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REMOVAL MODEL SPREADSHEET EXERCISE 

 

OBJECTIVES: 

• To learn and understand the removal design occupancy model, how it differs 

from the standard design, and how it fits into a multinomial maximum 

likelihood analysis. 

• To use Solver to find the maximum likelihood estimates for the probability 

of detection and the probability of site occupancy under the removal design. 

• To derive the variance of the occupancy estimate and p* (overall detection 

probability on occupied sites). 

• To learn how to simulate data for a removal design occupancy model. 

• To test the sensitivity of the removal design occupancy model to varying 

numbers of sites, surveys, p, and ψ (using simulated and expected data). 

 

BACKGROUND:  SPECIES OCCURRENCE AND DISTRIBUTION 

Understanding factors that shape species occurrence and distribution is a 

fundamental concept in ecology.  Mathematical modeling promotes an analysis of 

species’ range borders and patterns (Holt and Keitt 2005), metapopulation 

dynamics (Hanski 1998), habitat-species relationships, and population response to 

environmental change (MacKenzie et al. 2003, MacKenzie et al. 2006).  In the past, 

researchers used presence-absence of species within specified study areas to 

develop mathematical models that describe the spatial and temporal distribution of 

species (MacKenzie 2006); detection probability of the target species was often 

not considered in many of these models.  However, as we’ve seen in previous 

chapters, analyses that do not take detection probability into account can result in 

biased outcome measures, usually producing figures that overestimate true 
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occurrence or relative abundance. The occupancy models described by MacKenzie 

et al. 2006 provide a robust method for describing distribution patterns across 

time and space.  Once you’ve concluded that occupancy modeling is suitable for your 

own research, a central question becomes how many sites and how many surveys 

should be conducted to provide robust conclusions?   

 

BALANCING SURVEY EFFORT WITH PRECISION 

The planning process of biological research involves balancing limited resources 

(time, funds, and personnel) with the collection of high-quality data.  It is often 

the goal of researchers to do just what it takes to reach a specified level of 

precision and no more, so that resources can be used to their maximum capabilities 

and provide information for managing the target species.  Whether the goal is to 

minimize effort in order to obtain a desired level of precision or to minimize 

uncertainty in the occupancy estimate for a fixed level of effort (MacKenzie and 

Royle 2005), the researcher must identify the most efficient way to collect field 

data.  In occupancy modeling, the key trade-offs are whether to increase the 

number of study sites, or whether to increase the number of surveys that are 

conducted at each site.  Given a priori knowledge of your study organism, the goal 

is to determine what level of effort is necessary in the field that will result in 

good data.  

 

PRECISION AND BIAS IN MODELING 

Precision and bias are both very important concepts in the modeling process. An 

ideal mathematical model will have parameter estimates that are both precise and 

unbiased.  Model bias is the extent to which the model truly represents the 

population parameters. An unbiased model will produce accurate parameter 
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estimates that reflect those of the true population. For example, if occupancy rate 

(ψ) is truly 0.7 but a model estimates this rate as 0.6, the model is biased.  If the 

model estimated ψ = 0.7, it would provide an unbiased estimate of ψ.  In contrast 

to bias, a model with high precision will have low standard error rates associated 

with estimated parameters (in this case, detection probability and occupancy).   

For example, if ψ = 0.7 with a standard error of 0.05 is far more precise than a 

model with a standard error of 0.20.  You have much more confidence in precisely 

estimated parameters compared to imprecisely estimated parameters.  But keep in 

mind that just because a model is precise does not mean that it is unbiased.  The 

figure below gives a visual representation of precision and bias. 

 

 

In the upper right-hand quadrant, we find parameter estimates that have small 

bias (they estimate the true rate well) and high precision.  This is ideal.  In the 

upper left-hand quadrant, we find parameter estimates that are precise, but 

biased.  In the lower left-hand quadrant, we find parameter estimates that are 

biased and unprecise, and in the lower right-hand quadrant we find parameter 

estimates that are unbiased but have low precision.  In this exercise, we will 
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explore how an occupancy “removal design” can be used to provide precise and 

unbiased parameter estimates while limiting the number of repeat surveys per site.   

 

REMOVAL DESIGN BACKGROUND 

A complete description of the removal design occupancy model along with  

comparison to the standard and double sampling designs can be found in MacKenzie 

and Royle (2005) and in chapter 6 of MacKenzie et al. (2006).  

 

The removal design occupancy model is very similar to the standard design. The 

main difference is that the number of times a site is visited within a season may 

vary depending on whether a species was previously detected or not. The basic idea 

of the removal design is that a site is surveyed a maximum of J times within a 

season, but once the target species has been detected at a site, that site is no 

longer visited.  If a species is detected at a site, any additional surveys at the site 

will provide further information about detection probability, but these additional 

surveys will not provide any additional information about occupancy.  Thus, the 

removal method will allow the researcher to visit more sites in less time by not 

having to visit all of the sites the maximum number of surveys.  Instead of 

directing effort to re-sampling the same sites regardless of detection, more sites 

can be added without increasing survey effort while increasing spatial replication 

(MacKenzie et al. 2006).  

 

The following figure displays how a 3-survey, 16-site removal design could pan out.  

When a species is detected at a site, that site is removed from future surveys, 

which is represented by the lighter shade of green. As you can see, the pool of 

sites drops from 16, to 10, to 7, to 5 as the season goes on. This is a total of 35 
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(6*1 + 4*2 + 7*3) surveys with the removal design compared to 48 surveys (16*3) if 

the standard design had been used. This is a 27% decrease in survey effort from 

the standard design to sample the same number of sites and in less time, although 

less exhaustively. 
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MODEL ASSUMPTIONS 

Like the standard design occupancy model, the population is assumed to be closed 

between surveys. Additionally, the species detection is assumed to be less than 1 

and the target species is not falsely detected. Sites are independent in regards to 

the detection of the target species. An assumption specific to the removal design 

is that detection probabilities are assumed to be constant across surveys. This may 

be limiting in the analysis phase if it is suspected that detection probability is 
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related to survey-specific factors.  Thus, the underlying model for detection must 

be a p(.) or p(covariate) model, such as p(date, habitat type, patch size).  You 

cannot model p1, p2, p3, or p4 independently.  In other words, the intercepts and 

slope effects of covariates must be equal for all survey periods.  We’ll come back 

to this important concept a bit later.   

 

ENCOUNTER HISTORIES 

The encounter histories are very similar to those of the standard design, except 

that after the target species is detected, the remaining surveys are not 

conducted.  Thus, for a two-survey study (J = 2), there are three kinds of 

encounter histories:  1., or 01, or 00.  A “1.” history indicates that the species was 

detected on the first survey, and the site was then “removed” from further 

sampling.  The “dot” after the 1 indicates that the site was not surveyed on survey 

2.  A “01” history indicates that the species was not detected on the first survey, 

but was detected on the second survey.  A “00” history indicates that the species 

was not detected on either survey.    For a three-survey study (J = 3), there are 

four kinds of encounter histories:  1.., 01., 001, and 000.  In a four-survey study (J 

= 4), there are 5 possible histories:  1..., 01.., 001., 0001, and 0000.  Remember, 

after the species is detected, the site is no longer surveyed.  Thus, in removal 

design, the number of possible, unique histories is J + 1.   

