Some Arithmetic Deformation Theory

Taylor Dupuy

September 15, 2010
Prop

If \(R \) is a ring of characteristic \(p \) then the map \(F : x \mapsto x^p \) is a ring endomorphism.

Lift of Frobenius

A lift of the Frobenius on \(R \) is a map \(\sigma : R \to R \) such that

\[
\sigma(x) \equiv x^p \mod p.
\]
Absolute Frobenius

k perfect of characteristic p. X a smooth scheme defined over k,

Absolute Frobenius

Morphism of schemes

$$F : X \rightarrow X$$

1. Identity on topological space
2. $f \mapsto f^p$ on sheaf.
Absolute Frobenius

k perfect of characteristic p. X a smooth scheme defined over k,

Absolute Frobenius

Morphism of schemes

$$F : X \rightarrow X$$

1. Identity on topological space
2. $f \mapsto f^p$ on sheaf.
Absolute Frobenius

k perfect of characteristic p. X a smooth scheme defined over k,

Absolute Frobenius

Morphism of schemes

$$F : X \rightarrow X$$

1. Identity on topological space
2. $f \mapsto f^p$ on sheaf. We are changing the sheaf:

$$\mathcal{O}_X(U) \rightarrow F_*\mathcal{O}_X(U)$$
What is the Deligne-Illusie Class?

- Obstruction to lift of frobenius $\mod p^2$.
- Used in a paper by Deligne and Illusie in 1987 to give an algebraic proof of Kodaira Vanishing'

$$H^i(X, L \otimes \omega) = 0 \text{ for } i > 0$$
What is the Deligne-Illusie Class?

- Obstruction to lift of frobenius mod p^2.
- Used in a paper by Deligne and Illusie in 1987 to give an algebraic proof of Kodaira Vanishing’

$$H^i(X, L \otimes \omega) = 0 \text{ for } i > 0$$

(for example in Hartshorne X is taken to be a nonsingular projective variety over \mathbb{C})
Deligne and Illusie Class

The Deligne-Illusie Obstruction

$X \in H^1(X_{\text{reduction mod } p}, F^* T_X)$

Frobenius Tangent Bundle

$X_p = X \otimes \mathbb{R}/ \mathbb{R}/p \mathbb{R}$, perfect

Recall: $\text{char}(\mathbb{R}) = p = \Rightarrow \exists x \mapsto x^p$; the Frobenius always makes sense in characteristic p.

$\theta \in \Gamma(U, F^* T_X)$ means $\theta : O(U) \to O(U)$ with $\theta(fg) = \theta(f)g^p + f^p \theta(g)$

$\theta(f + g) = \theta(f) + \theta(g)$
The Deligne-Illusie Obstruction

\[\text{DI}_X \in H^1 \left(\underbrace{X_p}_{\text{reduction mod } p}, \underbrace{F^*TX_p}_{\text{Frobenius Tangent Bundle}} \right) \]

\[X_p = X \otimes_R R/pR, \ R/pR \text{ perfect} \]
The Deligne-Illusie Obstruction

\[\text{DI}_X \in H^1(\underbrace{X_p}_{\text{reduction mod } p}, \underbrace{F^*TX_p}_{\text{Frobenius Tangent Bundle}}) \]

\[X_p = X \otimes_R R/pR, \text{ } R/pR \text{ perfect} \]
The Deligne-Illusie Obstruction

\[\text{DI}_X \in H^1(\underbrace{X_p}_{\text{reduction mod } p}, F^*TX_p) \]

\[X_p = X \otimes_R R/pR, \quad R/pR \text{ perfect} \]

Recall:

- \(\text{char}(R) = p \implies \exists x \mapsto x^p \); the frobenius always makes sense in characteristic \(p \).
- \(\theta \in \Gamma(U, F^*TX_p) \) means \(\theta : \mathcal{O}(U) \to \mathcal{O}(U) \) with
 \[
 \begin{align*}
 \theta(fg) &= \theta(f)g^p + f^p\theta(g) \\
 \theta(f + g) &= \theta(f) + \theta(g)
 \end{align*}
 \]
Theorem \[\text{DI} \cdot X = 0 \implies O \cdot X \text{ admits a lift of the Frobenius mod } p^2 \]

Lift: \(\sigma: O \cdot X \otimes_R R/p^2 R \to O \cdot X \otimes_R R/p^2 R \) such that \(\sigma(f) \equiv f \pmod{p} \).
Theorem

$\text{DI}_X = 0 \iff \mathcal{O}_X \text{ admits a lift of the Frobenius } \mod p^2$
Theorem

\[\text{DI}_X = 0 \iff \mathcal{O}_X \text{ admits a lift of the frobenius } \mod p^2 \]

Lift: \[\sigma : \mathcal{O}_X \otimes_R R/p^2 R \to \mathcal{O}_X \otimes_R R/p^2 R \text{ such that } \sigma(f) \equiv f^p \mod p. \]
Construction of DI_X

X smooth scheme over R.
R admits a lift of the Frobenius, and R/pR a perfect field.

Cover X by affine open sets X_i.

Lift of the Frobenius to X_i (by smoothness).

We want to determine how these patch:

Prop $1 \ x \mapsto (\sigma_i(x) - \sigma_j(x)) p \mod p$

derivation of F.

