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Abstract 
Made possible by the collection of on-board tailpipe emissions data, this research identifies road 
and driver factors that are associated with a relatively understudied tailpipe pollutant from light-
duty vehicles: ultrafine particle number emissions.  High emission events (HEE) of ultrafine 
particle number (PN) emissions occurred most frequently at locations with steep upgrades or 
locations that required moderate to rapid accelerations (>3 mph/s).  The analysis revealed that 
less than 2% of the time driving was responsible for almost a third of all ultrafine particles 
emitted along the designated 17-mile test route for a sample of 22 drivers.  Variables identified 
in a generalized linear model as significant to PN emissions include measures of engine speed 
(RPM), driver behavior (speed and acceleration rates), and road geometry (grade).  These factors 
account for approximately 61% of the variability measured.  Few modal emissions models 
estimate PN emissions; however, this research has revealed that the same predictor variables 
used to model gas pollutants are significant predictors of PN emissions.  Therefore, the addition 
of PN emissions estimates to existing models would require little effort if these relationships 
were developed with larger datasets.  This project also documented additional challenges related 
to on-board PN data collection related to temperature, humidity, and background PN 
concentrations.  Finally, a large amount of the variation in light-duty PN emissions remains 
unexplained, suggesting a need for more comprehensive on-board datasets, including data on 
particle size distribution. 
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1.0 Introduction 

State-of-the-art models for vehicle tailpipe emissions use a one-second vehicle operating 
mode as a main predictor for gas-phase pollutants (CO, HC, NOx).  Mode or operating bin is 
often quantified as a function or category of vehicle specific power (VSP), velocity, acceleration, 
and grade.  Modal emissions models, such as CMEM, VT-MICRO or EPA’s MOVES, can be 
used to estimate emissions produced by a vehicle fleet or the transportation network as a whole 
(Rakha et al 2004, Barth et al. 2001).  Given the complexity of delineating time- and space-
resolved operating mode of vehicles within the large and variable transportation system, there is 
a relative dearth of data, especially on-board real-world data for light-duty vehicles.  Ideally, data 
that describes the spatial distribution of vehicle operating mode and the associated emissions are 
collected together.  These data, especially particle number or particulate mass, are rarely 
collected due to the intensive personnel time and equipment needs; furthermore, only recently 
have portable emissions measurement systems (PEMS) become available to quantify particle 
number emissions during real-world vehicle travel.  This study includes a large dataset of  
tailpipe gas and particle number emissions for a single vehicle operated by 22 drivers over a 
specified driving route. 

Models and research efforts have typically focused on the EPA’s regulated pollutants, 
including total particulate matter (PM) and increasingly, carbon dioxide, but have neglected to 
consider the number of individual particles, especially distinguished by size.  The number of 
particles in the ultrafine (diameter < 100 nm) size range is critical when considering public 
health impacts in part due to toxicity, but also because a high proportion of ultrafine particles 
quickly reaches the bloodstream and is not removed by the respiratory system (Nemmar et al. 
2002).  

Thus, the distinction between PN and PM emissions is critical to public health impacts, 
yet remains relatively understudied.  PN refers to the number of particles emitted; the majority of 
regulation and research quantifies PM, which only describes the total mass-based amount of 
particle emissions to which the ultrafine particles contribute little.  A measure of PM per unit 
time or distance could signify either a small number of large particles or a very large number of 
small particles. 

In order to understand the relationship between air quality and the transportation network, 
it is essential to consider the combination of vehicle operating mode, tailpipe emissions, 
environmental conditions, and spatial location data.  This study is focused on total particle 
number (PN) in the 3 nanometers to 3 micrometers (or 3-3,000 nm) particle diameter range, 
using second-by-second data collected from one instrumented light-duty vehicle.  We include the 
following data collected on a one-second basis: vehicle velocity and acceleration, PN tailpipe 
emissions, temperature, humidity, and vehicle location.  This study’s first objective is defining 
and quantifying high PN emission events within the transportation network and identifying 
spatial patterns and associated factors in PN emissions rate for a single 17-mile route driven 
multiple times by 22 volunteers in the same vehicle.  These high emission events are not 
modeled in current regional emissions models despite their significant contributions to overall 
emissions and their potential to significantly degrade air quality.  The second objective of the 
paper is to consider the one-second PN emission rates and their relationship to vehicle velocity, 
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acceleration, VSP, road grade, and engine load.  Advancing our understanding of these 
relationships is critical to achieving more accurate estimates of the environmental impacts for 
alternative facility designs and traffic control strategies. 

2.0 Background 

This paper aims to contribute to the understanding of on-road particle number emissions from 
light-duty vehicles using on-board tailpipe data collection.  Therefore, background studies 
related to particulate matter (PM) and its regulation as well as more recent efforts to consider 
particle number (PN) are summarized.  The second subsection of background addresses data 
collection methods for tailpipe emissions study. 

2.1 Particulate Matter (PM) and Particle Number (PN) Emissions 

Particulate matter is defined as a complex mixture of solid and liquid particles that are 
suspended in air (Kittelson, 1998).  PM can be generated from many different sources, both 
natural and manmade.  In urban areas, local air quality is greatly degraded due to the 
transportation network (Weijers et al., 2004).  Particulate matter and the number of particles are 
increasingly being recognized as an important part of this transportation system problem (Wang 
and Gao, 2011; Johnson and Ferreira, 2001; Harrison and Jones, 2005). 

The combustion of fuel in a vehicle produces very small (chiefly <1 µm) particles that are 
then expelled from the combustion chamber and into the exhaust system.  In the exhaust system, 
primary nanoparticles of ~10 nm diameter can link together with one another to form particle 
chains and in the process become interlocked with volatile hydrocarbons and sulfates (Heywood, 
1988).  This makes particles themselves difficult to study;  the sampling condition, time and 
location of measurement are important study design considerations. 