 

REMOVAL DESIGN SPREADSHEET OVERVIEW 

If you haven’t already done so, click on the sheet labeled “Removal Model” and we’ll 

get started.  At the top of the sheet, you’ll see a section labeled Inputs and 

Outputs: 
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2
3

4

D E F G H I J K L M

S J R K LogeL AIC p p* ψ var(ψ)

50 4 5 2 -58.10508 120.21017 0.30000 0.7599 0.50000 0.163839

Inputs Outputs

 

Don’t worry about the output in row 4 for the moment; we’ll go through these cells 

in a while.  First, let’s look at cells D4:F4 (the section labeled “Inputs”).  Be aware, 

however, that even though these cells are labeled “inputs,” you won’t actually enter 

anything in these cells!  Cell D4 contains the total number of sites, or S.   Cell E4 

contains the maximum number of surveys per site, or J.  In this spreadsheet 

exercise, J can range from 2 to 5.  Note that cells D4:E4 are connected to cells X5 

and Y5, which are located in the “Simulate Data” section…we’ll cover this later too.  

Cell F4 is also computed, and is calculated as J+1.  If there are 5 possible surveys, 

then there are 5 + 1 = 6 kinds of unique histories:  1...., 01..., 001.., 0001., 00001, and 

00000.  Now, let’s skip down and look at the histories themselves. 

 

SPREADSHEET ENCOUNTER HISTORIES 

Now take a look at cells E7:F24.  You’ll see that the 

spreadsheet is currently tiered so that you can evaluate 

various kinds of designs, from J = 2 to J = 5.  Cells 

E7:F9 (shaded orange) given the encounter histories and 

frequencies for a study in which J = 2.  For J = 2, there 

are three kinds of histories: 1., 01, and 00.  Cells E10:F13 

(shaded yellow) given the encounter histories and 

frequencies for a study in which J = 3.  For J = 3, there 

are three kinds of histories: 1.., 01., 001, and 000.  Cells 

E14:F18 (shaded green) given the encounter histories 

and frequencies for a study in which J = 4, and cells 

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

E F
Histories Frequency

1. 0.00
01 0.00
00 0.00
1.. 0.00
01. 0.00
001 0.00
000 0.00
1... 7.50
01.. 5.25
001. 3.68
0001 2.57
0000 31.00
1.... 0.00
01... 0.00
001.. 0.00
0001. 0.00
00001 0.00
00000 0.00
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E19:F24 (shaded blue) given the encounter histories and frequencies for a study in 

which J = 5.  As you can see, the current sheet shows encounter histories for a 

study in which J = 4.  That is, 50 sites were surveyed with the removal design, and 

the frequency of each of the possible encounter histories for J = 4 are shown.  

The 0’s in the other tiers indicate that the encounter histories for J = 2, J = 3, or 

J = 5 are not possible.   Now, you might be wondering, “How can 7.5 sites have a 1… 

history?”  Well, you might have guessed that the encounter history frequencies 

were generated based on expectation, rather than with stochasticity.  Don’t let 

that throw you…we can easily paste encounter histories that are created with 

stochasticity (and in fact, we will show you how to create “stochastic data” in little 

while!).   

 

Now take a look at the parameters that can be estimated for J = 2 to J = 5 (cells 

G7:G24): 
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6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

E F G H I
Histories Frequency Parameters Estimated? Betas

1. 0.00 p1

01 0.00 p2

00 0.00 ψ

1.. 0.00 p1

01. 0.00 p2

001 0.00 p3

000 0.00 ψ

1... 7.50 p1 1 -0.41152
01.. 5.25 p2 0 -0.41152
001. 3.68 p3 0 -0.41152
0001 2.57 p4 0 -0.41152
0000 31.00 ψ 1 0.00000
1.... 0.00 p1

01... 0.00 p2

001.. 0.00 p3

0001. 0.00 p4

00001 0.00 p5

00000 0.00 ψ  

You can see that when J = 2 (two surveys maximum), you can estimate 3 

parameters: p1, p2, and ψ (cells G7:G9).  And when J = 3, you can estimate 4 

parameters: p1, p2, p3, and ψ (cells G10:G13).  And when J = 4, you can estimate 5 

parameters: p1, p2, p3, p4, and ψ (cells G14:G18), etc.   

 

As with other spreadsheets, cells H7:H24 are labeled “Estimate?” and you enter a 

1 in a cell if the parameter will be estimated and a 0 if it will not be estimated or 

will be forced to be equal to another parameter.  As you can see, you only need to 

enter 1’s and 0’s for the tier that describes the data (in this case shown below, J = 

4).  Also note, and this is very important, that you can only estimate one p 

estimate, and the remaining p estimates must be forced to be equal to the first p 

estimate (i.e., the p(.) model).  For example, below the spreadsheet is set up to 



Exercises in Occupancy Estimation and Modeling; Donovan and Hines 2007 
 

Chapter 10 Page 12 8/1/2007 

estimate p1 for a study in which J = 4, and the beta for p2, p3, and p4 (cells I15:I17) 

are forced to equal the beta for p1 (cell I14) with the equation =I14.   

14
15
16
17
18

E F G H I
1... 7.5 p1 1
01.. 5.25 p2 0 =I14
001. 3.675 p3 0 =I14
0001 2.5725 p4 0 =I14
0000 31.0025 ψ 1  

Thus, ALL of the removal models will estimate only two parameters: p and ψ (as 

long as there are no covariates associated with these two parameters, that is).  

The beta estimates are converted to probabilities with a sin link.  Click on cell J7 

and you’ll see the formula =(SIN(I7)+1)/2. We used the sin link in the previous 

exercise, so won’t go into a lengthy explanation here. 

 

 

PROBABILITY OF EACH HISTORY 

The history probabilities are computed using the 2 model parameters (p and ψ) in a 

way that reflects the standard design. The only difference is that where there is a 

dot “.” in the encounter history, no parameters are estimated. Let’s start with the 

history “1.” for J=2 surveys (cell K7).  
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6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

D E F G H I J K L
Histories Frequency Parameters Estimated? Betas MLE P(history) Ln Probability

1. 0.00 p1 0.5000 0.2500 -1.38629
01 0.00 p2 0.5000 0.1250 -2.07944

0 00 0.00 ψ 0.5000 0.6250 -0.47000
1.. 0.00 p1 0.5000 0.2500 -1.38629
01. 0.00 p2 0.5000 0.1250 -2.07944
001 0.00 p3 0.5000 0.0625 -2.77259

0 000 0.00 ψ 0.5000 0.5625 -0.57536
1... 7.50 p1 1 0.5000 0.2500 -1.38629
01.. 5.25 p2 0 0.00000 0.5000 0.1250 -2.07944
001. 3.68 p3 0 0.00000 0.5000 0.0625 -2.77259
0001 2.57 p4 0 0.00000 0.5000 0.0313 -3.46574

50 0000 31.00 ψ 1 0.5000 0.5313 -0.63252
1.... 0.00 p1 0.5000 0.2500 -1.38629
01... 0.00 p2 0.5000 0.1250 -2.07944
001.. 0.00 p3 0.5000 0.0625 -2.77259
0001. 0.00 p4 0.5000 0.0313 -3.46574
00001 0.00 p5 0.5000 0.0156 -4.15888

0 00000 0.00 ψ 0.5000 0.5156 -0.66238  

Since the species was detected on the first survey, you know that the site was 

occupied. The probability of getting this history given the data = ψ*p1, or =J9*J7.  

