Fe and Mn as drivers of phosphorus availability in Missisquoi Bay: temporal dynamics and stratification patterns in the water column

Student researcher: Darren Schibler

Faculty advisors: Andrew Schroth and Courtney Giles

Abstract

Soluble reactive phosphorus (SRP) has been linked to occurrence of cyanobacterial blooms in Missisquoi Bayⁱ. In laboratory studies, secondary phases of iron and manganese (oxy)hydroxides are known to adsorb SRP; anoxic, reducing environments change the oxidation state and sorption capacity of these metals, releasing bound SRPⁱⁱ. Previous studies have demonstrated the key role of oxidized metals at the sediment-water interface in controlling sediment phosphorus releases, depending on redox conditionsⁱⁱⁱ. Seasonal-scale monitoring of redox conditions and SRP and metal concentrations revealed a pattern of sediment nutrient fluxes tied to sediment redox conditions, which coincide with the late-season occurrence of cyanobacterial blooms.

ⁱ Smith, Val H. and David W. Schindler. 2009. Eutrophication science: where do we go from here? *Trends in Ecology and Evolution* 24(4): 201-207.

ii Mayer, Timothy D. 1995. *Interactions of Phosphorus and Colloidal Iron Oxides in Model Solutions and Natural Waters*. Ph.D. Dissertation, University of Montana, Bozeman.

iii Smith, Lydia, Mary C. Watzin, and Gregory Druschel. 2011. Relating sediment phosphorus mobility to seasonal and diel redox fluctuations at the sediment-water interface in a eutrophic freshwater lake. *Limnology and Oceanography* 56(6): 2251-2264.