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1 Introduction 
Highway drainage systems are designed to collect, convey, and discharge 
stormwater to prevent adverse impacts to the roadway or offsite. Most of these 
systems are engineered with a hydrograph in mind, but the magnitude of the 
structures statewide in Vermont prevents the Agency of Transportation (VTrans) 
from conducting a detailed analysis of each one. There are over 90,000 culverts 
tracked in the Vermont On-Line Bridge and Culvert Inventory Tool. Even when the 
structures are hydraulically engineered, drainage capacities can be exceeded during 
extreme precipitation events, resulting in road damage.  

Roadway drainage infrastructure is designed in part based on the computation of 
runoff parameters and quantities (FHWA 2009). Therefore, it is not surprising that 
peak runoff flow volume has been found to be a key determinant in predicting flood 
damage to roads, more so than basin morphometric characteristics alone (Dawod et 
al. 2012). A number of methods exist for calculating runoff parameters and 
quantities. Among the most common approaches for larger watersheds (e.g. >200 
acres), particularly where land cover is heterogeneous, is the SCS/NRCS Tabular 
Hydrograph method, which estimates partial composite flood hydrographs at any 
defined point in a watershed based on precipitation, drainage area, time of travel of 
water, land cover and other factors (SCS 1986). A few GIS tools have been developed 
in the past to evaluate the vulnerability to flood damage of roads specifically (e.g. 
Dawod et al. 2012) and of infrastructure in general, including roads (Karmakar et 
al. 2010, Zerger and Wealands, 2004). However, no such GIS tool is known to exist 
that is specifically designed for New England hydrologic environments, with their 
unique combination of hydrology, terrain, climate, land cover and geomorphology. 
The purpose of this project was to create an ArcToolbox interface for estimating 
peak runoff flow volume at culvert locations so that existing or planned 
infrastructure could be quickly assessed for flood-damage probability. A GIS-based 
tool was developed to compute runoff parameters at drainage infrastructure 
locations based on characteristics of input watersheds delineated at those locations. 

This report presents the results of a geospatially-weighted regression analysis tool 
for estimating peak flow at culvert locations in Vermont, and describes the 
development of a GIS-based tool for quickly finding the parameters needed for the 
regression equation. Section 2 provides an overview of the data development and 
preprocessing steps conducted for the project, including watershed delineation and 
derivation of watershed characteristics used as inputs to perform the regression 
analysis. In Section 3, a detailed narrative description of the regressions analysis 
and the development of the GIS-based tool. The report concludes with a discussion 
of results and recommendations for applying and expanding the peak flow 
estimation tool. 

 

 

5 



UVM TRC Report # 15-005 

 

2 Data Generation and Preparation 
Datasets for the analysis were generated by delineating watersheds for a set of 
culvert locations with known peak flows and then overlaying the resulting polygons 
with geospatial data layers representing variables of interest for the regression. 
Terrain pre-processing, watershed delineation and derivation of watershed 
characteristics were accomplished using ArcHydro Tools and other geoprocessing 
tools in the ArcGIS Desktop (Versions 10.1 & 10.2) platform, as described below.  

2.1 Culvert Locations and Peak Flows 
VTrans conducts hydraulic analyses for culverts in Vermont that are being 
considered for repair or replacement. These analyses typically include peak flow 
determinations for several recurrence intervals and occasionally contain precise 
locational information in the form of measured latitude/longitude coordinates. 
Culvert locations and peak flows used in this study originated from the hydraulic 
reports that are completed for these analyses.  

In the last decade, approximately 3,000 hydraulic analyses have been conducted, 
but only a small subset of those have specific coordinates for their precise location 
for geocoding. Reports for culverts in 221 Vermont towns were acquired and 
inspected to identify those that included both peak flow and location data. Latitude, 
longitude, peak flows, and descriptions were manually transcribed from nearly 300 
hydraulic reports for use in this study. This data was used to create a shapefile of 
culvert locations with peak flow data attributes.  

Point locations of culverts were further inspected in overlays with basemap layers 
(notably including stream lines) in a quality control process that ensured accurate 
alignment of culvert locations and hydrologic features that would determine 
contributing drainage areas. This step ensured that culvert points aligned with the 
water flow pattern represented in the DEM and stream channel datasets, so that 
subsequent hydrologic modeling would result in realistic watershed polygons. 

