TRB Paper #10-2118

January 12, 2010

SPATIAL MODELS FOR THE STATEWIDE EVALUATION OF TRANSIT-SUPPORTIVE ZONES

Nathan P. Belz, M.S., E.I., University of Vermont Lisa Aultman-Hall, Ph.D., University of Vermont Gopal R. Patil, Ph.D., Indian Institute of Technology Bombay

RESEARCH EDUCATION OUTREACH **Background**

Data

Methods

Results

conclusions

What are the challenges of transit in rural states?

- Spatial Constraints
 - Long Travel Distances
 - Low Densities

What needs to be done?

- Move beyond large-rural analysis for local services
- Define areas that are transit serviceable statewide
- Develop objective process to determine transit demand
- Determine demand potential and VMT reduction

Introduction

Data

Methods

Results

Conclusions

What has been done for spatial transit demand research?

- Quality of Transit Service
- Access and Coverage
- Density and Land Use

What are the shortfalls of past spatial research?

- Zonal level and/or small extents with urban focus
- Assumptions of homogeneity within zones

Vermont E911 Database

Number of Dwelling Units for Multi-Family Structures

Employment Statistics by Land-Use Type

Trip Generation Rates by Land-Use Type

Hourly Distribution of Trips

Vermont Statewide-Travel Demand Model

Introduction

Background

Data

Results

Conclusions

STEP 1: Apply dwelling unit values to multi-family structure points

E911 Points

- Single-Family Structures
- **Multi-Family Structures**
- Non-Residential Structures

Introduction

Background

Data

Results

Conclusions

STEP 1: Apply dwelling unit values to multi-family structure points

STEP 2: Apply employment levels to each non-residence point

Introduction

Background

Data

Results

Conclusions

STEP 1: Apply dwelling unit values to multi-family structure points

STEP 2: Apply employment levels to each non-residence point

STEP 3: Apply trip generation rates to all points

Demand Potential (DP)

Introduction

Background

Data

Results

Conclusions

STEP 1: Apply dwelling unit values to multi-family structure points

STEP 2: Apply employment levels to each non-residence point

STEP 3: Apply trip generation rates to all points

Equivalent Demand Potential (DP)

STEP 4: Divide demand potential for each point by the demand potential for a single-family home

Introduction

Background

Data

Results

Conclusions

STEP 5: Sum the EDP for each acre

Introduction

Background

Data

Results

Conclusions

STEP 5: Sum the EDP for each acre

Introduction

Background

Data

Results

Conclusions

STEP 5: Sum the EDP for each acre

STEP 6: Calculate the spatial grid Neighborhood Measure value

EXAMPLE: Montpelier, VT

Neighborhood Measure

High: 11742

Low: 0

Introduction

Background

Data

Results

Conclusions

STEP 5: Sum the EDP for each acre

STEP 6: Calculate the spatial grid Neighborhood Measure value

EXAMPLE: Montpelier, VT

Neighborhood Measure

High: 11742

Low: 0

Introduction

Background

Data

Results

Conclusions

STEP 5: Sum the EDP for each acre

STEP 6: Calculate the spatial grid Neighborhood Measure value

STEP 7: Determine the spatial grid Neighborhood Maximum value

Introduction

Background

Data

Results

Conclusions

STEP 5: Sum the EDP for each acre

STEP 6: Calculate the spatial grid Neighborhood Measure value

STEP 7: Determine the spatial grid Neighborhood Maximum value

2	7	8	9	9	9	6	5	2
2	10	16	20	20	20	15	10	5
2	10	21	29	29	29	27	13	7
2	12	26	32	32	32	29	14	7
6	12	26	32	32	32	29	14	7
6	11	26	32	32	32	19	14	7
6	9	29	23	23	23	23	10	5
6	8	12	13	14	14	14	7	3
4	5	6	6	7	7	7	4	2

Introduction

Background

Data

Results

Conclusions

STEP 5: Sum the EDP for each acre

STEP 6: Calculate the spatial grid Neighborhood Measure value

STEP 7: Determine the spatial grid Neighborhood Maximum value

STEP 8: Identify local maximums

Introduction

Background

Data

Results

Conclusions

STEP 5: Sum the EDP for each acre

STEP 6: Calculate the spatial grid Neighborhood Measure value

STEP 7: Determine the spatial grid Neighborhood Maximum value

STEP 8: Identify local maximums

STEP 9: Apply service area to local maximum centroids and sum EDPs within service area

Introduction

Background

Data

Results

Conclusions

Criteria to be a Transit-Supportive Zone

- Must have a local max as centroid
- Σ EDP must be greater than or equal to seven at the central acre
- Σ EDP must be greater than or equal to 3520 for the entire service zone

