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1 Introduction 

1.1 Background 

Substantial flooding attributed to Hurricanes Irene occurred in late August 2011 in 

the state of Vermont. These flooding events resulted in more than 260 state and 

local road closures, 30 state bridge closures, and major damage to state owned rail 

lines. Furthermore, at least 12 communities were completely cut off from the state 

highway system (http://governor.vermont.gov/newsroom-irene-update). These 

flooding events prompted the Federal Emergency Management Administration 

(FEMA) to issue an Emergency Declaration for Vermont on August 29, 2011 and 

then to issue a Major Disaster Declaration on September 1, 2011.  The declarations 

made all but 2 of Vermont’s counties eligible for Individual Assistance (to 

individuals and households) and Public Assistance (to state and local governments 

for emergency work and repair or replacement of disaster-damaged facilities) from 

FEMA. FEMA obligated more than $72 million to Public Assistance in Vermont in 

2011 alone, and by the end of 2012 FEMA had obligated over $166 million to the 

state of Vermont (FEMA, 2014). 

Springtime and summertime flooding events are a major concern for certain regions 

of the United States. Figure 1 from the Third National Climate Assessment provides 

an illustration of the expected increase in average precipitation and an expected 

increase in very-heavy precipitation, especially in the northeast region of the 

United States (Melillo et. al., Eds., 2014).  

 

Figure 1  Observed % Change in Very Heavy Precipitation in the U.S. 

http://governor.vermont.gov/newsroom-irene-update
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The expected increase in precipitation is very likely to lead to an increase in the 

adverse impacts that rainfall will have on the state’s transportation infrastructure.   

Figure 2 provides an example of the impact the 2011 flooding events had on a 

federal highway in Bolton, Vermont. 

 

Figure 2  Hurricane Irene Flooding on Route 2 in Bolton, Vermont. (Photo credit: Lars 

Gange & Mansfield Heliflight) 

Concerns over increased precipitation and the dramatic impact flooding can have on 

the transportation infrastructure system motivated the research team at the 

University of Vermont (UVM) to examine problems faced by Vermont with respect to 

various flooding threat-scenarios. The team has previously examined various 

performance measures to evaluate and rank the criticality and importance of 

individual roadway links to establish planning and maintenance priorities (Scott et 

al, 2006; Sullivan et al, 2010, Novak et. al., 2012, and Novak and Sullivan, 2014 ).  

In this project, we extend the use of a previously established measure of link-

specific criticality, the Network Robustness Index (NRI), to address disruptions in 

Vermont’s federal-aid road network caused by summertime flooding. The goal of the 

project is to identify the most critical links in the state-wide roadway network by 

quantifying the impacts associated with real-world flooding threats.  Links, or road 

segments, are rank-ordered using a risk-based probability approach that takes into 

account the likelihood that a particular link will be flooded, the expected reduction 

in capacity on the affected link due to the flooding event, and the dynamic re-

routing of travelers.  

This report describes a novel network-disruption model that includes the 

probabilities of some type of capacity disruption on a link-by-line basis for a 

realistic flood threat framework in the state Vermont. The loss of capacity resulting 

from rainfall and flooding events can be estimated for each link in the roadway 

network using a disruption probability density function (PDF). We combine an 
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established measure of link specific network-wide vulnerability, the NRI, with link 

specific disruption PDFs to produce a link-specific flood disruption risk metric for 

the entire roadway network. 

Our approach is applicable to both planners and engineers / operations personnel 

responsible for the design and maintenance of the transportation infrastructure 

network. In this particular case, the roadway links that are identified as being the 

most critical links with respect to the road network as a whole, can be fortified 

against flooding either by improving drainage to move runoff away from the 

roadway, or by retrofitting the roadway to create a barrier against flooding from 

nearby lakes or rivers.  

1.2 Literature Review 

Previous studies have explored various issues of link-criticality in light of 

disruptive episodes in a transportation network. A comprehensive review of work in 

this area was published by Sullivan et. al. (2009). This project extends the 

contemporary approaches to modeling network disruption to  include the concept of 

risk as measured by the probability associated with different types of disruptive 

flooding events occurring, as well as the level of capacity disruption caused by the 

flooding event. Berdica (2002) makes note of the concept of risk as a product of the 

probability of something occurring and the costs of the occurrence, but does not 

propose a method for dealing with the risk of disruption in a transportation 

network. 

Some studies have developed methods which recognize the contribution of 

probability and/or risk associated with different specific types of disruptions. For 

example, Chen et. al. (2006) discuss the concept of risk and use a probabilistic 

travel-demand model that was developed by Oppenheim in 1995 to evaluate risk; 

however, their model does not include the probability of a link-specific disruption 

occuring. Poorzahedy and Bushehri (2005) include a probability for each link in the 

roadway network being completely closed (a 100% disruption level) after a 

stochastic event. They do not account; however, address the possibility of partial 

link closures, or link-specific probability functions based on occurrence frequencies 

for different types of events. In the Poorzahedy and Bushehri (2005) model each link 

has a single probability for 100% disruption given a stochastic event.  

Dalziell and Nicholson (2001) include a discussion of precisely the type of risk 

modeling our research team is focused on, except that they use a more simplistic 

cost assessment with relatively arbitrary parameters, instead of a more 

comprehensive performance metric that can be used to evaluate the risk associated 

with each link in a roadway network – like the NRI. Dalziell and Nicholson (2001) 

include only total road closures (100% capacity reduction as opposed to both total 

and partial closures), albeit they address a variety of natural disruptive events. 

Their study focuses on a specific application to a single road in New Zealand, so the 

generalized adaptability of the research results are questionable. Their model 

includes an assessment of the costs of cancelled trips in light of a d isruption to the 

network. This appears to be one of the first attempts to include the cost of cancelled 

trips into a network disruption model. The authors have done some very effective 

data gathering for a specific roadway, and provide useful charts, like the one 
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plotting the probability of a certain disruptive episode, with its severity (in this 

case, duration of road closure) which is used extensively as a basis for this research 

project. 

Lee and Kim (2007) present a framework for estimating the economic loss 

associated with random disasters. The authors provide a detailed overview of 

existing space-time network models and introduce a dynamic system model for 

capturing impacts associated with disruptions to the national transportation 

infrastructure. They employ a macro-level model that relies on estimates of regional 

commodity flow by mode generated from input-output models. This approach is only 

applicable on a large scale due to the data input requirements which focus on 

regional and interregional commodity flows and transit routes. Consequently, there 

is no way to estimate any type of dynamic rerouting as the network is static after 

the disruption. There is no provision for estimating the risk associated with 

different types of disasters and the severity  of the disruption is a function of the 

generic resiliency of a particular industry / commodity and not on the event itself.  

1.3 Threat Scenario and Risk Framework 

We adopt the framework for risk management described in the National 

Infrastructure Protection Plan (DHS, 2013) and follow the evaluation process 

outlined in the NIPP Supplement Executing a Critical Infrastructure Risk 
Management Approach. We quantify the flooding threat to critical roadway 

infrastructure elements in Vermont resulting from severe rainfall. The Hurricane 

Irene flooding events in August of 2011 are the primary motivating factor behind 

this research. 

For clarity, we provide definitions for terms used in this report which describe the 

framework used to assess risk: 

 Disruption – A link is disrupted if there is total loss or significant partial 

loss of a roadway link’s carrying capacity. Major disruptions are disruptions 

that remove at least 40% of a roadway’s capacity and minor disruptions are 

disruptions that remove less than 40% of a roadway’s capacity. It is 

important to distinguish the disruption classifications from the concept of 

degradation. Degradation serves to remove roadway capacity in the “minor” 

range (less than 40% capacity reduction), but is not caused by a specific 

severe weather event and occurs slowly over a relatively long period of time 

(Sullivan et. al., 2009). Degradation is most commonly used to describe 

capacity loss due to relatively slow deterioration of a roadway link over time 

– such as capacity loss due to deferred roadway maintenance (potholes, loss 

of lane markings, pavement cracks, etc.).  

