link it shares with financial agent i.17

17Detailed description of the financial network linking financial agents, including the determination of !,
follows below.
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In period t, the financial agent’s forecast, �jt, of the state of the economy is then the
updated mean of the Bayesian prior distribution, �pj,

�jt = jt�pjt + (1� jt)�̂1jt (12)

where jt is the current weight on the Bayesian prior. The relative weights of the public
and private signals are determined by forecasting error, which in turn depends on how the
market actually behaves. Given the unboundedness of a forecast error for any agent and the
requirement that the forecast error determine the relative weights of the private signal and
prior, it is necessary to map the forecast error into an open interval (0, 1).

For the moment, take the change in share price in any given sweep of the model as given.18

Financial agents’ weight, jt, depends upon confidence and if the agent has predicted the
change in share price accurately, its confidence increases. Suppose the slope coe�cient is
�̂1jt > 0 and so the private signal is bullish. If the share price increases, �pt > 0, then
the financial agent has made a correct forecast based on the private signal alone. If the
financial agent’s linked neighbors forecast a price decrease, the financial agent has “beaten
the market”, demonstrating expertise relative to the linked neighbors.

According to table 4 if the financial agent beats the market in any given period, the
financial agent records in the memory list fj(⌘jt) binary success of 1 and 0 if the market beats
the financial agent. In the case in which the financial agent and linked neighbors forecast the
same price movement, the financial agent records the average of the binary signals, 0.5. The
financial agent then computes an average of these signals over the idiosyncratic ⌧j-length
history to arrive at a raw forecast error. To avoid precipitous swings, the financial agent
then attenuates the raw forecast error by way of a logistic smoothing function, as is common
in machine learning models of neural networks (Russell and Norvig, 2010).19 The smoothing
logistic function reduces the weight on the private signal to something slightly less than one.

[TABLE 4 HERE]

Note that if the financial agent’s network neighbors consistently forecast asset price move-
ments correctly, while the financial agent’s private signal is always at odds with asset price
movements, relative signal precision and hence jt will rise, and its complement will fall
at a decreasing rate toward zero. The informational content o↵ered by the agent’s firm is

18See section 3.2 for details.
19Consider for example the jth financial agent who initially places equal weights on both the private and

prior public signals. The horizon for this particular financial agent is ⌧j = 3. In the last three periods,
the financial agent beat the market, recording ⌘j = 1 each time. Does the financial agent stop updating,
concluding that the weight on the private signal is then one? To avoid this unrealistically behavior on the
part of the financial agent, the model assumes that successful forecasts are smoothed by the logistic function

jt =
1

1 + e
[�0j��1j(1� 1

⌧j

P⌧j
t=1 ⌘jt)]

. (13)
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increasingly ignored. Since its linked neighbors are taking into account this behavior in their
own forecasts, it could be said that social learning is breaking down. Herding is beginning
and in the limit, when all financial agents are herding, cascades occur (Chamley, 2004).
Financial agents become progressively detached from the source of informative signals, their
own firms and the firms of their linked neighbors. The more the informational bond between
the real and the financial sector breaks down, the more likely order, the precursor of financial
collapse, becomes. Systemic risks begins to rise (Hansen, 2012).

As noted above, financial agents communicate across adjacency lines, to their linked
neighbors, to the benefit of firms. Specifically, if a financial agent is unable to satisfy the
demand for borrowing by a deficit client firm, it may call on linked neighbors to ask for a
loan. Linked financial agents who have su�cient funds agree to loan the originating financial
agent funds to be channeled to the deficit firm.

Since Fi < 0 deficit firm i linked to FAj

if �j > 0 FAj willing to lend

and Lj +
PJ 0

k=1 Lk � |Fi| FAj able to lend

set Ii = giKi firm i invests

else

set Ii = 0 FAj blocks loan
firm i does not invest
flips from deficit
to surplus

Figure 4: Pseudo code for financial agent communication

Figure 4 shows how financial agents communicate. If the forecast of the jth financial
agent is positive and it has su�cient liquidity or access to liquidity by way of its adjacent
neighbors, it will make the loan to the deficit firm. If however, either of these conditions fail
to hold, the loan is withheld and the planned investment is unrealized.

The reduction in planned investment does not have the same impact as it would in the
standard KKS model with accommodating money. There, one would expect a multiplier
e↵ect on aggregate demand that would exceed the reduction in planned investment denied
in the second branch of the if-else statement in figure 4. In the multi-agent world however,
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when the investment is blocked, the deficit firm becomes a surplus firm and its savings is
available to other deficit firms that may themselves have been denied access to financing.
Total investment need not fall, but total investment and number of blocked loans are inversely
correlated in numerical simulations.