$2 (\sigma_i - \sigma_j) p \mod p \in Z_1(X_p,F^*T X_p)$.

Actually a well-defined class.

PROBLEM: Lift this cocycle to characteristic zero.

Recipient Class? $\hat{\mathbb{Z}}$ ur $p(O,O)$ (Explain later)
Construction of DI_X

X smooth scheme over R.
R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i.

PROBLEM: Lift this cocycle to characteristic zero.

Recipient Class? $\hat{\mathbb{Z}}_{ur}(O,O)$ (Explain later)
Construction of DI_X

X smooth scheme over R.

R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).

PROBLEM: Lift this cocycle to characteristic zero.

Recipient Class? $\hat{\mathbb{Z}}/p\mathbb{Z}$ (Explain later)
Construction of DI_X

X smooth scheme over R.
R admits a lift of the Frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the Frobenius to X_i.

We want to determine how these patch:

$\sigma_i(x) \mapsto (\sigma_i(x) - \sigma_j(x) p) \mod p$

Derivation of F.

$\sigma_i - \sigma_j p \mod p \in \mathbb{Z}^{1}(X^p, F^* T X^p)$.

Actually a well-defined class.

Problem: Lift this cocycle to characteristic zero.

Recipient Class? $\hat{\mathbb{Z}}_{ur}(O, O)$ (Explain later)

Taylor Dupuy

Some Arithmetic Deformation Theory
Construction of DI_X

X smooth scheme over R.

R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the frobenius to X_i. (by smoothness)

PROBLEM: Lift this cocycle to characteristic zero.

Recipient Class? $\hat{\mathbb{Z}}_{ur}(O, O)$(Explain later)
Construction of DI_X

X smooth scheme over R.

R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the frobenius to X_i. (by smoothness)

We want to determine how these patch:

Prop
Construction of $\mathcal{D}I_X$

X smooth scheme over R. R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the frobenius to X_i. (by smoothness)

We want to determine how these patch:

Prop

1. $x \mapsto \left(\frac{\sigma_i(x) - \sigma_j(x)}{p}\right) \mod p$ derivation of F.

PROBLEM: Lift this cocycle to characteristic zero.

Recipient Class? $\widehat{\mathbb{Z}}_{ur}(O, O)$ (Explain later)
Construction of DI_X

X smooth scheme over R.

R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the frobenius to X_i. (by smoothness)

We want to determine how these patch:

Prop

1. $x \mapsto \left(\frac{\sigma_i(x) - \sigma_j(x)}{p} \right) \mod p$ derivation of F.
2. \(\left(\frac{\sigma_i - \sigma_j}{p} \mod p \right) \in Z^1(X_p, F^\ast TX_p) \).
Construction of DI_X

X smooth scheme over R.
R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the frobenius to X_i. (by smoothness)

We want to determine how these patch:

Prop

1. $x \mapsto \left(\frac{\sigma_i(x) - \sigma_j(x)}{p} \right) \mod p$ derivation of F.
2. $\left(\frac{\sigma_i - \sigma_j}{p} \mod p \right) \in Z^1(X_p, F^*TX_p)$. Actually a well-defined class.
Construction of DI_X

x smooth scheme over \mathbb{R}.
\mathbb{R} admits a lift of the frobenius, and $\mathbb{R}/p\mathbb{R}$ a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the frobenius to X_i. (by smoothness)

We want to determine how these patch:

Prop

1. $x \mapsto \left(\frac{\sigma_i(x) - \sigma_j(x)}{p}\right) \mod p$ derivation of F.
2. $\left(\frac{\sigma_i - \sigma_j}{p} \mod p\right) \in Z^1(X_p, F^*T X_p)$. Actually a well-defined class.

PROBLEM:

Lift this cocycle to characteristic zero.
Construction of DI_X

X smooth scheme over R.
R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the frobenius to X_i. (by smoothness)

We want to determine how these patch:

Prop

1. $x \mapsto \left(\frac{\sigma_i(x) - \sigma_j(x)}{p} \right) \mod p$ derivation of F.
2. $\left(\frac{\sigma_i - \sigma_j}{p} \mod p \right) \in \mathbb{Z}^1(X_p, F^*TX_p)$. Actually a well-defined class.

PROBLEM:

Lift this cocycle to characteristic zero.
Construction of DI_X

X smooth scheme over R.
R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the frobenius to X_i. (by smoothness)

We want to determine how these patch:

Prop

1. $x \mapsto \left(\frac{\sigma_i(x) - \sigma_j(x)}{p} \right) \mod p$ derivation of F.
2. $\left(\frac{\sigma_i - \sigma_j}{p} \mod p \right) \in \mathbb{Z}^1(X_p, F^*TX_p)$. Actually a well-defined class.

PROBLEM:

Lift this cocycle to characteristic zero.

Recipient Class?
Construction of DI_X

X smooth scheme over R.
R admits a lift of the frobenius, and R/pR a perfect field.

1. Cover X by affine open sets X_i. (still smooth).
2. Lift of the frobenius to X_i. (by smoothness)

We want to determine how these patch:

Prop

1. $x \mapsto \left(\frac{\sigma_i(x) - \sigma_j(x)}{p} \right) \mod p$ derivation of F.
2. $\left(\frac{\sigma_i - \sigma_j}{p} \mod p \right) \in Z^1(X_p, F^*T X_p)$. Actually a well-defined class.