 Vulnerability – refers to the potential for a system to fail, or cease to 

function properly due to a disruption. Vulnerability addresses the degree of 

inability of a system to function due to a disruption, whereas susceptibility is 

a link-specific measure that addresses the likelihood of link failure due to a 

disruption. Vulnerability is also used to measure the cost, consequence, or 

impact associated with a disruption (Sullivan et. al., 2009)  
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 Susceptibility – is the likelihood that a link will experience some type of 

disruption given a specific threat or event (Sullivan et. al., 2009) 

 Threat – a threat is a specific incident, event, or occurrence, which is 

characterized by a likelihood, and an associated consequence. A threat is 

capable of producing a disruption (DHS, 2013) 

 Risk – the product of vulnerability and susceptibility, specific to the 

occurrence of a particular threat (DHS, 2013) 

We distinguish the summertime rainfall threat scenario from the springtime / 

winter-snowmelt flooding phenomenon frequently observed in Vermont. Springtime 

flooding involves complex hydrological interactions between snowmelt, ground 

temperature, ground saturation, and rainfall that are beyond the scope of this 

particular study. Notable springtime / winter-snowmelt flooding occurred in 

Chittenden County, Vermont in spring of 2011 and spring of 2014. Neither of these 

flooding events resulted in FEMA intervention. 

While the categorization of flooding events may seem to bias the results of the study 

toward the regions of the state that experienced the highest levels of damage during  

Hurricane Irene, it is important to note that the entire state of Vermont received 

abnormally high rainfall during the Hurricane Irene rainfall events, as shown in 

Table 1. Consequently, we do not believe that there is a significant regional b ias. 

Table 1  2011 Hurricane Irene Rainfall Totals Relative to the 100-Year Storm 

County 
24-hr Peak 

Rainfall (in.) 
Date of Peak 
24-Hour Total 

100-yr 24-hr 
Storm (in.) 

% of the 100-
Year Storm 

Addison 5.1 20110829 5.4 94% 

Bennington 5.6 20110831 6.8 82% 

Caledonia 6.4 20110829 5.4 118% 

Chittenden 4.9 20110829 5.2 93% 

Essex 4.3 20110829 5.1 84% 

Franklin 5.3 20110905 5.2 101% 

Grand Isle 5.4 20110829 5.1 105% 

Lamoille 5.4 20110829 5.4 100% 

Orange 5.7 20110829 5.7 100% 

Orleans 7.4 20110829 5 148% 

Rutland 6.2 20110829 5.9 105% 

Washington 5.3 20110828 5.4 98% 

Windham 4.9 20110829 6.8 72% 

Windsor 6.1 20110829 5.9 103% 

Chittenden County received 93% of its 100-year storm expected rainfall total, yet 

experienced relatively little disruption to its roadway network. Other areas, such as 

Windham County, experienced rainfall amounts that were even lower as a fraction 

of their 100-year storm rainfall total (72%), yet experienced significant roadway 

damage. The fact that Chittenden County and the entire Champlain Valley region of 

Vermont experienced relatively little damage during the flooding  could suggest that 

transportation infrastructure in that part of the state is less susceptible to this 
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particular threat scenario. It is also possible that the lack of damage might attest to 

a natural landscape that is more robust with respect to handling large volumes of 

runoff in the summer months. 

Using the framework for critical infrastructure assessment that is presented in the 

NIPP, we perform a flood risk analysis by identifying the susceptibilities and the 

consequences of the summertime flooding threat scenario. We consider three 

specific types of disruption threats from summertime flooding and rainfall events: 

1. Disruption Type 1 (DT 1): Traffic flow reduction or obstruction caused by 

flooding when the drainage/clearance capacity of bridges and culverts is 

exceeded and the 

roadway surface is 

submerged. 

2. Disruption Type 2 (DT 

2): Traffic flow 

reduction or 

obstruction resulting 

from fluvial erosion of 

pavement from flow 

adjacent to a roadway.  

3. Disruption Type 3 (DT 

3): Traffic flow 

reduction or 

obstruction caused by 

rainfall whose 

intensity causes 

drivers to reduce travel 

speeds. 

The location of the disruptive events can occur at different points along a particular 

roadway link, as illustrated in Figure 3. DT (1) occurs at bridges or culverts. DT (2) 

occurs where rivers, streams, or open drainage channels are adjacent to roadways. 

DT (3) can occur anywhere along a roadway. In this study, the analysis of 

disruption PDFs is grouped according to the relative severity of the disruptive 

threat. DT 1 and DT 2 are considered potential sources of major disruption, whereas 

DT 3 is considered a potential source of minor disruption. 

We define a roadway link as a segment in the federal-aid system between any two 

intersection points in the roadway network, including intersections with non-

federal-aid roads. For example, in Figure 3, each roadway segment along Route 100 

is defined by end nodes (black dots) at every intersection. Bridges are shown using 

green bridge icons in the figure.  Although the minor streets shown in the figure are 

not in the federal-aid system, their intersections are still used to define segments of 

the roads that are (Route 9 and Route 100).  

We focus on the federal-aid system of roadways in the state because these are the 

roads that the Vermont Agency of Transportation (VTrans) has direct responsibility 

for and because the rural roadways in the state tend to be more susceptible to 

flooding events. The exact reasons for the increased susceptibility of rural roads are 

unclear; however, it is worthwhile to note that roadway connectivity is significantly 

 1 

 2 

  3 

Figure 3  Example Locations for Flooding Modes 
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lower in rural areas. This means that there are fewer redundant paths or 

alternative travel routes that are available. An obvious conclusion is that when 

rural roadways are flooded, travelers have few alternative routes to choose from and 

the risk of isolation is far greater. 

The consequences associated disruptions to the roadway network due to flood events 

are quantified using the total travel-time delay resulting from the loss of capacity 

on the network. When the NRI method is used, link disruptions are simulated,  and 

the traffic assignment process is repeated to find the most likely alternate-routing 

state for daily travel. Travel-time delays are measured using the NRI as described 

in Sullivan et. al., (2010). 

The NRI is a performance metric designed to measure how critical a given roadway link is to 

the overall roadway network, and was first introduced in Scott et al., (2006). The NRI is 

defined as the change in the network-wide travel time over a given time interval as a result 

of the re-assignment or re-routing of the traffic in the entire system when the capacity on a 

specific link is reduced. A link is “more critical” if removal of the link results in a relatively 

high increase in the overall network-wide travel time. A link is “less critical” if the removal of 

the link results in a relatively low increase in the overall system travel time (Sullivan et. al., 

2010).The NRI is relatively straightforward to calculate using TransCAD® or other travel 

modeling software. 

The NRI is calculated in two steps. First, the system-wide, travel time is calculated for the 

base case network where all links in the network are operating at full capacity. The system-

wide travel time cost for the base case, c, is calculated as follows according to (Sullivan et. al., 

2010): 

𝑐 =  ∑ 𝑡𝑖𝑥𝑖𝑖∈𝐼             

where ti is the travel time across link i, in minutes per trip, and xi is the flow on link i at user 

equilibrium. Subscript I represents the complete set of all roadway links in the network. The 

travel time, tixi, is the total minutes of travel per time interval on link i.  

Second, the system wide travel time cost for each link in the network, ca, is calculated when 

the capacity on an individual link, a, is reduced, and the traffic on the roadway network is re-

routed as a result of the reduction in capacity.  

𝑐𝑎 =  ∑ 𝑡𝑖
(𝑎)

𝑥𝑖
(𝑎)

𝑖∈𝐼
𝑎⁄             

The NRI of link a is calculated as the change in system wide travel time over the base case. If 

the reduction in capacity on the link has little to no effect on traffic in terms of re-routing 

and/or travel time, the link in question is relatively non-critical. 

𝑁𝑅𝐼𝑎 =  𝑐𝑎 −  𝑐           

Previous research has shown that reducing the capacity on individual links in the network 

has the potential to both increase and decrease system-wide travel times. In the case where 

system-wide travel time decreases, the reduction of capacity on a given link actually 

improves network-wide travel, which is consistent with Braess’ Paradox (Sullivan et. al., 

2010).  
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2 Data 

2.1 Precipitation Data 

We rely on three sources of historical precipitation data for Vermont. The data are 

reported at the county level: 1) recurrence time intervals for 24-hour rainfall storm 

depth, 2) annualized daily frequency of rainfall, and 3) rainfall-intensity 

frequencies. 

The first source of data is the recurrence time intervals for 24-hour rainfall storm 

depth. These data were obtained from the Vermont Stormwater Management 

Manual (ANR, 2002), as shown in Table 2.  