In the United States, National Ambient Air Quality Standards (NAAQS) have targeted 
only PM emissions (EPA, 2004).  To achieve the NAAQS, federal regulations have called for the 
reduction of diesel vehicle PM emissions.  For example, 2007 model-year heavy-duty diesel 
engines were required to meet PM mass-based emission rates of 0.01 g/hp-hr.  This represented a 
90 percent reduction in PM mass from the 2004 rate.  The EPA placed these standards on PM 
tailpipe emissions for heavy-duty diesel vehicles to  reduce ambient PM concentrations.  
However, note that these standards are based on particle mass emitted from the engines of newly 
manufactured heavy-duty engines.  There are currently no PM tailpipe emission standards for 
light-duty gasoline vehicles.  These mass-based emission standards focus primarily on particles 
emitted by diesel engines because diesel engines typically emit 10–100 times more total 
particulate mass than light-duty engines (Kittelson, 1998).  Note further that current U.S. vehicle 
emission limits  do not address the number of particles of any size, but that the 2012 European 
Union emission standards do include particle number. 

The majority of the attention to air quality has been given to gas-phase pollutants (CO, 
NOx, HC, VOCs and Ozone).  However, PM has gained a great deal of attention since being 
listed as one of the EPA’s six criteria air pollutants (EPA, 2004).  Measurement of PM is 
challenging, and uncertainty remains about the details of the formation and transformation 

UVM TRC Report # 14-006



 3 

processes (Heywood, 1988; Burtscher, 2001).  The exact processes that produce high numbers of 
particles emitted from tailpipes are not well known for diesel engines and even less known for 
light-duty engines.  Recent research suggests that PM is having a significant impact on public 
health and the quality of life in urban areas; especially in young children and the elderly (Riedl 
and Diaz-Sanchez, 2005; Harrison and Yin, 2000; HEI, 1999; HEI, 2003; Englert, 2004).  When 
considering the impacts of PM on health, particle size is very important.  Many health-related 
studies conclude that there is a link between fine and ultrafine particles (less than 2.5 
micrometers and less than 100 nanometers, respectively) and a host of respiratory and circulatory 
conditions (Dockery et al., 1993; Pope et al., 1995 Seaton et al., 1995).  This suggests a need to 
move from PM-based research to PN-based research and data collection for both heavy- and 
light-duty vehicles.   

Kittelson, along with most other researchers, focuses on diesel particulate emissions, 
primarily because diesel engines produce more PM than spark ignition engines.  However, these 
researchers have started to document important findings with implications for PN.  For example, 
Kittelson et al. (2006) analyzed data obtained in the Northern Front Range Air Quality Study 
(NFRAQS) and reported that a spark ignition vehicle contributed 2.5 to 3 times the amount of 
PM2.5 (the mass of particles of less than 2.5 micrometers diameter) emissions when compared to 
a diesel vehicle.  The particles emitted from spark ignition vehicles range in size from 10 to 80 
nm.  They are deemed to mostly be a result of incomplete fuel combustion in the engine and are 
very often coated with various organic compounds (Hildemann et al., 1991; Ristovski et al., 
2005; Kleeman et al., 2000).  While light-duty particulate mass emissions are less than those 
found in diesel exhaust on a per-vehicle basis, it does not mean that we can ignore this source of 
particle emissions.  Furthermore, Lawson and Smith (1998) conducted dynamometer tests of in-
use vehicles in Denver, CO and concluded that in real-world driving conditions, the gasoline-
powered vehicle population generated three times more fine PM emissions by mass than the 
diesel-powered vehicle population.     

When one moves to consider these smaller particles, the distinction between mass and 
number becomes more critical because the smaller particles are greater in number and do not 
contribute significantly to total particulate mass.  Particle number (PN) emissions remain 
unregulated, and light-duty vehicles remain understudied due to their low mass PM emissions 
compared to diesel engines.  Kittelson et al. (2006) reports that there is little to no correlation 
between mass of particle emissions and number of particle emissions.  One on-board, on-road 
PN emissions study conducted at the University of Connecticut in cooperation with Connecticut 
Transit (CT Transit) (Vikara et al., 2007) investigated real-world emissions of four in-use CT 
Transit buses (two diesel and two diesel-electric hybrid).  No significant difference in ultrafine 
PN emissions was found betweenbus type, but road grade was noted as a significant factor when 
considering PN emissions.  Robinson and Holmén (2011) used similar methods to collect on-
board on-road data for both a conventional and hybrid light-duty vehicle and illustrated that PN 
size distributions vary with operating conditions.  The same dataset indicated that elevated PN 
emissions are associated with engine start events in light-duty vehicles (Robinson et al., 2010).   

Given the challenges of measuring PM and PN, researchers have attempted to find 
relationships between particle and gas emissions with mixed results.  Qu et al. (2008) used on-
board data and found promising results suggesting that PN can be modeled as a function of gas 
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emissions that are more routinely measured.  Others (Mazzoleni et al., 2004; Harrison and Jones, 
2005) found weak correlations between particle and gas emissions using remotely sensed data. 

In summary, we do not have adequate knowledge regarding the production of PN 
emissions from light-duty vehicles and the factors affecting PN emissions levels.  This research 
focuses on measuring the number of particles in the ultrafine particle size ranges because they 
have been shown to have the most significant impact on human health yet still remain 
unregulated.  Moreover, we focus on light-duty as opposed to diesel ultrafine particle number 
emissions because even though data remains limited, these emissions may be an important future 
policy consideration related to public health. 

2.2 Data Collection Methods 

Conventional vehicle emissions data collection has typically been conducted in the 
laboratory using chassis dynamometers (Frey et al., 2003; Joumard et al., 1995).  A significant 
amount of laboratory dynamometer emissions data has been collected thus far over limited 
ranges of operating conditions (determined by a programmed speed profile known as a driving 
cycle).  Although, the full range of real-world driving conditions are difficult to replicate in a lab 
setting, these data have formed a solid base for the first operating mode emissions models, 
including models for PM (North et al., 2006).   

Over the years, researchers have turned to other methods, including remote roadside 
pollutant measurement, to collect real-world emissions data (Johnson and Ferreira, 2001; 
McGregor et al., 2003).  On-road remote sensing devices measure the concentration of pollutants 
in the exhaust plume from the tailpipe of vehicles as they pass through an infrared or UV light 
beam emitted by the emissions monitoring device located on the side of a roadway (Singer and 
Harley, 2000).  However, remote sensing collects only a finite snapshot of a vehicle’s tailpipe 
emissions and is limited in its ability to collect data specific to the vehicle, driver and second-by-
second sustained operation of the vehicle (Singer and Harley, 2000).   