Burlington, VT & Surrounding

Montpelier, VT

METHODS Estimation of Demand Potential

Introduction

Background

Data

Results

Conclusions

Transit-Supportive Demand Proportion

- Sum of EDP in the portion of each TSZ falling within the nth TAZ (X)
- Sum of EDP in the nth TAZ (Y)
- Divide (X) by (Y)
- Represents the proportion of trips within a TAZ that could theoretically be served by transit

$$TSDP = \frac{EDP_{TSZ}(n)}{EDP_{TAZ}(n)} = \frac{X}{Y}$$

Introduction

Background

Data

Results

Conclusions

Transit-Supportive Demand Proportion

METHODS Estimation of Potential Transit Demand

Introduction

Background

Data

Results

Conclusions

Potential Transit Demand (Person Trips)

- Trip must originate in and be destined for a TSZ
- Gravity update of state model using TSDP as the "growth" factor
- Reduced by 7.6% for trips occurring outside of typical transit operation hours
- Subtracted existing transit trips

RESEARCH EDUCATION OUTREACH

METHODS Estimation of Potential Transit Demand

Introduction

Background

Data

Results

Conclusions

Estimation of VMT Reduction

- Divide person-trips (T) by auto-occupancy for a given trip-purpose (P)
- Number of trips (A) occurring between OD pairs
- Shortest network distance (B) between OD pairs
- Number of trips (C) occurring within TAZ
- Intrazonal trip length (D) approximated as radius of a circle with area equivalent to TAZ area

$$AT_{ij} = \sum_{p} \left[\sum_{ijp} \frac{TT_{ij}^{(p)}}{AO_{p}}\right] = \frac{T}{P}$$

$$R_{VMT} = \sum_{ij} (AT_{ij} * Min[DN_{ij}]) + \sum_{i} (AT_{i} * D_{TAZ})$$

$$= (A * B) + (C * D)$$

RESULTS

Introduction Background Data Methods Conclusion

% WITHIN TSZs BY REGION

	MPO	Non-MPO	Vermont (Total)	
Land Area	6	0.6	0.9	
Residence Points	37	12	17	
Employment Points	66	33	39	

RESULTS

Introduction Background Data Methods Conclusions

TRIP PURPOSE	AUTO TRIPS	AUTO VMT	% "REDUCTION"	
	AUTOTKIIS	(miles)	Trips	VMT
Home-Based Work	137,210	938,895	37	21
Home-Based Shopping	62,910	392,408	38	20
Home-Based School	4,964	25,443	38	19
Home-Based Other	133,599	601,829	34	16
Non-Home Based	194,161	635,924	64	33
TOTAL	532,844	2,594,499	43	21

Introduction Background

Data

Methods

Conclusions

Transit-Supportive Zones

- Data and methodology used
- TSZs are spread throughout the state
- 1% of VT land area is transit-supportive

Estimation of Demand

- 43% of all trips occur within or between TSZs
 - 86% Intercity
 - 14% Intracity
- Theoretically if all "potential" could be served
 - 21% statewide reduction in VMT

Introduction

Background

Data

Methods

Results

Importance of disaggregate data

- Generally much more available for urban areas
- Illustrates application of E911
- Identifies need for similar data on national scale
- Application as data-driven decision tool

TSZs and Potential Transit Demand

- Relatively large proportion of substitutable intercity trips
- Not just in the one Vermont MPO
- Unlikely all identified potential can be connected

Background

Data

Methods

Results

Spatial analysis is not stand-alone

- Supplementary material
 - Social equity and need
 - Energy efficiency and network walkability

Indication of location and level of demand

- Increase transportation system efficiency
- Develop spatially-optimal fixed-route transit network
- Where to serve with fixed route or demand responsive

Introduction

Background

Data

Methods

Results

Preliminary work

- Model transit networks
 - Spatially-optimal
 - Equitably-augmented
 - Socially-equitable
- Able to identify
 - Underserved locations
 - Over-served locations
 - Shortest-path discrepancies

Background

Data

Methods

Results

Preliminary work

- Model transit networks
 - Spatially-optimal
 - Equitably-augmented
 - Socially-equitable
- Able to identify
 - Underserved locations
 - Over-served locations
 - Shortest-path discrepancies

ACKNOWLEDGEMENTS

Funding provided by:

US Department of Transportation
Research and Innovative Technology Administration

Collaboration with:

Dr. Austin Troy

Assistant Professor, UVM RSENR

James Sullivan, P.E. Research Engineer, UVM TRC

Andrew Weeks, P.E. Research Engineer, UVM TRC

QUESTIONS/COMMENTS