PROBLEM:

Lift this cocycle to characteristic zero.

Recipient Class? $\text{Mod}_{\hat{\mathbb{Z}}_p}^\text{ur}(\mathcal{O}, \mathcal{O})$ (Explain later)
Prop

\(R \) a ring

\[\exists \sigma : R \to R \iff \exists \delta : R \to R \]

\(\delta \) a \(p \)-derivation
Prop

\(R \) a ring

\[\exists \sigma : R \to R \iff \exists \delta : R \to R \]

\(\delta \) a \textit{p-derivation}

(\textit{Not Actually True})
Prop

R a ring

$\exists \sigma : R \to R \iff \exists \delta : R \to R$

δ a p-derivation

(Not Actually True)
Prop

\[R \text{ a ring} \]

\[\exists \sigma : R \to R \iff \exists \delta : R \to R \]

\(\delta\) a \(p\)-derivation

(Not Actually True)

\[R \text{ has } \sigma \iff R \text{ has } \delta \quad (1) \]
Prop

R a ring

\[\exists \sigma : R \to R \iff \exists \delta : R \to R \]

δ a p-derivation

(Not Actually True)

\[R \text{ has } \sigma \iff R \text{ has } \delta \]

\[R \text{ has } \sigma \implies R \text{ has } \delta, \] \hspace{1cm} (1)
Prop

\(R \) a ring

\[\exists \sigma : R \to R \iff \exists \delta : R \to R \]

\(\delta \) a \(p \)-derivation

(Not Actually True)

\(R \) has \(\sigma \) \iff \(R \) has \(\delta \) \hspace{1cm} (1)

\(R \) has \(\sigma \) \implies \(R \) has \(\delta \), \hspace{1cm} When \(R \) is \(p \)-torsion free \hspace{1cm} (2)
What is a p-derivation?

Given a σ:

$$\delta(x) := \sigma(x) - x$$

"ratio of two zeros in characteristic p"

Given a σ:

$$\sigma(x) = x^p + p\delta(x)$$
What is a \(p\)-derivation?

Given a \(\sigma\):

\[
\delta(x) := \frac{\sigma(x) - x^p}{p}
\]

“ratio of two zeros in characteristic \(p\)”
What is a p-derivation?

Given a σ:

$$\delta(x) := \frac{\sigma(x) - x^p}{p}$$

"ratio of two zeros in characteristic p"

Given a δ

$$\sigma(x) = x^p + p\delta(x)$$
What is a p-derivation?

WARNING: p-derivations are nonlinear.

\[
\delta(xy) = \delta(x)y^p + x^p\delta(y) + p\delta(x)\delta(y)
\]

\[
\delta(x + y) = \delta(x) + \delta(y) + \frac{x^p + y^p - (x + y)^p}{p}
\]
What is a p-derivation?

WARNING: p-derivations are nonlinear.

$$
\delta(xy) = \delta(x)y^p + x^p \delta(y) + p\delta(x)\delta(y)
$$

$$
\delta(x + y) = \delta(x) + \delta(y) + \frac{x^p + y^p - (x + y)^p}{p}
$$

(WARNING: not even linear mod p)
What is a p-derivation?

WARNING: p-derivations are nonlinear.

\[
\delta(xy) = \delta(x)y^p + x^p \delta(y) + p\delta(x)\delta(y)
\]

\[
\delta(x + y) = \delta(x) + \delta(y) + \frac{x^p + y^p - (x + y)^p}{p}
\]

(WARNING: not even linear mod p)

Example:

\[
\delta\left(\frac{1}{x}\right) = \frac{1}{x^p} \frac{1}{1 + p\frac{\delta(x)}{x^p}}
\]
Reinterpretation of DI_X

DI revisited:

$$\sigma_i(x) - \sigma_j(x) = (x + \delta_i(x)) - (x + \delta_j(x))$$

Prop. Differences of p-derivations are derivations of the Frobenius when reduced mod p. They are $\hat{\mathbb{Z}}$-linear maps. As before: unreduced are they a cocycle in the sheaf defined by $U \mapsto \text{Nat}(\mathcal{O}|_U, \mathcal{O}|_U)$?
DI revisited:

\[\frac{\sigma_i(x) - \sigma_j(x)}{p} \]
Reinterpretation of DI_X

DI revisited:

$$\frac{\sigma_i(x) - \sigma_j(x)}{p} = \frac{(x^p + p\delta_i(x)) - (x^p + p\delta_j(x))}{p}$$

Prop:

Differences of p-derivations are derivations of the frobenius when reduced mod p. They are \hat{Z} linear maps. As before: unreduced are they a cocycle in the sheaf defined by $U : \rightarrow Nat(O|_U, O|_U)$.
Reinterpretation of DI_X

DI revisited:

\[
\frac{\sigma_i(x) - \sigma_j(x)}{p} = \frac{(x^p + p\delta_i(x)) - (x^p + p\delta_j(x))}{p} = \delta_i(x) - \delta_j(x)
\]
Reinterpretation of DI_X

DI revisited:

\[
\frac{\sigma_i(x) - \sigma_j(x)}{p} = \frac{(x^p + p\delta_i(x)) - (x^p + p\delta_j(x))}{p} = \delta_i(x) - \delta_j(x)
\]