On-road, on-board emissions monitoring is the most desirable method of collecting real-
world tailpipe emissions data due to its ability to collect comprehensive data about the driver, 
vehicle, roadway and engine operating conditions simultaneously (Frey et al., 2001; Frey et al., 
2003).  Most studies using on-road on-board techniques to date have focused on heavy-duty 
diesel vehicles including modal emissions models for PN (Jackson and  Holmén, 2009; Sonntag 
and Gao, 2009; and Kamarianakis et al., 2011).  Domínguez-Sáez et al. (2012) focused on a 
light-duty diesel and notably included particle size distribution. 

Even though measuring on-board vehicle emissions allows for real-world second-by-
second collection of vehicle operation and emissions output, there are many challenges in 
developing an accurate method for data collection.  These include: time synchronization, 
adequate power supply, instrument sensitivity to motion and vibration, instrument size, 
instrumentation drift, and instrument errors.  Furthermore, challenges in on-board emissions 
testing are caused by the use of adapted technology and instruments originally intended for 
laboratory use.  The instrumentation used to collect the data for this analysis was developed and 
tested for this experiment and many of the challenges identified above were overcome.  In the 
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results section of this paper, we identify atmospheric conditions as a remaining challenge that 
requires more consideration.  The data collection procedures for this project are discussed below, 
but are also described in greater detail elsewhere (Jackson et al., 2006). 

3.0 Data and Methodology  

3.1 Instrumentation 

 The objectives of this study were to identify spatial patterns of high PN emission events 
and to consider PN emissions as a function of second-by-second vehicle operations and road 
characteristics.  Therefore, a diverse set of volunteers was recruited to repeatedly drive an 
identical test route in order to include a range of driver behaviors.  A single vehicle was used to 
control engine factors and ease the challenges of in-vehicle equipment installation.  The data 
used in this analysis were collected between October 11th and October 27th, 2006 using an 
instrumented light-duty minivan1 driven by 22 different volunteer drivers over a 17-mile 
predefined test route in northeast Connecticut (Figure 1).  The route chosen for this research was 
selected to contain multiple road types (freeways, rural two-lane highways, and local stop-
controlled roads) that would require drivers to use different driving patterns while traveling.   

A 1999 Toyota Sienna minivan (7 years old at the time of experiment, odometer ~ 120,000 
miles) was instrumented to simultaneously collect spatial location, vehicle/engine operating 
parameters, and tailpipe emissions data (Table 1).  Spatial data and vehicle speed data were 
collected using a Garmin 16 HVS Global Positioning System (GPS) antenna on Fugawi 
navigation software.  An AutoEnginuity ST01 ScanTool collected vehicle velocity, engine load, 
and engine RPM from the vehicle’s engine computer.  Vehicle acceleration data were collected 
using a Crossbow CXLO2LF3 accelerometer mounted on the roof.  This accelerometer is a 
three-axis accelerometer with a measurable range of –2 g2 to +2 g and a 50 Hz response rate.  
The accelerometer selected for this research has a low noise density and a reported accuracy of ± 
0.01 volts (0.2 mph/s).  The GPS receiver and ScanTool were powered by the vehicle, and the 
accelerometer was powered through the data collection port of a desktop computer.     

  

                                                
1 1999 Toyota Sienna, mileage ≈ 120K, 3.0 liter V6, automatic, Unloaded weight: 3,890 lbs    
2 g= acceleration due to gravity  32.2 ft/s2 (9.81m/s2)   
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Table 1: Equipment and Recorded Variables  
 

Instrument Parameters Measured Recording 
Frequency 

Accelerometer Instantaneous acceleration (g) 10 Hz   
ScanTool Velocity (mph) and Engine RPM 4 Hz 
Garmin 16 HVS 
GPS 

Vehicle position (latitude, longitude)  
Velocity  (mph) 

1 Hz 

Canon Digital Video 
Camera 

Forward windshield view 30 Hz 

Condensation 
Particle Counter 

Ultrafine particle number concentrations (#/cm3) 
TSI Model 3025A, 3 – 3000 nm aerodynamic particle 
diameter 

1 Hz 

Thermocouples Exhaust temperature at tailpipe and in dilution system (oC) 10 Hz 

Differential Pressure 
Transducer 1 

Exhaust flow rate: Range: 0-10 volts corresponds to 0-30 
inch water (linear).  Calibration curve: (V=volts) 
Log10(Q (L/m)) = 0.74141*log10(volts) + 3.2165 

10 Hz 

Differential Pressure 
Transducer 2 

Exhaust flow rate: Range: 0-10 volts corresponds to 0-5 
inch water (linear).  Calibration curve: (V=volts) 
Log10(Q (L/m)) = 0.5842*log10(volts) + 2.814 

10 Hz 

Differential Pressure 
Transducer 3 

Exhaust flow rate: Range: 0-10 volts corresponds to 0-1 
inch water (linear).  Calibration curve: (V=volts) 
Log10(Q (L/m)) = 0.5925*log10(volts) + 2.449 

10 Hz 

Differential Pressure 
Transducer 4 

Exhaust flow rate: Range: 0-10 volts corresponds to -0.125 
to 0.125 inch water (linear).  Calibration curve: (V=volts) 
Log10(Q (L/m)) = 2.0337*log10(volts) + 0.5917 

10 Hz 

 

In order to collect accurate particle number data, a data collection system had to be 
constructed (Qu et al., 2008).  This system consisted of a TSI, Inc. model 3025A ultrafine 
Condensation Particle Counter (CPC) (3-3,000 nm size range) and a Matter Engineering MD19-
2E rotating disk (six 0.04 cm3 cavity, 0.15 Hz rotation) exhaust mini-diluter.  A heated exhaust 
line was also used to transport the sample from the tailpipe into the dilution system.  To monitor 
exhaust temperature entering the dilution system, an Omega model G type-K thermocouple was 
located at the inlet of the mini-diluter prior to dilution with HEPA-filtered, heated (80°C) 
ambient air from the mini-diluter.  The range of particle concentration detection extends from 
less than 0.01 particles/cm3 to 9.99x104 particles/cm3.  The CPC reports particle concentrations 
at 10 Hz.  However, concentrations were recorded using Aerosol Management Instrument 
software (version 5.2.0) at 1 Hz intervals using a running average.    