The next history, “01” (cell K8) states that the site is occupied, it was not 

detected on the first survey, but it was detected in the second survey. The 

probability of getting this survey = ψ*(1-p1)*p2, or =J9*(1-J7)*J8.  Following along 

to history “00” (cell K9), the probability of getting this history = ψ*(1-p1)*(1-p2)+(1-

ψ), or =J9*(1-J7)*(1-J8) + (1-J9).  Note that the sum of the probabilities for any 

given tier must sum to be 1. 

 

Now let’s look at the histories for a study in which J = 3.  Cell K10 has the 

equation, =J13*J10, which is the probability of observing a “1..” history and is 

simply ψ*p1.  Cell K11 has the equation, =J13*(1-J10)*J11, which is the probability 

of observing a “01.” history and is simply ψ*(1-p1)*p2.  Cell K12 has the equation, 

=J13*(1-J10)*(1-J11)*J12, which is the probability of observing a “001” history and 

is simply ψ*(1-p1)*(1-p2)*p3.  The last history, 000 is a tad trickier because you 

have to account for the chance that the site was occupied, but you did not detect 
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the species of interest. Cell K13 has the equation =J13*(1-J10)*(1-J11)*(1-J12)+(1-

J13), which is  = ψ*(1-p1)*(1-p2)*(1-p3) + (1-ψ) which translates to the site was 

occupied and you did not detect it on any of the three surveys OR the site was 

truly unoccupied.  

 

The history probabilities for J = 4 and J = 5 are constructed in a similar manner. 

Click on cells K14:K24 to make sure you understand how the probabilities are 

computed.  The natural log of the history probabilities is computed in cells L7:L24 

with the LN function. 

 

THE MULTINOMIAL LOG LIKELIHOOD 

Just as in the other models, we need to compute the model multinomial log 

likelihood.  

2
3

4

D E F G H I J K L M

S J R K LogeL AIC p p* ψ SE (ψ)

50 4 5 2 -58.10508 120.21017 0.30000 0.7599 0.50000 0.163839

Inputs Outputs

 

 

So now let’s return to the top of the spreadsheet under the section labeled 

“Outputs.”  Cell G4 counts the number of parameters (K) that will be estimated by 

a model. Remember that for a removal model with no covariates, there can only be 

two parameters that are estimated: ψ and p(.).  The LogeL is computed in cell H4 

with the equation =SUMPRODUCT(F7:F24,L7:L24).  Note that this formula 

combines the encounter histories and history probabilities across all tiers.  This 

won’t affect our calculation because, once you’ve established J, the frequencies of 

the histories for different J’s are 0’s, and so those terms essentially drop out of 

the SUMPRODUCT calculation.  AIC is computed in cell I4 as -2*LogeL + 2K.  Cells 

J4:M4 are the key outputs for the model, and we’ll revisit these in a moment. 
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MAXIMIZING THE LOG LIKELIHOOD 

Let’s continue with our example where J = 4.  In order to maximize the log 

likelihood, we will use the Solver tool. Open Solver, and set target cell H4 to a 

maximum by changing cells I14,I18. Don’t forget that cells I15:I17 MUST be set to 

equal cell I14 to enforce the p(.) model.   

 

 

Then press Solve, and keep the Solver solution.  Here are our results: 
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6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

E F G H I J K L
Histories Frequency Parameters Estimated? Betas MLE P(history) Ln Probability

1. 0.00 p1 0.5000 0.2500 -1.38629
01 0.00 p2 0.5000 0.1250 -2.07944
00 0.00 ψ 0.5000 0.6250 -0.47000
1.. 0.00 p1 0.5000 0.2500 -1.38629
01. 0.00 p2 0.5000 0.1250 -2.07944
001 0.00 p3 0.5000 0.0625 -2.77259
000 0.00 ψ 0.5000 0.5625 -0.57536
1... 7.50 p1 1 -0.41152 0.3000 0.1500 -1.89712
01.. 5.25 p2 0 -0.41152 0.3000 0.1050 -2.25379
001. 3.68 p3 0 -0.41152 0.3000 0.0735 -2.61047
0001 2.57 p4 0 -0.41152 0.3000 0.0515 -2.96714
0000 31.00 ψ 1 0.00000 0.5000 0.6200 -0.47796
1.... 0.00 p1 0.5000 0.2500 -1.38629
01... 0.00 p2 0.5000 0.1250 -2.07944
001.. 0.00 p3 0.5000 0.0625 -2.77259
0001. 0.00 p4 0.5000 0.0313 -3.46574
00001 0.00 p5 0.5000 0.0156 -4.15888
00000 0.00 ψ 0.5000 0.5156 -0.66238  

You can see that Solver estimated beta for p1 as -0.41152, which corresponds to p 

= 0.3000, and that Solver estimated beta for ψ as 0.000, which corresponds to ψ = 

0.5.  These data happened to be generated by expectation with the following 

entries, so Solver found the correct solution.  

1

2
3

4
5

R S T U V W X Y

ψ p1 p2 p3 p4 p5 J S

0.5 0.3 0.3 0.3 0.3 0.3 4 50

SIMULATE DATA

Inputs

 

 

Now, let’s think about this removal design in terms of number of sites that were 

visited.  For the data shown above, 7.5 sites were visited once, 5.25 sites were 

visited twice, 3.68 sites were visited three times, and 2.57 + 31 sites were visited 

4 times.  This makes a total of 163 visits using the removal design.  If we used the 

standard design, where all sites were visited 4 times, there would be a total of 200 

visits.  Assuming you can make a maximum of 200 visits to sites in one season, you 
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could use those 200-163 = 37 extra visits to survey new sites, increasing your 

spatial replication.  The trade-off, however, is that detection probability, p, must 

be constant across surveys (i.e., they cannot be survey-specific).   

 

Now, let’s return to the Output portion of the spreadsheet. 