Prop
Reinterpretation of DI_X

DI revisited:

\[
\frac{\sigma_i(x) - \sigma_j(x)}{p} = \frac{(x^p + p\delta_i(x)) - (x^p + p\delta_j(x))}{p} = \delta_i(x) - \delta_j(x)
\]

Prop

- *Differences of p-derivations are derivations of the frobenius when reduced mod p.*
Reinterpretation of DI_X

DI revisited:

$$\frac{\sigma_i(x) - \sigma_j(x)}{p} = \frac{(x^p + p\delta_i(x)) - (x^p + p\delta_j(x))}{p} = \delta_i(x) - \delta_j(x)$$

Prop

- Differences of p-derivations are derivations of the frobenius when reduced mod p.
- They are \mathbb{Z}_p^{ur} linear maps.
Reinterpretation of DI_X

DI revisited:

\[
\frac{\sigma_i(x) - \sigma_j(x)}{p} = \frac{(x^p + p\delta_i(x)) - (x^p + p\delta_j(x))}{p} = \delta_i(x) - \delta_j(x)
\]

Prop

- *Differences of p-derivations are derivations of the frobenius when reduced mod p.*

- *They are \mathbb{Z}_p^{ur} linear maps.*

As before: unreduced are they a cocycle in the sheaf defined by $U \mapsto \text{Nat}(\mathcal{O}|_U, \mathcal{O}|_U)$ “Sheaf Hom”?
Reynaud’s Theorem

Theorem

If C is a smooth projective curve of genus $g \geq 2$ then C does not admit a lift of the Frobenius for all primes p. (Say defined over \mathbb{Z} then get C over $\widehat{\mathbb{Z}}$ up by base extension).

Easier Examples:

Affine X. Always $g(\mathbb{P}^1) = 0$. Yes

Elliptic. Sometimes

Abelian. Sometimes
Reynaud’s Theorem

Theorem

If C is a smooth projective curve of genus $g \geq 2$ then C does not admit a lift of the Frobenius for all primes p.

Easier Examples:

Affine X. Always $g(P_1) = 0$. Yes

E. Sometimes

A. Sometimes
Reynaud’s Theorem

Theorem

If C is a smooth projective curve of genus $g \geq 2$ then C does not admit a lift of the Frobenius for all primes p.

(Say defined over \mathbb{Z} then get C over \mathbb{Z}_p^{ur} by base extension).
Reynaud’s Theorem

Theorem

If C *is a smooth projective curve of genus* $g \geq 2$ *then* C *does not admit a lift of the frobenius for all primes* p.

(Say defined over \mathbb{Z} then get C over \mathbb{Z}_p^{ur} by base extension).

Easier Examples:

- Affine X. Always
- $g(\mathbb{P}^1) = 0$. yes
- E. sometimes
- A. sometimes
X/R is p-torsion free R/pR perfect

$\sigma : R \to R$ lift of the frobenius.

QUESTION: When does X admit a lift of the absolute frobenius agreeing with σ on R?

PARTIAL ANSWER: Necessary condition: $\text{DI}_X = 0$.

Some Arithmetic Deformation Theory
Summary

\(X/R \) smooth scheme

QUESTION: When does \(X \) admit a lift of the absolute frobenius agreeing with \(\sigma \) on \(R \)?

PARTIAL ANSWER: Necessary condition: \(DI_X = 0 \).
Summary

\(X/R \) smooth scheme
\(R \) is \(p \)-torsion free

Question: When does \(X \) admit a lift of the absolute Frobenius agreeing with \(\sigma \) on \(R \)?

Partial Answer: Necessary condition: \(\text{DI}_X = 0 \).
Summary

\(X/R\) smooth scheme
\(R\) is \(p\)-torsion free
\(R/pR\) perfect

QUESTION:
When does \(X\) admit a lift of the absolute frobenius agreeing with \(\sigma\) on \(R\)?

PARTIAL ANSWER:
Necessary condition:
\(DI_X = 0\).
X/R smooth scheme
R is p-torsion free
R/pR perfect
$\sigma : R \to R$ lift of the frobenius.
X/R smooth scheme
R is p-torsion free
R/pR perfect
$\sigma : R \to R$ lift of the frobenius.

QUESTION:
When does X admit a lift of the absolute frobenius frobenius agreeing with σ on R?
Summary

\(X/R\) smooth scheme
\(R\) is \(p\)-torsion free
\(R/pR\) perfect
\(\sigma : R \to R\) lift of the frobenius.

QUESTION:
When does \(X\) admit a lift of the absolute frobenius \(\text{frobenius}\) agreeing with \(\sigma\) on \(R\)?
Summary

\(X/R \) smooth scheme
\(R \) is \(p \)-torsion free
\(R/pR \) perfect
\(\sigma : R \to R \) lift of the frobenius.

QUESTION:
When does \(X \) admit a lift of the absolute frobenius \(\text{frobenius} \) agreeing with \(\sigma \) on \(R \)?

