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ABSTRACT 

This paper describes the implementation of a land use and transportation modeling 

framework developed for Chittenden County, Vermont to test for differences in modeled output 

when employing a dynamically linked travel demand model versus an assumption of static 

regional accessibilities over time. Using the UrbanSim land use model, two versions of a 40 year 

simulation for the County, one with a travel demand model (TDM) and the other without were 

compared. In the first version, UrbanSim was integrated with the TransCAD four-step travel 

demand model, allowing regional accessibilities to be recalculated at regularly scheduled 

intervals. In the second version, TransCAD was used to compute year 2000 accessibilities, and 

these values were held constant for the duration of the model run. The results indicated some 

significant differences in the modeled outputs. In particular, while centrally located traffic 

analysis zones (TAZs) reveal relatively little difference between the two models, the differential 

within peripheral TAZs is both more pronounced and heterogeneous. The pattern displayed 

suggests some peripheral TAZs have higher modeled development with a TDM because the 

TDM accounts for the increased proximity of destinations, thereby making them amenable to 

development. Meanwhile, some peripheral TAZs have lower modeled development with a TDM 

because they already have good accessibility (e.g. access via interstate) but the model without the 

TDM does not account for increased congestion.  

 

INTRODUCTION 

While there are strong interdependencies between land use and transportation, land use 

planning and transportation planning have traditionally been compartmentalized and separated 

into different agencies, such that planning for one frequently did not adequately address the other 

(1, 2).  These interdependencies, and the need to plan for them in an integrated fashion, have 

increasingly been recognized by many researchers (2, 3, 4, 5, 6) as well as by the Federal 

Highway Administration (7). In fact, under the Intermodal Surface Transportation Efficiency Act 

(ISTEA) of 1991 and to a lesser extent the Transportation Equity Act for the Twenty First 

Century (TEA-21) of 1997, state or regional transportation agencies have been encouraged to 

model the effect of transportation infrastructure investment on land use patterns, and to consider 

the consistency of transportation plans and programs with provisions of land use plans. Other 

federal programs have attempted to encourage integrated land use and transportation modeling, 

including the Travel Model Improvement Program (1992) and the Transportation and 

Community and System Preservation Pilot program (1999). In response to this need, there has 

been an increasing interest in and focus on the use of simulation models that dynamically 

integrate land use and transportation (8). 

Land use simulation models attempt to predict the future densities, types and distributions 

of urbanization patterns for a region. Miller (2004) suggests four components as critical to the 

integration of land use and transportation models: land development, location choice for 

households and employers, travel and trip-making behavior, and auto ownership. He also suggest 

four core drivers that should be accounted for in modeling urban systems: demographic change, 

regional economic evolution (industry type, size, distribution), government policies (zoning, 

taxation, etc.), and all modes of the transportation system.  

UrbanSim (9, 10, 11) is a land use model currently under development at the University 

of Washington’s Department of Urban Design and Planning. A review of land use models found 

UrbanSim to be one of the best land use models because of its ability to be integrated with a 

number of different proprietary and open-source transportation models, among other reasons  
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(12), as well as its ability to perform scenario analysis to address long range planning issues. 

UrbanSim simulates land use change for a designated area by spatially allocating household and 

employment locations based on externally derived forecasts of population and employment 

growth.  It operates in an iterative fashion, in which supply-demand imbalances are addressed 

incrementally over multiple time steps. The model is comprised of a suite of sub-models that 

simulate economic and demographic transitions, household and employment location and 

mobility, land rent and real estate development (location, size, and type), and accessibility of 

households to community services and cultural amenities (Figure 1).Because it is dynamic, 

UrbanSim can endogenize factors that other models take as exogenous, such as the location of 

development that occurs after the base year and changes in the price of land and buildings.     

 

 
FIGURE 1 UrbanSim model architecture. 

 

The model is based on a dynamic disequilibrium approach that represents systemic 

changes occurring at different temporal scales, and combines elements of both the cellular 

automata and agent-based approaches to modeling land use change. Physical characteristics of 

the landscape are aggregated at the cellular level, while individual actors make decisions 

regarding employment and household location. The individual modeling components 

communicate through a common data storage tool (a MySQL database), where the outputs from 

one sub-model can serve as the inputs for one or more of the others. Exogenous inputs to the 

model include macroeconomic indicators of employment conditions and real estate transactions, 

outputs from an independent travel demand model and user specified conditions such as land use 

policies or scheduled events (typically large-scale development events).  