The culvert points were augmented with additional attributes extracted from the 
shapefile of bridge and culvert inventory points obtained from the Vermont Center 
for Geographic Information. The culverts from this other shapefile that could be 
matched to the location descriptions contained in the hydraulic reports, helped add 
more culverts to the dataset where latitude and longitude were not available. Site 
photographs from VAOT, aerial imagery and other vector datasets guided the 
process of selecting the correct matching features. As a result of this process, the 
dataset of culvert locations with peak flows nearly doubled in size to a total of 581 
points. These points are shown in Figure 1. 
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Figure 1 Culvert Batch Points Geo-Located for Use in This Study 
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2.2 Precipitation Data 
Rainfall intensity levels and Bureau of Public Roads (BPR) rainfall factors were 
acquired from the VTrans Hydraulics Manual (VTrans, 1998). Contour maps of (1) 
24-hour, 2-year maximum rainfall (2) 2-year, 30-minute rainfall intensity, and (3) 
BPR rainfall factors were scanned, georeferenced and digitized in ArcGIS to create 
vector datasets for each variable with the contour lines shown as features (Figure 
2). 

 

Figure 2  Contour Maps Scanned and Georeferenced for Use In this Study 

Spatial interpolation was used to create a raster surface from each of these 3 vector 
datasets. 
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2.3 Land Cover Data  
Land cover data for the regression analysis was taken from the 2006 National Land 
Cover Dataset (NLCD) (Fry et al., 2011) and the 2006 Coastal Change Analysis 
Program (C-CAP) (NOAA, 2006) rasters. The NLCD impervious surface raster was 
used without adjustment. Other land cover types used were wetlands (all “wetland”-
related classes) and non-cultivated vegetation (pasture/hay, grassland/herbaceous, 
scrub/shrub and all vegetated, palustrine/estuarine classes). For these two land 
cover types, the C-CAP raster was reclassified to a binary raster with pixels coded 
as 1 (subject cover type present) or 0 (other cover type present). 

2.4 Stream Flowlines 
Stream flowlines were taken from the National Hydrography Dataset (NHD) 
Version 2.1. NHD geodatabases for Vermont watersheds were acquired from USGS 
(2013). Each geodatabase covers one Hydrologic Unit Code (HUC) level 4 drainage 
area. The HUC 4 areas covering Vermont are the Merrimack, Connecticut, Upper 
Hudson and St. Lawrence river basins. NHD flowlines are useful in representing 
stream centerlines for hydrologic modeling procedures and hierarchical watershed 
boundaries that have utility in partitioning an area into smaller hydrologic units 
for data extraction and analysis. Flowlines were extracted for all watersheds 
covering Vermont. 

2.5 Digital Elevations 
A digital elevation model (DEM) for Vermont was acquired from the Vermont Center 
for Geographic Information (VCGI). This DEM (ElevationDEM_DEM10M), with a 
10-meter pixel size, represented the best available, statewide DEM data for 
watershed delineation. However, since watersheds for culverts near state 
boundaries can extend into neighboring states or into Quebec, Shuttle RADAR 
Topography Mission (SRTM) (EROS, 2009) elevation data were used to augment the 
DEM to accommodate delineation of culvert watersheds that cross the state 
boundary. Z units of the augmented DEM were converted to centimeters as 
recommended for use in Arc Hydro. 

2.6 Terrain and Watershed Preprocessing  
A terrain preprocessing step was performed to create a hydrologically-correct DEM 
in order to prepare it for the hydrologic analysis. Terrain preprocessing was 
performed separately for 9 major river basins, excluding several small areas 
draining directly into Lake Champlain rather than into one of the major rivers. 
These basins were constructed from NHD watershed boundaries. The workflow 
chosen for delineation and analysis of Vermont culvert watersheds was a modified 
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version of one developed by the makers of the ArcGIS software (ESRI, 2013) This 
process was informed by additional documentation of terrain preprocessing methods 
(Djokic, 2008). A combination of Arc Hydro geoprocessing models and custom 
ArcGIS models automated the majority of these terrain preprocessing steps for each 
river basin. The resulting workflow included the following steps: 

1 Extract NHD flowlines, DEM and culvert locations for a basin 
2 Manually edit NHD flowlines to delete non-outlet line features that cross the 

basin boundary 
3 Set up a workspace and map document for the basin, set target (output) 

locations and assign Hydro ID numbers to NHD flowlines 
4 Create drainage line structures 
5 DEM reconditioning using parameters: 

a. Buffer: 5 cells 
b. Smooth drop/raise distance: 140 cm 
c. Sharp drop/raise distance: 1000 cm 