Table 2  24-Hour Rainfall Depths (inches) for Common Recurrence Intervals (ANR, 2002) 

County 
1-yr, 24-hr 

Rainfall Depth  
2-yr, 24-hr 

Rainfall Depth 
10-yr, 24-hr 

Rainfall Depth 
100-yr, 24-hr 

Rainfall Depth 

Addison  2.2 2.4 3.4 5.4 

Bennington  2.3 2.8 4 6.8 

Caledonia  2.2 2.3 3.1 5.4 

Chittenden  2.1 2.3 3.2 5.2 

Essex  2.2 2.3 3.1 5.1 

Franklin  2.1 2.3 3.1 5.2 

Grand Isle  2.1 2.2 3.1 5.1 

Lamoille  2.1 2.4 3.4 5.4 

Orange  2.2 2.4 3.4 5.7 

Orleans  2.1 2.2 3.1 5 

Rutland  2.3 2.5 3.7 5.9 

Washington  2.2 2.4 3.4 5.4 

Windham  2.3 2.8 4 6.8 

Windsor  2.3 2.5 3.7 5.9 

The recurrence depth data describe the expected intensity of major rainfall events 

with respect to both rainfall depth and frequency of occurrence, and are 

instrumental in developing the disruption PDFs for the roadway links impacted by 

Hurricane Irene. Figure 4 illustrates the tendency for the recurrence depths to 

follow a general exponential like form when the recurrence intervals are 

represented as annualized probabilities.  
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Figure 4  Storm Recurrence Depths Represented with Annual Probabilities 

A generalized interpretation follows. The probability that Addison County will 

experience a severe 24-hour rainfall event where rainfall depth reaches 2.2” on an 

annual basis is 100%. The probability that Addison County will experience a severe 

24-hour rainfall event where rainfall depth reaches 5.4” (consistent with a 100-year 

flooding event) is greater than zero, but very small – less than 1%. In general, in 

any given year, we can expect at least one (but maybe no more than one) severe 

rainfall event in Addison County of 2.2 inches, and every two years, we can expect 

at least one (but maybe no more than one) severe rainfall event of 2.4 inches. Every 

100 years, we can expect a rainfall event so severe that 5.4” of rain fall in Addison 

County.  

If we invert the years and scale them as 1, 0.5, 0.1, 0.01 on the x -axis and plot 

against rainfall depth on the y-axis, we get the curves shown in Figure 4 for all 

counties. The annual probability of receiving at least one rainfall event of 2.2” in a 

24-hour time period is close to 100% and the annual probability of receiving at least 

one rainfall event of 5.4” in a 24-hour time period is very small (close to zero). The 

distribution follows a basic exponential form.    

The second source of data are the annualized daily  frequencies of rainfall, which 

were obtained from the National Climatic Data Center (NCDC), Climate Normals 

program for 1981 – 2010. The data provide the average number of days per year 

with measurable precipitation (greater than 0.01 inches) on a county by county 

basis. These data allowed us to convert the annual probabilities derived from the 

recurrence time intervals to daily probabilities. The annualized estimated daily 

frequency of measureable rainfall by county is shown in Table 3. On average, 

Addison County Vermont experiences 132 “measureable” precipitation events per 

year – 98 rain and 34 snow. 
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Table 3  Days of Measurable Precipitation by Vermont County 

County 

No. of Days of Measurable Precipitation (over 0.01 inch) 

Total per Year As Rain As Snow 

Addison 132 98 34 

Bennington 131 97 34 

Caledonia 158 102 56 

Chittenden 157 107 50 

Essex 157 107 50 

Franklin 142 98 44 

Grand Isle 106 75 31 

Lamoille 163 107 56 

Orange 128 100 28 

Orleans 174 119 55 

Rutland 131 97 34 

Washington 148 98 50 

Windham 135 100 35 

Windsor 133 102 31 

All of Vermont 143 89 54 

The final source of data are rainfall-intensity frequencies. Hourly precipitation 

totals throughout the state of Vermont were obtained from the NCDC’s Cooperative 

Observer Program (COOP). The COOP provides aggregated rainfall data that are 

collected daily based on direct observation by more than 10,000 volunteers 

throughout the state. Hourly rainfall data were available for 26 COOP locations 

between 1962 through 2012. Each station is associated with the specific county in 

which it was located, and the hourly precipitation totals for each station are 

aggregated by county to yield a frequency distribution of hourly rainfall intensities.  

We used these data directly to estimate susceptibility for disruption types DT 3. 

The rainfall-intensity frequency distributions are summarized by county in Table 4. 

 

 

 

 

 

 

 

 

Table 4  Rainfall-Intensity Frequencies by County 

County Rainfall-Intensity Range (in./hr.) 
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x ≤ 0.01 
0.01 < x 
≤ 0.05 

0.05 < x 
≤ 0.10 

0.10 < x 
≤ 0.15 

0.15 < x 
≤ 0.20 

0.2 < x  
≤ 0.25 0.25 < x 

Addison 22.5% 25.6% 38.0% 3.2% 5.9% 0.8% 4.0% 
Bennington 16.7% 20.7% 46.5% 2.7% 7.7% 0.7% 4.9% 
Caledonia 28.2% 39.6% 21.9% 3.9% 3.1% 0.8% 2.6% 
Chittenden 53.0% 30.5% 9.8% 3.1% 1.4% 0.7% 1.4% 
Essex 27.6% 35.5% 26.8% 3.4% 3.4% 0.6% 2.6% 
Franklin 22.5% 25.6% 38.0% 3.2% 5.9% 0.8% 4.0% 
Grand Isle 22.5% 25.6% 38.0% 3.2% 5.9% 0.8% 4.0% 
Lamoille 27.2% 34.5% 27.7% 3.2% 3.7% 0.7% 3.0% 
Orange 22.5% 25.6% 38.0% 3.2% 5.9% 0.8% 4.0% 
Orleans 22.5% 25.6% 38.0% 3.2% 5.9% 0.8% 4.0% 
Rutland 22.3% 28.7% 35.1% 4.0% 5.4% 0.8% 3.8% 
Washington 24.9% 16.9% 44.2% 2.5% 5.9% 0.8% 4.7% 
Windham 18.0% 23.7% 42.4% 3.5% 7.1% 0.8% 4.5% 
Windsor 19.9% 25.6% 40.9% 3.2% 6.1% 0.7% 3.6% 

Vermont 22.5% 25.6% 38.0% 3.2% 5.9% 0.8% 4.0% 

Note: 
Addison, Franklin, Grand Isle, Orange, and Orleans Counties do not have any COOP locations, so the statewide 
average was used for these Counties. 

2.2 Capacity Reduction 

To date, we are not aware of any comprehensive data source that maps disruptive 

events (of any type) to roadway capacity reduction estimates directly resulting from 

those events. Dalziell and Nicholson, (2001) consider the impact of specific natural 

hazards on roadway infrastructure, but only consider complete road closure 

resulting from fairly substantial events (like an earthquake). Agarwal et. al., (2005) 

examine roadway capacity reduction attributed to rainfall, but only in a very 

limited, discrete context that applies to minor disruptions. One of the contributions 

of this research project is to take a first step in developing a mapping that 

specifically considers disruptions attributed to extreme rainfall events and the 

expected reduction in roadway capacities associated with those events  in a 

continuous manner, assuming that some disruptions may only partially reduce 

capacity on the roadway.  

Our team used a published study by Agarwal et. al., (2005)  to supplement the 

Vermont-specific data for the development of the disruption PDFs introduced in this 

study. The Agarwal et. al., (2005) study suggests generalized relationships between 

rainfall intensity, traffic speed reductions, and capacity reduction ( Table 5). 

Table 5  Rainfall Intensity and Capacity Reduction (Agarwal et. al., 2005) 

Rainfall Intensity Range Category 
% Reduction in Average 

Operating Speeds 
% Reduction in 

Capacity 

x < 0.01 in./hour  Light 1 to 2.5 1 to 3 
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0.01≤x<0.25 in./hour               Medium 2 to 5 5 to 10 

x > 0.25 in./hour  Heavy 4 to 7 10 to 17 

We combine the relationship information presented in Agarwal et. al., (2005) with 

the rainfall-frequency data in Table 4 to estimate capacity-disruption distributions 

attributed to different rainfall-intensities. First we converted the annualized 

rainfall category probabilities in Table 4 to daily probabilities by dividing each 

value by its county-specific rainfall frequency from Table 3. This provides us with 

categorical estimation of rainfall intensity on an average daily basis for each 

county. For example, assuming 365 days in a year, the probability of experiencing 

measureable rainfall in Addison County on average is 26.8%1 for a given day.  

The seven rainfall intensity probability bins from Table 4 are then aggregated to be 

consistent with the three category bins used in Agarwal et. al., (2005) from Table 5, 

where each of the three categories is assumed to be represented by the mid-point of 

the capacity-disruption range shown in the last column of Table 5. The estimated 

capacity-disruption values associated with observed rainfall-intensity categories is 

summarized on a county-by-county basis in Table 6. The values in Table 6 give the 

probability of a particular rainfall intensity range, given that a rainfall event 

occurs. Those probabilities are grouped into three point-estimate capacity 

disruption categories (2%, 7.5%, and 13.5%).  