2.6. The coordination environment of financial agents

Financial agents coordinate through a financial network that is imposed rather than
emergent. Many stand-alone models of the interbank market associate links with borrowing
and so the links are directed. The hybrid KKS model is not, strictly speaking, a model of the
fragility of interbank lending.20 Since a given firm can oscillate between surplus and deficit
due to its share in the overall level of aggregate demand, as well as capacity constraints, the
firm’s relationship to financial agency is necessarily bidirectional. The firm is sometimes a
lender and sometimes a borrower. The focus here, however, is on the financial services that
financial agents o↵er in the intermediation between surplus and deficit firms. It follows that
for two such firm agents to interact, they must have at least one linked pair of financial agents
in common. As the number of financial agents in a network increases, so too does the level of
connectivity between firm agents. Thus, higher connectivity of financial agents reduces the
degree to which any individual market forecast may a↵ect financial flows. Moreover, large
firms (measured by their capital stock) tend to have access to more sources of finance, as
noted above, and thus are less susceptible to the blocking e↵ect of bearish forecasts.

To gauge how network structure a↵ects the hybrid KKS model’s performance, several
coordination mechanisms are considered: random and preferential attachment, with and
without weights. Following Erdos and Renyi (1950), a random network is constructed by
instantiating financial agents and then randomly linking them to exiting financial agents. A
second, due to Barabási and Albert (1999), employs preferential attachment in which the
likelihood that each additional financial agent links to an existing financial agent depends
on the degree of the potential partner.21 Once initialized as either a random or preferen-
tially attached, the financial network remains fixed. Which coordination structure is more
susceptible to financial crises can then be tested.22

20Most models of interbank lending essentially depend on the mechanisms of virus propagation across
networks, epidemiological in nature, that trace patterns of susceptibility, infection and recovery. See Toivanen
(2013); Weng et al. (2013). The analogy to the epidemiological models is obvious and correct: as an infected
agent circulates on a grid, it transmits the disease to a variety of partners depending on their susceptibility.
These models are realistic and much valuable work has been done using this framework to understand the
recent financial crisis.

21For example, suppose that financial agent A is already linked to both financial agents B and C, each
of whom are connected only to financial agent A. There are thus four network connections in total. The
probability that a new financial agent, D, will link to financial agent A is 2/4 = 1/2, whereas the probability
that D will link to B (or alternatively, to C) is 1/4.

22In a random network, the spread of shocks requires that a certain minimum number of vertices are
impacted, whereas in a scale-free network, this threshold is essentially zero (Iori et al., 2008). Note that
preferential attachment is a simplification that comes at the cost of precluding clustering. This is ruled
out since no existing financial agent can add a link to some other existing financial agent that has already
attached itself to the network.
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Weights may also be applied to financial network links to distinguish larger and more
influential financial agents from the rest. Each financial agent is associated with financing
a real-side production process but the latter have a distribution of capital stocks, which in
turn implies that their associated financial agent may wield more power and influence than
the degree distribution alone would capture. The weight, !i, attached by the jth financial
agent to the link to the ith agent is defined as

!it =
KitPn
i=1 Kit

. (14)

The weight attached to a link by any financial agent is then the share of the total capital
stock served by that agent’s linked neighbor. Note that in models without associated real
sectors, no such weighting scheme naturally suggests itself. The weighted degree distribution
integrates the interconnectedness of the financial sector with the real side.

The hybrid KKS model has come a long way from its progenitor with smooth, unerring
intermediation of financial surpluses. Certainly this is not the only way to integrate the
financial sector but it shows how agent-based methods enhance the richness of the KKS
approach.

3. Observations on the hybrid KKS model

Has the introduction of the agent-based framework obliterated traditionally recognizable
macroeconomic features of the KKS model? Happily, it has not. Aggregate demand and
animal spirits continue to play a central role in the analysis, as do well-established features
of KKS, such as the possibility of wage-led growth. Also present is one of the canons of
post-Keynesian thought, the endogeneity of money.

3.1. Endogenous money

As noted, a deficit firm may well have already contracted with a given financial agent
to borrow the funds that a surplus firm has deposited and plans to invest but, due to the
asynchronous nature of the computational model, has not yet done so. If the funds are so
preempted, the financial agent is left with no legal choice but to create liquidity when surplus
firms demand their own deposited funds. Deficit firms can and do crowd out other deficit
firms due to the limitation given by the total surplus. They cannot, however, crowd out
surplus firms.