PARTIAL ANSWER:
Necessary condition: \(\text{DI}_X = 0 \).
HOW IS $D\mathbb{I}_X$ A DEFORMATION CLASS?
A Similar Construction using Derivations

Let X/R be a smooth scheme and where R has a derivation δ. Cover X by affine open subsets $X_i \sim \text{Spec}(O(X_i))$. $X_i \subset X \rightarrow \text{Spec}(R)$ still smooth. The derivation $\delta: R \rightarrow R$ lifts (nonuniquely) to a derivation $\delta_i: O(X_i) \rightarrow O(X_i)$. The differences $\delta_i - \delta_j$ give an R-linear derivation. These give a cohomology class $[\delta_i - \delta_j] \in H^1(X, TX)$.

Taylor Dupuy
Some Arithmetic Deformation Theory
A Similar Construction using Derivations

FUNCTION FIELD SETTING

Let X/R be a smooth scheme and where R has a derivation δ. Cover X by affine open subsets $X_i \sim \text{Spec} (O(X_i))$. $X_i \subset X \to \text{Spec}(R)$ still smooth. The derivation $\delta: R \to R$ lifts (nonuniquely) to a derivation $\delta_i: O(X_i) \to O(X_i)$. The differences $\delta_i - \delta_j$ give an R-linear derivation. These give a cohomology class $[\delta_i - \delta_j] \in H^1(X, TX)$.

Taylor Dupuy

Some Arithmetic Deformation Theory
FUNCTION FIELD SETTING

Let X/R be a smooth scheme and where R. has a derivation δ. Cover X by affine open subsets $X_i \cong \text{Spec}(O(X_i))$. $X_i \subset X \rightarrow \pi \text{Spec}(R)$ still smooth. The derivation $\delta: R \rightarrow R$ lifts (nonuniquely) to a derivation $\delta_i: O(X_i) \rightarrow O(X_i)$. The differences $\delta_i - \delta_j$ give an R-linear derivation. These give a cohomology class $\left[\delta_i - \delta_j\right] \in H^1(X, TX)$.

Taylor Dupuy
Some Arithmetic Deformation Theory
FUNCTION FIELD SETTING

Let \(X/R \) be a smooth scheme and where \(R \) has a derivation \(\delta \).

Cover \(X \) by affine open subsets \(X_i \), where:

\[X_i \cong \text{Spec}(O(X_i)) \]

\(X_i \subset X \rightarrow \pi \text{Spec}(R) \) still smooth.

The derivation \(\delta: R \rightarrow R \) lifts (nonuniquely) to a derivation \(\delta_i: O(X_i) \rightarrow O(X_i) \).

The differences \(\delta_i - \delta_j \) give an \(R \)-linear derivation. These give a cohomology class \([\delta_i - \delta_j] \in H^1(X, \mathcal{T}_X) \).
A Similar Construction using Derivations

FUNCTION FIELD SETTING

- Let X/R be a smooth scheme and where R has a derivation δ.
- Cover X by affine open subsets $X_i \cong \text{Spec}(\mathcal{O}(X_i))$.

The differences $\delta_i - \delta_j$ give an R-linear derivation. These give a cohomology class $[\delta_i - \delta_j] \in H^1(X, T_X)$.
FUNCTION FIELD SETTING

Let X/R be a smooth scheme and where R. has a derivation δ.

Cover X by affine open subsets $X_i \cong \text{Spec}(O(X_i))$.

$X_i \subset X \longrightarrow \pi \text{Spec}(R)$ still smooth.
FUNCTION FIELD SETTING

- Let X/R be a smooth scheme and where R. has a derivation δ.
- Cover X by affine open subsets $X_i \cong \text{Spec}(\mathcal{O}(X_i))$.
- $X_i \subset X \overset{\pi}{\longrightarrow} \text{Spec}(R)$ still smooth.
- The derivation $\delta : R \rightarrow R$ lifts (nonuniquely) to a derivation $\delta_i : \mathcal{O}(X_i) \rightarrow \mathcal{O}(X_i)$.
A Similar Construction using Derivations

FUNCTION FIELD SETTING

Let X/R be a smooth scheme and where R. has a derivation δ.

Cover X by affine open subsets $X_i \cong \text{Spec} (\mathcal{O}(X_i))$.

$X_i \subset X \longrightarrow \pi \text{Spec}(R)$ still smooth.

The derivation $\delta : R \rightarrow R$ lifts (nonuniquely) to a derivation $\delta_i : \mathcal{O}(X_i) \rightarrow \mathcal{O}(X_i)$

The differences $\delta_i - \delta_j$ give an R-linear derivation. These give a cohomology class

$$[\delta_i - \delta_j] \in H^1(X, TX).$$
A Cocycle Construction Using Lifts of Derivations

Theorem

The following are equivalent

1. $\text{KS}(\delta) = 0$

2. $J_1(X) \sim TX$

3. X descends to R where $\delta = \{ r \in R : \delta(r) = 0 \}$ meaning $X \sim X_0 \otimes R$ where X_0 is some scheme defined over R.

When X is a variety, $R = \mathbb{C}(x)$ defining equations have coefficients in \mathbb{C}.

Taylor Dupuy
Some Arithmetic Deformation Theory
Kodaira-Spencer Map:

\[KS_{X/R} : \text{Der}(R, R) \to H^1(X, TX). \]

Theorem

The following are equivalent

1. \(KS(\delta) = 0 \)
2. \(J_1(X) \sim = TX \)
3. \(X \) descends to \(R \) \(\delta = \{ r \in R : \delta(r) = 0 \} \)

meaning \(X \sim = X_0 \otimes R \) where \(X_0 \) is some schemes defined over \(R \).