Generally, the transportation model is run for the initial time step to establish baseline 

accessibilities and then at a user-specified interval thereafter to update those accessibilities in 

response to changing land use. Since the timing and location of development events depend in 

part on measures of accessibility, updating these values in the model database makes the 

interaction of land use and transportation dynamic. For the purposes of the Chittenden County 

implementation, the travel demand model is run every five years, or when significant changes 

have been made to the transportation network (e.g. addition of new highway interchange or the 

construction of a new road). The land use change model components are run on an annual time 
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step simulating partial equilibration as actors adjust to the rate of change of fluxes within the 

economic system or the housing market. The annual time step simulates the evolution of the 

household and employment locations at the individual level and the evolution of the real estate 

market at the grid cell level. Where required data does not exist for a municipality, the model 

architecture allows the user to disable model components. Additionally, since each model 

component is based on a statistically estimated equation, the selection of explanatory variables 

can be influenced by the availability of specific data sets. The broad range of data inputs yield a 

number of modeled outputs that generally fit within the following categories: transportation, 

environmental impact, land use and real estate development, employment, and households and 

population (UrbanSim.org 2007). These outputs are calculated from the data cache generated by 

the model run and are assembled into database tables. Model outputs can then be imported into a 

geographic information system (GIS) or statistical software package for graphical display and 

further analysis.  

UrbanSim has a number of standard indicators based on Value Sensitive Design theory, 

which considers human values in the design of the model outputs (13).  Key components of this 

theory allow for the creation of indicators that are important to both direct and indirect 

stakeholders defined as those operating the model (planners and modelers) and those affected by 

the model (citizens), respectively (14). The inclusion of indirect stakeholder values is a unique 

characteristic of UrbanSim; it represents a specific intent to facilitate stakeholder interaction for 

a diverse group of interests and provide the ability to run scenarios to assess effects on a broad 

range of user values (14).  

 

RESEARCH OBJECTIVES 

The primary objective of this investigation is to test the effects of including vs. excluding 

an endogenized travel demand model as one component of a combined land use – transportation 

modeling framework. The intent is to examine whether the added complexity of endogenous 

accessibility modeling significantly affects predicted land use change.  That is, do indicators of 

predicted land use change differ depending on whether accessibilities are updated to reflect 

changing land use? As population and employment grow, the amount of total travel should also 

grow. However, what it is less clear is whether that growth in demand for road space would 

actually increase travel time to the extent that resulting land use patterns would be affected. If 

land use change causes significant congestion, it is expected that future land use development 

would be responsive by locating in areas with either lower congestion better overall accessibility 

or both. If the results of the two models displayed relatively little difference, this would suggest 

that the added complexity of dynamically integrating the travel model does not cause the system 

to reach any critical congestion thresholds which would in turn affect development patterns. In 

such a case, it would suggest that for a system with characteristics like Chittenden County, 

endogenizing regional accessibilities may not be necessary to predict land use.  

 

STUDY SITE 

Chittenden County, VT (Figure 2) was selected as the case study site for this research for 

several reasons.  First, as a metropolitan area of relatively low population (146,671 according to 

the US 2000 census), the geography of the County (covering a total area of 540 square miles) is 

extremely tractable from a modeling standpoint. Second, the County is relatively isolated (3 

hours from the nearest major American city) which means that it can be modeled as a closed 

system, an assumed but frequently violated assumption of land use modeling.  Thirdly, the 
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County is an excellent place to study patterns of urbanization because it remains relatively 

undeveloped in the several towns outside the Burlington metro area (Vermont’s largest city) and 

as a result has diverse possible future trajectories.  

 
FIGURE 2 A) The study area Chittenden County, VT, B) The 350 traffic analysis zones in 

Chittenden County, and C) Major roads and town boundaries in Chittenden County, VT. 

 

In addition, several research partners have been modeling this region for many years 

providing us with a rich set of data and model tools, including a calibrated TransCAD model and 

an UrbanSim implementation, a PARAMICS model of the County and two implemented 

synthetic population generation models that will facilitate the TRANSIMS implementation.  

Finally, members of our research team have recently been awarded one out of only two national 

U.S. DOT grants to implement the TRANSIMS model for Chittenden County. With this array of 

models, Chittenden County can serve as a national showcase for the development, evaluation, 

testing, calibration and benchmarking of integrated land use and transportation models for 

sustainable transportation policy development. 