Table 6  Estimated Capacity-Disruption Levels Given a Measured Rainfall Event 

County 

Percentage Capacity-Disruption Estimates 

2% 7.5% 13.5% 

Addison 22.5% 73.5% 4.0% 
Bennington 16.7% 78.3% 4.9% 
Caledonia 28.2% 69.2% 2.6% 
Chittenden 53.0% 45.6% 1.4% 
Essex 27.6% 69.8% 2.6% 
Franklin 22.5% 73.5% 4.0% 
Grand Isle 22.5% 73.5% 4.0% 
Lamoille 27.2% 69.8% 3.0% 
Orange 22.5% 73.5% 4.0% 
Orleans 22.5% 73.5% 4.0% 
Rutland 22.3% 73.9% 3.8% 
Washington 24.9% 70.3% 4.7% 
Windham 18.0% 77.6% 4.5% 
Windsor 19.9% 76.5% 3.6% 

Vermont 22.5% 73.5% 4.0% 

These probabilities can be interpreted as the conditional probability that a 

particular roadway capacity disruption occurs, given that a rainfall event occurs. 

For example, given that a rainfall event occurs in Addison County, the probability 

that the intensity of the event results in approximately a 2%, 7.5%, or 13.5% 

                                                           
1 98 rain-based precipitation days per year on average divided by 365 days per year ≈ 26.8% 

chance of rain-based precipitation on a daily basis.  
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roadway capacity reduction are 22.5%, 73.5%, and 4.0% respectively. Assuming that 

a rainfall event occurs in Addison County, there is nearly a 74% chance that the 

intensity of the event will reduce capacity on the roadways by about 7.5%.   

Using the Multiplication Law from basic probability theory, we can then calculate 

the probability of the intersection of the probability of a rainfa ll event and the 

probability that the event is associated with each capacity reduction category, for 

all three capacity reduction categories. Assuming that the probability of a rainfall 

event occurring on any given day in Addison County is 26.8% (i.e., P(rainfall) = 

26.8%). And, assuming the conditional probability that given a rainfall event in 

Addison County, the probability that the intensity of the event  will result in a 2% 

capacity reduction on the roadways is 22.5% (i.e., P(2% capacity reduction | 

rainfall) = 22.5%). Then, the probability that there is a rainfall event that results in 

a 2% capacity reduction on the roadways is approximately 6.05% (i.e., 
𝑃(2% 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ∩ 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙) = 𝑃(𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙) × 𝑃(2% 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 | 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙) =
6.05%)2. These probabilities are presented in Table 7.  

Table 7  Estimated Probability of a Particular Capacity Disruption Rainfall Event Occurring  

County 

Percentage Capacity-Disruption Estimates 

2% 7.5% 13.5% 

Addison 6.05% 19.73% 1.07% 
Bennington 4.44% 20.82% 1.31% 
Caledonia 7.87% 19.34% 0.73% 
Chittenden 15.53% 13.37% 0.41% 
Essex 8.10% 20.46% 0.75% 
Franklin 6.05% 19.73% 1.07% 
Grand Isle 4.63% 15.10% 0.82% 
Lamoille 7.98% 20.45% 0.89% 
Orange 6.18% 20.13% 1.09% 
Orleans 7.35% 23.96% 1.30% 
Rutland 5.92% 19.65% 1.00% 
Washington 6.70% 18.88% 1.27% 
Windham 4.92% 21.25% 1.23% 
Windsor 5.57% 21.37% 1.01% 

Vermont 5.50% 17.92% 0.97% 

 

 

2.3 Hurricane Irene Roadway Damage Data 

2.3.1 FHWA Detailed Damage Inspection Reports  

                                                           
2
 Values have been rounded to the hundredths for illustration purposes. 
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This study is unique in that it is the first study that we are aware of to map 

observed precipitation data associated with a 100-year magnitude flooding event 

directly to observed data associated with roadway damage from that event. The 

primary source of information on damage to Vermont’s federal aid highway 

infrastructure from Hurricanes Irene  is the Federal Highway Administration’s 

(FHWA) Detailed Damage Inspection Reports (DDIRs). DDIRs were completed after 

the storms specifically to objectify the damage to federal-aid highways and 

infrastructure associated with the Hurricane Irene flood event to assess eligibility 

for federal financial aid. The report includes the specific location of the damaged 

infrastructure component, a description of the damage, and a cost estimate to repair 

or replace the damaged component. The reports are used to assess infrastructure 

damage and estimate an appropriate cost for repairs; and unfortunately, do not 

contain any information related to how travel was obstructed by the damage. 

Photographs are not required as part of the DDIRs, but were included with some of 

them.  

All 837 DDIRs for the entire state of Vermont were obtained and geo-referenced for 

this project. Relevant information includes the report ID, the coordinates of the 

damaged location, and a description of the infrastructure damage. A map showing 

the locations of the DDIRs completed pursuant to Hurricane Irene in Vermont is 

provided in Figure 5. As shown on Figure 5, State Route 100 (highlighted in green),  

which bisects the state from north to south (on the east side of the ridge of the 

Green Mountains), sustained the most roadway damage from the Hurricane Irene 

flood event, and many infrastructure locations were so badly damaged that they 

remained closed for weeks after the storm. 
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Figure 5  Locations of Hurricane Irene DDIRs in Vermont 
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2.3.2 Vermont 511 Federal-Aid Road Closures and Road Status 

On October 6, 2011, approximately 5 weeks after the Hurricane Irene flood event hit 

Vermont, a series of data extractions were made by UVM TRC personnel directly 

from the Vermont 511 Online Map (VTrans, 2011).  The Vermont 511 map is a real-

time, web-accessible GIS, which is based on traffic/travel reports received from the 

Transportation Operations Center at VTrans. The Operations Center is staffed 

during regular business hours and storm events as they occur. Incidents/conditions 

are only updated as situations change, but information related to town highways or 

local streets is generally not included on this site.  

The following fields were available for each extracted point where damage or road 

closure was noted: 

 RouteID  

 FromMM  

 ToMM  

 Town  

 Status  

 LastReportDate  

 Shape.len  

 DateClosed  

 DateOpened  

 Restrictions  

 Townname

Unfortunately, many of the fields were populated in an inconsistent or incomplete 

manner and not all data from all fields could be used. The “Status” field associated 

with the 511 map reported the Hurricane Irene damage using the following five 

possible entries: 1) LANE OPEN, 2) REOPENED, 3) ROAD CLOSED, 4) EV ONLY, 

and 5) DAYTIME CLOSURE. Based on the 511 data, over 1,300 miles of federal-aid 

roadway were affected by the flood event (approximately 34% of the total), with 

nearly 400 miles of confirmed road closures (approximately 10% of the total).  

2.3.3 Local Hurricane Irene Damage Reports and Roadway Status 

Eleven of the 19 Regional Planning Commissions (RPCs) in the state also created 

damage reports to attempt to quantify the damage to local transportation 

infrastructure resulting from Hurricane Irene. The damage reports were collected 

by the Chittenden County Regional Planning Commission (the largest RPC and the 

only MPO in the state) and were used to create a GIS that identified the damage to 

local infrastructure statewide, including damage report points and closed roads. A 

total of 1,524 points of damage and more than 200 miles of road closure were noted. 

Most of the local damage reports did not directly pertain to federal-aid highways in 

the state and, therefore, were not useful in quantifying the extent of the damage to 

the federal-aid infrastructure system. Furthermore, since the data in the local 

reports often came from a variety of sources, some data fields were sparsely 

populated and the responses and reporting formats were not uniform across all 

RPCs. The “Roadway Status” field, however, was very useful when it contained data 

and when the damage point or damaged roadway line overlapped with the roadway 

components in the federal-aid system. In these cases, we used the Roadway Status 

field to update or confirm information from the DDIRs and the Vermont 511  data. 