When \(X \) is a variety, \(R = \mathbb{C}(x) \) defining equations have coefficients in \(\mathbb{C} \).
Kodaira-Spencer Map:

\[KS_{X/R} : \text{Der}(R, R) \to H^1(X, TX). \]

Theorem

The following are equivalent

1. \(KS(\delta) = 0 \)
2. \(J^1(X) \sim = TX \)
3. \(X \) descends to \(R \) meaning \(X \sim = X_0 \otimes R \) where \(X_0 \) is some scheme defined over \(R \).

When \(X \) is a variety, \(R = \mathbb{C}(x) \) defining equations have coefficients in \(\mathbb{C} \).
Kodaira-Spencer Map:

\[KS_{X/R} : \text{Der}(R, R) \rightarrow H^1(X, TX). \]

Theorem

The following are equivalent

1. \(KS(\delta) = 0 \)
Kodaira-Spencer Map:

\[\text{KS}_{X/R} : \text{Der}(R, R) \to H^1(X, TX). \]

Theorem

The following are equivalent

1. \(\text{KS}(\delta) = 0 \)
2. \(J^1(X) \cong TX \)
A Cocycle Construction Using Lifts of Derivations

Kodaira-Spencer Map:

\[\text{KS}_{X/R} : \text{Der}(R, R) \rightarrow H^1(X, TX). \]

Theorem

The following are equivalent

1. \(\text{KS}(\delta) = 0 \)
2. \(J^1(X) \cong TX \)
3. \(X \) descends to \(R^\delta = \{ r \in R : \delta(r) = 0 \} \) meaning

\[X \cong X_0 \otimes_{R^\delta} R \]

where \(X_0 \) is some schemes defined over \(R^\delta \).
A Cocycle Construction Using Lifts of Derivations

Kodaira-Spencer Map:

$$\text{KS}_{X/R} : \text{Der}(R, R) \to H^1(X, TX).$$

Theorem

The following are equivalent

1. $\text{KS}(\delta) = 0$
2. $J^1(X) \cong TX$
3. X descends to $R^\delta = \{ r \in R : \delta(r) = 0 \}$ meaning

$$X \cong X_0 \otimes_{R^\delta} R$$

where X_0 is some schemes defined over R^δ.

When X is a variety, $R = \mathbb{C}(x)$ defining equations have coefficients in \mathbb{C}.
Some Nonsense:

Vague (and popular) Analogy is employed:

$$KS = 0 \iff DI = 0$$

Interpretation: When trying to modify theorems in the function field setting, view a lift of the frobenius which keeps the topology fixed as "descent to $$F_1$$".
Vague (and popular) Analogy is employed:

\[KS = 0 \Leftrightarrow DI = 0 \]

Interpretation: When trying to modify theorems in the function field setting, view a lift of the frobenius which keeps the topology fixed as “descent to \(\mathbb{F}_1 \)”.
WHERE IS THE DEFORMATION THEORY?
WHERE IS THE DEFORMATION THEORY?

- K_{S}^{ext} denote the class before.
WHERE IS THE DEFORMATION THEORY?

- KS^{ext} denote the class before.
- We are now going to define KS^{ext}.
Let \mathcal{X} over S be a smooth and flat. We view it as a family of varieties

$$\mathcal{X}_P := \mathcal{X} \otimes_S \kappa_S(P)$$
Let \mathcal{X} over S be a smooth and flat. We view it as a family of varieties

$$\mathcal{X}_P := \mathcal{X} \otimes_S \kappa_S(P)$$

Important Examples

\[\begin{array}{ccc}
\mathcal{E} & \mathcal{C}_g & \mathcal{A} \\
\downarrow & \downarrow & \downarrow \\
\mathbb{A}^1 & M_g^n & N_{1,g}^{(n)}
\end{array}\]
Given a direction in the moduli we can define a cocycle
Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

\[\text{KS}^{\text{ext}} : T_P S \to H^1(X_P, T_{X_P}) \text{.} \]
Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$\text{KS}^\text{ext} : T_PS \to H^1(\mathcal{X}_P, T\mathcal{X}_P).$$
Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$\text{KS}^{\text{ext}} : T_P S \to H^1(X_P, T\mathcal{X}_P).$$

Let $\delta_P \in T_P S$
Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

\[KS^{\text{ext}} : T_P S \to H^1(\mathfrak{X}_P, T\mathfrak{X}_P). \]

1. Let \(\delta_P \in T_P S \)
2. Fatten to some open affine neighborhood \(U \) of \(S \) which contains \(P \).
Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

\[\text{KS}^{\text{ext}} : T_P S \rightarrow H^1(\mathcal{X}_P, T\mathcal{X}_P). \]

1. Let \(\delta_P \in T_P S \)
2. Fatten to some open affine neighborhood \(U \) of \(S \) which contains \(P \). Call the extended derivation \(\delta \).
3. Cover \(\mathcal{X} \) by affine \(\mathcal{X}_i \),
Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$KS^{\text{ext}} : T_P S \to H^1(\mathcal{X}_P, T\mathcal{X}_P).$$

1. Let $\delta_P \in T_P S$
2. Fatten to some open affine neighborhood U of S which contains P. Call the extended derivation δ.
3. Cover \mathcal{X} by affine \mathcal{X}_i, get δ_i
Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$\text{KS}^{\text{ext}} : T_PS \to H^1(\mathcal{X}_P, T\mathcal{X}_P).$$