 

UVM TRC Report # 14-006



 7 

 

The emissions monitoring devices were connected to the vehicle’s tailpipe via an adapter.  
The tailpipe adapter (Qu et al., 2008) contained five ports with the following functions: 1) an 
Omega type-K model-E thermocouple to measure tailpipe exhaust temperature; 2) a stainless 
steel Swagelok fitting to transport the exhaust to the mini-diluter; 3) a stainless steel Swagelok 
fitting to transport the exhaust to an Autologic 5-Gas analyzer; 4) an Omega model PX181 
pressure transducer to measure total exhaust pressure; and 5) United Sensor Corporation pitot 
tube to measure the exhaust flow rate by recording differential pressure.  The pitot tube was 
connected in parallel to four different differential pressure transducers.  The last four rows in 
Table 1 describe the pressure transducers and include the calibration equations used to convert a 
recorded voltage to exhaust flow rate in Liters/minute.  The tailpipe exhaust temperature and 
pressure readings were recorded at 10 Hz using National Instruments Labview 7.0 software.  In 
order to power all the instruments in the minivan, two marine batteries and two large deep-cycle 
RV batteries were connected to power inverters. 

3.2 On-Board On-Road Data Collection 

Twenty-two drivers were recruited from the University of Connecticut community via 
email and personal communication.  All drivers were asked to drive the route at least twice in a 
row, resulting in a minimum of 3,200 one-second data records per driver.  However, there were 
some drivers that volunteered to drive the test route more than twice.  One volunteer drove the 

Figure 1: Connecticut Data Collection Test Route 
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test route 10 times, 3 volunteers drove 4 replicates, and the other 18 drivers drove 2 test runs 
consecutively.  These drivers included undergraduates, graduate students, and faculty members 
with between 1 and 40 years of driving experience.  

To ensure data consistency, a strict setup and warm-up procedure was created.  Each run 
began with the synchronization of the laptop clock with the GPS.  The drivers were then allowed 
to practice driving the minivan in a parking lot until they were comfortable with the vehicle.  
Then a research assistant seated in the passenger seat directed the driver along the test route.  The 
drivers were advised to drive the test route as they would normally drive and that they were free 
to stop driving at any time if they felt uncomfortable driving the vehicle.  Comparisons between 
runs discussed below and elsewhere (Jackson and Aultman-Hall, 2010) indicate differences in 
driving style between drivers, but consistency for each individual driver. 

In addition to the emissions and vehicle operating data that were collected by the research 
team, road grade data were also collected.  The Connecticut Department of Transportation 
(ConnDOT) collected these data by using an ARAN photologging van (Roadware, 2007).  Grade 
and curvature data were collected every 10 meters along the entire length of the test route.  Using 
the GPS location information in the emissions dataset and the GPS data from the ARAN van, the 
geometry data were added to the emissions dataset using ArcGIS and a spatial join.  Therefore, 
every record in the emissions dataset was assigned a grade (in percent) and horizontal curvature 
(radius in meters) based on the ARAN data point that was closest to it.  Despite its known 
importance, road grade is not frequently available in on-road studies of emissions. 

3.3 Data Tabulation 

The data from each instrument were merged into one master database.  Other research 
studies have identified surrogate variables that can be calculated to describe how a vehicle is 
operating.  One such variable is vehicle specific power (VSP).  VSP is a measure of engine 
power demand that is calculated from the measured velocity, acceleration, and road grade.  The 
joining of road grade to the emissions dataset allows the calculation of VSP when investigating 
causal factors in vehicle emissions.  VSP is highly correlated to increased concentrations of gas 
phase vehicle emissions (Huai et al., 2005; Jimenez, 1999; Kuhns, 2004; Pokharel, 2001).  VSP 
for each second of data was calculated using Equation 1 (Jimenez, 1999): 

VSP= 1.1(v * a) + 9.81(grade * v) + 0.213(v) +0.000305(v 3)        [Equation 1] 

 
VSP = vehicle specific power (kW/ton) 
v = vehicle velocity (m/s) 
a = acceleration (m/s2) 
grade =  road grade (%) 

The calculation of VSP is useful in emissions research.  However, the calculation of a 
variable from three different sources propagates errors.  Specifically, when calculating VSP, 
potential sources of measurement error (velocity (at ± 1 mph), acceleration (at ± 0.2 mph/s), and 
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grade (no reported error) are multiplied, added, and cubed.  While the propagation of error has 
been limited by instrumentation selection, it cannot be eliminated.   

With the collection of vehicle emissions data, there are time lags that are inherent in the 
system due to the travel time of the exhaust sample from the engine through the tailpipe and 
muffler, sampling hoses, and then into the sensors.  To account for these lags in the exhaust and 
instruments, a cross correlation analysis was conducted to determine an appropriate time lag to 
be applied to a particular data series.  By comparing the covariance between two time series at 
multiple time lags, an estimate of an appropriate time lag was determined.  The results indicated 
a time lag of two seconds.  This lag was applied to the PN count data to ensure that the vehicle 
engine operations data were temporally aligned with the emissions data.  

The final step in creating the dataset for use in the analysis was calculating the PN 
emissions rate.  Using the calculated exhaust flow rate, the dilution ratio of exhaust to high 
efficiency particulate air (HEPA)-filtered ambient air of 1:64 and the temporally aligned PN 
concentration, a PN number emissions rate in particles per second (#/s) was calculated using 
Equation 2: 

PN_Rate = PN x [EX_rate *(1000cm3/L)*(1 min/60 sec)] * Dil           [Equation 2] 

PN = Particle Number Concentration (#/cm3) 
EX_Rate = Exhaust Flow Rate (L/Min) 
Dil = Dilution Ratio of raw exhaust with HEPA-filtered air = 64 

Once again, with the multiplication of data from separate instruments, errors may 
propagate. Using four differential pressure sensors at various measurement ranges limited the 
errors associated with measuring exhaust flow rate at the upper and lower limits of the sensors.   