In the best case scenarios we were able to verify the extent of roadway damage 

including full and partial road closures using three independent data sources.  
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2.3.4 Federal-Aid Road Network Damage Characterization 

The Hurricane Irene roadway damage data was used to estimate the level of 

capacity disruption specific to individual roadway links following the storm. To 

facilitate link-specific curve-fitting for the risk assessment, all roadway links in the 

state of Vermont’s federal-aid system were classified using one of the following four 

damage categories:  

1. no capacity lost – the travelled way was not affected 

2. 50% capacity lost – some portion of the travelled way was affected and 

reduced speeds were necessary, but less than one lane was obstructed, so 

that 2-way travel was still possible 

3. 75% capacity lost – at least one lane of travel was impassable  

4. 100% capacity lost – the road was completely closed to normal traffic, 

emergency vehicles may have had continued service to access repair areas  

The DDIRs were used initially to characterize damage to roadways in the federal-

aid system, by applying the following four characterization rules that are consistent 

with the classification scheme above: 

1. “0” - no capacity lost; no DDIR, or DDIR reported only damage to bridge 

abutments, roadside ditches, or stream embankments, and not to the 

shoulder or travelled way  

2. “50” - 50% capacity lost: DDIR reported damage or silt/debris deposit to 

embankment and/or shoulder; the phrase “Embankment Washout”, reported 

damage to embankments or side slopes of roadway, or any reported damage 

to roadway shoulders or guardrails was assumed to reduce capacity 50%, due 

to limitations on use of roadway edges likely to result  from the event 

3. “75” - 75% capacity lost: DDIR reported damage or silt/debris deposit to 

embankment, shoulder, and part of the travelled way; the phrase “Pavement 

Damaged” or any mention of damage to travel lanes (including sinkholes) 

was assumed to represent unspecified damage to the travelled way, with 75% 

capacity lost 

4. “100” - 100% capacity lost: DDIR or other source reported closure of the road 

to normal traffic, although access for emergency vehicles may have been 

maintained; the phrases “XX Feet of Roadway Washed Out” or “Roadway 

Washout”, or any mention of a total loss of roadway or closure of roadway 

was assumed to represent a complete loss of the travelled way with 100% 

capacity lost 

Following the characterization of each DDIR damage point, all roadways in the 

federal-aid network within 50 feet of a DDIR point were tagged with the damage 

characterization in the point layer.   

We attempted to reconcile any discrepancies in the different damage reports using 

“Irene Damage Assessment” line layer showing the status of non-federal-aid 

roadways in late September 2011. Any roadways in the federal-aid system identified 

as “Closed” or “Emergency Only” in the “Roadway Status” field of the Vermont 511 
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data were assumed to represent a 100% capacity loss regardless of the damage 

assessment value in the DDIR.  Per the capacity reduction categorization shown on 

the previous page, roadways identified in the “Roadway Status” field as “Restricted 

Lane or Weight” or “REOPENED – 1 LANE IN PLACES” were assumed to be 

operating at least a 75% capacity loss. Overall, very few federal-aid roadways were 

re-characterized using local line layer data; however, in cases where we felt that we 

had more detailed, localized data that disagreed with the DDIR data, our team felt 

as though the local damage assessment data provided a more accurate 

representation of capacity loss and damage on than the DDIR data . 

As the Vermont 511 roadway segments are referenced by mile-marker (MM), they 

had to be geo-referenced by mile marker. To accomplish the mile marker 

referencing, the VTrans Master Road Centerline GIS was used as an intermediate 

layer because it contains MM references for each line segment. This data layer 

consists of the E911 – VTrans conflation of their best road-centerline shapefiles. It 

acts as the base for the Agency’s linear reference systems and its annual mileage 

summaries for FHWA, including about 60 attributes for every public roadway in the 

state. 

Roadway segments from the Vermont 511 were geo-referenced to the Master Road 

Centerline layer and were then tagged to the federal-aid road network. The 

following rules were applied to translate the road status into a damage 

characterization: 

 “REOPENED” was translated to a 50% loss of capacity unless a previous step 

had identified a higher capacity loss; the assumption is that if the road had 

to be reopened, it must have been damaged in some way to require, at least, 

restricted travel 

 “1 LANE OPEN” was translated to a 75% loss of capacity unless a previous 

step had identified a higher capacity loss;  

 “ROAD CLOSED”, “DAYTIME CLOSURE”, or “EV ONLY” were all translated 

to a 100% loss of capacity 

At this stage, most of the federal-aid network links selected for damage 

characterization using the Vermont 511 segments had already been characterized at 

a capacity loss that was equal to or higher than what the Vermont 511 indicated. 

Less than 10 segments were re-characterized using the Vermont 511. The team feels 

that this is indicative of a general agreement between the various data sources 

regarding damage levels from Hurricane Irene.  
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3 Methodology 

The framework developed for this project required the research team to consider 

variations in the probability of capacity-disruption of a given roadway link as a 

function of the severity of the disruption to that link. Consequently, the team 

focused on estimating functional forms that could be used to accurately describe the 

probability that a particular roadway link might be disrupted. The use of variable 

capacity reduction with respect to the NRI, is described in detail in Sullivan et al., 

(2010). The products of the link-disruption probabilities and the link-disruption 

consequences associated with each link in the roadway network were summed to 

produce a Total Link-Specific Risk (TLSR) associated with each and every roadway 

link in the network. The methodology is discussed in this section. 

3.1 Disruption Probability Distribution Functions 

To determine a general representative functional form for each roadway in the 

federal-aid network in Vermont, a number of assumptions are employed. The 

assumptions are based on existing literature and on the individual data sources 

used for the project. Actual precipitation data relating to intensity and storm-

recurrence depth are consistent with the gamma family of probability distributions . 

The following generalized assumptions are therefore made regarding the functional 

form of the disruption curves: 

Assumption 1: The shape of the disruption curve is affected by capacity-loss from 

flooding for major disruptions (DT 1 and DT 2), and follows the 

shape of the storm-recurrence depth frequency distribution. Here, 

we are stating that major disruptions are caused by flooding and 

are not necessarily caused by intense rainfall.  

Assumption 2: Disruption levels below a critical value of 40% are assumed to 

represent minor disruptions (DT 3), whereas levels of 40% or more 

are assumed to represent major disruptions 

Assumption 3: The shape of the disruption curve is affected by capacity-loss from 

rainfall-intensity for minor disruptions (DT 3), and follows the 

shape of the rainfall-intensity frequency distribution. Here, we are 

stating that minor disruptions are not associated with flooding, 

but are attributed to intense rainfall.  

Assumption 4: The right edge of the disruption curve is affected by capacity-loss 

from flooding for major disruptions (DT 1 and DT 2), and is 

“anchored” to an actual observation point represented by the 

damage recorded on that roadway during Hurricane Irene (a 100-

year storm event representing an extreme rainfall and flooding 

event).  

Ideally, the team would have liked to create individualized disruption functions for 

each link in the federal-aid road network; however there are nearly 3,900 links in 

the network. Consequently, the development of individual disruption curve for each 

link in the network was not feasible. Instead, generalized functional forms were 

developed for major and minor disruption ranges separately. The representative 
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disruption curves were then assigned to individual links according to the County 

where the link is located and according to the specific damage recorded on that link 

during the Hurricane Irene flood event. 

To estimate disruption functions across the full range of potential capacity 

reduction, where 0 represents no disruption and 100% represents a fully closed 

roadway, the research team first estimated generalized functional forms for the two 

major disruption types (DT 1 and DT 2), and then estimated specific curves for 

minor disruptions (DT 3) using real-world data for travel speeds and rainfall 

intensity. The distinction between major disruptions and minor disruptions is 

important as we have data sources that can be used as a benchmark to estimate the 

minor disruption curves. For example we have empirical data that reflect a number 

of different capacity reduction values associated with different rainfall intensities 

using the Agarwal et. al., (2005) study. However, the types of flooding events that 

cause major disruptions are extremely rare and we do not have empirical data 

associated with different flood intensity scenarios. We benchmark or anchor the 

right-hand side of the major disruption function using the actual data for damages 

sustained during Hurricane Irene – which is a once-in-a-lifetime, extreme 100-year 

flood event. 

3.1.1 Major-Disruptions 

For major disruption scenarios, we estimate a generalized functional forms by 

plotting the recurrence probabilities for 24-hour storm events using the four 

recurrence categories shown in Table 2 as a percentage of the 100-year flood event.  

Recurrence intervals are converted to daily probabilities, P, for these plots by 

taking the inverse of the recurrence interval and dividing that value by the annual 

days of rainfall by county (Table 3) as shown in Equation 1: 

Equation 1: 𝑃 =  
𝑛𝑐

𝑁 ∗ 365
  

where N is the recurrence interval in years, and nc is the average number of days 

with measurable precipitation per year in county c.  

Four probability point values are produced for each county – one value for each of 

the four recurrence categories. In the case of Addison County, we have the following 

four probability values associated with the 1-year, 2-year, 10-year, and 100-year 

rainfall events respectively: 26.85%, 13.42%, 2.68%, and 0.27%. The four values for 

each county are then fit to an exponential curve using the following PDF: 

Equation 2: 𝑃 =  𝜆𝑒−𝜆𝑥  

where P is the probability of disruption-level x. 