 

DATA DEVELOPMENT 

Spatial data processing and analysis was performed using ESRI’s ArcGIS 9.2 platform, 

while tabular data is handled using Microsoft Access. The compiled base year data set is passed 

to MySQL for running the model. Custom software tools (e.g. SQL scripts, ArcGIS Model 

Builder models) have been developed to facilitate data transfer among the different platforms to 

both improve the work flow and ensure consistency in data handling. UrbanSim requires a broad 

A 

B 

C 



Voigt, Troy, Miles, Reiss  6 

range of datasets (see Table 1) to operationalize the model. Additionally, the model can be 

customized to include optional data sets that define unique characteristics of the area of study. 

The data development stage for the Chittenden County model was complicated by two primary 

factors: 1) most of the data sets for the model come from the individual towns within the County, 

which made it necessary to standardize the data in a consistent format so that they could be used 

together, and 2) a majority of the data sets were not stored in a digital format, which made it 

necessary to translate paper records to digital databases, and geocode the data to generate spatial 

data that could be input into the model. 

 

TABLE 1 Abbreviated list of UrbanSim Data Parameters Used in the Chittenden County 

Model 

Data Category Data Set Name Data Source 

Economic Land and improvement value Grand List from town 

assessor’s office 

Employment (size, sector, 

location) 

VT Secretary of State and 

Claritas* 

Residential Units CCRPC 

Biophysical Topography, soils, wetlands, 

water 

Vermont Center for 

Geographic Information 

Land Cover University of Vermont – 

Spatial Analysis Lab 

Infrastructure Roads GDT* 

Transit Chittenden County Transit 

Authority 

Planning & Zoning Zoning Information drawn from 

individual town plans 

Conserved land University of Vermont – 

Spatial Analysis Lab 

Demographics Household characteristics US Census: SF1, SF3, 5% 

PUMS 

Forecast CCRPC / CCMPO 

* denotes proprietary data sets 

 

The centerpiece of the UrbanSim model is the gridcells database table. The region of 

interest is partitioned into a discrete set of cells of user-specified size.  For the Chittenden 

County implementation, a cell size of 150 square meters was selected, a resolution used in other 

UrbanSim implementations in the past (15). At that resolution, there are approximately 64,000 

grid cells. Data is aggregated to the grid cell level and stored in the gridcells table (which 

features more than 30 attributes that define not only its spatial location (e.g. contained within a 

specific block group or TAZ, distance to highway or airport), but also the presence and 

description of natural features (e.g. percent wetlands, slope, etc.) as well as development and 

infrastructure characteristics (e.g. number of housing units, percent roads).  

In cases where data does not exist, the gaps were filled by imputing values based on 

adjacent (or nearby) observations. For example, one essential piece of data required by the model 

is the year that structures were built. Of the 17 towns in Chittenden County, less than five had 

this information stored digitally. Several of the remaining towns (that contain a high proportion 
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of the County’s total population and employment) stored their property records in paper files, 

and these data were converted to digital format by manually entering the records into a database. 

This process was inherently inefficient and time consuming, and led to numerous data gaps 

where it was not possible to link paper records to digital parcel data. To rectify these gaps in the 

data, a model of structure age was estimated using an Ordinary Kriging technique available 

within ArcGIS Spatial Analyst. Zonal statistics were run for the parcels with NULL year built 

values to calculate an estimated year built, and this data will stand as a place holder for parcels 

without actual data until town databases have been updated (preferably to a digital format). A 

similar process was followed to prepare land and improvement value data.  

While much of the data is aggregated to the grid cell level, individual households 

function as the decision-makers (e.g. agents) whose actions have a direct effect on the landscape. 

UrbanSim version 2.8 includes a tool to generate a synthetic population for the region of interest 

based on socio-economic characteristics as reported in the US Census. Synthesized 

characteristics include the age of the head of the household, household income, size of 

household, number of cars, and the number of workers. Household synthesis for the 1990 

population has been completed, and a number of diagnostic assessments have been performed to 

ensure the overall characteristics of the population have been preserved in the process. UrbanSim 

does not feature a population model, and instead relies on externally derived control totals for 

both population and employment. This application will use control totals developed for the 

Chittenden County Regional Planning Commission (RPC) and the Chittenden County 

Metropolitan Planning Organization. 

