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Towards More Robust Spatial Sampling Strategies for Non-motorized Traffic  1 
 2 
ABSTRACT 3 
 4 
With the widespread promotion of New Urbanism and Smart Growth there is an assumption that levels 5 
of non-motorized traffic are increased.  However, planners and analysts for non-motorized 6 
transportation modes still rely on very limited data resources and are therefore limited in identifying 7 
demand patterns and moving forward with more productive management and planning schemes. In this 8 
study, we utilized continuous non-motorized traffic counts collected along four shared use paths in 9 
Chittenden County, Vermont and analyzed the association between hourly (volume percentages of daily 10 
total) distribution patterns at each count station and land uses in the adjacent areas. Our findings show 11 
the linkage is not as evident as expected between surrounding land use and the hourly patterns of the 12 
counts gathered, likely due to the insufficient diversity of the land use patterns around the count 13 
stations. Therefore, there is a dire need for a more robust sampling strategy to be developed to obtain 14 
counts efficiently that are able to extrapolate short period counts into region-wide travel estimates. In 15 
this study, we propose a spatial-based clustering analysis which identifies five land use categories to 16 
assist planning practitioners in selecting sampling locations that are representative for generating 17 
consistent non-motorized traffic counts for entire network.   18 
 19 
INTRODUCTION AND BACKGROUND 20 
 21 
Increasing levels of non-motorized traffic is an important goal in research studies related to New 22 
Urbanism and Smart Growth comprising of traditional (neo) neighborhood design, transit-oriented 23 
development, new pedestrianism and more (1). In addition to serving as an alternative to replace 24 
motorized traffic thus reducing congestion and the related environmental, energy and social concerns, 25 
non-motorized transportation has also been at the center stage for promoting healthy living. In a recent 26 
cycling and walking study (2) utilizing nationwide county-based data, the authors pointed out the spatial 27 
distribution of cycling and walking commuting is positively associated with population density, natural 28 
amenities, education, wealth and estimates of local civic concerns. By focusing on the non-motorized 29 
mode choice of individuals, Rodriguez and Joo (3) revealed that objectively measured physical 30 
environment features such as travel time, access time and out-of-pocket costs have significant 31 
contributions to attractiveness of non-motorized mode choices. Many reports using large study areas 32 
similar to the above have identified important linkages between non-motorized travel behavior and the 33 
physical and social environment features, fewer researchers have been able to use location specific non-34 
motorized traffic counts to yield progress in forecasting future volumes at a microscopic scale. 35 
Pulugurtha and Pepaka (4) studied the pedestrian counts collected at 176 intersections in the City of 36 
Charlotte, North Carolina and developed models predicting pedestrian activity using factors ranged from 37 
demographic characteristics, such as population and household units, to land use characteristics, 38 
including residential, commercial, industrial, etc. Their study results showed that urban residential 39 
density has the most significant impact on pedestrian activity at intersections.  40 
 41 

TRB 2010 Annual Meeting CD-ROM Paper revised from original submittal.



Zhang, Jennings, Aultman-Hall, Benoit  3 

 

 

Other studies have also identified plausible association between land use, including both zonal 1 
structure and physical characteristics, and the tendency for generating non-motorized traffic, again 2 
usually at the larger spatial scale or study area. Of them, Guo et al (5) conducted research to assess the 3 
effects of the built environment on motorized and non-motorized trip making, they discovered that few 4 
built environment factors would successfully lead to substitution of motorized traffic by non-motorized 5 
traffic. However, they argued that the increase in bikeway density or the connectivity in street network 6 
would have better potential in supplementing the existing motorized traffic with non-motorized traffic. 7 
It is suggested that land use tends to have high correlation with the level of non-motorized traffic 8 
volume because in most cases it is highly associated with the presence of supporting infrastructure and 9 
the transportation network features encouraging pedestrian and bicyclist activities. However, while it is 10 
generally accepted that non-motorized traffic levels vary from location to location with different land 11 
use patterns, by hour throughout the day and with weather by month of the year, the robust hourly 12 
patterns documented for vehicular traffic have not been defined comprehensively for non-motorized 13 
transportation modes. Moreover, the range of land use or spatial characteristics was often times 14 
overlooked when selecting locations for limited non-motorized traffic counts.  Instead, researchers and 15 
planners often elect to collect data in the most traveled locations.  The intersection of how these 16 
temporal patterns change with both the availability of dedicated facilities as well as land use patterns 17 
has not fully been studied and the full range of data to consider these relationships has not been 18 
collected.   19 
 20 