2
3

4

D E F G H I J K L M

S J R K LogeL AIC p p* ψ SE (ψ)

50 4 5 2 -58.10508 120.21017 0.30000 0.7599 0.50000 0.163839

Inputs Outputs

 

 

Cell J4 provides the estimate of p from the given model.  The equation in cell J4 is 

=IF(E4=2,J7,IF(E4=3,J10,IF(E4=4,J14,p_1))), which is a nested IF function that 

steps through the various tiers and returns the appropriate p.  The function starts 

out by evaluating if cell E4 = 2.  If this is true, then J = 2 and the spreadsheet 

returns the p in cell J7.  If this is not true, then the spreadsheet moves to the 

next IF function.  This next IF function starts out by evaluating if cell E4 = 3.  If 

this is true, then J = 3 and the spreadsheet returns the p in cell J10.  If it is not 

true, then the spreadsheet moves to the next IF function:  IF(E4=4,J14,p_1).  The 

function starts out by evaluating if cell E4 = 4.  If this is true, then J = 4 and the 

spreadsheet returns the p in cell J14.  If this is not true, then J must equal 5 and 

the spreadsheet returns the p in cell J19 (note that this cell is named p_1 in the 

spreadsheet.).   

 

Cell K4 estimates p*, which is the probability of detecting the species at least once 

in the surveys; this estimate is critical in determining the variance of ψ.  The 

equation in cell K4 is =1-((1-J4)^E4), which is 1-(1-p)J.  If J = 4, then the chance of 

MISSING the species on all four surveys is (1-p)4, or (1-p) * (1-p) * (1-p) * (1-p).  



Exercises in Occupancy Estimation and Modeling; Donovan and Hines 2007 
 

Chapter 10 Page 18 8/1/2007 

One minus this result is the chance of OBSERVING the species at least once 

across the four surveys, or p*.   

 

Cell L4 provides the estimate of ψ for the model, and has the equation 

=IF(E4=2,J9,IF(E4=3,J13,IF(E4=4,J18,psi))).  Work your way through this 

equation, which is similar to the equation in cell J4.   

 

VARIANCE OF THE OCCUPANCY ESTIMATE 

The last cell of the output is cell M4, and is one we’re very interested in from a 

study-design perspective.  Variance estimates are very useful in that they will give 

us an idea of how precisely ψ was estimated.  Variance should decrease with 

increased surveys and sites.  The variance of the occupancy estimate, var(ψ) can be 

computed for the removal design model as follows: 

 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
+−= −1222 )1(*)(

*)1(*)1()ˆvar( JppJp
pp

s
ψψψ

 

 

Where p* = 1-((1-p1)*(1-p2)*(1-p3)...*(1-pJ)), S = total number of sites, J = the 

maximum number of surveys, and p and ψ are the MLE’s from the model (equation 

6.5 in the book, Occupancy Estimation and Modeling).   In the spreadsheet, 

variance is computed as L4/D4*((1-L4)+(K4*(1-K4))/(K4^2-E4^2*J4^2*(1-J4)^(E4-

1))).  Note that there are two terms (components) in this computation.  The first 

component deals with the binomial variation of the estimate, and the second 

component is related to the parameter uncertainty due to imperfect detection 

(p<1.0).  The square root of the variance yields the standard error of the estimate.  
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The standard error is calculated in cell M4 with the equation =SQRT(L4/D4*((1-

L4)+(K4*(1-K4))/(K4^2-E4^2*J4^2*(1-J4)^(E4-1)))).    

 

That’s basically all there is in terms of analysis.   

 

The remainder of the exercise will focus on deriving estimates of p, ψ, and SE(ψ) 

under different scenarios of S and J, and under different scenarios of p and ψ but 

with fixed S and J.  That is, for a given p and ψ for a species, we will attempt to 

determine the optimal number of sites (S) and optimal number of surveys (J) that 

will provide precise and unbiased estimates of ψ.  And then, we’ll determine what 

kinds of species (in terms of detectability and occupancy) are best studied for a 

study design where S and J are known a priori.  The first step is to learn how to 

simulate data, so we’ll do that now. 

 

SIMULATING DATA 

On the right side of the spreadsheet you will see the simulated data.  At the top 

are the inputs -- the parameters that we will set in order to test the model under 

varying conditions.  

1

2
3

4
5

R S T U V W X Y

ψ p1 p2 p3 p4 p5 J S

0.5 0.3 0.3 0.3 0.3 0.3 4 50

SIMULATE DATA

Inputs

 

 

Occupancy (ψ), detection probability (p), number of sites (S), and number of 

surveys (J) are set by the user (you!).  In cell R5, enter an occupancy rate.  The 

above diagram shows ψ = 0.5, which indicates that the species is fairly common.  If 
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

W X Y

Histories Frequency Sum
1. 0.00
01 0.00
00 0.00 0
1.. 0.00
01. 0.00
001 0.00
000 0.00 0
1... 7.50
01.. 5.25
001. 3.68
0001 2.57
0000 31.00 50
1.... 0.00
01... 0.00
001.. 0.00
0001. 0.00
00001 0.00
00000 0.00 0

Expected Data

you wanted to model a rare species, you would let ψ be < ~0.2.  In cell S5, enter a 

detection rate.  The diagram above shows p = 0.3, so the species is very elusive.  If 

you wanted to model a species that is easily detected, you would let p be > ~0.7.  

Cells T5:W5 are grayed out, and don’t enter anything there.  Remember, in a 

removal model the assumption is that detection probability is constant across 

surveys, so each of those cells has the equation =S5 in it.  In cell X4, enter J, or 

the maximum number of surveys in the study.  J is currently set to 4, but can be as 

low as 2 or as high as 5 (in this spreadsheet).  S (cell Y5) is the total number of 

study sites that are surveyed.  This spreadsheet is set up to analyze a maximum of 

200 sites, but this can easily be expanded. 

 

Based on these inputs, there are two ways to create encounter history frequencies. 

The first is by expectation, and the second is 

with stochasticity.  Let’s start with the 

expected values. 

 

Cell X14 gives the expected number of sites 

that should have a “1.” History given that J = 

2.  The equation in that cell is 

=IF(X5=2,R5*S5*Y5,0).  This simple IF 

function evaluates if cell X5 = 2.  If X5 = 2, 

then J = 2 and the formula returns 

R5*S5*Y5, which is ψ*p1*S.  If X5 does not 

equal 2, then the formula returns a 0.  All of the other cells (cells X15:X31) have 

very similar equations.  Let’s review just one more. Click on cell X25 and you’ll see 

the equation =IF(X5=4,R5*(1-S5)*(1-T5)*(1-U5)*(1-V5)*Y5+(1-R5)*Y5,0).  This 
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equation provides the number of sites that are expected to have a 0000 history, 

given R = 5.  The equation first evaluates if cell X5 = 4.  If so, it returns R5*(1-

S5)*(1-T5)*(1-U5)*(1-V5)*Y5+(1-R5)*Y5, which is ψ*(1-p1)*(1-p2)*(1-p3)*(1-

p4)*S+(1-ψ)*S.  If cell X5 does not equal 4, the formula returns a 0.  You’ve worked 

with expected frequencies in previous exercises.  Note that the sum of the 

frequencies is provided for each level of J (cell Y16 for J = 2; cell Y20 for J = 3, 

cell Y25 for J = 4; cell Y31 for J = 5).   You can enter values for ψ, p1, J and S in 

the inputs section, and then click the button labeled “Paste Expected Data” -- cells 

X14:X31 will be pasted into cells F7:F24 for analysis. 