6 Fill sinks 
7 Derive flow direction 
8 Adjust flow direction in streams 
9 Derive flow accumulation 
10 Delineate catchment grid 
11 Catchment polygon processing 
12 Adjoint catchment processing 

After completing the terrain preprocessing step, watershed delineation was 
conducted for the regression analysis using the ArcHydro “Batch Watershed 
Delineation” tool. This processing step used the adjusted flow-direction raster and 
rasterized flowlines as inputs to delineate watershed polygons for the 581 culvert 
point locations. The tool “snapped” culvert point locations two pixels (20-meter) or 
less away to coincide with a flowline (points farther away from a flowline were not 
snapped). 

Polygons resulting from the “Batch Watershed Delineation” tool were manually 
inspected in overlays with flowlines and other data layers to check for errors. 
Culvert point locations were manually adjusted in cases where delineated 
watersheds were obviously unrealistic, and “Batch Watershed Delineation” was 
repeated using the adjusted point locations. For some basins, this process was 
repeated in an iterative process (as many as 5 times for one basin) until satisfactory 
results were achieved. 

Additional ArcHydro tools were applied to calculate additional hydrologic and 
topographic characteristics of the delineated watersheds for the regression. These 
characteristics included flow path length, average slope, total vertical drop, and 
slope & elevation at locations 10% and 85% along the flow path. 

Another custom ArcGIS geoprocessing tool was developed to overlay the 581 culvert 
watersheds with datasets representing the set of independent variables. The tool 
developed for this task used the “Zonal Statistics as Table” tool to summarize each 
variable in each watershed polygon and then compile all variables in an output 
table suitable for regression analysis: 

1. Total watershed area (in square meters) 
2. Length of longest flow path (in miles) 
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3. Average flow-path slope (in feet per mile) 
4. Average slope between 10% and 85% of the flow path (feet per mile) 
5. Upstream elevation (in meters above mean sea level) 
6. Downstream elevation (in meters above msl) 
7. Elevation at 10% along flow path from outlet (in meters above msl) 
8. Elevation at 85% along flow path from outlet (in meters above msl) 
9. Elevation range of watershed (in centimeters) 
10. Average elevation of watershed (in centimeters above msl) 
11. Average percent of watershed area impervious surface 
12. Average percent of watershed area classified as vegetated (non-

cultivated) 
13. Average percent of watershed area classified as wetland 
14. BPR Rainfall Factors 
15. 24-hour, 2-year rainfall (in mm) 
16. 30-minute, 2-year rainfall intensity (in mm per hour) 
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3  Methodology and Results 

3.1 Regression 
Ordinary least-squares (OLS) regression was used to develop a regression equation 
for predicting peak flows at a given culvert using characteristics of the culvert’s 
watershed.  Backwards, stepwise regression was performed on the culvert 
watershed characteristics dataset using peak flows at 100-year recurrence interval 
as the dependent variable and the list of variables described in Section 2.6 as the 
independent variables.  

Several steps were conducted in an effort to develop the best-fit to a regression 
equation. Final sample size of the input culvert dataset was reduced by 
approximately 100 culverts in an effort to minimize spatial autocorrelation in the 
data. Log-transformation of peak flow and watershed area greatly improved the 
predictive power of the regression model, which resulted in an adjusted R-squared 
of 0.69 and the following equation: 

ln𝑄𝑄 =  1.332 − 0.001𝑆𝑆 + 0.00001658𝑍𝑍 + 0.022𝑅𝑅 + 0.188𝐿𝐿 + 0.147 ln𝐴𝐴 − 0.018𝑊𝑊 
 

where:  

Q = peak flow, 100-year recurrence interval (cubic feet per second) 

S = channel slope (feet per mile) 

Z = elevation range (cm) 

R = maximum 24-hour rainfall, 2-year recurrence interval (mm) 

L = flow path length (mi) 

A = watershed area (square meters) 

W = percent wetland land cover 

The 9 other watershed attributes described in Section 2.6 were not found to 
contribute significantly to the regression. These other attributes were either 
insufficiently related to the peak flows, or they were correlated with one of the 7 
attributes used in the equation to the extent that they were not needed in the 
equation. 