Observe that rather than assuming a KKS framework in which endogenous money al-
lows animal spirits to play a defining role in the determination of investment and growth,
the agent-based perspective allows a derivation of the KKS nature of the economy. Specifi-
cally, the regime of property rights in banking–that agents own and control their deposits–
combined with an asynchronous stream of borrowing requests by deficit firms results in the
endogenous money creation that imparts to the model a KKS flavor. The reason is now
clear: only if a surplus firm were to realize and accept that its investment plans were blocked
because a deficit firm had beaten it to its own money would a pure savings driven model
assert itself.
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No real agent would behave this way in a system that protects private property in de-
posits. As a result, the institutional properties of the financial system allow aggregate
investment in period t to exceed savings in period t � 1. In other words, the agent-based
model provides a microfoundation for endogenous money creation and in turn the KKS na-
ture of the system itself.23 The emergent point is that any institutional framework that
binds autonomous agents with financial surpluses and deficits in asynchronous exchanges
will produce a quantity of endogenous money greater than or equal to zero and allow for an
expanding economy driven by animal spirits(Gibson and Setterfield, 2015).

3.2. Financial collapse in the hybrid KKS model

In the standard KKS model, there is little possibility of an endogenously generated crash.
Certainly there can be a deficiency in aggregate demand, but with the seamless transfer of
financial surpluses from one firm to another, by way of accommodating money supply growth,
any crisis would have to originate in and remain confined to the real side. In the hybrid
KKS model, a drawdown in the share price, by contrast, can cause a decline the rates of
utilization on the real side. Nothing, however, has yet been said about how share prices are
determined.

The simplest possible way to define the share price is to define the change in the natural
log of the share price as the sum of the forecasts of financial agents

�pt+1 = f(
mX

j=1

�jt) (15)

where f is a functional form calibrated to the scale and variability of the S&P 500. The
functional form used is (1) quadratic in the sum of forecasts; (2) augmented by a trend that
depends on the aggregate capital stock; and (3) designed to allow capital share weighting
of the financial agents’ forecasts for selected simulations. While this is clearly an ad hoc
approach to the pricing of shares, it is nonetheless consistent with the paper’s focus on
intermediation.24 Table 4 shows the specific functional forms and table 3 gives the values of
the associated parameters. The share price is then a random walk during “normal” times,
but breaks out during organized bull or bear markets to produce a bubble and then possibly
a crash. Financially induced collapses do occur in the hybrid KKS model, but they are
relatively rare.25

23Note that as modeled, the financial sector reflects the spirit of Kalecki’s principle of increasing risk, by
making the execution of planned investment easier for surplus firms, which are investing their own capital,
than for deficit firms that need to borrow in order to invest (Kalecki, 1937).

24For a more sophisticated model, see LeBaron (2012), where agents explicitly buy, sell or hold equities.
25Using historical series for the S&P 500, it was determined that a typical build and crash involved some

225 weeks in total. A build is an increase in the share price from a period 225 to 25 weeks before a crash in
period t. The criterion for a build is designed to rule out a series that declines for a long period and then
accelerates its decline. Thereafter, a crash is a decline of 50 percent in the share price within the final 25
weeks. This roughly corresponds to the single worst six-month performance in the history of the S&P 500
index. The decline in question took place during the 2008-09 financial crisis.
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This observation is from the computational model that simulates real and financial per-
formance over 1,500 week (30 year) periods.26 The simulations are approximately ergodic
since they are run for 2,250 trading weeks (45 years) prior to the 1,500 trading-week (30-year)
period for which the data is recorded in order to mitigate the influence of initial conditions
on the results. No crashes are counted during the first 2,250 weeks. There are then a total
of 14,178 runs recorded in the data base, including 3,599 control runs with no agent-based
financial system present and 10,579 treatment runs with a financial system with the one-ply
constraint discussed above.27

Within this set of 14,178 runs, there were a total of 172 crashes with an active financial
system, but only 4 without. Table 5 shows the crash frequency per 1000 runs, the average
rate of growth of GDP and the percentage of “loans denied,” which measures the number of
deficit firms that are unable to execute their investment plans because lack of intermediation.
The table also shows capacity utilization and the average Bayesian prior weight. Table 6
shows the same data when the agent-based financial system is active.

[TABLES 5 & 6 HERE]

Comparing the tables confirms that with a passive, fully accommodating, financial system
there are fewer crashes in the financial sector (t = �11.2), faster growth (t = 35.7) and
higher capacity utilization in the real sector (t = 72, 000), results that agree with the theory
developed above.28 When the financial system is passive, there are no loans denied and so
there is more investment, higher capacity utilization and faster growth. There are fewer
crashes since the real sector does not transmit “bad news” to the financial sector that can
initiate a crises.