 

The second method for creating encounter history frequencies is with 

stochasticity.   This method occurs in two steps.  In the first step, we create 

encounter histories for each site on a site-by-site basis.  In the second step, we 

sum the site-by-site data to create encounter history frequencies for analysis.   

 

34

35
36
37
38
39

Q R S T U V W X Y Z
Site Surveyed? Occupied? Survey 1 Survey 2 Survey 3 Survey 4 Survey 5 Potential History Actual History

1 1 0 0 0 0 0 0 00000 0000;

2 1 1 1 - - - - 1---- 1---;

3 1 0 0 0 0 0 0 00000 0000;

4 1 1 0 0 0 1 - 0001- 0001;

5 1 1 0 0 0 0 1 00001 0000;  

Let’s start by looking at the site-by-site simulation, focusing on the equations used 

for site 1 (the formulae for site 1 are simply copied down for the other sites).  

Click on cell R35 and you’ll see the formula =IF(Q35<=$Y$5,1,0).  This equation 

evaluates whether the site number listed in cell Q35 is less than or equal to S 

provided in cell Y5.  If so, the formula returns a 1 indicating that the site was 

surveyed, and if not, the formula returns a 0 indicating that the site was not 

surveyed.  Now click on cell S35 and you’ll see the equation =IF(RAND()<$R$5, 1, 
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0).  This equation determines whether the site is occupied or not by our species of 

interest.  If a random number is less than the ψ specified in cell R5, the site is 

occupied and a 1 is returned, otherwise the site is unoccupied and a 0 is returned.  

Notice that a site can be occupied, but not surveyed. 

 

OK, now we know which sites are occupied and which are unoccupied, and we know 

which sites were surveyed and which weren’t.  Now we need to determine the 

outcome of each survey, and we’ll do this for J = 5.  Click on cell T35 and you’ll see 

the formula =IF(AND(S35=1,RAND()<$S$5),1,0).  This is an IF function, with a 

nested AND function in it.  This function basically says, “If the site was occupied 

(S35=1) AND if a random number is less than p specified in cell S5, then the 

species was detected and a 1 is returned; otherwise the species was not detected 

and a 0 is returned.  The formula for surveys 2 through 5 are roughly the same, 

but add a little “removal” twist.  Click on cell U35 and you’ll see the equation 

=IF(AND(S35=1,T35=1),"-",IF(AND(S35=1,RAND()<$T$5),1,0)).  This function 

contains two IF functions.  The first IF function evaluates if S35 is 1 (the site is 

occupied) AND the species was detected in the first survey (T35 = 1).  If so, then 

a ”-“ is returned, indicating that the second survey was skipped because the animal 

was detected in survey 1 (per the removal design).  If both of these conditions are 

not true, the formula moves to the next IF function.  This function evaluates 

whether the site is occupied (S35=1) AND if a random number is less than the 

specified p2 in cell T5.  If BOTH of these conditions are true, the formula returns 

a 1 and the species was detected on survey 2; otherwise the species was not 

detected and a 0 is returned.  Work your way though the equations in cells 

V35:X35.   
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

R S T

Histories Frequency Sum
1. 0
01 0
00 0 0
1.. 0
01. 0
001 0
000 0 0
1... 8
01.. 9
001. 4
0001 2
0000 27 50
1.... 0
01... 0
001.. 0
0001. 0
00001 0
00000 0 0

Stochastic Data

Now click on cell Y35 and you’ll see the equation 

=IF(R35=1,T35&U35&V35&W35&X35,"FALSE").  This cell gives the “potential 

history” for the site – it is the history for J = 5 but the last surveys will be lopped 

off when J < 5.  The equation evaluates if cell R35 is 1.  If so, the site was 

surveyed and the equation returns the concatenation of cells T35 & U35 & V35 & 

W35 & X35.  If the site was not surveyed, the formula returns the word “FALSE”.  

In this way, the potential histories are provided only for sites 1 through S.   

 

Cell Z35 gives the actual history for site 1, depending on what J is.  The equation is 

=IF(Y35="FALSE","FALSE",IF($X$5=5,Y35&";",IF($X$5=4,LEFT(Y35,4)&";",IF($

X$5=3,LEFT(Y35,3)&";",LEFT(Y35,2)&";")))).  It’s a bit long but is again some 

nested IF functions, which evaluate what J is in cell Y35 

and then returns only the survey results for survey 1 to 

survey J.   

 

The stochastic data are summarized in cells R14:T31.  

These cells use the SUMIF function to count the 

number of each kind of history. Work your way through 

the equations if you wish.  If you press F9, the calculate 

key, Excel will draw new random numbers, and hence new 

survey results for each site, and the new results will be 

summarized in this table.  Press F9 5 times and you will 

have simulated 5 datasets for the ψ, p, J, and S specified in the Inputs section. 

Press F9 100 times and you will have simulated 100 datasets for the ψ, p, J, and S 

specified. 
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EXERCISE 1.  MAXIMIZING J AND S FOR A SPECIES WHERE Ψ AND P 

ARE KNOWN 

OK, now that you know how to simulate data, we’ll put those cells to work.  In this 

first exercise, we will explore the optimal removal design for a species in which ψ = 

0.5 and in which p = 0.5.  This species is fairly common (occurring on half the sites 

surveyed) but isn’t easily surveyed (if a site is occupied, there is only a 50% chance 

of detecting the species).   We’ve selected this hypothetical species arbitrarily, 

but you could plug in different values for ψ and p to suite your own study organism.   

 

Now, given that ψ = 0.5 and p = 0.5, what is the optimal survey design?  Well, 

before you start, it’s a good idea to specify the level of precision you wish to 

achieve in your parameter estimates.  This could be something like “95% 

confidence limits of an estimate are within +/- 0.1 of the estimate” or something 

like “standard errors of an estimate are less than 0.05.”  Before you start your 

study, you should have some basic idea of what level of precision will be acceptable.  

Most of us want high precision in the estimates, but these come at a cost in terms 

of J and S.   

 

Let’s assume that, a priori, you know that you can sample up to 200 study sites in a 

single season, and that you can repeatedly sample each site up to 5 times (J = 5).  

The question is: for the species of interest, is this the appropriate study design, or 

could you achieve the level of precision that you desire with fewer sites or fewer 

repeat visits?   

