Engineering Science → ENGINEERING SYSTEMS

• Viewed as a distinct approach from the engineering science revolution of the late 1950s and early 1960s. Engineering science built on the physical sciences: physics, mathematics, chemistry, etc., to build a stronger quantitative base for engineering, as opposed to the empirical base of years past.
• This approach, while extraordinarily valuable, tends to be very micro in scale, and focuses on mechanics as the underlying discipline.

Engineering Systems
• Now engineering systems takes a step back from the immediacy of the technology and is concerned with how the system in its entirety behaves, for example, emergent behavior of complex systems.
ENGINEERING SYSTEMS
(at the interface of Engineering, Management, & Social Sciences)
CLIOS System

- Complex
- Large-scale
- Interconnected
- Open
- Socio-technical
Complex

- **Structural complexity**
 - The number of components in the system and the network of interconnections between them
- **Behavioral complexity**
 - The type of behavior that emerges due to the manner in which sets of components interact
- **Evaluative complexity**
 - The competing perspectives of stakeholders who have different views of “good” system performance
- **Nested Complexity**
 - The interaction between a complex “physical” domain and a complex “institutional” sphere
Nested Complexity

- Physical system
 - More quantitative principles
 - Engineering & economic models
- Institutional “sphere”
 - More qualitative in nature and often more participatory
 - Stakeholder evaluation and organizational analysis
- Different methodologies are required
 - within the physical system
 - between the policy system and the physical system
 - within the policy system
TRANSPORTING SPENT NUCLEAR FUEL

Complex Large-scale

Large-scale in
- Geographic extent, and
- Impact

Yucca Mountain
TRANSPORTING SPENT NUCLEAR FUEL

Transportation interconnected with:

- Energy
- Global Climate Change
TRANSPORTING SPENT NUCLEAR FUEL

• Social Factors
 – Risk

• Political Factors
 – Geopolitics

• Economic Factors
 – Development
An Example of a Socio-technical System:

TRANSPORTING SPENT NUCLEAR FUEL

- Complex Technology
- Important Social Impacts
The **CLIOS** Process

A 3-Stage, 12-step, iterative process used to study CLIOS Systems
Transportation Eras

Infrastructure Era

Transportation Systems Era

The Transportation as CLIOS Systems Era
Infrastructure Era

• Build what “they” want
• Focus on physical facilities
• Focus on mobility
• Focus on economic growth
• Largely a modal perspective
Transportation Systems Era

• Economics-based framework
 – Supply
 – Demand
 – Equilibrium
 – Networks
• Focus on economic development and environmental concerns
• Focus on both mobility and accessibility
• Recognition of unpriced externalities as causing problems – congestion, air quality, sprawl
• Intermodal Perspective (largely limited to freight)
The Transportation as CLIOS System Era

Focused on transportation as a Complex, Large-scale, Interconnected, Open, Socio-technical (CLIOS) System

Characterized by:

• Advanced Technology and Mathematics
• Institutional Change – the New Concept of Enterprise Architecture
• Transportation Connected to other Sociotechnical Systems
• Expanded Role for Stakeholders and a Broader Definition of Interested Stakeholders
• “Macro-design” Performance Considerations for the Transportation Enterprise – the “ilities”
The Transportation as CLIOS System Era is Characterized by:

Advanced Technology and Mathematics Enabling…

- Operations Focus
- Tailored Customer Service
- A Rich Information Environment
- A Higher and More Effective Level of Intermodalism Extending into Supply Chain Management
- Large-scale Optimization
The Transportation as CLIOS System Era is Characterized by:

Advanced Technology and Mathematics Enabling… (cont.)

- Disaggregate Demand Analysis
- Real-time Network Control and Provision of Traveler Information
- Vehicle Automation and a Crash-Avoidance Safety Perspective
- Sophisticated Pricing
 - Yield Management
 - Pricing of Externalities
- Regionally-scaled Transportation Operations and Management
The Transportation as CLIOS System Era is Characterized by:

Institutional Change—the New Concept of Enterprise Architecture

- **Public Sector Change**—among and within levels of government

- **Private Sector Change** – with new business models and players beyond the traditional ones

- **Public/ Private Relationships/ Partnerships**
Institutional Change—the New Concept of Enterprise Architecture (cont.)

• An International/Global Perspective

 and

 The Challenge of Operating Regionally and with Advanced Technology

• The Relationship of Logistics and Supply Chain Management to Regional Strategic Transportation Planning and the Idea of Transportation Investment and Operations as a Means to Enhance Regional Competitive Advantage
The Transportation as CLIOS System Era is Characterized by:

Transportation Connected to other Sociotechnical Systems

- Environment
- Energy
- Economic
- Global Climate Change
- National Defense/ Geopolitics
- Telecommunications
The Transportation as CLIOS System Era is characterized by:

Expanded Role for Stakeholders and a Broader Definition of Interested Stakeholders

- In system definition and representation
- In developing performance metrics
- In developing strategic alternatives
- In considering implementation strategies
- In decision-making
The Transportation as CLIOS System Era is Characterized by:

“Macro-design” Performance Considerations for the Transportation Enterprise---the “ilities”

(in addition to traditional micro-design considerations such as cost, level-of service (LOS) variables such as price, travel time, service reliability, service frequency, safety....)

• Flexibility
• Adaptability
• Robustness
• Resilience (the opposite of vulnerability)
• Scalability
• Modularity
• Stability …
The Transportation as CLIOS System Era is Characterized by:

“Macro-design” Performance Considerations for the Transportation Enterprise—-the “ilities”

... and, perhaps the most important “ility”

• SUSTAINABILITY

 as an overarching design principle—The 3 Es---Economics, Environment and Social Equity
THE “T-SHAPED” NEW TRANSPORTATION PROFESSIONAL

Breadth in:

- Transportation Fundamentals
- Technology
- Systems
- Institutions

In-depth knowledge within a transportation specialty
How Transportation Must Change in Academia

1. Reaching beyond engineering to management, social science, planning.

2. Recognizing the need for qualitative as well as quantitative analysis.

3. Eschewing narrow representations of complex systems that can be formally solved, but that have little relevance to real-world issues.
How Transportation Must Change in Academia

4. Realizing that “optimal” solutions are often beyond the pale; a small set of feasible solutions is often all we can hope for because of evaluative complexity.

5. Learning to approach with considerable humility, our intervention in complex socio-technical domains – remember that behavioral complexity makes predictions extraordinarily difficult.

6. Relating our work in education and research to those of colleagues in other domains – Energy, Manufacturing, Logistics, Telecommunications – these are all CLIOS Systems too.
Thanks for your attention!