The final dataset contains more than 105,000 complete 1-Hz observations from 22 
different drivers.  This dataset contains a rare combination of field data, including vehicle 
operation (speed and acceleration), engine operation (load and RPM), driving conditions (road 
grade and curvature), and emissions data (PN emissions rate as well as gases). 

4.0 Results  

The analysis and results of this experiment are described in four parts: 1) the repeatability and 
consistency of individual driving behavior and the associated PN emissions; 2) consistency of 
PN emissions over the course of the experiment (16 days); 3) the spatial pattern of High 
Emission Events; and 4) analysis and modeling of normalized PN emission rates as a function of 
vehicle operating parameters. 

4.1 Consistency of driving behavior and the associated PN emissions  

The data used in this research are unique because multiple drivers drove a prescribed 
real-world test route multiple times.  Having a volunteer drive the test route more than once 
allows for an analysis of the consistency and repeatability of both the driving and emissions 
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patterns.  The investigation into differences between drivers is important in understanding how 
individual driving habits affect vehicle emissions (Jackson et al., 2006).   

 
To investigate the relationship between PN emissions and driver, box plots were 

generated (Figure 2).  The median is represented by the horizontal line within the box, the mean 
is represented by a black cross, and the upper and lower quartiles are represented by the extent of 
the boxed region.  The whiskers in Figure 2 extend 1.5 times the inter-quartile range beyond the 
upper and lower quartiles.  Figure 3 displays the natural log transformed PN number emission 
rate for the same drivers.   

 

Figure 2: PN Emissions Rate by Driver 

In addition to the wide variation between drivers, note first that the mean is notably larger 
than the median in all cases.  This suggests that there are a small number of large spikes in PN 
emission rates that contribute significantly to the mean but have minimal impact on the median.  
This motivates the investigation of high emission events in the section that follows.  These large 
spikes in PN emissions are not unexpected as emissions vary with respect to vehicle and engine 
operation (Clean Air Technologies, 2001; Frey et al., 2003).  When evaluating the differences 
between drivers for raw PN there is a wide range in means and upper quartiles, but the medians 
are relatively consistent.  For the natural log of PN emissions rate, the quartiles are more 
consistent across drivers.  The log transform aids in the reduction of the variability from driver to 
driver and produces a dataset that is more normally distributed and might be more suitable to 
satisfy modeling assumptions associated with linear modeling techniques. 
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Figure 3: Log Transformed PN Emissions Rate by Driver 

 
While many drivers drove only two consecutive runs, there were four drivers that drove 

more than two runs of the test route and these test runs were not run consecutively.  Investigation 
of driving consistency and repeatability is of interest for two reasons.  First, volunteers may have 
been uncomfortable driving an unfamiliar vehicle or route.  If comfort and familiarity with the 
vehicle or test route were the issue, we would expect the vehicle operations data to be 
consistently more aggressive on the second test run.  In particular, we hypothesize that drivers 
might on average drive faster on the second run and have more rapid accelerations that are 
considered to be more aggressive.   

 
Second, emissions are presumed to vary (we do not know by how much) due to the driver 

behavior.  It is important in this research to determine to what extent driving behavior is 
consistent even for a single individual.  This affects future experimental design and also 
contributes to our understanding of emissions variation.  Considering the consistency of the 
driver behavior and consistency of emissions during repeated runs on this single route is a first 
step in establishing any source of relative variability. 

 
The hypothesis related to consistency in driving style is that multiple runs of the test 

route by the same driver should have the same or at the least similar speed and acceleration 
profile.  Then by extension, if the same driver drove the vehicle in a similar manner for each run, 
one would predict the same emissions.  Given that the environmental conditions are also unlikely 
to change dramatically from one consecutive run to the next (30 minutes), variation in emissions 
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between adjacent runs by the same driver given constant behavior would suggest that other 
uncontrolled factors play a significant role in PN emission rate.  Initial investigations using time 
series plots of speed and acceleration suggest vehicle operating trends are consistent between test 
runs (see Figure 4).  The plots in Figure 4 only represent a single driver on a small segment 
(approximately 3.5 minutes) of the test route.  The acceleration plots have more variation from 
second to second, but the overall trend is consistent between the two test runs.  

 

 
Figure 4: Temporal Patterns in Speed and Acceleration for same driver, successive runs 

 
To compare repeatability between replicate runs driven by the same driver, the individual 

replicated runs for each driver were overlaid in ArcGIS.  Then, by using a spatial join, the data 
from the two test runs were linked.  The joining process uses every point in the first run file and 
then selects a point in the second run file that is spatially closest to that individual point.  Once 
that point has been located, the data from the second run is linked to the data point of the first 
run.  Note that multiple runs for each driver may not be exactly the same because traffic 
conditions change over time and route familiarity is likely to have an impact on an individual’s 
driving style.     

 
To test the repeatability between replicate runs by the same driver aggregate statistics 

were compared using a paired student’s t-test for each driver.  To limit the impact of traffic 
conditions on this analysis, only sections of the test route where both the first and second runs 
were classified as unconstrained by a vehicle ahead or by traffic control were used (determined 
by video).  Furthermore, only sections that occurred on Route 32 and away from major 
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intersections were used in the replicate analysis.  The speed limit on this section of the route was 
40 mph. The number of drivers that had overlapping sections of unconstrained driving was 
limited, so not every driver was eligible for this analysis.  Table 2 shows the mean speeds and 
acceleration for each driver with the associated standard deviation in parentheses.  No pairs were 
different based on a 95% significance level.  Based on this, we conclude that drivers were 
consistent from run to run and assume that PN emissions between runs for a single driver would 
likewise be consistent. 
 