The initial curve fitting was performed in MATLAB and resulted in the exponential 

fit parameters reported in Table 8. 
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Table 8 Exponential Fit Parameters for Major-Disruption 

County Exponential Fit (λ) 

Addison  5.5 

Bennington  6.6 

Caledonia  5.8 

Chittenden  5.6 

Essex  5.4 

Franklin  5.7 

Grand Isle  5.7 

Lamoille  5.7 

Orange  6 

Orleans  5.5 

Rutland  5.9 

Washington  5.5 

Windham  6.6 

Windsor  5.9 

Following Assumption 1 – the shape of the disruption curve is affected by capacity-

loss from flooding for major disruptions (DT 1 and DT 2) and follows the shape of 

the storm-recurrence depth frequency distribution – synthetic distributions are 

created for each county. The curves are pictured in Figure 6. 

 

Figure 6  Synthetic Exponential Distributions for Major Disruption from Flooding 

All links in the statewide federal-aid roadway network were then grouped by county 

and the exponential PDF for that particular county was used to represent the 

probability that the link would be affected by a major disruption from flooding .  
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Recall from Assumption 2, that Assumption 1 is only valid for capacity disruption 

values greater than 40%. We therefore consider only the portion of the major-

disruption functions above capacity disruption values of 40% to be directly relevant 

to our estimation procedure. These values are shown to  the right of the red dashed 

line in Figure 7. 

 

Figure 7  Illustration of Critical Value for Major Disruption 

Based on Assumption 2, the minimum possible roadway capacity disruption 

resulting from a DT 1 or DT 2 flooding scenario is 40%. Below the 40% capacity 

reduction value, the impact that weather has on roadway capacity reduction is 

estimated using the minor disruption curve. 

3.1.2 Minor Disruptions 

A generalized functional form for the minor disruption portion of the entire 

disruption curve was estimated using real-world data for travel speeds and rainfall 

intensity. The capacity-disruption distributions corresponding to the travel-speed 

were plotted alongside the major-disruption exponential PDFs as shown in Figure 8.  
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Figure 8  Travel-Speed Distributions for Minor Disruption 

Aside from the curve associated with U.S. Highway 4 in 2012, all other curves were 

relatively consistent with the gamma family of probability distributions, which was 

the general form of the disruption curve in Dalziell and Nicholson (2001).  Figure 9 

shows the same data pictured in Figure 8 with the 2012 U.S. Highway 4 

observations removed and a gamma function fitted to both the speed data and the 

synthetic exponential major-disruption data. 
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Figure 9  Travel-Speed Distributions for Minor Disruption with Exponential Distributions for 

Major Disruption, and Gamma Curve Fitted to Both 

The PDF of the gamma distribution is: 

Equation 3: 𝑃 =  
𝑥𝑎−1 ∙ 𝑒

−𝑥
𝑏⁄

Γ(𝑎) ∙ 𝑏𝑎
  

The gamma coefficients a and b are estimated as 6.9 and 0.5, respectively, with a 

95% confidence bound, and the R-squared for the fit is 0.71. 

It is important to note that raw vehicle speeds are a less reliable indication of 

rainfall-induced capacity loss (DT 3) than actual rainfall-intensity data, as there 

are a variety of natural and man-made factors other than rainfall and flooding that 

impact highway speeds. Therefore, to assess the effectiveness of the travel-speed 

distributions in representing minor capacity-disruptions, the rainfall-intensity data 

by Vermont county was considered. When generalized rainfall-intensity data 

distributions were plotted, it was determined that they reasonably fit a Gaussian 

(normal) PDF, so Gaussian parameters were estimated for minor capacity-

disruption curves for each county. The Gaussian distribution PDF is: 

Equation 4: 𝑃 = 𝑎 ∙ 𝑒−(𝑥−𝑏
𝑐⁄ )

2

  

The estimated parameters for these PDFs are shown in Table 9 

. 

Table 9  Estimated Parameters for Gaussian Functions for Minor Disruptions 

County a b c R-Squared 
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County a b c R-Squared 

Addison 0.2110 0.0714 0.0291 0.9415 
Bennington 0.2159 0.0717 0.0282 0.9614 
Caledonia 0.2240 0.0702 0.0316 0.9621 
Chittenden 0.1918 0.0670 0.0398 0.8788 
Essex 0.1967 0.0669 0.0388 0.9031 
Franklin 0.2100 0.0707 0.0379 0.9511 
Grand Isle 0.1611 0.0709 0.0302 0.9476 
Lamoille 0.1965 0.0682 0.0383 0.8972 
Orange 0.2161 0.0718 0.0281 0.9362 
Orleans 0.2550 0.0706 0.0310 0.9525 
Rutland 0.1990 0.0707 0.0309 0.9183 
Washington 0.2339 0.0700 0.0276 0.9841 
Windham 0.2198 0.0716 0.0285 0.9542 
Windsor 0.2174 0.0711 0.0308 0.9466 

The fit of these estimations are far higher than they were for the Gamma 

distribution. Using these estimated parameters, synthetic distributions were 

generated for minor disruptions and plotted alongside the travel-speed data 

(screened) and the synthetic exponential distributions (screened), as shown in 

Figure 9. 

 

Figure 5  Gaussian Synthetic Distributions for Minor Disruptions from Rainfall-Intensity 

Since the travel-speed distributions inlcude all types of capacity-disruptions, not 

just those created by rainfall-intensity and flooding, it made sense for the minor-

disruption curves to fit within and under the travel speed distributions. The 

Travel-Speed Distributions 

Major-Disruption PDFs (Synthetic 
Flood-Recurrence Distributions) 

Synthetic Rainfall-Intensity Distributions 
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Gaussian curves appeared to do exactly that - explaining only a portion of the 

capacity-disruption that is evident in the travel-speed distributions. Therefore, in 

addition to their improved fit to the rainfall-intensity data, minor disruption curves 

also provided explanatory suitability for the capacity reductions evidenced by the 

travel-speed data. These findings prompted the team to accept these functional 

forms as a better representation of real-world minor capacity-disruption 

experienced from rainfall-intensity on Vermont’s roadways (DT 3) – leading to 

Assumption 3. It follows from this finding that the remaining area under the travel-

speed distributions (shaded area in Figure 10) is explained by natural phenomena 

other than rainfall-intensity (like wind) and man-made phenomena (like traffic 

congestion and construction zones), which are not within the scope of this project.  

 

Figure 6  Capacity-Disruption Explained by Phenomena Other than Rainfall 

3.1.3 Disruption PDF Assignment to Links 

Assumption 4. was next used to benchmark or anchor the extreme right-hand edges 

of the major-disruption functions with the actual capacity-disruption observed on 

each link for the 24-hour storm-recurrence level experienced in that county during 

Hurricane Irene. This process consisted of shifting the major-disruption functions 

horizontally, depending on the level of disruption observed on the link. This shifting 

“anchored” the data point representing the real-world flooding experienced during 

Hurricane Irene, effectively calibrating the major-disruption function to align 

exactly with real-world damage data. 

The first step in this anchoring process was to calculate the 24-hour recurrence 

storm depth actually experienced in each county in Vermont during Hurricane 

Irene, as a percentage of the 100-year storm depth (Table 10). 

Travel-Speed Distributions 

Major-Disruption PDFs (Synthetic 
Flood-Recurrence Distributions) 

Synthetic Rainfall-Intensity Distributions 

 
 
 

Minor  
Roadway  
Capacity  
Disruptions  
Explained by  
Phenomena  
Other than Rainfall 
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Table 10  Rainfall Depths Relative to the 100-Year, 24-Hour Storm Experienced During 

Hurricane Irene 

County 
Date of Peak 24-

Hour Rainfall 
Depth 
(in.) 

100-yr 24-hr 
Storm Depth (in.) 

Peak Rainfall % 
of the 100-Year 

Storm 

Addison  20110829 5.1 5.4 94% 

Bennington  20110831 5.6 6.8 82% 

Caledonia  20110829 6.4 5.4 118% 

Chittenden  20110829 4.9 5.2 93% 

Essex  20110829 4.3 5.1 84% 

Franklin  20110905 5.3 5.2 101% 

Grand Isle  20110829 5.4 5.1 105% 

Lamoille  20110829 5.4 5.4 100% 

Orange  20110829 5.7 5.7 100% 

Orleans  20110829 7.4 5 148% 

Rutland  20110829 6.2 5.9 105% 

Washington  20110828 5.3 5.4 98% 

Windham  20110829 4.9 6.8 72% 

Windsor  20110829 6.1 5.9 103% 

The anchoring was calculated separately for links which experienced 100%, 75%, 

and 50% capacity loss during Hurricane Irene, and consisted of adjusting the 

capacity-disruption (x-value) in the disruption function that represents a major 

disruption for these links: 

Equation 5: 𝑃 =  𝐹 ∙ 𝜆 ∙ 𝑒−𝜆(𝑥+𝑎100)  

Where F is the daily probability of rainfall  (“Days of Rain” from Table 3 divided by 

365) and a100 is an adjustment for the specific total rainfall relative to the 100-year 

storm experienced during the Hurricane Irene event, by County. a100 is found by 

setting x = 1 and setting P = [the Hurricane Irene % of the 100-year, 24-hour storm 

depth, by county]. 