In this study, we examined the relative hourly distribution of non-motorized traffic data 21 
throughout a day at numerous locations along several shared use paths in Chittenden County, Vermont 22 
and investigate the probable linkage between the daily volume distribution and surrounding land use 23 
patterns. This study also serves as part of an investigation to understand how to identify better sets of 24 
locations for future non-motorized traffic counts that would provide a better representative sample for 25 
extrapolation of region-wide bicycle and pedestrian volumes as well as travel exposure.  Currently, 26 
agencies tend to conduct counts at the suspected highest volume areas.  This large number of 27 
homogenous locations comprises the most heavily traveled non-motorized areas and cannot be used for 28 
total travel or exposure estimates. They are also of limited value for fully understanding what factors 29 
affect biking and walking levels because we have not studied the low or no volume areas.  While the 30 
need for more random representative sampling applies to all facilities including roads and shared use 31 
paths, having more comprehensive knowledge of non-motorized traffic volume levels on shared used 32 
paths, the focus of this paper, is important to assist planning/operating agencies in mainstreaming these 33 
facilities as a legitimate component of the overall multimodal transportation system.  34 
    35 
DATA SOURCES 36 
 37 
Three primary data sources were used in this study: (1) geo-coded land use data and street network for 38 
Chittenden County provided by Vermont Center for Geographic Information (VCGI); (2) a geo-coded 39 
Champlain Valley pedestrian/bikeways network from Local Motion, a member supported non-profit 40 
organization in northwestern Vermont; and (3) multiple-day continuous pedestrian and bicyclist counts 41 
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collected in between 2007 and 2009 at multiple locations along four shared use paths in Chittenden 1 
County, Vermont provided by Chittenden County Metropolitan Planning Council (CCMPO). Chittenden 2 
County is the most populated county of all fourteen in State of Vermont, with a population of nearly 3 
150,000 and an area of 620 square miles. Figure 1 shows the nine locations where the existing counts 4 
were collected. In the same figure, the access points along the shared use paths and the sections of the 5 
paths providing open access from adjacent neighborhoods to the paths were also highlighted illustrating 6 
the level of accessibility to these facilities.  Note that one path in particular, the one along the lake shore, 7 
has more limited access to adjacent land use.  Others along roadways such as the Kennedy drive path 8 
have access at effectively every intersection. 9 

 10 
Figure 1 Multi-day continuous count stations along shared use paths and their access points  11 
 12 

Table 1 lists for all nine stations the duration of the counts employed for this study and the 13 
number of weekdays, Saturdays, and Sundays during which hourly pedestrian and bike volumes were 14 
counted. In total 265 days of non-motorized traffic volumes were counted.  The count stations were 15 
mostly placed in arbitrary locations by CCMPO while taking into consideration of (1) locations with 16 
higher non-motorized traffic volumes of interest for safety or management reasons, and (2) locations 17 
requiring higher maintenance costs such as pedestrian/bike bridges. The infrared pedestrian and bicycle 18 
counter (Eco-counter) has been employed at all stations to collect the combined pedestrian and bicycle 19 
volume data. This device is capable of collecting bi-directional bicycle and pedestrian traffic although 20 
total volume is used in this paper. By reading body temperature, the device's sensor detects the infrared 21 
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radiation emitted by each person who passes by it, and the sensor's narrow profile further enables it to 1 
count two or more people following closely to one another (6).  One of the previous studies (Aultman-2 
Hall et al) utilizing counts collected by the same type of counter indicated an accuracy level of 98% when 3 
compared to manual counts. 4 
 5 
Table 1 List of count stations and their duration  6 
 7 