 

To answer this question, we’ll run our removal model under varying conditions of S 

and J.  Let’s let J range from 2 to 5, and let’s let S range from 25 to 200 in 
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increments of 25.  For each combination of J and S, we’ll simulate data, analyze the 

data with Solver, and store the final estimates of p*, ψ, and SE(ψ).  We’ll be filling 

in the following table: 

32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

C D E F G H
Exercise 1:  Maximizing J and S for a species where y = 0.5 and p = 0.5

J S p* ψ SE (ψ)

2 25

2 50
2 75
2 100
2 125
2 150
2 175
2 200
3 25
3 50
3 75
3 100
3 125
3 150
3 175
3 200
4 25
4 50
4 75
4 100
4 125
4 150
4 175
4 200
5 25
5 50
5 75
5 100
5 125
5 150
5 175
5 200  

In our first analysis, J = 2 and S = 25.  So our inputs should look like this: 

3

4
5

R S T U V W X Y

ψ p1 p2 p3 p4 p5 J S

0.5 0.5 0.5 0.5 0.5 0.5 2 25

Inputs
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Given those inputs, we can either evaluate data created by expectation, or we can 

evaluate data created with stochasticity...your choice.  To keep things simple, we’re 

going to evaluate the data created by expectation (only because if you analyze 

stochastic data, you’d want to repeat our little experiment here about 1,000 to get 

an idea of the range of the potential results…feel free to do this later if you 

want!).   

 

Once, you’ve entered the inputs, you’ll see the expected frequencies provided in  

cells X14:X31.   

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

W X Y

Histories Frequency Sum
1. 6.25
01 3.13
00 15.63 25
1.. 0.00
01. 0.00
001 0.00
000 0.00 0
1... 0.00
01.. 0.00
001. 0.00
0001 0.00
0000 0.00 0
1.... 0.00
01... 0.00
001.. 0.00
0001. 0.00
00001 0.00
00000 0.00 0

Expected Data

 

Just click on the button labeled “Paste Expected Data”, and these data will be 

ready for analysis. 
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6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

E F G H I
Histories Frequency Parameters Estimated? Betas

1. 6.25 p1 1
01 3.125 p2 =I7
00 15.625 ψ 1
1.. 0 p1

01. 0 p2

001 0 p3

000 0 ψ

1... 0 p1

01.. 0 p2

001. 0 p3

0001 0 p4

0000 0 ψ

1.... 0 p1

01... 0 p2

001.. 0 p3

0001. 0 p4

00001 0 p5

00000 0 ψ  

 

In this first run, J = 2, so we will be working with the orange cells and will be 

estimating the betas for p1 and ψ that are associated with J = 2 (cells I7,I9).  

Don’t forget that the beta for p2 must be set to equal the beta for p1.  Now you’re 

ready to find the MLE’s.  Open Solver, and set target cell H4 to a maximum by 

changing cells I7,I9.  Press Solve. 

 

You should get the following results: 
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6
7
8
9

E F G H I J K L
Histories Frequency Parameters Estimated? Betas MLE P(history) Ln Probability

1. 6.25 p1 1 0.00000 0.5000 0.2500 -1.38629
01 3.13 p2 0.00000 0.5000 0.1250 -2.07944
00 15.63 ψ 1 0.00000 0.5000 0.6250 -0.47000  

Solver found the unbiased estimates for p1 and ψ, but what we’re really interested 

in is the SE(ψ).  So take a look at the estimates shown in the output section: 

2
3

4

G H I J K L M

K LogeL AIC p p* ψ SE (ψ)

2 -22.50640 49.01280 0.50000 0.75 0.50000 0.264575

Outputs

 

Ouch!  The standard error for ψ is 0.264575.  The lower 95% confidence interval 

can be computed as 0.5 – 1.96*0.264575 = 0, and the upper 95% confidence 

interval can be computed as 0.5 + 1.96*0.264575 =1.    Although our estimate is 

unbiased, the precision is very low – useless in fact.  Now, select cells K4:M4, and 

paste the values only into cells E34:G34. 

32
33
34

35

C D E F G H
Exercise 1:  Maximizing J and S for a species where y = 0.5 and p = 0.5

J S p* ψ SE (ψ)

2 25 0.75 0.5 0.26457513

2 50  

OK, one simulation down, 31 to go.  Now you’re ready to run the next scenario:  J = 

2, S = 50. Basically, you’d repeat this process until the entire table is filled.  This is 

fairly repetitive work, so we created a macro to do everything for us.  If you 

choose to run the macro, first press the button labeled “Clear Data”.  Then, press 

the button labeled “Run Analysis # 1” and the spreadsheet should do the rest. 

 

The final dataset should look like this: 
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32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

C D E F G
Exercise 1:  Maximizing J and S for a species where y = 0.5 and p = 0.5

J S p* ψ SE (ψ)

2 25 0.75 0.5 0.26457513

2 50 0.75 0.5 0.18708287
2 75 0.75 0.5 0.15275252
2 100 0.75 0.5 0.13228757
2 125 0.75 0.5 0.1183216
2 150 0.75 0.5 0.10801234
2 175 0.75 0.5 0.1
2 200 0.75 0.5 0.09354143
3 25 0.875 0.5 0.14411534
3 50 0.875 0.5 0.10190493
3 75 0.875 0.5 0.08320503
3 100 0.875 0.5 0.07205767
3 125 0.875 0.5 0.06445034
3 150 0.875 0.5 0.05883484
3 175 0.875 0.5 0.05447048
3 200 0.875 0.5 0.05095247
4 25 0.9375 0.5 0.1144237
4 50 0.9375 0.5 0.08090978
4 75 0.9375 0.5 0.06606255
4 100 0.9375 0.5 0.05721185
4 125 0.9375 0.5 0.05117184
4 150 0.9375 0.5 0.04671328
4 175 0.9375 0.5 0.04324809
4 200 0.9375 0.5 0.04045489
5 25 0.96875 0.5 0.10538107
5 50 0.96875 0.5 0.07451567
5 75 0.96875 0.5 0.06084179
5 100 0.96875 0.5 0.05269053
5 125 0.96875 0.5 0.04712785
5 150 0.96875 0.5 0.04302164
5 175 0.96875 0.5 0.0398303
5 200 0.96875 0.5 0.03725783  
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You can see that the estimates of ψ are unbiased for all scenarios.  Now you can 

compare the standard errors for ψ across a variety of J and S scenarios.  As 

expected, the lowest SE occurs when J = 5 and S = 200.  But you might be able to 

live with less precision. 

 

A good way to visualize these results is to display them in a Surface Graph, where 

the x axis is J, the y axis is S, and the Z axis is the standard error of ψ.  The 

lower the standard error, the better.  We can use the Pivot Table option in Excel 

organize our data so that we can make this graph.  The pivot table results are 

listed on the sheet labeled “Pivot Table Data 1”.  If you want to re-create this 

pivot table, go to Data | Pivot Table, and you’ll see the following dialogue box: 

 

We want to analyze the data on the table we just created, so click the first radio 

button and also click on the PivotTable radio button. Press Next, and you’ll be 

asked to specify where the data are located.  Use your mouse to highlight cells 

C33:G65, and then press Next.   