The parameters and constants associated with the links in the network where 100% 

capacity-disruption from Hurricane Irene was observed are given in Table 71.  

 

 

 

 

 

Table 71  Parameters and Constants for Links which Experienced 100% Capacity Loss 

County λ F 
Irene % of the 100-

Year Storm (I) 
x value for I % of the 
100-Year Storm (D) 

a100, such that 
P(x) = D at x = 1 
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County λ F 
Irene % of the 100-

Year Storm (I) 
x value for I % of the 
100-Year Storm (D) 

a100, such that 
P(x) = D at x = 1 

Addison  5.5 0.268 94% 1.1360 0.1360 

Bennington  6.6 0.266 82% 0.9536 -0.0464 

Caledonia  5.8 0.279 118% 1.1256 0.1256 

Chittenden  5.6 0.293 93% 1.1170 0.1170 

Essex  5.4 0.293 84% 1.1328 0.1328 

Franklin  5.7 0.268 101% 1.1150 0.1150 

Grand Isle  5.7 0.205 105% 1.1218 0.1218 

Lamoille  5.7 0.293 100% 1.1133 0.1133 

Orange  6 0.274 100% 1.0662 0.0662 

Orleans  5.5 0.326 148% 1.2185 0.2185 

Rutland  5.9 0.266 105% 1.0896 0.0896 

Washington  5.5 0.268 98% 1.1436 0.1436 

Windham  6.6 0.274 72% 0.9339 -0.0661 

Windsor  5.9 0.279 103% 1.0864 0.0864 

For example, a link in Windham County that was flooded to 100% closure during 

Hurricane Irene was “anchored” at the capacity-disruption level of 100% for the 

point on the major-disruption function that represents 72% of the 100-year, 24-hour 

storm depth. 

For links which experienced roughly 75% capacity loss during Hurricane Irene, the 

right edge of the major-disruption PDF was anchored with the 75% capacity 

disruption for the storm level actually experienced in that County during Hurricane 

Irene: 

Equation 6: 𝑃 =  𝐹 ∙ 𝜆 ∙ 𝑒−𝜆(𝑥+𝑎75)  

a75 is found by setting x = 0.75 and P = [the Irene % of the 100-year, 24-hour storm 

depth, by county]. The constants associated with the links where 75% capacity-

disruption from Hurricane Irene was observed are given in Table 82. 

 

 

 

 

 

 

 

Table 82  Parameters and Constants for Links which Experienced 75% Capacity Loss 

County λ F a75 

Addison  5.5 0.268 0.3860 
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Bennington  6.6 0.266 0.2036 

Caledonia  5.8 0.279 0.3756 

Chittenden  5.6 0.293 0.3670 

Essex  5.4 0.293 0.3828 

Franklin  5.7 0.268 0.3650 

Grand Isle  5.7 0.205 0.3718 

Lamoille  5.7 0.293 0.3633 

Orange  6 0.274 0.3162 

Orleans  5.5 0.326 0.4685 

Rutland  5.9 0.266 0.3396 

Washington  5.5 0.268 0.3936 

Windham  6.6 0.274 0.1839 

Windsor  5.9 0.279 0.3364 

For links where roughly 50% capacity loss during Hurricane Irene was observed, the 

right edge was anchored with the 50% capacity disruption level: 

Equation 7: 𝑃 =  𝐹 ∙ 𝜆 ∙ 𝑒−𝜆(𝑥+𝑎50)  

a50 is found by setting x = 0.50 and P = [the Hurricane Irene % of the 100-year, 24-

hour storm depth, by county]. The constants associated with 50% capacity-

disruption from Hurricane Irene are shown in Table 13. 

Table 93  Parameters and Constants for Links which Experienced 50% Capacity Loss 

County λ F a50 

Addison  5.5 0.268 0.6360 

Bennington  6.6 0.266 0.4536 

Caledonia  5.8 0.279 0.6256 

Chittenden  5.6 0.293 0.6170 

Essex  5.4 0.293 0.6328 

Franklin  5.7 0.268 0.6150 

Grand Isle  5.7 0.205 0.6218 

Lamoille  5.7 0.293 0.6133 

Orange  6 0.274 0.5662 

Orleans  5.5 0.326 0.7185 

Rutland  5.9 0.266 0.5896 

Washington  5.5 0.268 0.6436 

Windham  6.6 0.274 0.4339 

Windsor  5.9 0.279 0.5864 

For links which experienced no flooding during Hurricane Irene, the major-

disruption functions were removed, indicating that flooding was not directly 

observed during the100-year Hurricane Irene storm event, and the risk of future 

capacity disruptions over the 40% level resulting from summertime rainfall and 

flooding events are negligible. 
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After evaluating the minor-disruption Gaussian functions for x from 0.0 to 0.39 and 

the major-disruption exponential functions for x from 0.39 to 1.00, the set of curves 

shown in Figure 7a, 11b, 11c, and 11d result. These 64 curves represent the 

potential susceptibilities of every link in the Vermont’s  federal-aid road network to 

summertime flooding (DT 1 and DT 2) and rainfall intensity (DT 3). Each of these 

links was assigned one of the curves.  

 
a 

 
b 
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c 

 
d 

Figure 7  Disruption Functions for Roads Impacted 100% (a), 75% (b), 50% (c), and 0% (d) 

by Hurricane Irene 
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3.2 Calculation of Link-Specific NRI Distributions and TLSRs 

Once a particular disruption curve was paired to each link in the federal-aid road 

network, the modified formulation of the NRI (Sullivan et. al., 2010) was applied 

using capacity-disruption levels between 5% and 100% in increments of 5%. The 

NRI is the change in total vehicle-hours of travel (VHT) on the transportation 

network resulting from the disruption of an individual link (Scott et al., 2006), and 

is used to quantify the travel time impact of disruptions in the calculation of our 

risk metric, the total link-specific risk (TLSR).  

Disruption in this context is defined as capacity-reduction. To calculate the NRI, 

first total VHT is calculated for the statewide road network: 

Equation 8: 𝑐 =  ∑ 𝑡𝑖𝑥𝑖

𝑖∈𝐼

  

ti is the travel time across link i, in hours per trip, and x i is the flow on link i at 

equilibrium. I is the set of all links in the federal-aid road network throughout the 

state.  

Second, total VHT after link a is disrupted and system traffic has been re-assigned, 

including re-routing, is found: 

Equation 9: 𝑐𝑎 =  ∑ 𝑡𝑖
(𝑎)

𝑥𝑖
(𝑎)

𝑖∈𝐼/𝑎

  

ti(a) is the new travel time across link i when link a has been disrupted, and x i(a) is 

the new flow on link i. Notice the disruption of link a has the potential to affect 

travel time on all links.  The NRI of link a is then calculated as the increase in total 

VHT over the base case: 

Equation 10: 𝑁𝑅𝐼𝑎 =  𝑐𝑎 − 𝑐  

The application of the NRI requires the specific definition of an analysis period and 

an associated origin-destination demand matrix (Sullivan et. al., 2010).  For this 

project, since the Vermont statewide travel model was used, the analysis period is 

one day, to align with the analysis period of the model, and the O-D matrix 

associated with the statewide model is used. 

Capacity disruption curves between 5% and 100% were calculated from the curves 

in Figure 7. The following formula was then used to calculate the TLSR for link a: 

Equation 11: 𝑇𝐿𝑆𝑅𝑎 =  ∑ 𝑁𝑅𝐼𝑎
𝑥 ∙ 𝑝𝑎

𝑥

𝑥

  

The TLSR revealed which links, or roadway segments, in the federal-aid road 

network posed the greatest risk to Vermont from the threat of extreme summertime 

rainfall events. The distribution of TLSR values across the s tate was explored 

graphically to better understand the general locations of the highest-risk elements 

in the network. 