These results demonstrate the importance of real-financial interactions for financial insta-
bility in the KKS model. When firms are financially constrained by lack of intermediation,
real economic performance deteriorates (growth slows and capacity utilization falls), pro-
ducing a response in the financial sector where the frequency of crashes increases. When
the real and financial sides of the model are dissociated, crises arise from Brownian motion
alone. Table 5 confirms that Brownian crises arise, but they are rare as would be expected.

The weight on the Bayesian prior is low, around 30 percent in both tables, which implies
that the relative precision of the private signal is, on average, high. This implies that social
learning is taking place in all runs, even those that lead to a crash. In the latter financial

26This simulation length corresponds to discrete episodes of growth, such as the Golden Age (1948-1973)
or Neoliberal growth regime (1980-2007) (Maddison, 2007).

27For computational reasons, the total number of runs per batch was 900 and there were 16 batches run
for a total of 14,400 simulations. If a crash were observed in the first 2,250 weeks, the run was deleted.
The larger number of runs with an active financial system is needed to study the various configurations of
network architecture, as seen in the following section.

28The absolute growth rates are an artifact of the model’s parameterization and so there is no particular
significance to the size of the growth rate in table 6, only their relative levels. Moreover, the framework
allows a consideration of the e↵ect of financial structure alone, without mixing in the e↵ect of an exogenously
expanding (or contracting) economy on crash propensity.
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agents progressively attach less weight to their informative private signals. Social learning
begins to break down and herding behavior takes over. In the limit, this gives rise to asset
price bubbles fueled by rapid growth that are then followed by crashes (Bikhchandani et al.,
1998).

Observe from the tables that the prior weight is slightly higher in the model with a one-
ply active financial system. In table 5 capacity utilization never deviates from 100 percent
and so the private signal never deviates from “bullish” by assumption. The variance of the
private signal is zero. Any time the asset price falls, however, the private signal will be
incorrect momentarily. The forecast error will then impart some loss of precision of the
private signal, increasing the weight on the prior. A noisy signal increases the prior weight.
This noise contributes nothing to social learning when the financial sector is passive, since
capacity utilization is always full and so there is nothing to be learned, except from random
parameter shocks.

With the one-ply financial system present, however, deviations from full capacity utiliza-
tion do indeed convey useful information. In the data set as a whole, the variance of the
asset price with the active financial system is 1.02 but only 0.66 otherwise. A comparison
of means shows a significant e↵ect of the financial system in the weighting of private versus
prior signals (t = 520.2). It is important to see that there is more social learning taking place
with the one-ply financial system present than not. This is verified by the extremely low
correlation (�0.009) between the private and prior signals with the passive financial system.
When the private signal is variable, the correlation between the private and prior signals
rises dramatically to 0.273. This is simply an expression of the interconnectedness of the
rates of capacity utilization in the economy. A financial agent’s informative signal is more
likely to be correlated with the informative signals of its linked neighbors, unless all firms
are at full capacity.

3.3. The impact of network structure

Augmenting the traditional KKS model with an agent-based financial sector opens up a
range of subtle but important issues. Here the question of the e↵ect of network structure is
addressed to illustrate the potential of the hybrid framework in advancing the KKS program.
Both structural elements of the network, preferential attachment and weighted links, can
be seen as treatments relative to a control in which the network is randomly attached and
unweighted. The treatments are uncorrelated (�0.004) so that the t-statistics are not a↵ected
by omitted variable bias. The e↵ects of the two structural elements are shown in tables 7
and 8.

[TABLES 7 & 8 HERE]

The first two columns of table 7 show the impact of financial network architecture on
crash frequency. The e↵ect of weighted network links is statistically insignificant, while that
of preferential attachment is negative and highly significant. The second two columns of table
7 reveal that neither network weights nor preferential attachment has a significant e↵ect on
GDP growth, helping to isolate the e↵ect of network structure on crash frequency. The first
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two columns of table 8 indicate that both weighted networks and preferential attachment
significantly increase loans denied. The second two columns show the same e↵ect on the
weight on the Bayesian prior.

Table 8 indicates that there are more loans denied in both weighted and preferentially
attached networks. Yet table 7 shows no e↵ect of network structure on GDP growth. This
is easily understood in the context of the hybrid KKS model, since a higher number of loans
denied does not necessarily reduce the total investment and the pace of growth. The large
number of loans denied shows that the distribution of growth is a↵ected by network structure,
viz., large firms grow faster while small firms have more limited access to the financial system.
Concentration in the financial sector goes hand-in-hand with the concentration in the real
as described in Axtell (1999).

Next consider the last two columns of table 8, which show that both weighted and
preferentially attached networks increase the weight on the Bayesian prior. Generally, a
large weight on the Bayesian prior is a harbinger of crisis, inasmuch as social learning begins
to deteriorate as the financial system decouples from the real side. Yet, column two of table
7 indicates that preferential attachment reduces crash frequency.