Shared use 
path 

Station # Count Duration 
# of 

Weekdays 
# of 

Saturdays 
# of 

Sundays 
# of 

Holidays 

Island Line 
Trail 

1 June 11 – August 18, 2008 36 7 7 1 

2 July 3 - July 31, 2007 20 4 4 1 

3 August 20 - September 23, 2008 24 5 5 1 

4 May 3 - May 20, 2007 12 3 3 0 

5 August 5 - September 1, 2008 19 4 4 1 

UVM Trail 6 July 26 – August 3, 2008 5 2 2 0 

Kennedy 
Drive Trail 

7 
Sep 2 – Sep 30, 2008 
May 1 - May 26, 2009 

38 8 8 1 

8 July 12 - July 24, 2008 9 2 2 0 

Downtown 
Burlington  

9 April 26 -  May 27, 2007 18 4 4 1 

 8 
The nine locations in Table 1 are located along shared use paths within the urban and suburban 9 

portions of Burlington. As Figure 1 shows, Island Line Trail runs through Burlington both north and south 10 
from downtown near the Lake Champlain shore going by mainly residential and recreational land use 11 
areas. The UVM Trail at its west end connects to US 7, a major multilane arterial which serves as a 12 
critical link for north-south motorized traffic especially in northwestern Vermont.  The path runs 13 
partially parallel to Interstate 189, and winds to go up north passing by a series of University of Vermont 14 
properties.  While within the urban area, after leaving the end proximate to the arterial highway, the 15 
path is surrounded by treed and farm areas.  The Kennedy Drive Trail runs parallel and adjacent the 16 
entire length of the 4-lane arterial Kennedy Drive. It is separated from the road by a narrow green 17 
barrier (about 5 feet). Also included in the analysis were multi-day continuous counts from a downtown 18 
Burlington location (location 9 in Table 1) that is along a short pedestrian and bike path which connects 19 
large residential and hotel buildings to the city’s commercial center.  20 
 21 

Of primary interest in this study is not only the total volume or peak volume of non-motorized 22 
users as is often studied, but rather the relative distribution or pattern of hourly volume throughout the 23 
day.  We hypothesize that the daily pattern varies as a function of surrounding land use.  Multi-day 24 
continuous hourly non-motorized traffic volume (pedestrians and bicyclists) collected during 2007-2009 25 
were examined at nine count locations along the four shared use paths and the large dataset allows 26 
consideration of weekdays, Saturdays, and Sundays. In a study assessing impact of weather and season 27 
on pedestrian volume conducted by Aultman-Hall et al (7) utilizing year round continuous hourly 28 
pedestrian counts at a sidewalk in Downtown Montpelier, VT, the authors found consistency in day 29 
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types such as weekdays/Saturdays vs. Holidays/Sundays. In this study, considering we were examining 1 
multiple locations across various types of surroundings of which some are deemed popular tourism and 2 
recreation spots, we decided to remove holidays from the data and to separate Saturdays from 3 
weekdays. Aultman-Hall et al. also found in their study that during winter time the overall pedestrian 4 
volume reduced by 16%. To avoid any discrepancy caused by season-related impact, we based our 5 
analysis solely on “summer months” which correspond to May through September. Holidays removed 6 
from the data included Memorial Day, Independence Day and Labor Day that did not occur on weekends.  7 
 8 
Around every count location along the paths, we also examined the accessibility to the paths from the 9 
proximate trail-side areas. With the assistance of aerial photos and on-site visits, we found the majority 10 
of the access points along the paths are at the intersections of those trails with local roads. In addition 11 
to characterizing the land use immediately surrounding the count locations, we also considered the land 12 
use surrounding the proximate access points to the paths. 13 
 14 
For this study, the VCGI Chittenden County land use data (8) were aggregated into seven different 15 
categories:  16 

• residential (residence or accommodation);  17 

• agricultural (agriculture, forestry, fishing and hunting); 18 
• recreational (arts, entertainment, recreation);  19 

• commercial (general sales or services);  20 
• public institutional (public administration, education, other institution); 21 

• transportation (transportation, communication, information, and utilities); and 22 
• all others 23 