1. Let $\delta_P \in T_PS$
2. Fatten to some open affine neighborhood U of S which contains P. Call the extended derivation δ.
3. Cover \mathcal{X} by affine \mathcal{X}_i, get δ_i
4. $\theta_{ij} := (\delta_i - \delta_j)$ are completely vertical
Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

$$\text{KS}^{\text{ext}} : T_PS \to H^1(\mathcal{X}_P, T\mathcal{X}_P).$$

1. Let $\delta_P \in T_PS$
2. Fatten to some open affine neighborhood U of S which contains P. Call the extended derivation δ.
3. Cover \mathcal{X} by affine \mathcal{X}_i, get δ_i
4. $\theta_{ij} := (\delta_i - \delta_j)$ are completely vertical (they vanish under $\pi_* = d\pi$ and hence restrict to cocycles on the fiber)
Given a direction in the moduli we can define a cocycle (and well defined cohomology class):

\[\text{KS}^{\text{ext}} : T_P S \rightarrow H^1(\mathcal{X}_P, T\mathcal{X}_P). \]

1. Let \(\delta_P \in T_P S \)
2. Fatten to some open affine neighborhood \(U \) of \(S \) which contains \(P \). Call the extended derivation \(\delta \).
3. Cover \(\mathcal{X} \) by affine \(\mathcal{X}_i \), get \(\delta_i \)
4. \(\theta_{ij} := (\delta_i - \delta_j) \) are completely vertical (they vanish under \(\pi_* = d\pi \) and hence restrict to cocycles on the fiber)

\[\text{KS}^{\text{ext}}(\delta_P) := [\delta_i - \delta_j] \in H^1(\mathcal{X}_P, T\mathcal{X}_P). \]
Link Between Internal and External

\[
\begin{array}{c}
\text{Deformation + Derivation on Base:}
\end{array}
\]

\[
\begin{array}{c}
\downarrow \\
\downarrow \\
\leftarrow \\
\leftarrow \\
\downarrow \\
\downarrow \\
\end{array}
\]

\[
\begin{array}{c}
\text{Spec(} K \text{)} \\
\leftarrow \\
\leftarrow \\
\text{model of} \\
X \\
\delta \\
O(S) \rightarrow O(S)
\end{array}
\]

Let \(\kappa_S \) (generic pt of \(S \)) = \(K \).
X be defined over a function field K
Link Between Internal and External

\(X \) be defined over a function field \(K \)

Deformation + Derivation on Base:

\[
\begin{array}{c}
\mathcal{X} \leftarrow X \\
\downarrow \quad \downarrow
\end{array}
\]

\[
\begin{array}{c}
S \leftarrow \text{Spec}(K)
\end{array}
\]

model of \(X \)

\(\delta : \mathcal{O}(S) \rightarrow \mathcal{O}(S) \)
\(X \) be defined over a function field \(K \)

Deformation + Derivation on Base:

\[
\xymatrix{ \mathfrak{X} & X \ar[l] \ar[d] & \delta : \mathcal{O}(S) \to \mathcal{O}(S) \\
S & \text{Spec}(K) \ar[l] } \]

\(\mathfrak{X} \) is a model of \(X \),

Let \(\kappa_S(\text{generic pt of } S) = K \).
Construct $\eta \in H^1(X,T_X)$ by lifting the δ on affine open sets as we have been doing previously. Specializing η at the generic points gives $KS_{\text{ext}} \eta \otimes \kappa$ (generic) $= KS_{\text{ext}}$. Specializing η at the closed points gives the external construction $\eta \otimes \kappa$ (closed point P) $= KS_{\text{ext}}$. Some Arithmetic Deformation Theory
Construct $\eta \in H^1(\mathcal{X}, T\mathcal{X})$ by lifting the δ on affine open sets as we have been doing previously.
• Construct $\eta \in H^1(\mathcal{X}, T\mathcal{X})$ by lifting the δ on affine open sets as we have been doing previously.

• Specializing η at the generic points gives KS^{ext}

$$\eta \otimes \kappa(\text{generic}) = \text{KS}^{\text{ext}}$$
Construct \(\eta \in H^1(\mathcal{X}, T\mathcal{X}) \) by lifting the \(\delta \) on affine open sets as we have been doing previously.

Specializing \(\eta \) at the generic points gives \(\text{KS}^{\text{ext}} \)

\[
\eta \otimes \kappa(\text{generic}) = \text{KS}^{\text{ext}}
\]

Specializing \(\eta \) at the closed points gives the external construction

\[
\eta \otimes \kappa(\text{closed point } P) = \text{KS}^{\text{ext}}
\]
Remark: There is a third way to get the map using the relative tangent sequence. Specializing that map gives different versions of this map.
More than Just an Analogy

Theorem (DI can detect deformation theoretic information)

If A is an abelian variety then

$$F^*KS^{\text{ext}} = \text{DI}$$

PROBLEM: Find external constructions in the p-derivation setting. And relate them to known classes.
Infinitesimal Deformations

The Kodaira Spencer map for any deformation factors through infinitesimal deformations.