Exercises in Occupancy Estimation and Modeling; Donovan and Hines 2007 
 

Chapter 10 Page 31 8/1/2007 

 

Now specify the location where you’d like the pivot table to go.  We selected “New 

Sheet”, but you can put it on the model page if you’d like (just make sure there is 

ample room so that you don’t paste over any of the current spreadsheet cells!). 

 

Then click “Finish”, and you should see the following: 
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You want a table where the J’s are the rows and the S’s are the columns (or visa 

versa), and where the SE(ψ) are the data.  So grab the icon labeled J in the box 

labeled “Pivot Table Field List”, and drag it over to the Pivot Table where it reads 

“Drop Row Fields Here.”  (Click on the icon once, hold the mouse position, move it to 

the new location, and then release the mouse click).  Then grab the icon labeled S 

in the box labeled “Pivot Table Field List”, and drag it over to the Pivot Table 

where it reads “Drop Column Fields Here.” Then grab the icon labeled SE(y) (which 

is SE(ψ), but the formatting was lost in the pivot table process) in the box labeled 

“Pivot Table Field List”, and drag it over to the Pivot Table where it reads “Drop 

Data Items Here.” Your pivot table should now look like this: 

 

 

Our pivot table associated with exercise 1 is on a sheet labeled “Pivot Table Data 

1.”  Notice that there is a Pivot Table toolbar, and on it is a graphing icon.  If you 
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click on it, Excel will create new chart with the data displayed in columns by 

default: 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5

200
175
150
125
100
75
50
25

Sum of SE (y)

J

S

 

Our graph for exercise 1 is displayed on the sheet labeled “Chart 1”.  The bar 

graph isn’t very intuitive. So click on the chart button again in the toolbar and now 

you can select Surface Graph as the charting option: 
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Click Next and fill in the axis titles: 

 

Then press “Finish”.   
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2 3 4 5
25

50
75

100
125

150
175

200

0

0.05

0.1

0.15

0.2

0.25

0.3

SE(psi)

J

S

Precision of Psi

0.25-0.3
0.2-0.25
0.15-0.2
0.1-0.15
0.05-0.1
0-0.05

Sum of SE (y)

J

S

 

Now, for our species where ψ = 0.5 and p = 0.5, we can clearly evaluate our various 

study design options.  If you specified that SE(psi) should be less than 0.05, you 

could conduct a study where S is >= 150 and J >=3, and choose which option works 

best for you within this range.  

 

Now, suppose you wanted to evaluate a species where ψ = 0.3 and p = 0.9.  Simply 

enter these parameters in the input section (cells R5:S5), clear out the old results, 

and run the simulation again.  When you press the exclamation point on the Pivot 

Table toolbar, the table will be automatically refreshed to reflect the new results. 
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2 3 4 5
25

50
75

100
125

150
175

200

0

0.05

0.1

SE(psi)

J

S

Precision of Psi

0.05-0.1
0-0.05

Sum of SE (y)

J

S

 

The results for this “new” species look quite different.  For a rare species with 

high detectability, J is far less important than S in terms of optimizing your study 

design.  But note that the Z axis has been automatically scaled to fit the data. 

  

What would the results be if our species was common (ψ = 0.7) but very elusive (p = 

0.2)?  Here are our results: 
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2 3 4 5
25

50
75

100
125

150
175

200

00.050.10.150.20.250.30.350.40.450.50.550.60.650.70.750.80.850.90.951
1.051.11.151.21.251.31.351.41.451.51.551.61.651.71.751.81.851.91.95

2
2.05

SE(psi)

J

S

Precision of Psi 2-2.05
1.95-2
1.9-1.95
1.85-1.9
1.8-1.85
1.75-1.8
1.7-1.75
1.65-1.7
1.6-1.65
1.55-1.6
1.5-1.55
1.45-1.5
1.4-1.45
1.35-1.4
1.3-1.35
1.25-1.3
1.2-1.25
1.15-1.2
1.1-1.15
1.05-1.1
1-1.05
0.95-1
0.9-0.95
0.85-0.9
0.8-0.85
0.75-0.8
0.7-0.75
0.65-0.7
0.6-0.65

Sum of SE (y)

J

S

 

For a common species that is elusive, J should be high, but S can be quite low.  

Again, note that the Z axis is automatically scaled to fit the data (so if you want to 

compare the graphs of two different kinds of species, make sure the Z axis is 

scaled the same way).  Hopefully you are getting the idea that the optimal study 

design depends on the characteristics of your target species.  

 

EXERCISE 2: MAXIMIZING SE(ψ) FOR SPECIES WHERE J AND S ARE 

KNOWN. 

In this second exercise, we will explore the optimal removal design for a species in 

which J and S are known.  Let’s say that, for logistical reasons, you already know 

the number of sites that can be studied, as well as the maximum number of visits 

to a site (perhaps you are limited by finances, or maybe you inherited a dataset and 

now wish to evaluate the strength of this design for different kinds of species).  
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In this exercise, we’ll let J = 3 and S = 50.  We’ve selected this hypothetical 

scenario arbitrarily, but you could plug in different values for J and S to suite your 

own study organism.   

 

Now, given that J = 3 and S = 50, what kinds of species are well-surveyed with this 

design?  Again we will be examining the precision of ψ.   

 

This time, we’ll run our removal model under varying conditions of ψ and p.  Let’s let 

ψ range from 0.2 to 0.8 in increments of 0.1, and we’ll let p range from 0.2 to 0.8 in 

increments of 0.1.  As before, for each combination of ψ and p, we’ll simulate data, 

analyze the data with Solver, and store the final estimates of p*, ψ, and SE(ψ).  

We’ll be filling in the following table: 
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32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

I J K L M
Exercise 2: Maximizing SE(y) for species where J = 3 and S = 50.

ψ p p* ψ SE (ψ)

0.2 0.2

0.2 0.3
0.2 0.4
0.2 0.5
0.2 0.6
0.2 0.7
0.2 0.8
0.3 0.2
0.3 0.3
0.3 0.4
0.3 0.5
0.3 0.6
0.3 0.7
0.3 0.8
0.4 0.2
0.4 0.3
0.4 0.4
0.4 0.5
0.4 0.6
0.4 0.7
0.4 0.8
0.5 0.2
0.5 0.3
0.5 0.4
0.5 0.5
0.5 0.6
0.5 0.7
0.5 0.8
0.6 0.2
0.6 0.3
0.6 0.4
0.6 0.5
0.6 0.6
0.6 0.7
0.6 0.8
0.7 0.2
0.7 0.3
0.7 0.4
0.7 0.5
0.7 0.6
0.7 0.7
0.7 0.8
0.8 0.2
0.8 0.3
0.8 0.4
0.8 0.5
0.8 0.6
0.8 0.7
0.8 0.8  
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The first scenario is one in which ψ = 0.2 and p = 0.2, so our inputs should look like 

this: 

3

4
5

R S T U V W X Y

ψ p1 p2 p3 p4 p5 J S

0.2 0.2 0.2 0.2 0.2 0.2 3 50

Inputs

 

Make sure that your spreadsheet inputs match those shown.  Once again we’ll be 

analyzing encounter histories from these inputs that are based on expectation 

(cells X14:X31), and these will be pasted into the model for analysis (cells F7:F24). 

