The Challenges of Measuring Transportation Efficiency

Jim Sullivan, PE, MS Research Analyst March 12, 2010

The Challenges of Measuring Transportation Efficiency

- Motivation
- Literature Review
- Definition of Transportation Efficiency (TE)
- The Challenges of Measuring TE
- Hopeful Examples
- Conclusions

Motivation

- Oil dependence and fuel prices
 - "Peak oil" and Summer 2008 gasoline prices
 - 95% of global transportation energy is oil
- Emissions and global warming
 - 28% of GHG emissions in the US in 2006
- Rural and non-traditional region applications

Motivation

Literature Review

Definition

Challenges

Hopeful Examples

Conclusions

Literature Review

- Ambiguity in the use of term "transportation efficiency"
 - Transportation-Energy Efficiency
 - Transportation-System Efficiency
- Strategies Associated with TE
 - Capacity-utilization
 - Emissions reductions
 - Land-use improvements

Motivation

Literature Review

Definition

Challenges

Hopeful Examples

Conclusions

RESEARCH EDUCATION OUTREACH

UNIVERSITY OF VERMONT

Literature Review (cont.)

- Derived Measures of TE
 - Utility Models
 - Macroeconomic Models
 - Data Envelopment Analyses
 - Multiple-Criteria Analyses
 - Least-Cost Planning

Motivation Literature Review Definition Challenges Hopeful Examples Conclusions

RESEARCH EDUCATION OUTREACH TRANSPORTATION RESEARCH CENTER

Definition of Transportation Efficiency

- Common Variables/Criteria
- Common Themes:
 - Maximization of Service
 - Minimization of Cost
- Derived models attempt to assimilate a variety of variables to make:
 - Spatial comparisons
 - "System" comparisons
 - Temporal comparisons

Category	"Cost" Variables		"Service" Variables
Economic	Prices for the user ^{5,1}		Cost savings ¹
LCOHOTHIC	Prices for the operator ¹¹		Economic development and productivity ²
	Carbon emitted per mile travelled ¹		Reduced impact on the environment ¹
Liviroinnentai	GHG emissions ¹		neduced impact on the environment
	Noise ¹¹		
	Fuel used per mile travelled ¹		
Energy	BTUs per mile travelled ¹		Decreased dependence on fossil fuels ⁸
2.70.97	Energy used per capita ¹⁰		Robust energy portfolio ¹⁰
	Energy used per person-mile of travel ¹¹	1	
	Total energy use ¹⁰		
Human	Fatality ¹⁰		Improved safety ³
	Serious injury ¹⁰		Basic human needs met ¹¹
			All travel demand satisfied ¹¹
Operations	Time spent travelling ⁵		Lower vehicle-miles travelled ⁷
	Time wasted in congested travel ¹		Fewer trips ¹¹
			Coordination between modes ⁹
			Access ¹⁰
			Choice ³
			Speed ¹
			Convenience ⁶
			Reliability ⁶
			Increased vehicle capacity use ⁴
			Level-of-Service (LOS) ⁵
Citations			
1. Manikonda et al, 2001		7.	
 Southworth et al, 2004 Kavage et al, 2005 		8. 9.	Rubin, 2009 Vuchic, 1999
4. Barth et al, 2004			VDPS, 1998
5. Moudon et al, 2005			Added by the authors
6. Hagler, 2008			<u> </u>

Motivation

Literature Review

Definition

Challenges

Hopeful Examples

Conclusions

RESEARCH EDUCATION OUTREACH

UNIVERSITY OF VERMONT

TRANSPORTATION RESEARCH CENTER

Definition of Transportation Efficiency

Spatial or "System" Comparisons:

Temporal Comparisons:

Motivation

Literature Review

Definition

hallenges

Hopeful Examples

Conclusions

RESEARCH EDUCATION OUTREACH

UNIVERSITY OF VERMONT

The Challenges of Measuring **Transportation Efficiency**

- The "Rebound" Effect
 - Energy demand
 - Transportation demand (generated traffic, or induced demand)
 - A temporal boundary problem
- The "Shifting" Effect
 - A spatial or "system" boundary problem

Literature Review

Definition

Challenges

Hopeful Examples

Hopeful Examples

- Least-Cost Planning
 - Useful parallels between electricity and transportation:
 - Critical public infrastructure
 - Efficiency is important
 - Efficiency viewed as a provider of supply
 - Complications related to LCP in transportation:
 - No single service variable, like kW
 - No central control of service, more stakeholders
- Multiple-Criteria Analysis
 - Limitless inclusiveness
 - Provides the opportunity to weight criteria
 - Flexible boundaries

Literature Review Definition

Challenges

Hopeful Examples

UNIVERSITY OF VERMONT

Conclusions

- Importance of dealing with "rebound" effects and "shifting" effects
- Importance of using an assimilative model, like LCP or MCA

Thank You

RESEARCH EDUCATION OUTREACH

UNIVERSITY OF VERMONT
TRANSPORTATION RESEARCH CENTER

Questions?