Of the entire Chittenden County, residential and agricultural land uses represent the highest proportion 24 
of area both exceeding 30 percent. The next highest was public institutional and recreation land uses, 25 
together comprising 20 percent of the total. Commercial land use types were at the low end and mostly 26 
concentrated in the Great Burlington area which consists of the City of Burlington, the largest city in 27 
Vermont (with a population of 40, 000) also home of the University of Vermont campus, and several 28 
surrounding towns.  The geo-coded Champlain Valley pedestrian/bikeways network was then combined 29 
with the street network data in order to identify the length of both roads (from the street network data) 30 
as well as trails in the study area as two variables used to classify surrounding land use type. 31 
 32 
METHODOLOGY AND RESULTS 33 
 34 
Land Use along Shared use Paths 35 
 36 
In this study we were interested in the land use around those shared use path count stations, how the 37 
land use type affected the daily pattern in hourly non-motorized traffic volumes and whether the land 38 
use type was distinct from the range of land use combinations found in the whole County.  Assessing the 39 
land use pattern that is possibly relevant to non-motorized traffic on shared use paths is not 40 
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straightforward. First, many shared use paths in Chittenden County do not have open access 1 
continuously along the trail, therefore, the non-motorized users might be unaffected by the immediate 2 
surrounding land use and are not interacting with it versus pedestrians in a downtown may be shopping 3 
in adjacent retail stores. For example, a path used mainly for recreation and commuting purposes might 4 
pass very close to large agricultural lands, public institutions, major highways, or industry, however, the 5 
types of biking or walking traffic it carries may be unrelated to any of those specific proximate land use 6 
types. Second, non-motorized traffic demand levels are typically generated by activities and humans at 7 
or between land uses. For planning purposes, land uses adjacent but with no access to trails may not be 8 
a factor in non-motorized traffic volumes or the daily patterns in those volumes.  On the other hand, the 9 
lack of access or proximate green space may be an attraction for some users.  To account for these 10 
factors, at each non-motorized count location, we identified the land use at the nearest access points 11 
within a 1.5 km linear distance along the path from the count location.  Sequentially, we investigated 12 
the probable connection between the hourly volume distributions and land use characteristics.  13 
 14 
While the land use immediately surrounding a count location can be calculated with a simply GIS overlay, 15 
the land use at access points requires more manual consideration.  The access points nearest the 16 
existing count locations and within 1.5 km, as shown in Figure 1, were used.  For each access point a 0.5 17 
km by 0.5 km square buffer area was generated.  The area in the buffer was overlaid with the land use 18 
data to calculate area by land use in the buffers. Table 2 shows for each count station the total number 19 
of access points within its approximate range and the percentages of total area by land use type. 20 
Stations 7 and 8 have higher accessibility than the rest of stations. Five (1, 2, 3, 7 and 8) of the count 21 
stations have relatively high surrounding residential land use.  Two (4 and 9) have only approximately 10 22 
percent residential.  Stations 1, 2 and 3 have 0 percent commercial land use, while the downtown 23 
Burlington station 9 has commercial land use for 34 percent of the buffer area.  This table suggests this 24 
set of 9 count locations on shared use paths has a broad range of different mixes of land use types (note 25 
that our analysis of land use patterns county-wide presented later in the paper reveals these sites are 26 
not as diverse or representative as the table suggests at first consideration).   27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
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Table 2 Count Locations and their surrounding land use patterns  1 

 Island Line Trail UVM Trail 
Kennedy Driver 

Trail 
Downtown 
Burlington 

Station # 1 2 3 4 5 6 7 8 9 

# of access points 4 4 4 3 4 5 12 8 2 

Residential 40 40 41 9 15 19 37 38 11 

Commercial 0 0 0 12 8 19 7 9 34 

Recreational 12 12 20 17 23 5 6 1 7 

Public institutional 0 0 19 2 2 5 12 5 15 

Agricultural 13 13 4 2 3 20 19 30 1 

Transportation 8 8 10 28 16 20 5 6 25 

Other 27 27 6 30 33 12 18 11 7 

Total 100 100 100 100 100 100 100 100 100 

 2 
Hourly distribution patterns at count locations 3 
 4 
By aggregating the counts from every each location, we developed average hourly distribution of non-5 
motorized traffic for weekdays, Saturdays and Sundays as illustrated in Figure 2A through 2I. For any of 6 
the day-of-week types at a particular count station, the hourly percentages were computed based on 7 
average hourly volumes for an average weekday, Saturday, or Sunday normalized over the duration of 8 
counts, as shown by Equation (1) 9 