Table 2: Mean and Standard Deviation Between Runs for Unconstrained Driving 

 Speed (MPH) Acceleration (MPH/S) 
Driver Replicate 1 Replicate 2 Replicate 1 Replicate 2 

101 47 (5) 46 (6) -0.5 (0.9) -0.4 (1.0) 
103 42 (9) 43 (8) 0.2 (1.3) 0.1 (1.2) 
104 40 (8) 41 (7) 0.1 (1.1) 0.1 (1.0) 
105 41 (11) 40 (11) 0.4 (1.7) 0.2 (1.5) 
107 40 (6) 40 (6) -0.2 (1.0) -0.1 (1.2) 
109 43 (7) 43 (9) 0.2 (1.1) 0.3 (1.1) 
111 40 (7) 42 (6) 0.0 (0.9) 0.0 (0.9) 
112 41 (6) 40 (5) 0.2 (1.0) 0.1 (0.9) 
113 41 (7) 43 (9) 0.3 (1.0) 0.2 (1.0) 
114 41 (8) 42 (8) 0.1 (1.1) 0.0 (1.3) 
116 38 (7) 39 (7) -0.2 (0.9) -0.1 (0.8) 
117 40 (9) 39 (9) 0.1 (1.2) 0.0 (1.3) 
118 49 (3) 50 (3) 1.0 (1.4) 1.0 (1.6) 
119 42 (9) 42 (10) 0.4 (1.3) 0.3 (1.2) 
123 40 (7) 40 (8) 0.0 (1.2) -0.1 (1.3) 

 
 
4.2 Consistency of PN Emissions over time 

 
Assuming consistent driver behavior we also compared PN emissions rates by run.  

Figure 5 illustrates PN emissions by run number in the sequence the data was collected.  Ten 
boxes are colored red and correspond to the driver that drove 10 replicate runs.   Two key 
observations can be made from this figure.  The mean (+ symbol) is much larger than the median 
(line in center of box) for all drivers.  This suggests that there are outlier events of large 
magnitude and of short duration for all drivers (the high emission events discussed in section 
4.3).  
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Figure 5: PN Emissions Rate By Run Number (Outliers Not Shown)  

The second observation drawn from Figure 5 is that there is a decreasing trend in PN 
emissions rates as the run number increases (i.e., decreasing over the duration of the experiment).  
This trend is troubling because specific drivers that drove at the beginning and end of the 
experiment have dramatically different mean emissions rate.  For example, the first and last 
drivers in Figure 5 were the same person.  The first and second runs by this driver had a mean 
PN emission rate of 5.5 x 109 particles-per-second. When this driver drove two additional runs at 
the end of the experiment, the mean emission rate was 5.5 x 108 particles-per-second, which 
represents an order of magnitude decrease over the duration of the experiment. 

 
In order to rule out randomness, a regression analysis was conducted to determine if the 

decreasing mean was statistically different than zero.  The resulting model (α=0.05) has an R2 of 
0.63 and the probability that the slope was zero was less than 0.0001.  Therefore, we are able to 
reject the null hypothesis and conclude that there is a difference in PN emission rate means over 
time.  This test does not indicate what factors are responsible, but just that there is a statistically 
significant trend in the means.   

 
This difference could be due to any number of factors, some of which have implications 

for future data collection.  There are several hypotheses that could explain this drop in mean PN 
emissions rates over time.  The first hypothesis is instrument problems or error, but inspection of 
the instruments gave no evidence for this suggestion. 
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The second hypothesis involves the effects of a sitting vehicle followed by constant use 
of the vehicle over the test period.  Prior to data collection, the van sat for several weeks while 
instruments were installed and tested.  Once data collection began, the van was run almost daily 
for at least five hours of continuous operation.  The hypothesis is that particles lodged in the 
engine or exhaust system were dislodged at a higher rate in the beginning of the experiment than 
towards the end.   This is a very difficult hypothesis to test without letting the van sit for an 
extended period of time and then repeating the experiment.  Time and cost prevent the testing of 
this hypothesis and current PN literature offers no clear answers to this question.   

 
The third hypothesis for the downward mean PN trend involves the effects of ambient 

conditions on particle formation.  As part of this experiment, the relative humidity and 
temperature conditions outside the vehicle were recorded every 10 seconds.   Figure 6 shows the 
trends in ambient temperature and ambient relative humidity throughout the course of the 
experiment.  Runs 5-14 were driven on days with low humidity and an increasing temperature.  
Furthermore the temperature and humidity data collected after run number 18 show an overall 
downward trend similar to the trend in the mean PN emissions rate.  These observations suggest 
that temperature and humidity may have a large impact on mean particle emission rate.  Figure 7 
shows the mean PN emission rate plotted against relative humidity.  This figure shows that there 
are a group of runs (5-14) that are distinct from the rest of the dataset with run 11 being an 
outlier.  These data runs were collected during a period of low humidity and average 
temperature.  These runs have an upward trend in mean particle counts as relative humidity 
increased.  When the remaining data are examined (the upper portion of the Figure) there is also 
an upward trend in mean particles as relative humidity increased.  These results indicate a need 
to measure both relative humidity and temperature in future experiments and to include these 
variables in models.    
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Figure 6: Temperature, Humidity, and PN Trends over Time 
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Figure 7:  Mean Particle Emissions Rate by Relative Humidity 

 
The exact cause of the decreasing trend seen in the mean PN emissions rate over the 

extent of the experiment is not known and without further testing, it is difficult to determine if 
the vehicle, instruments, or ambient environmental conditions were responsible.  The video data 
from the forward facing camera was scanned for periods of high PN emissions during the 
experiment.  This revealed one further indication that ambient environmental conditions have a 
significant impact on the number of particles measured in the exhaust.  One day, while driving 
on the test route, the test vehicle approached a large dump truck that was hauling dry dead corn 
stalks recently cut out from a neighboring field.  The large truck was covered in dust and the load 
was not secured or covered, allowing debris to fly out of the truck and onto the road and trailing 
vehicles.  As the van approached the back of the dump truck, the particulate counts shown on the 
CPC screen began to rise and held fairly constant at the midpoint of the PN count scale 
(approximately 45,000 #/cm3).  Nowhere else in the entire data collection effort did PN counts 
reach a sustained level this high for an extended period of time.  Furthermore, once the dump 
truck pulled off the main road, the PN counts returned to levels consistent with other test runs.  
This event suggests that the number of particles measured from a vehicle’s tailpipe vary along 
with the number of ambient particles in the background.  This circumstantial evidence suggests 
that ambient conditions or atmospheric conditions are responsible for at least some variation in 
the PN emissions rate and potentially the downward trend.  It is possible that the air intake of the 
vehicle is pulling in particles (from the dump truck in this case) and then through the combustion 
chamber, thus changing exhaust emissions.  While vehicles have air filters on their intake 
system, they are not high-efficiency particulate air filters (HEPA), which could remove these 
ultrafine particles.  There was no background monitor in the vicinity that could be used to 
consider ambient PN or PM through this time period.          
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The data in this experiment suggest that atmospheric conditions, including temperature, 

RH, and ambient particle concentrations have a large impact on tailpipe PN emission rates. 
 