Following the data collection and processing phase, UrbanSim’s individual sub-models 

(e.g. land price model, residential / commercial / industrial location choice models, developer 

location choice model, etc.) are estimated using two types of regression techniques. The land 

price model is estimated using multiple linear regression (hedonic analysis), while the suite of 

location choice models are estimated using multinomial logit models. UrbanSim includes the 

necessary statistical tools to estimate the different equation types. The entire set of estimated 

equations was stored in a database (including individual model parameters and corresponding 

statistical metrics), and model selection was based on Akaike’s Information Criterion (AIC), a 

statistical measure which trades off the complexity of the estimated model against how well the 

model fits the data.  

When estimating the land price model, data is summarized at the grid cell level for a 

variety of attributes (e.g., commercial square feet, housing units, percent water, distance to 

Interstate 89, etc.), and the value of a grid cell is regressed against these characteristics. This set 

of estimated coefficients is then used to predict the land value of the grid cell for subsequent 

years. Table 2 displays the range of covariates currently used in the land price model, including 

spatial parameters (e.g. distance to arterial), policy parameters (e.g. is conserved land, within 

sewer district boundaries), and neighborhood characteristics (e.g. number of households, 

improvement value). 

The location choice models (for households and employers) predict the probability that a 

new job or household will be located in a specific grid cell using a multinomial logit 

specification. The models can be generalized for an entire population or stratified by 

employment sector or household type (e.g. age of head of household, household income, 

household size). The set of locations is a combination of the vacant locations and grid cells 

available to accommodate additional development (of the specified type). Models are analogous 

for employment and household location choices. A set of agents is generated in each time step to 
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represent households moving within the region (based on observed rates of household relocation) 

as well as new households that are moving in to the area (based on County-level household 

control totals). Each job or household in the unplaced queue is processed in random order. The 

model generates a selection set of alternative locations to consider, and then “chooses” a location 

from the list of alternatives based on the appropriate multinomial logit equation (e.g. household 

location choice model, commercial employment location choice model). The selected space 

becomes unavailable to the remaining jobs or households in the queues, and the sub-model 

continues to run until all agents are placed or there is no remaining vacant space. Table 3 

includes the model parameters for the Commercial Employment Location Choice Model. 

 

TABLE 2 Land Price Model Specification with Parameter Estimates 

Coefficient Name Definition Estimate t_statistic 

Standard 

Error 

constant   11.16889954 158.3269958 0.070543297 

ART 

Distance to nearest arterial 

street 
0.424149007 43.89479828 0.00966285 

LNIMP 

LN gridcell improvement 

value 
0.057201002 41.71829987 0.00137112 

ELEV 

Elevation -

0.000367311 -30.9116993 1.18826E-05 

IND_WIWLK 

% industrial w/in walking 

distance 
1.04801E-07 8.793669701 1.19177E-08 

INSEWER Is within sewer district 0.819761992 57.44810104 0.0142696 

IS_CONSL 

Is conserved land -

0.227327004 -16.22290039 0.0140127 

LN_HOUSEHOLDS 

LN grid cell # of households 

0.162177995 20.76499939 0.00781016 

TTT_CBD Travel time to CBD -0.0187907 -29.9715004 0.000626952 

YRBLT Year built 5.41195E-05 10.17240047 5.32023E-06 

 

TABLE 3 Commercial Employment Location Choice Model Specification with Parameter 

Estimates 

Coefficient Name Definition Estimate t_statistic 

Standard 

Error 

D2LAKE Distance to Lake Champlain 0.00351737 7.067900181 0.000497655 

DEV_TYPE_C3 

Is grid cell zoned med density 

commercial -0.332347006 -9.465279579 0.035112198 

JOBS_WWD Jobs w/in walking distance 0.00591651 6.749310017 0.00087661 

LN_IMP_VALUE 

LN grid cell improvement 

value -0.045417301 -4.670100212 0.00972513 

PER_RES_LAND % residential land -0.00150707 -3.38609004 0.000445077 

RES_DENSITY Residential density -0.044820201 -10.33619976 0.00433623 

 

The real estate development model simulates the construction of new development or the 

intensification of existing development. The model is estimated using observations of prior 

development patterns either through a review of construction permits or year built data. Supply 
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shortages for housing or employment locations trigger additional development in subsequent 

years, while surpluses cause the pace of development to slow. All new development is subject to 

constraints based on user-specified decision rules (e.g., density, required streamside buffer, etc.). 