∑

∑

=

== N

in
in

N

n
ikn

ik

ND

Nh
p

/)(

/)(
1         Equation (1) 10 

where ikp (used for illustration in Figure 2) stands for the average hourly percentage at hour k for day-11 

of-week type i; iknh stands for hourly volume of hour k on day n for day-of-week type i; iknD stands for 12 

daily volume on day n for day-of-week type i; and N stands for the count duration (as given in Table 1); 13 
While the nine sets of graphs show some differences in hourly non-motorized traffic patterns on 14 
weekdays and on Saturdays & Sundays, the distributions are not as different as we expected they might 15 
be based on initial evaluation of land use differences. Note the volume level indicated in Figure 2 varies 16 
widely from location to location.  Note also the trails with higher volume have smoother distributions 17 
but that even locations with a large number of days counted have jagged patterns so we conclude the 18 
jagged patterns are not due to smaller number of days being counted.  19 
 20 
 21 
 22 
 23 
 24 
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Figure 5 Hourly distribution of non-motorized traffic on an average Saturday, Sunday and Weekday (x-1 
axis: hour of the day; y-axis: normalized hourly proportions of daily volume) 2 
A Island Line Trail station 1 (Colchester) 3 
Saturday (7 days of counts)  Sunday (7 days of counts) Weekday (36 days of counts) 4 

               5 
 6 
B Island Line Trail station 2 (Burlington) 7 
Saturday (4 days of counts)  Sunday (4 days of counts) Weekday (20 days of counts) 8 

               9 
 10 
C Island Line Trail Station 3 (Burlington) 11 
Saturday (5 days of counts)  Sunday (5 days of counts) Weekday (24 days of counts) 12 

                  13 
 14 
D Island Line Trail station 4 (Burlington) 15 
Saturday (3 days of counts)  Sunday (3 days of counts) Weekday (12 days of counts) 16 
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                1 
 2 
E Island Line Trail station 5 (Burlington) 3 
Saturday (4 days of counts)  Sunday (4 days of counts) Weekday (19 days of counts) 4 

               5 
 6 
F UVM Trail station 6 (South Burlington) 7 
Saturday (2 days of counts)  Sunday (2 days of counts) Weekday (5 days of counts) 8 

              9 
 10 
G Kennedy Drive Trail station 7 (South Burlington) 11 
Saturday (8 days of counts)  Sunday (8 days of counts) Weekday (38 days of counts) 12 
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              1 
H Kennedy Driver Trail station 8 (South Burlington) 2 
Saturday (2 days of counts)  Sunday (2 days of counts) Weekday (9 days of counts) 3 

               4 
 5 
I Downtown Burlington Station 9 (Burlington) 6 
Saturday (4 days of counts)  Sunday (4 days of counts) Weekday (18 days of counts) 7 

                 8 
 9 
While some limited differences between weekday and weekend and accessibility versus limited access 10 
shared use path volume distributions are evident from Figure 2, for the most part the impact of 11 
surrounding land use is not evident.  The limited access trail has univariate distributions which are 12 
flattened on weekdays and more peaked on weekends.  The shared use paths with more access points 13 
have much more variable volume distributions throughout the day.  No obvious patterns were found 14 
based on the surrounding land use tabulated in Table 1.  Locations 1, 2, 3, 7 and 8 might be considered 15 
residential, 3, 6 and 9 higher commercial.  Locations 4, 5 6 and 9 have proximate significant roadways.  16 
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In order to sample representative land use areas, a stronger and more robust measure of land use 1 
pattern is needed.  Count locations 7 and 8 demonstrated an AM and PM peak on weekdays and 2 
Saturdays.  Location 9, in the very commercial downtown area, has some volume over all 24 hours which 3 
is different from all other count locations.   4 
 5 
Sampling Based on Land Use Patterns  6 
One main goals of this research was to develop a method and procedure to select a set of locations for 7 
non-motorized traffic counts that is representative of the entire county. The previous section suggested 8 
a limited connection between seemingly different land use areas and the hourly distribution pattern of 9 
volume. Bearing this in mind, we developed a framework which allowed us to consider the overall land 10 
use patterns for the whole County in relationship to this set of shared use path count locations.   11 
 12 
A grid system was created dividing the entire County into a large number of sub-sections. The purpose 13 
of this grid system was to categorize the land use patterns in entire study area at a refined detailed level. 14 
Continuously distributed 0.5 kilometer by 0.5 kilometer square polygons were automatically generated 15 
for the entire county dividing the Vermont street system into short links contained within nearly six 16 
thousand of regular-shaped cells. The total length of street links was then computed for every each cell. 17 
Since the cells with no street links captured inside are normally located in areas extremely remote or 18 
hardly being accessed, we examined only those ones, in total 3,450, with non-zero total length of streets 19 
(non-zero cells). This represented 60% of the area of the county.  K-means clustering method was then 20 
adopted to categorize those non-zero cells into a number of relatively more homogenous groups based 21 
on the surrounding land use types. 22 
 23 
Clustering Analysis 24 
K-means clustering method has been a popular data mining tool in various fields after it was first 25 
introduced in 1967 by James MacQueen (9). In our case, the data set consists of all the non-zero cells 26 
each attributed by 6 variables which represent the percentages of total cell area for the different land 27 
use. For example, a cell that is mostly occupied by residential buildings might be coded as having over 50 28 
percent residential land use and small percentages of other types such as commercial and recreational. 29 
K-means cluster analysis was conducted to group all cells using the percentages by land use type as 30 
reference variables based on the Euclidean “distance”1 calculated using land use percentages. In the 31 
clustering procedure, the non-zero cells were partitioned into five groups such that a pair of elements in 32 
the same cluster tends to be more similar than a pair of elements belonging to different clusters. The 33 
aim of the K-means cluster algorithm is to classify a set of data points into K categories through the K 34 