4.3 Identifying High Emissions Events 
To gain a better understanding of high ultrafine PN emission events, one-second time 

periods with particularly elevated PN emissions were termed a High Emissions Event (HEE).   
Evaluation of the histogram in Figure 8 supports observations from the prior section and the need 
to consider HEEs.  Observations for the full x-axis in the histogram were measured.  The tail 
sections of the histogram at different emissions rate scales (x-axis) are inset in Figure 8 in order 
to observe how the tail behaves.  The increase in frequency at the end of the histogram is due to 
the limited range of the CPC.  All number counts that should have been above this value were 
assigned the maximum PN count by the CPC.  There appears to be no natural breakpoint at 
which one might define an HEE. 
 

 

Figure 8: Histogram of PN Emission Rate 

Given the lack of an obvious threshold in Figure 8, multiple criteria for an HEE were 
established: 

1) HEEs should be defined such that each driver and each run contain HEEs.  This 
requirement allows for quick visual analysis of sections along the test route 
where each driver’s PN emissions were significantly larger than the driver’s 
baseline emissions rate.   
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2) An HEE should be a function of a PN emissions baseline.  This will aid in accounting 
for differences in driving style and ambient weather conditions.   

3) Less than 10% of the data for each driver should be classified as an HEE.  As stated 
earlier, an HEE should be an event that is of low frequency and large 
magnitude. 

Therefore, a record was classified as an HEE if the PN emissions rate was three standard 
deviations above the mean PN emissions rate for a given run.  This definition accounts for 
differences in data distributions by using the standard deviation of the emissions rate for each 
run.   

 
The percent of data classified as HEEs varied from as low as 0.9 % of the run to 2.9 % of 

the run.  For the dataset as a whole, 1704 of the 105,943 (1.6 %) of the data were classified as 
HEEs.  However, this small percentage of the dataset accounted for over 30% of the total 
number of particles emitted during data collection.   

 
To investigate whether these high emissions events occur randomly along the 

transportation route or at finite spatial locations, the HEE data were plotted spatially in ArcGIS.  
Figure 9 represents the frequency of HEEs along the test route for all 22 drivers.  The plot in 
Figure 9 shows that there are specific locations along the test route that have a high density of 
HEEs.  Plots of the 22 individual driver HEEs (not shown) also support that there are two main 
locations along the test route where HEEs occur.  The first clustering of HEEs is located in the 
bottom center of the figure where a freeway on-ramp is located.  At this location on the test 
route, there is a relatively steep upgrade along the ramp and most drivers required acceleration 
from a stop due to a traffic signal or making a left turn across opposing traffic.  The second 
location where HEEs are clustered is on the right of the figure.  At this location, there is a 
significant upgrade, (>9 % for 925 ft), and just south of this section there is another steep grade 
of short length (>10 % for 250 ft).  Note that even though some sections of the predominantly 
rural route have no HEEs, most sections do have some and the sections with no HEEs are not 
particularly unique. 

 
The plots for each individual driver indicate that high emission PN events are typically 

located at intersections where the vehicle makes a turn at an intersection causing the driver to 
slow down or stop and then accelerate from the intersection.  However, there are other HEEs that 
occur for no apparent spatial reason and are totally unique to an individual test run.  These events 
are hypothesized to be caused by instrument error, abnormal transient engine operation (such as 
rich fuel, downshifting gears, high RPM, etc.), or driver reaction to the roadway or other drivers.   

 
Overall, in terms of high emissions events, this spatial analysis reveals PN HEEs are 

associated with grade and acceleration and the dataset clearly conveys that HEEs are not 
completely spatially random.  However, it is clear that other factors are often at play in creating 
PN HEEs. 
  

UVM TRC Report # 14-006



 20 

 

Figure 9: Spatial Location of High Emission Events 

4.4 Particle Number Emissions and Vehicle Operating Parameters 

Considering the downward trend in mean PN counts over the course of the experiment, 
the PN data was normalized by the mean PN emissions rate for each driver.  The emission rate 
observations within the run were divided by the associated PN emissions rate mean for that run.  
This method preserves the time series pattern in PN emissions.   

To explore PN emissions rates, box plots were generated to investigate the relationship 
between vehicle operation and emissions rate.  In Figures 10, 11, and 12, the y-axis represents 
PN emissions rate expressed as the factor above the mean (FAM).  In these figures, the median is 
again represented by the line within the box, the mean is represented by a black cross, and the 
upper and lower quartiles are represented by the extent of the boxed region.  Note that the 
number of observations on the right side of the plots can be low.  For example, accelerations 
over 5 mph/s are infrequent (< 0.5 % of the data) and of very short duration (most are less than 2 
seconds in duration).  This low frequency and duration may contribute to this unexpected drop in 
PN counts from the bins larger than 3 mph/s.  Overall, the average PN emissions rate 
convincingly increases with vehicle speed, vehicle acceleration, and road grade. 
 Recent research suggests that VSP has the most significant relationship with increased 
tailpipe emissions.  VSP is a combination of velocity, acceleration, and road grade and is a 
measure of power demand.   
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Figure 10: PN Emissions FAM Versus Speed Bin (MPH) 
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Figure 11: PN Emissions FAM Versus Acceleration Bin (MPH/s) 
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Figure 12: PN Emissions FAM Versus Grade Bin (%) 

 
A correlation analysis was conducted to determine the extent to which each of the 

operating parameters was correlated with ultrafine PN number emission FAM (Table 3).  The 
Pearson correlation analysis assumes that there is a linear relationship between the dependent 
and independent variables.  Therefore, the log transform of the PN emission rate data had the 
highest correlation coefficients.  RPM and VSP are highly correlated with ln(PN rate).  
Furthermore, speed, acceleration, and grade are also moderately correlated with ln(PN rate).  The 
correlation between engine load and ln(PN rate) is relatively weak.   