To understand why, consider a large firm associated with a highly linked financial agent.
Flush with finance, this firm makes a significant investment and in so doing, increases ca-
pacity utilization throughout the system. The counterpart to this large firm is a smaller
producer whose capacity utilization is bu↵eted by random e↵ects. A negative forecast on
the part of the financial agent associated with a small firm might well lead to a denied loan
and an inability to invest. The impact on the rest of the economy, however, is minimal and,
moreover, the small firm’s financial agent will often realize ex post that its forecast had been
defective. This will lead the small firm’s financial agent to put somewhat more weight on
the forecast of the larger financial agent, trusting less its own abilities. In the aggregate the
Bayesian prior weight will show a slight tendency to rise above its value for a corresponding
random network.

In this case, the rise in the Bayesian prior weight does not imply a decoupling of the
financial from the real sector, however, and social learning is in fact enhanced. Financial
agents are simply learning to pay more attention to those firms who have greater impact on
the macroeconomy as a whole. Crash frequency, for these reasons, declines with preferential
attachment. Preferential attachment, at least under the assumptions of the present model,
does not appear to increase systemic risk.

4. Conclusions

The central message of the paper is that the traditional KKS model and the agent-based
methodology are not necessarily “strange bed-fellows.” The multi-agent perspective confers
a number of analytical advantages as developed in this paper. First, it allows a non-standard
microfoundation for the KKS model that is not based on the representative agent maximizing
an inter- temporal utility function. Heterogenous agents on both the real and financial sides
operate with bounded rationality in an informationally constrained environment. Second,
the inclusion of an agent-based financial system allows a deep integration of the treatment
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of intermediation with the fundamental problem of aggregate demand, endogenous money,
and the balance between savings and investment, all central themes of the KKS program. In
this sense the traditional KKS model with a passive financial sector simply ignores much of
rich texture that has emerged as financial markets have become more sophisticated. Kregel
(1985) argued that Keynesian real-side models with no monetary and financial sectors were
akin to “Hamlet without the prince” and this paper shows one way in which this shortcoming
can be addressed.

Setterfield and Budd (2011) was a first attempt to develop a hybrid KKS model, but
there were problems in the the demand sharing algorithm that essentially converted the
framework into a trade model, with each firm behaving as if it were a country. Other papers,
have dealt with the problem of full capacity utilization in various ways. This paper proposes
a novel approach to aggregate demand sharing that eliminates the problem that a firm might
exceed full capacity utilization. The method is simple and broadly corresponds to the idea
that when consumers (or investors) cannot find what they need in one location, the demand
spills over to another. As seen, this algorithm can instantaneously change a surplus to a
deficit firm and vice-versa. It also preserves basic KKS concepts such as animal spirits and
aggregate demand, features that are easily obscured in the agent-based approach.

Two important insights arise from the integration of KKS and the agent-based perspec-
tive. First, models that focus on financial crises from an epidemiological perspective have
been successful in showing how a highly connected system of interbank lending can facilitate
the propagation of financial disturbances. As important as these models have been, however,
they appear to be fundamentally incomplete. Banks can cause crisis, but unless that crisis
is validated by a real-side contraction in aggregate demand, that then reverberates back into
the financial system, the e↵ect will not be as profound. The 1987 crash, for example, di↵ered
fundamentally from the recent 2008 financial crisis, which was an outgrowth of deep-seated
problems in the housing market.

Second, while connectedness in previous models amplifies financial disturbance, the e↵ect
of preferential attachment here seems to be the reverse. A more connected financial system
as it interacts with the real side is more resistant to financial disturbance and actually shows
fewer crashes than its less connected counterpart. Since the model of this paper di↵ers from
those that dominate the agent-based literature on financial crises, it is di�cult to conclude
that the latter are wrong. Instead, our results perhaps suggest that the complete story of
real-financial interaction has yet to be told.

5. Appendix: Pseudo code

The program can be expressed as:

1. Initialize data structures and runtime options

2. Set key parameters

(a) Set share weights–boolean
(b) Set preferential attachment–boolean
(c) Set financial constraint–boolean
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(d) Set run years–30 ⇥ 50 weeks
3. Set up and initialize network
4. Reassign financial agents such that each firm has at least one financial agent
5. Set shareholders as count financial agents for each firm
6. Initialize surplus of each firm based on randomly assigned parameters
7. Run main
8. If financial constraint = FALSE: set invest = TRUE for all firms
9. If financial constraint = TRUE:

(a) Ask financial agents: make forecast based on last period’s private and public
signals