clusters defined a priori (9). The main idea is to define K initial cluster centers 1 2{ , ,..., }o o o o
kC c c c= one 35 

for each cluster, and then to relate the rest of the data points to these centers depending on the closest 36 
Euclidean distance, 37 

1/2
2

, ,
1

( , ) ( )
V

i j i v j v
v

d x x x x
=

 
= − 
 
∑        (2) 38 

                                                           
1 Note this is distance in vector space not distance within the transportation network. 
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where ( , )i jd x x  is the Euclidean distance between point i and j, and V is the dimension of the reference 1 

variable vector.  2 
 3 
The following procedure then applies two steps iteratively. First, it assigns each data point to the 4 
nearest cluster center according to the Euclidean distance using equation (3).  5 

'

1 1 1 1
1 2

1 ' '

{ , ,..., },

{ | ( , ) ( , ),1 , }

i i i i
j k

i i i
j j j

C c c c

c x d x d x j j k and j jµ µ

+ + + +

+

=

= ≤ ≤ ≤ ≠
    (3) 6 

Then when all points have been assigned to a cluster, the cluster centers are recalculated based on their 7 
assigned data points using equation (4), 8 

1
| | i

j

i
j i

x cj

x
c

µ
∈

= ∑          (4) 9 

where j refers to the clusters, i is the iteration counter, | |ijc is the number of points of cluster j after the 10 

ith iteration, and i
jµ is the center of cluster j after the ith iteration. The procedure using equations (3) 11 

and (4) is repeated until the cluster centers do not change any more (that is, they converge), and then 12 
the K clusters each with a subset of data points become the final categories.   13 
 14 
Following the above procedure, we categorized those non-zero cells into five clusters based on their 15 
distribution of the six land use percentages. As Table 2 shows, the five typical land use groups defined by 16 
the clustering algorithm have been named by our group as mixed use, public institution, residential, 17 
recreation, and agriculture with each having a unique blend of land use types. Figure 3 illustrates the 18 
distribution of these cluster types in the county. Mixed use clusters possess a relatively high 19 
concentration in the mostly urban area of Burlington (encompassing the City of Burlington and its 20 
surrounding towns including South Burlington, Essex Junction, and Williston) which is more developed 21 
and economically active than the rest of the county. Characterized by a great mixture of all land use 22 
types, the mixed use cluster has the highest commercial, transportation land use density, and also 23 
includes some level of residential land use. The public institution cluster is represented by a high level of 24 
public institution land use density, mainly counting schools and government buildings, colleges or other 25 
facilities. Similarly, residential, recreation and agriculture clusters, respectively, have their highest 26 
representative land use type as residential, recreational, and agricultural.  Recalling that grids without 27 
any roads or trails have been excluded, one might expect there are many agricultural and residential 28 
grids in the county with fewer institutional and recreational cluster.  There are also a reasonable number 29 
of mixed use areas. 30 