Finally, other user-specified exogenous inputs guide the scenario modeling process. While the 

model framework allows for an extensive set of possible scenarios, the critical component of this 

process is converting proposed changes to the system into a data format the model can both 

utilize and understand. A wide range of scenarios, including changes to control totals or 

infrastructure (e.g. new Interstate interchange), are relatively straightforward from both 

theoretical and technical standpoints. Alternative land use policies, however, can prove more 

difficult to simulate, requiring changes to several of the data base tables (e.g. gridcells, 

development event constraints, etc.). 

To simulate interactions with the transportation network, a pre-existing implementation 

of a travel demand model developed for the Chittenden County Metropolitan Planning 

Organization by RSG, Inc. was used. This implementation uses TransCAD v4.9 (Caliper Corp.), 

a GIS-based transportation planning software package that follows the typical four-step travel 

demand modeling process, including trip generation, trip distribution, mode split and traffic. A 

python script was developed which passes data between UrbanSim and TransCAD in a three step 

process. These steps include: 1) exporting land use, number of households, and number of jobs 

for each trip generator type (low, medium low, medium high, high, school, and hotel/motel) from 

UrbanSim to TransCAD; 2) running the travel model; 3) exporting travel model results (e.g. 

accessibilities) from TransCAD to the UrbanSim data cache.  Once the land use data are 

exported, TransCAD is invoked and passed the TAZ-scale aggregates of households and jobs, by 

generator type, for the current simulation year of the land use model. TransCAD then generates a 

TAZ-scale origin-destination (OD) matrix of logsum accessibilities for each travel mode 

simulated (transit, auto, walk/bike) as well as a composite of all modes. These data are written 

into the UrbanSim data cache for the current simulation year, and the measures of accessibility 

are used in subsequent model steps for location choice decisions.  

For the purposes of this research, the model was run between 1990 and 2030 using an 

annual time step for the land use model and 5-year intervals for the travel model (beginning in 

1990). For the case where the travel model was not dynamically linked to the simulation, 

regional accessibilities were estimated using the travel model, and these accessibilities were 

assumed to remain constant for the duration of the model run.   

 

RESULTS 

To compare the results of the model runs with and without the endogenous travel demand 

model, a number of outputs are presented. All of the modeled outputs are aggregated to the TAZ 

scale. First, we plotted histograms comparing total commercial square feet for each model for the 

year 2030 and total residential units for each model for 2030 (Figure 3). In terms of total 

commercial square feet, the extreme low end, 0 commercial square feet, and the high end, greater 

than 500,000 commercial square feet, appears to be relatively equal. The middle of the 

distribution is quite muddled. Of note in the residential units histogram is the disparity in 

frequency at the low end of the scale and the relative equality at the upper end of the scale. The 

simulation with the TDM appears to distribute residential development over a greater number of 

TAZs.  
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FIGURE 3 A comparison of modeled results for the year 2030 for simulations run with and 

without the travel demand model. The top histogram displays differences in total 

commercial square feet at the TAZ scale, while the bottom histogram shows the difference 

in modeled outputs for the total number of residential units. 

 

Histograms were also plotted to show the change in those two variables over time (Figure 

4 and Figure 5). Three time periods are included: 1990, 2010 and 2030. Figure 4 visually 

suggests that there are significant differences in both the number of residential units and amount 

of commercial square footage when broken down by bins. In particular, it shows that the with-

TDM model had many more TAZs with no or low levels of residential units (<10) than the 

without-TDM model. Variance ratio tests were performed in Stata to test the equality of standard 

deviations for residential units for the year 2030 between the two model configurations. The 

same test was performed for commercial square footage. Significant differences were found 

between the with- and without-TDM implementations in the variance of predicted total 

residential units but not for total commercial square feet. Results are provided in Table 4 and 

Table 5.  Linear regressions were also run (detailed results not presented here) between 

commercial square footage in 2030 under the with-TDM model versus the same variable from 
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the without-TDM model. Consistent with the variance tests, the R-squared for the commercial 

square foot variables was very high, at 0.98, while the R-squared for the residential units 

variables was lower, at 0.83.  

 

 

FIGURE 4 Histograms of the distribution of commericial square feet by TAZ showing 

differences over time for simulations with (above) and without (below) an integrated travel 

demand model.   
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FIGURE 5 Histograms of residential units aggregated to the TAZ level showing differences 

over time for simulations with (above) and without (below) an integrated travel demand 

model.   