 
Not surprisingly, several predictor variables are correlated with each other.  This 

correlation analysis suggests that there is a potential problem for development of a model due to 
multicollinearity between these predictor variables.  While this multicollinearity will not affect 
the model outcome, it will cause the estimated parameter coefficients to be invalid, thus not 
allowing an accurate interpretation of how individual predictors influence PN emissions.  For 
this reason and due to the undetermined influence of environmental factors described above, a 
model is developed here only for the purpose of assessing the extent to which vehicle and road 
parameters explain overall variance in PN emissions.       
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Table 3: Pearson Correlation Coefficients (All Are Significant p<0.001) 
 

Variable Speed Acceleration Grade VSP RPM 
Engine 
Load 

Speed 1 - - - - - 
Acceleration 0.25 1 - - - - 
Grade 0.09 0.32 1 - - - 
VSP 0.54 0.79 0.46 1 - - 
RPM 0.62 0.68 0.32 0.77 1 - 
Engine Load 0.16 0.33 0.21 0.37 0.38 1 
Ln(PN Rate) 0.52 0.53 0.42 0.69 0.75 0.34 
PN Rate 0.2 0.24 0.24 0.38 0.37 0.18 

 
 
The model show in Table 4 was estimated using a generalized linear model (GLM) least 

squares method.  The extent of multicollinearity in the modeling process is accessed using 
variance inflation factor (VIF).   There is no set cutoff for acceptable maximum values for VIF; 
however, Kleinbaum et al. (1998) state that a VIF above 10 suggests that there are strong 
multicollinearity issues between predictors and the parameter estimates may be inaccurate.  No 
serious mulitcolinearity problems are suggested in this case.  Table 4 contains the model 
parameters and statistics of significant predictors of the log-transformed particulate number 
emission rate.   

 
Table 4: Model Parameters for Preliminary Linear PN Emissions Model  

 
The primary purpose of this preliminary modeling exercise was to identify relative 

importance of vehicle and road factors in ultrafine PN emissions.  This model had a resulting R2 
of 0.61. Therefore, the operating and road factors can explain a majority of the variance in PN 
emissions and might be higher with a more sophisticated model. 

5.0 Summary and Conclusions 

Although state-of-the-art tailpipe emissions models are now based on vehicle operating mode, 
existing models and data collection have focused on either regulated gas emissions or mass-
based particle emissions (PM).  Yet public health research findings and policy questions now 
clearly suggest the importance of focusing on the number of fine and ultrafine particles emitted 

Parameter Data Range DF Estimate 
Standard 
Error 

t 
value Pr> |t| VIF 

Intercept --- 1 13.080 1.8E-02 16.1 <.0001 0.0 
Engine RPM 750 to 4600 1 0.002 1.2E-05 149.5 <.0001 2.8 
Speed 0 to 95 1 0.001 7.3E-05 8.2 <.0001 1.1 
Acceleration -10 to 9 1 0.052 3.9E-03 13.1 <.0001 2.1 
Grade -11% to 12% 1 0.097 1.9E-03 51.5 <.0001 1.6 
Engine Load 0% to 100% 1 0.001 1.3E-04 7.2 <.0001 1.2 
VSP -300 to 300 1 0.008 1.4E-04 58.5 <.0001 2.9 
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from tailpipes (PN).  While few databases can be found that contain time-resolved on-road 
vehicle emissions data, even fewer databases exist that focus on light-duty ultrafine particles.  
Therefore, the data in this research fill an important data gap.  While a single vehicle was used, 
allowing driver and transportation network conditions to vary allowed focus on high particle 
number emission events and consideration of the relationship between PN emission rate and 
driver and road attributes.  These unique time- and space-resolved data allow for conclusions of 
three types: 1) new knowledge regarding real-world light-duty ultrafine particle number 
emissions; 2) direction for future data collection; and 3) positive reinforcement of the possibility 
to extend current modeling frameworks for inclusion of ultrafine particle number emissions. 
 
In terms of new knowledge, these data have demonstrated that high ultrafine PN emissions 
events, each of one second in duration, are very important to overall PN emissions levels.  Only 
1.6% of the driving time monitored in the experiment resulted in 30% of ultrafine particles 
emitted.  Road grade and vehicle acceleration were key factors in the occurrence of high 
emissions events.  Engine operating variables and road conditions account for approximately 
60% of the variation in PN emissions.  This is high enough to encourage the use of existing 
modeling frameworks that employ operating model for prediction, but it is low enough to 
recommend further data collection.  In particular, the importance of humidity, temperature, and 
background atmospheric conditions require focus in future work. 
 
Important directions for future data collection are gleaned from this work.  First, on-road time-
resolved emissions data are critical to allow for spatially disaggregate models that will allow 
evaluation of alternative designs for physical infrastructure as well as traffic control.  Lab 
dynamometers can be used for emissions rate development, but on-road experiments such as the 
one described here are essential to understanding which operating modes occur where in the 
transportation system and also to consider the impact of real-world environmental conditions on 
emissions.  This experiment clearly demonstrated that driving style is consistent. This will allow 
future work to include more individual drivers and fewer repeats by each individual.  The next 
field experiments might use the same drivers in different vehicles.  This experiment also revealed 
the need for more robust methods to capture atmospheric conditions such as background PN 
concentrations, temperature, and humidity. 
 
In terms of modeling, it is important to be reassured based on real-world data that existing 
operating mode-based models are viable frameworks for expansion to include PN emissions.  
Moreover, within existing models the grade component is often not included in vehicle-specific 
power calculation because grade is not known for the real-world network.  This study clearly 
demonstrated that grade must be used in regional and project-level modeling. 
 
In summary, this study has established that vehicle operation, driver style, and atmospheric 
factors are important predictors of light-duty PN emissions.  Given public health concerns, 
existing models could be extended to include these emissions if more time- and space-resolved 
data were collected.  Dynamometer studies will play an important role in gathering the large, 
comprehensive data needed for defensible emissions rates.  But future on-road data collection 
will be needed to advance our understanding of the role of atmospheric conditions as well as to 
better refine driving style by location to enable models to be used for project-level analysis, 
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including identification of pollution “hot-spots”.  Future traffic control and roadway design 
considerations may then be evaluated to reduce the occurrence of hot-spots. 
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