31 
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Table 3 Cluster categories and their land use patterns  1 

Land use type 
Mixed use Public institutional Residential  Recreational  Agricultural  

Cluster centers (with land use percentages) 

Residential 23 9 75 17 17 

Commercial  8 1 1 1 0 

Recreation  4 2 2 63 1 

Public institution 3 80 1 0 0 

Transportation  16 3 5 5 4 

Agriculture 16 3 16 9 75 

Others  30 2 2 6 2 

# of cells in County 518(15%) 101(3%) 1451(42%) 140(4%) 1242(36%) 

# of Shared Use Path 
Count Locations 

1(11%) 1(11%) 6(67%) 1(11%) 0(0%) 

# of all CCMPO Count 
Locations 

2 (12%) 1(6%) 12(71%) 2(12%) 0(0%) 

 2 
The clustering results in Table 2 (the shaded row) indicate the percentage of cells in the county which 3 
fall into each of the five categories.  Baring in mind, although this method is applicable elsewhere to 4 
generate clusters representing various land use patterns, the results presented here would be a county-5 
specific distribution.  The bottom two rows of the table show the type of land use cluster for the 9 6 
shared use path locations analyzed in this paper as well as the full set of 17 locations where the CCMPO 7 
counted non-motorized traffic during the last 2 years (a larger number than the multi-day locations used 8 
in this study due to inclusion of single-day counts locations). Of the 9 shared use path count locations 9 
described above six were in one category.  This may explain the similarity in most of the daily 10 
distribution patterns.  We propose for future counts that random grid cells be selected so that the 11 
locations are representative of the land use clusters.  The CCMPO locations presented in the table were 12 
selected for sound management goals, but need to be diversified for obtaining travel exposure 13 
estimation for the whole county. 14 
 15 
 16 
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 1 
Figure 3 Land use patterns identified by cluster analysis for the grid cells in study area  2 
 3 
CONCLUSIONS 4 
 5 
Previous literature clearly establishes that non-motorized travel demand is a function of land use 6 
patterns.  There is recently more wide-spread technology available to obtain automated counts of non-7 
motorized traffic volumes which facilitates larger datasets managed to develop time of day and day of 8 
week factors for Highway Capacity Manual style analysis.  Development of such factors to predict bicycle 9 
and pedestrian traffic volumes and extrapolate from limited counts to region-wide total travel for safety 10 
and other applications is important for mainstreaming non-motorized transportation into the overall 11 
transportation system.  As we proceed to deploy counters and obtain data it is essential to develop 12 
sampling frameworks based on spatial land use patterns that allow random counts to be representative 13 
of a whole region.   14 
 15 
This study utilized a set of shared use path counts for which the locations had been chosen for solid 16 
management reasons: traffic management and facility maintenance.  Our analysis here demonstrated 17 
that these counts did not represent the range of land use mixes found within the county even when only 18 
a limited number (five) of land use categories were defined using a K-means cluster analysis.  The shared 19 
use path daily volume distributions followed similar patterns for weekends versus weekdays.  20 
Differences were noted between limited access versus easy access shared use paths.  Clearly much more 21 
data from different regions of the county will be needed to fully characterize non-motorized traffic 22 
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volumes, however this study demonstrates that we must carefully consider a more random sampling 1 
procedure up-front or the data we collect will be limited in representing the full range of land use areas 2 
found in our regions.  The consistent daily distribution observed in the results here further support the 3 
notion that correction factors that allow extrapolation of counts in pace and time for non-motorized 4 
modes are feasible. 5 
 6 
The sampling method we propose in this paper for count location selection was conducted with publicly 7 
spatial land use data that is widely available.  Similarly, the GIS-based grid overlay and the K-means 8 
clustering method are straightforward and could be adopted by planning agencies to determine the 9 
proportion of their region within a number of land use categories and then to randomly select grid 10 
locations for counting.  Once grids for counting were selected a random point on the roads or trails 11 
within the cell would also require being selected.   While the count results would require weighting 12 
based on miles of facility within the grid, we would argue this effort makes the data within a counting 13 
program more valuable for a wider range of policy questions than simply having counts at the highest 14 
volume locations of the region. 15 
 16 
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