Using the TSLRs and the NRIs for each link, competing rank-orders were developed 

and compared statistically, along with the raw data. Due to concerns about the 
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influence of the considerable number of zeros in both data sets, the statistical 

analyses were repeated for the entire data sets (4,188 data points each) and for the 

data sets with the zeros removed (1,843 points each). For the comparison of the 

ranks, the removal of zeros eliminates the problem of dealing with ties in the raw 

data, which also results in tied-ranks. 

Statistical analyses conducted on the two sets of data consisted of finding the 

Pearson product moment correlation coefficient to look for the strength of the 

relationship between the two data sets, and then conducting the Wilcoxin signed-

ranks (WSR) test to assess whether the mean-ranks of each population differ. 

4 Results 

Summary statistics for the TLSRs and the sums of the NRIs for each data set are 

provided in Table 104. 

Table 104  Summary Statistics for TLSR and Sum of NRIs Results 

 Statistic 

Full Data Set Non-Zero Data Set 

TLSRs Sum of NRIs TLSRs Sum of NRIs 

N 4,188 4,188 1,941 1,941 
Minimum -6.54 -5,975 -6.54 -5,975 
Maximum 148.75 428,502 148.75 428,502 
Mean 0.36 892.09 0.78 1,617 
Std. Dev. 3.64 7,565 5.31 11,051 

Figure 82 illustrates where the roadway links with the highest TLSR values are 

located.  
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Figure 82  Link Specific TLSR Values in Vermont 
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Links are highlighted with a color scheme developed using the Jenks optimization 

method, a data-clustering method designed to determine the best arrangement of 

values into different classes. The Jenks method minimizes each class’s average 

deviation from its mean, while maximizing each class’s deviation from the means of 

the other classes. In other words, the method seeks to reduce the variance within 

classes and maximize the variance between classes (Jenks, 1967). Using this 

method, the classes of extremely high TLSR values were isolated. The blue ovals in 

Figure 12 indicate the locations of the highest TLSR values, which includes all links 

with a TLSR over 28. The highest values mostly occur along the two primary east-

west routes in the central and southern parts of the state,  U.S. Route 4 and State 

Route 9, respectively. 

Figure 93 provides a close-up view of State Route 9 corridor where these risks are 

present, with the Hurricane Irene FHWA DDIRs. 

 

Figure 93  State Route 9 Corridor with TLSR Values and DDIR Locations 

In Figure 13, 100-foot ground contours are also shown, along with the areas 2,500 

feet or more above mean sea level. These features were included to provide an 

indication of the relationship between the natural landscape and TLSR in the road 

network. Both of the segments identified with the blue ovals are in areas with very 

little network connectivity, and both are heavily travelled routes serving as l inks 

that are critical to the Vermont economy. State Route 9 serves as both a local link 
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to/from the city of Bennington and a regional link between the city of Brattleboro 

and Bennington, but had to be completely closed following Hurricane Irene.   

Figure 104 shows a close-up view of the U.S. Route 4 corridor where these risks are 

present, with the Hurricane Irene FHWA DDIRs. 

 

Figure 104  U.S. Route 4 Corridor with TLSR Values and DDIR Locations 

Again, 100-foot ground contours are shown, along with the areas 2,500 feet or more 

above mean sea level. The two segments of U.S. Route 4 identified with blue ovals 

are in areas with very little network connectivity, and both are heavily travelled 

routes serving as links that are critical to the Vermont economy. U.S. Route 4 

serves as a critical regional link between the city of Rutland and points east, also 

serving travel through Vermont between New York and New Hampshire. U.S. Route 

4 also had to be completely closed following Hurricane Irene. DDIRs completed for 

these segments indicated damage indicative of a complete road closure, and 

Vermont 511 records confirmed that indication. 

On the other hand, the segments of U.S. Route 7 shown in the figure did not have 

DDIRs at all. Information on these road closures was also obtained from Verm ont 

511 records. The official October 6, 2011 map confirmed that these segments of U.S. 

Route 7 had been re-opened by then, but early indications on August 30, 2011 were 

that they were closed. 
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Table 115 provides the results of the two statistical tests conducted on the full data 

sets and the non-zero data sets. 

Table 115  Statistical Test Results 

Statistical Parameter Full Set of Data Non-Zero Data Only 

Pearson coefficient of raw data 0.06 0.05 

Pearson coefficient of ranks 0.56 0.40 

WSR T-test z-ratio 1.03 -15.64 

Critical z-ratio for p = 0.05 1.65 1.65 

The results of the analysis on the full data sets indicate that there is no 

statistically significant difference between the TLSR and the NRI, and the Pearson 

coefficient supports that there could be a relationship between the two full sets of 

ranks. However, the analysis of the non-zero data indicates that the presence of 

zeros in the full sets of data biased these findings. The WSR test on the non-zero 

data indicates that there might be a statistically significant difference between the 

TLSR and the sums of the NRIs, and the Pearson coefficient does not support that 

there could be a relationship between the two.  Therefore, the more likely conclusion 

is that no relationship exists between the raw data or the rankings produced by the 

TLSR and the sums of the NRIs. This finding indicates that the TLSR may be a 

valuable new tool for assessing risk to transportation network infrastructure.  

5 Conclusions and Future Work 

This project introduces a practical method to calculate risks posed by to roadway 

infrastructure by summertime rainfall and flooding events. However, the 

calculation of risk requires that a very specific threat-framework be established in 

order to determine the appropriate set of probabilities for a range of capacity-

disruptions. Understanding the complete set of probabilities across the full  range of 

capacity disruption values required the modeling of two distinct disruption ranges 

(major and minor) with “split” disruption functions.  

For three different disruption types (DT 1, DT 2, and DT 3), the threat of 

summertime flooding was estimated using these “split” disruption curves, which 

consisted of a set of estimates Gaussian PDFs and a set of exponential PDFs. 

Beginning at the 0% disruption level, the probability of disruption from DT 3 

increases by County with the more common, moderately-intense precipitation 

events. Between 5% and 10%, though, this probability reaches a peak with the most 

frequent rainfall intensities at the mean of the Gaussian PDF. As the frequency of 

precipitation-intensity wanes, the frequency of these precipitation-related 

disruptions (DT 3) also wanes and eventually disappears beyond 20%.  

Then, at the 40% disruption level, roadways susceptible to flooding ( DT 1 and DT 2) 

have a sharp increase in their probability of disruption. This new section of the 

disruption curve represents major capacity-disruptions from flooding, and is 

assumed to follow an exponential distribution based on the known recurrence 

probabilities of significant storm depths. These probabilities decay as an  

exponential based on the daily frequency of a  24-hour rainfall event relative to the 

Hurricane Irene event. As significant, recurring 24-hour storm events increase in 
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magnitude, the severity of their capacity-disruption increase as well, but their 

frequency decreases exponentially.  

We used the sets of curves to represent the susceptibilities of links in the federal-

aid road network in Vermont to calculate the TLSR, which focused on the roadways 

that are most susceptible to disruption under the summertime flooding and rainfall 

intensity threat framework. An approach similar to the one undertaken in this 

project can be implemented for other states or municipalities where accurate travel -

demand information is available, once a threat-framework has been established. 

The use of the TLSR as a planning metric allows decision-makers to focus on 

roadway segments that are most critical  to the planning region under a given 

threat-framework.  

Future work should be conducted to better understand the roadway characteristics 

that might be associated with susceptibility to major disruptions. The team will 

need better information on the engineered characteristics of the roadway and the 

characteristics of the paved surface to truly understand if there is a relationship 

between these characteristics and disruptions experience during Hurricane Irene.  

In this study, the team relied entirely on the reports of damage from Hurricane 

Irene to calibrate the disruption curves, but it is likely that other factors will 

contribute to the future susceptibility of roadways that may not have been damaged 

during that event. It is possible that future disruptions caused by culvert and 

bridge blockage with debris will not be consistent with the spatial locations of those 

disruptions from Hurricane Irene. “Chaining” failures of culverts may exacerbate 

disruptions in the future due to the stream and river damage that was caused by 

Hurricane Irene. Future research can also focus more on using stream geomorphic 

assessment data to better understand the potential for more extreme and 

widespread disruptions than what was experienced during Hurricane Irene.  

Finally, future research can also be conducted to establish a similar methodology 

which can be used where travel-demand information is not available, or where risks 

need to be assessed for all public roads in the region, not just those in the federal -

aid network. This type of methodology may need to incorporate different measu res 

of consequences of disruption, like the critical-closeness accessibility (CCA) metric 

established recently by Novak and Sullivan (2014).  
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Appendix A – Sample Detailed Damage Inspection 

Report 
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Appendix B – Extracted Data for State Route 9 from the 

Vermont 511 


