Advances in Cobalt-59 Solution NMR: Studies of Cobalt Tetrpyrroles

59Co solution NMR spectroscopy has been developed to study cobalt(III) tetrpyrroles including, but not limited to, the naturally occurring cob(III)alamins. This spectroscopy offers unique insight into the Co 3d electronic structure of the species; the electronic structure provides unique information regarding the reactivity of the cobalt (III) and cobalt (I) tetrpyrroles, such as organometallic Co–C bond strengths and Co(I) nucleophilicity. 59Co NMR spectra have been acquired diverse library of cobalt tetrpyrroles. The 59Co NMR shifts are influenced by both axial and equatorial ligand identity. Challenges in collecting 59Co NMR spectra of these species can be attributed to the efficient relaxation pathways; the $I=7/2$ character of the nuclei often causes the 59Co resonances to widen beyond detection. In the past, adequate signal-to-noise ratios were achieved by collecting a large number of scans over several days of saturated solutions. Development of a novel 59Co pulse sequence has resulted in more efficient data collection; the 59Co resonance can be seen in less than 20 minutes for a 3 mM sample, which is a significant improvement over previous reports for Co(III) tetrpyrroles. 59Co chemical shifts were indirectly referenced to [Co(CN)$_6$]$^{3-}$ via the residual water resonance. Also distinct from previous reports, these experiments were carried out in buffered aqueous solution at a physiological-relevant pH, which required a judicious choice of buffer salts. The spectral data were paired with density functional theory (DFT) calculations to further understand the electronic structures. Future work includes expanding beyond the diamagnetic Co(III) species to the highly nucleophilic Co(I) oxidation state tetrpyrrole species. Development of this 59Co solution NMR library will draw interest from bioinorganic, organometallic, and environmental chemists due to as the variety of the applications for cobalt tetrpyrroles relevant to these fields.