(b) Ask firms: if surplus > 0 set invest = TRUE
(c) Ask firms: if surplus < 0 ask one of financial agents if loanable funds |surplus|

i. If yes: set invest = TRUE
ii. If no: ask linked neighbor: if loanable funds > |surplus|

A. if yes: set invest = TRUE
B. if no: set invest = FALSE
C. update denied-loan counter

10. Run demand sharing alorithm [sum of investment of firms with invest = TRUE]
(a) Set demand shares of firms
(b) Set capacity utilization of firms
(c) Set savings of firms
(d) Set planned investment
(e) Set surpluses of firms
(f) Set loanable funds = surpluses of surplus firms

11. If share-weight = TRUE
(a) Re-weight links by accumulated capital stocks

12. Stop for crash
13. Stop for year limit
14. Stop for capacity utilization lower limit (0.6)
15. Return to main
16. Process output

25



Table 1: Firm parameters

Distri
Name Symbol -bution1 Range

Observer parameters
Number of firms n - 676

Fixed parameters
Initial capacity utilization ū - 1
Depreciation � - 0.05

Distributed parameters
Capital-output vi U 2-4
Labor coe�cient li U 0.1-0.6
Firm savings2 si N 0.265-0.356
Initial growth rate

of capital stock ḡi U 0.05-0.09
Initial capital stock3 K̄i E 1-10

Computed parameters
Initial capacity Q̄i K̄i/vi 0.25-5
Initial output X̄i Q̄i 0.25-5
Initial profit rate r̄i (1� li)/vi 0.1-0.45
Animal spirits coef. ↵0i ḡi/2 0.025-0.045
Accelerator coef. ↵1i ḡi/4 0.0125-0.0225
Profitability coef. ↵2i (gi � ↵0i � ↵1iū)/r̄i 0.006-0.633

Notes: 1. U = Uniform distribution. E = exponential. N = normal. 2. Range is mean ± 2 SD.
3. Truncated.
Source: Authors.
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Table 2: Firm updating methods

Name Symbol Equation Eqn. No.

Observer variables
Aggregate demand Yt

Pn
i=1[(1� si⇡i)Xit + Iit�1] 1

Endogenous variables
Share of Yt �it Xit/Yt 2

Output Xi

(
�itYt Xjt  Qjt�1

Qjt�1 Xjt > Qjt�1

2,8

Investment Iit gitKit 3
Growth rate
of capital stock git ↵0i + ↵1iuit + ↵2irit 4

Profit rate rit ⇡iXit/Kit�1 5
Capacity utilization uit Xit/Qit�1 6
Capacity Qit Kit/vi 7
Financial surplus Fit

Pn
i=1 si⇡iXit � Iit�1 9

State variables
Capital stock Kit Kit�1(1� � + git�1)

Source: Authors.
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Table 3: Financial agent (FA) parameters

Distri
Name Symbol -bution1 Range

Observer Parameters
Number of FA m - 1000
Initial share price responsiveness
to traders forecast  ̄ - 0.1

Change in  
with respect to

Pm
j=1 �j  f - 10�5

Change in  
with respect to

p
K  K - 5⇥ 10�6

Fixed parameters
FA j linked to firm i mji - 1-10
Mean number of FA per firm m̄ji - 1.49
Initial confidence parameter
in trader’s forecast �̄ - 0.5

Initial liquidity L̄j - 1
Initial share weights !̄j - 1

Distributed parameters
Network adjacency2 aij B 0,1
Logistic smoothing parameter
in FA forecast �0j U 5-6

Logistic smoothing parameter
in FA forecast �1j U 8-10

Random error in FA forecast3 ✏j N -2-2
Lag length
in FA forecast4 ⌧j U 3-13

Computed parameters
Initial weight on FA

public signal5 ̄j
�
1 + e[�0j��1j(1��̄j)]

 �1
0.2-0.5

Notes: 1. B = Binary; U = Uniform distribution; N = normal. 2. Bidirectional link of FA
i to j; distribution either random or by preferential attachment (PA) at initialization.
Random: number of links: 693± 15.2 or PA 1, 000± 0. If linked aij = 1. 3. Mean ± 2 SD.
4. Length in periods. 5. Logistic function.
Source: Authors.
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Table 4: Financial agent (FA) updating methods

Name Symbol Equation Eqn. No.