\[
\begin{array}{c}
\text{Spec}(k) \\
\end{array}
\begin{array}{c}
\xrightarrow{\epsilon} \\
\end{array}
\begin{array}{c}
\text{Spec}(k[\epsilon]) \\
\end{array}
\]

Lemma

For all deformations families of \(X \) and choice tangent vector at a point who fiber is \(X \), there exists an infinitesimal deformation that gives rise to the same cohomology class.
"The Kodaira Spencer map for any deformation factors through infinitesimal deformations."

\[X^\epsilon \leftarrow X \]
\[\downarrow \quad \downarrow \]
\[\text{Spec}(k[\epsilon]) \leftarrow \text{Spec}(k) \]

Lemma

For all deformations families of X and choice tangent vector at a point who fiber is X, there exists an infinitesimal deformation that gives rise to the same cohomology class.
Define a functor

$$\text{Def}_X : \{ \text{Local Artin Rings} \} \rightarrow \text{Sets}$$
Define a functor

\[\text{Def}_X : \{ \text{Local Artin Rings} \} \rightarrow \text{Sets} \]

where

\[\text{Def}_X(A) = \{ \mathfrak{x} \rightarrow \text{Spec}(A), \mathfrak{x} \otimes \sim \} \]

Prop

\[\text{Def}_X(K[\epsilon]) \leftrightarrow H^1(X, TX) \]
Factoring properties

Differentiation

\[R \longrightarrow D_1(R) \cong R[\epsilon] \]

Wittdifferentiation

\[R \longrightarrow W_1(R) \]

These allow lifting of derivations and \(p \)-derivations for smooth maps.
Wittfinitesimal Deformations

We can construct a map similar to the one for wittfinitesimals in the case when $\text{char}(k) = p$

$$\text{Def}(W_p(k)) \rightarrow H^1(X, F^*TX).$$

PROBLEM:
Understand the wittfinitesimal deformations. Understand wittfinitesimal versions of the torelli map.
Big Class

\[B_X \in H^1(X\hat{\cdot}, \text{Aut}(\mathbb{A}^1)\hat{\cdot}) \]

(that is terrible to \TeX)

Let \(X \) be a smooth scheme over \(W_p^\infty(\overline{\mathbb{F}}_p) = \left(\mathbb{Z}_p^{ur} \right) \) has unique lift of frob
Big Class

\[B_X \in H^1(X^\hat{\cdot}, \text{Aut}(\mathbb{A}^1)^\hat{\cdot}) \]

(that is terrible to \(\TeX\))

Let \(X\) be a smooth scheme over
\[W_{p^\infty}(\overline{\mathbb{F}}_p) = \hat{\mathbb{Z}}_{p}^{\text{ur}} \]

has unique lift of frob
Big Class

\[B_X \in H^1(X^\hat{p}, \text{Aut}(\mathbb{A}^1)^\hat{p}) \]

(that is terrible to \TeX)

Let \(X \) be a smooth scheme over \(W_p^\infty(\overline{\mathbb{F}}_p) = \mathbb{Z}_p^{ur} \).

has unique lift of frob

Define cohomology class in the sheaf \(\text{Aut}(\mathbb{A}^1)^\hat{p} \) via the local trivializations of the jet space.
The Big Class

[Jet Rings and Globalizing]
The Big Nasty Class

What the sheaf looks like (hat’s omitted):

\[\Gamma(U, \text{Aut}(\mathbb{A}^1)^\hat{p}) = \left\{ \varphi : U \times \mathbb{A}^1 \rightarrow U \times \mathbb{A}^1 \right\} \]
The cocycle is induced by transition maps between trivializations. Let $X_i \subset X$ be trivializing sets. If X is smooth over $\widehat{\mathbb{Z}}_{ur}$ of relative dimension d then

$$J^n(X_i) \sim X_i \times \mathbb{A}^{dn}$$
The cocycle is induced by transition maps between trivializations
Let $X_i \subset X$ be trivializing sets
If X is smooth over $\widehat{\mathbb{Z}/p}$ of relative dimension d then

\[J^n(X_i) \to \sim X_i \times \mathbb{A}^{dn} \]

*Characteristic Zero
What does the B actually look like?
What does the B actually look like? Let $X = C$ a curve and $n = 1$.

$$\mathcal{O}(\hat{C}_{i} \times \hat{A}^1) = \mathcal{O}(C_{i})[\hat{x}]^{\hat{p}}$$

consisting of restricted powerseries $\sum_{j=0}^{\infty} f_{j} \hat{x}^{j}$ satisfying $|f_{j}|_{p} \to 0$ as $p \to \infty$.

***Transition maps happen by plugging in restricted power series.
Lemma

Let R be a ring of characteristic p. Then

$$\text{Aut}_R(\mathbb{R}[x]) \cong \text{AL}_1(R).$$

The automorphisms look like

$$f(x) \mapsto f(ax + b)$$

where $a \in R^\times$ and $b \in R$.
When we reduce the cocycle in $\text{Aut}(\hat{A}^1) \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}}_p \cong AL_1$.

$$AL_1 = \mathbb{G}_m \ltimes \mathbb{G}_a$$

$$\beta_{ij} = c_{ij} \dot{x} + d_{ij}$$

gives $[F^*TX] \in H^1(C, O^\times)$ gives DI
PROBLEM
We want to show $B(X)$ is nontrivial.