3.2 GIS-Based Tool Development 
An ArcGIS Desktop geoprocessing tool was created by developing a Python script to 
compute peak flow and other characteristics for a given set of input watershed 
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polygons generated for culvert locations of interest. This tool expanded on a 
combined iteration and batch-processing approach initiated for the custom 
geoprocessing tool described above (Section 2.6). The iteration approach was only 
necessary for input watersheds that overlap each other. The combined approach 
(iteration and batch-processing) allowed efficient processing of non-overlapping 
watershed polygons while maintaining ability to process overlapping watersheds 
that would not be handled properly if watersheds were done in batch. 

The tool was designed to take as an input a feature class of pre-generated 
watershed polygons for one or more culvert locations. Other required inputs were 
raster datasets for deriving variables needed to compute peak flow: (1) the DEM 
used to generate watersheds, (2) a binary representation of wetland land cover (as 
described in Section 2.3), (3) maximum 24-hour rainfall, 2-year recurrence interval 
(Section 2.1), and (4) flow path length in meters. Script development accommodated 
the possibility that input watersheds may have been generated by ArcHydro. Raster 
processing steps required the use of tools from the Spatial Analyst extension to 
ArcGIS Desktop. 

At the most recent stage of development, the tool derived watershed characteristics 
needed for the regression equation and computed peak flow along with a bank full 
width estimate desired by state transportation engineers. Outputs were designed to 
be written to a geodatabase table for joining to input watershed polygons or source 
culvert locations having the necessary matching ID.    
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4 Conclusions and Recommendations 
Geospatially-weighted regression delivers improvements over statistical methods 
that do not account for spatial non-stationarity of relationships between variables. 
This project successfully derived a new regression equation that provides predictive 
power for peak flow estimation at all bridge and culvert locations in Vermont, 
accounting for the state’s unique topographic characteristics. This regression model 
relied heavily on accurate delineation of watersheds for bridge and culvert 
locations. Delineating watersheds for bridge and culvert locations was automated 
using a GIS tool with reasonable results for a majority of the state’s structures, 
particularly those located on major rivers and streams represented in the drainage 
network. Many other structures, however, required manual adjustment of pour-
point locations to produce realistic watershed boundaries and realistic regression 
coefficients. 

The peak flow estimation tool developed in this project is flexible enough to be 
coupled with existing watershed delineation techniques in a larger workflow for 
dynamically generating watersheds, deriving watershed characteristics and 
computing estimates of flow conditions at all of Vermont’s 90,000+ culverts and 
bridges. The number of culverts addressed simultaneously depends on processing 
constraints (hardware and software limitations) and the level of effort necessary for 
manual quality control adjustments. This estimation was not feasible at this point 
in time due to the limited amount of calibration data that was available when this 
project was conducted. 

Accuracy of the terrain model (DEM) and potential, scale-dependent alignment 
issues with respect to culvert locations is a persistent challenge for accurate, 
automated watershed delineation. Snapping culvert locations to be aligned with the 
nearest stream channel can improve automatic watershed delineation results 
significantly. However, this solution would not improve watershed delineation for 
points not within the snapping tolerance of an existing river or stream. For 
example, drainage channels along roadsides present significant challenges to this 
procedure. Snapping can also produce erroneous results for locations away from 
flowlines, where the DEM may poorly represent actual terrain, and for culverts that 
happen to be very near but not coincident with flowlines. Future research should 
focus on resolving this problem, since many of the flow-related damage points from 
Hurricane Irene occurred within drainage channels and ditches that do not 
normally carry water. 

Given the modest explanatory power of the peak-flow regression model developed in 
this project, further validation of predicted peak flows, where data can be acquired, 
would be helpful in evaluating model performance as an aid to evaluation or design 
of culverts. However, the fit of the model developed in this project (r-squared of 
0.69) compares well with the fit of other, non-spatial models focused on Vermont 
(Olson, 2002). 

Once the regression model that was developed in this project is improved, additional 
validation can be conducted at road segments designated to have a high probability 
of flooding against road damage data for Tropical Storm Irene. This validation will 
quantify the extent to which the designation of risk assigned by a peak-flow model 
works to predict the spatial distribution of road damage from a major precipitation 
event like Hurricane Irene. It may also be possible at that time to fine-tune the 

 

 

14 



UVM TRC Report # 15-005 

 

regression model to maximize its predictive power in forecasting the likelihood of 
road damage throughout the state in an automated fashion.  
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