Observer variables
Total capital stock Kt

Pn
i=1 Kit

Change in share price1 �pt  t

Pm
j=1 !jt�jt +  K

p
Kt�1 15

Endogenous variables
Private signal2 �̂1jt 10
Public signal3 �pjt

Pm
i=1 aji!it�it 11

Forecast �jt jt�pjt + (1� jt)�̂1jt 12
Confidence in public signal �jt (1/⌧j)

P⌧j
i=1 ⌘jti

FA beats market4 ⌘jt 1
Market beats FA5 ⌘jt 0
FA follows market6 ⌘jt 0.5

Weight on

public signal7 jt
�
1 + e[�0j��1j(1��jt)]

 �1
13

Liquidity8 Ljt L̄jt + Fit/mjt 9

List variables9

Data for private signal dj(ujt)
History of forecast success/failure fj(⌘jt)

State variable
Capital share weights !jt Kjt�1/Kt�1 14

Notes: 1. Natural log. Here  t calibrated to S&P 500; see text for explanation.
2. Determined by OLS regression of last ⌧j values of uj on time in each sweep.
See text for explanation. 3. Summed over linked-neighbors of j. 4. Private
signal predicts share-price movement, while public signal does not. 5. Public signal
predicts share-price movement, while private does not. 6. Neither public signal nor
private signal predicts share price or both do. 7. Logistic function. 8. Financial surplus
equally shared among FA linked to firm i. 9. Length ⌧j .
Source: Authors.
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Table 5: Passive financial system

Preferential Attachment?
No Yes

Weighted Network? Weighted Network?
No Yes No Yes

Crash frequency1 1.1 3.3 0.00 0.00
GDP growth2 4.62E-04 4.62E-04 4.63E-04 4.62E-04
Loans denied3 0 0 0 0
Capacity utilization4 100 100 100 100
Prior weight5 0.31 0.31 0.31 0.31
Total runs 900 899 900 900

Source: Authors’ computations.
Notes: 1. Crashes per 1000 runs. 2. Average rate of weekly growth from
logarithmic regression. 3. Percent of total firms. 4. Moving average over
last 100 runs averaged over all runs. 5. Average over all runs.

Table 6: One-ply active financial system

Preferential Attachment?
No Yes

Weighted Network? Weighted Network?
No Yes No Yes

Crash frequency1 26.7 24.1 6.7 8.2
GDP growth2 2.40E-04 2.44E-04 2.54E-04 2.53E-04
Loans denied3 19.8 20.0 20.5 20.5
Capacity utilization4 70 70 69 69
Prior weight5 0.29 0.30 0.30 0.30
Total runs 25,81 2,612 2,693 2,693

Source: Authors’ computations.
Notes: 1. Crashes per 1000 runs. 2. Average rate of weekly growth from
logarithmic regression. 3. Percent of total firms. 4. Moving average over
last 100 runs averaged over all runs. 5. Average over all runs.
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Table 7: Regression results

(1) (2) (3) (4)
Crashes1 Crashes1 GDP Growth2 GDP Growth2

Weighted network -3.421e-07 1.653e-06
(1.667e-06) (1.199e-05)

Preferential -1.221e-05*** 1.114e-05
attachment (1.689e-06) (1.198e-05)
Constant 1.110e-05*** 1.718e-05*** 2.470e-04*** 2.422e-04***

(1.190e-06) (1.495e-06) (8.438e-06) (8.320e-06)
R2 0.00000000 0.00000341 0.00000000 0.00000005
Observations 1.57e+07 1.57e+07 1.57e+07 1.57e+07
F -stat 0.042 52 0.019 0.865

Standard errors in parentheses. *** p < 0.01, ** p< 0.05, * p< 0.1
Notes: 1. Crashes per 1000 runs of 1,500 weeks (30 years). 2. Real GDP growth per week.
Source: Authors’ computations.
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Table 8: Regression results

(1) (2) (3) (4)
Loans Denied1 Loans Denied1 Bayesian Prior2 Bayesian Prior2

Weighted network 0.8*** 0.0029***
(0.009) (4.989e-05)

Preferential 4.132*** 0.009***
attachment (0.009) (4.988e-05)
Constant 136.1*** 134.4*** 0.292*** 0.289***

(0.007) (0.007) (3.550e-05) (3.591e-05)
R2 0.00047796 0.01273840 0.00021442 0.00204497
Observations 1.57e+07 1.57e+07 1.57e+07 1.57e+07
F -stat 7526 2.03e+05 3375 32233

Standard errors in parentheses. *** p < 0.01, ** p< 0.05, * p< 0.1
Notes: 1. Percent of total number of firms. 2. Average weight on Bayesian prior.
Source: Authors’ computations.

32



Ashraf, Q., B. Gershman, and P. Howitt (2011). Banks, market organization, and macroe-
conomic performance: An agent-based computational analysis. NBER Working Papers
17102, National Bureau of Economic Research.

Axtell, R. (1999). The emergence of firms in a population of agents.
http://www.brookings.edu/es/dynamics/papers/firms/firmspage.htm.