 

TABLE 4 Variance Ratio Test Comparing Total Residential Units at the TAZ Scale 
Variable  Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] 

res1029  333 258.5706 18.05551 329.4821 223.0529 294.0882 

res1034  333 258.5706 22.53505 411.2261 214.2411 302.9001 

combined 666 258.5706 14.4272 372.3223 230.2422 286.8989 
 ratio = sd(res1029) / sd(res1034)                                  f =   0.6420 

 Ho: ratio = 1                                     degrees of freedom = 332, 332 

  Ha: ratio < 1                            Ha: ratio != 1                 Ha: ratio > 1 

   Pr(F < f) = 0.0000         2*Pr(F < f) = 0.0001           Pr(F > f) = 1.0000 
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TABLE 5 Variance Ratio Test Comparing Total Commercial Square Footage at the TAZ 

Scale 
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] 

comm1029  333 155097.7 15324.13 279639.2 124953.1 185242.3 

comm1034  333 155256.1 14988.89 273521.6 125770.9 184741.3 

combined  666 155176.9 10709.87 276389.3 134147.7 176206.1 
 ratio = sd(comm1029) / sd(comm1034)                           f =   1.0452 

 Ho: ratio = 1                                       degrees of freedom = 332, 332 

  Ha: ratio < 1                            Ha: ratio != 1                 Ha: ratio > 1 

   Pr(F < f) = 0.6564         2*Pr(F > f) = 0.6872           Pr(F > f) = 0.3436 

 

In order to examine the spatial patterns of land use change over the forty year simulation 

period tabular data was joined to a geographic dataset that defines the TAZ boundaries. The 

with-TDM modeled values for the year 2030 were subtracted from the without-TDM modeled 

values for both the commercial square feet and the residential units. Using ArcGIS two maps 

which illustrate the spatial distribution of differences in commercial square footage and 

residential units were generated using ArcGIS v9.2. These maps show that differences tend to be 

small in the more central areas around Burlington (near the black dot on the map) and adjacent to 

Interstate 89, while there is heterogeneity in the more peripheral areas. This is particularly the 

case for the predicted values of total residential units. 

 

 

 

<<< Commercial 

SQFT Legend 

 

Residential units 

Legend>>> 

 

 

FIGURE 6 Differences in predicted commercial square feet (A) and residential units (B) at 

the TAZ geography. Negative values indicate that more development occurred when the 

travel demand model was run, while positive values denote more development occurring 

a b 
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when the travel model is not run. Unlike the predicted values for number of residential 

units in a TAZ, there does not appear to be a discernable pattern in the difference between 

the predicted development of commercial square feet. 

 

DISCUSSION 

These results indicate that running a land use model with an endogenous travel demand 

model yields different results from running the model based on a static set of regional 

accessibilities. Further, the results from the with-TDM vs. no-TDM model suggest that there are 

different distributions of development counts at the TAZ level for residential development. The 

maps in Figure 6 suggest that while centrally located TAZs tend to see relatively little 

differences, the big differences occur in the more distant or peripheral TAZs. Why then do some 

of these more peripheral TAZs see a positive differential while others see a negative one? The 

answer probably has to do with the different processes that are modeled by the TDM: 

accessibility to activities and congestion. The pattern displayed suggests some peripheral TAZs 

(such as those in the east of the county) have higher modeled development with a TDM because 

the TDM accounts for the increased proximity of destinations (and the resulting increase in 

overall accessibility), thereby making these locations more amenable to new development. 

Meanwhile, some peripheral TAZs (such as those in the north of the county) have lower modeled 

development with a TDM because they already have good accessibility (the red TAZs in the 

north are located on either side of an Interstate) and were viable development locations based on 

the initial accessibility values in the without-TDM simulation. Additionally, since the without-

TDM simulation has no way to account for increased congestion, these locations continue to 

look good for development throughout the entire simulation, and therefore accumulate 

significant excess development when compared to the with-TDM simulation. The model 

behavior in the without-TDM simulation defies the logic that since congestion effectively 

decreases accessibility, it also should reduce development.   

 

CONCLUSIONS 

An integrated land use and transportation modeling system was implemented for 

Chittenden County, VT to test the model outputs for differences based on simulations run with 

and without a dynamically linked travel demand model. Statistical tests indicate that the 

simulations yield different distributions of residential development over the forty year simulation 

period. This was, however, not the case for total commercial square feet. A visual inspection of 

the spatial distributions of development suggests a more compact pattern of development is 

produced when running the model without the travel demand model. A logical next step will be 

to prepare a complete set of 2000-era data to perform model validation, and improve our 

understanding of whether modeling land use change in a relatively small metro area benefits 

from the inclusion of an aggregate-scale travel demand model. 
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