Barabási, A.-L. and R. Albert (1999). Emergence of scaling in random networks. Science 286,
509–512.

Bikhchandani, S., D. Hirshleifer, and I. Welch (1998). Learning from the behavior of oth-
ers: Conformity, fads, and informational cascades. The Journal of Economic Perspec-
tives 12 (3), 151–170.

Chamley, C. P. (2004). Rational Herds: Economic Models of Social Learning. Cambridge
University Press.

Chick, V. (1983). Macroeconomics after Keynes: a reconsideration of the General Theory.
Cambridge, MA: MIT Press.

Epstein, G. (2005). Financialization and the World Economy. Cheltenham: Edward Elgar.

Erdos, P. and A. Renyi (1950). On the evolution of random graphs. Publication of the
Mathematical Institute of the Hungarian Academy of Sciences , 17–61.

Ga↵eo, E., D. Delli Gatti, S. Desiderio, and M. Gallegati (2008). Adaptive microfoundations
for emergent macroeconomics. Eastern Economic Journal 34 (4), 441–463.

Gai, P., A. Haldane, and S. Kapadia (2011). Complexity, concentration and contagion.
Journal of Monetary Economics 58 (5), 453 – 470.

Gibson, B. (2012). Trade, employment and the informal sector: An agent-based analysis.
Margin: The Journal of Applied Economic Research 6 (2), 277–310.

Gibson, B. and M. Setterfield (2015). Intermediation, money creation, and keynesian macro-
dynamics in multi-agent systems. Working Papers 1511, New School for Social Research,
Department of Economics.

Hansen, L. P. (2012). Challenges in identifying and measuring systemic risk. Working Paper
18505, National Bureau of Economic Research.

Harras, G. and D. Sornette (2011). How to grow a bubble: A model of myopic adapting
agents. Journal of Economic Behavior & Organization 80 (1), 137–152.

Iori, G., G. d. Masi, O. Precup, G. Gabbi, and G. Caldarelli (2008). A network analysis of
the italian overnight money market. Journal of Economic Dynamics and Control 32 (1),
259–278.

33



Johansen, A., O. Ledoit, and D. Sornette (2000). Crashes as critical points. International
Journal of Theoretical and Applied Finance 3 (1).

Kalecki, M. (1937). The principle of increasing risk. Economica 4 (4), 440–446.

Kregel, J. A. (1985). Hamlet without the prince: Cambridge macroeconomics without money.
American Economic Review 75, 133–139.

LeBaron, B. (2012). Heterogeneous gain learning and the dynamics of asset prices. Journal
of Economic Behavior & Organization 83 (3), 424–445.

Maddison, A. (2007). The World Economy: A Millennial Perspective. OECD Publishing.

Palley, T. (2014). Financialization: The Economics of Finance Capital Domination. London:
Palgrave Macmillan.

Robertson, D. (1940). E↵ective demand the multiplier. In Essays in Monetary Theory.
London: P.S. King.

Russell, S. J. and P. Norvig (2010). Artificial Intelligence - A Modern Approach. New York:
Pearson Education.

Setterfield, M. and A. Budd (2011). A Keynes-Kalecki model of cyclical growth with agent-
based features. In P. Arestis (Ed.), Microeconomics, Macroeconomics and Economic Pol-
icy: Essays in Honour of Malcolm Sawyer. Palgrave Macmillan.

Skott, P. (2012). Theoretical and empirical shortcomings of the Kaleckian investment func-
tion. Metroeconomica 63 (1), 109–138.

Sornette, D. (2003). Why Stock Markets Crash. Princeton, NJ: Princeton University Press.

Taylor, L. ((1981)). Is/lm in the tropics: Diagrammatics of the new structuralist macro
critique. In Economic Stabilization in Developing Countries, pp. 465–503. Brookings In-
stitute.

Taylor, L. (1983). Structuralist Macroeconomics. Boston, MA: Basic Books.

Taylor, L. and S. A. O’Connell (1985). A minsky crisis. Quarterly Journal of Economics 100,
871–875.

Tedeschi, G., G. Iori, and M. Gallegati (2012). Herding e↵ects in order driven markets: The
rise and fall of gurus. Journal of Economic Behavior & Organization 81 (1), 82–96.

Thurner, S., J. D. Farmer, and J. Geanakoplos (2012, February). Leverage causes fat tails
and clustered volatility. Quantitative Finance 12 (5), 695–707.

Toivanen, M. (2013). Contagion in the interbank network: An epidemiological approach.
Technical report, Bank of Finland Research Discussion Paper No. 19/2013.

34



Weng, L., F. Menczer, and Y.-Y. Ahn (2013). Virality prediction and community structure
in social networks. Scientific Reports 3 (2522), 1–6.

35