 

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

E F G H
Histories Frequency Parameters Estimated?

1. 0.00 p1

01 0.00 p2

00 0.00 ψ

1.. 2.00 p1 1
01. 1.60 p2

001 1.28 p3

000 45.12 ψ 1
1... 0.00 p1

01.. 0.00 p2

001. 0.00 p3

0001 0.00 p4

0000 0.00 ψ

1.... 0.00 p1

01... 0.00 p2

001.. 0.00 p3

0001. 0.00 p4

00001 0.00 p5

00000 0.00 ψ  

As before, we recorded a macro to run all 49 simulations for you.  Just press the 

“Clear Data” button to clear out old results, enter data for J and S in cells X5:Y5, 

and then press the button labeled “Run Analysis # 2” to run the simulation.  Your 

results should look like this: 

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

W X
Histories Frequency

1. 0.00
01 0.00
00 0.00
1.. 2.00
01. 1.60
001 1.28
000 45.12
1... 0.00
01.. 0.00
001. 0.00
0001 0.00
0000 0.00
1.... 0.00
01... 0.00
001.. 0.00
0001. 0.00
00001 0.00
00000 0.00
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32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

I J K L M
Exercise 2: Maximizing SE(y) for species where J = 3 and S = 50.

ψ p p* ψ SE (ψ)

0.2 0.2 0.4880 0.2000 0.3637

0.2 0.3 0.6570 0.2000 0.1707
0.2 0.4 0.7840 0.2000 0.1012
0.2 0.5 0.8750 0.2000 0.0732
0.2 0.6 0.9360 0.2000 0.0622
0.2 0.7 0.9730 0.2000 0.0582
0.2 0.8 0.9920 0.2000 0.0569
0.3 0.2 0.4880 0.3000 0.4447
0.3 0.3 0.6570 0.3000 0.2076
0.3 0.4 0.7840 0.3000 0.1215
0.3 0.5 0.8750 0.3000 0.0862
0.3 0.6 0.9360 0.3000 0.0721
0.3 0.7 0.9730 0.3000 0.0670
0.3 0.8 0.9920 0.3000 0.0653
0.4 0.2 0.4880 0.4000 0.5128
0.4 0.3 0.6570 0.4000 0.2381
0.4 0.4 0.7840 0.4000 0.1374
0.4 0.5 0.8750 0.4000 0.0954
0.4 0.6 0.9360 0.4000 0.0784
0.4 0.7 0.9730 0.4000 0.0720
0.4 0.8 0.9920 0.4000 0.0699
0.5 0.2 0.4880 0.5000 0.5724
0.5 0.3 0.6570 0.5000 0.2643
0.5 0.4 0.7840 0.5000 0.1503
0.5 0.5 0.8750 0.5000 0.1019
0.5 0.6 0.9360 0.5000 0.0817
0.5 0.7 0.9730 0.5000 0.0740
0.5 0.8 0.9920 0.5000 0.0715
0.6 0.2 0.4880 0.6000 0.6261
0.6 0.3 0.6570 0.6000 0.2874
0.6 0.4 0.7840 0.6000 0.1610
0.6 0.5 0.8750 0.6000 0.1061
0.6 0.6 0.9360 0.6000 0.0825
0.6 0.7 0.9730 0.6000 0.0733
0.6 0.8 0.9920 0.6000 0.0702
0.7 0.2 0.4880 0.7000 0.6752
0.7 0.3 0.6570 0.7000 0.3082
0.7 0.4 0.7840 0.7000 0.1698
0.7 0.5 0.8750 0.7000 0.1083
0.7 0.6 0.9360 0.7000 0.0809
0.7 0.7 0.9730 0.7000 0.0698
0.7 0.8 0.9920 0.7000 0.0659
0.8 0.2 0.4880 0.8000 0.7207
0.8 0.3 0.6570 0.8000 0.3271
0.8 0.4 0.7840 0.8000 0.1771
0.8 0.5 0.8750 0.8000 0.1087
0.8 0.6 0.9360 0.8000 0.0767
0.8 0.7 0.9730 0.8000 0.0630
0.8 0.8 0.9920 0.8000 0.0580  
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We created a pivot table from these data (listed on the sheet labeled Pivot Table 

Data 2) and created a surface chart from the pivot data (provided on the sheet 

labeled Chart 2).  Here are the results in graphical form: 

0.2
0.3

0.4
0.5

0.6
0.7

0.8 0.2
0.3

0.4
0.5

0.6
0.7

0.8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

SE(psi)

psi p

Sensitivity of SE(psi) to varying psi and p

Sum of SE (y)

y

p

 

So, a study in which J = 3 and S = 50 is most appropriate for species in which p > 

0.5.  Keep in mind that the categories shown above show SE(ψ) in increments of 0.1.  

Note also that we scaled this chart so that SE(ψ) has a minimum value of 0 and a 

maximum value of 2 so that you can compare different runs more effectively.  To 

set the scales, double-click on the axis for SE(ψ), and then click on the Scale tab, 

click off the check-boxes that automatically scale the minimum and maximum 

values, and then enter the minimum and maximum values you wish (see below).   
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We didn’t choose this option for exercise 1 because doing so can produce some 

very funky-looking graphs! 

 

Under this removal design, the study yields the highest precision for ψ for an 

organism where ψ = 0.2 and p = 0.8, but the standard error is still 0.0569.  The 

variance is made up of 2 parts, one involving psi, the other involving p.  The first 

part should be symmetrical (var(psi=0.2) = var(psi=0.8)) since you have psi*(1-psi) in 

part 1.  The 2nd part should be smallest for the highest value of p.  So, the smallest 

variance should be at psi close to 0 or close to 1, and p close to 1.   

 

You can play around with different values of J and S. Just enter new values in cells 

X5:Y5, clear out the old results, and then run the simulation again.  Don’t forget to 

press the button with the exclamation point to update the pivot table and chart to 

view your results.  For example, here are our results for J = 3, S = 200: 
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0.2
0.3

0.4
0.5

0.6
0.7

0.8 0.2
0.3

0.4
0.5

0.6
0.7

0.8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

SE(psi)

psi p

Sensitivity of SE(psi) to varying psi and p

Sum of SE (y)

y

p

 

 

Feel free to explore a variety of options in the spreadsheet, either by setting ψ 

and p and running simulations where S and J vary (exercise 1), or by setting S and 

J and running simulations where ψ and p vary (exercise 2).  We also suggest you 

read the article by MacKenzie and Royle, who present summarized results for 

removal model designs.  Now, let’s take a look at how you would use the program 

GENPRES to assess various removal designs.  



Exercises in Occupancy Estimation and Modeling; Donovan and Hines 2007 
 

Chapter 10 Page 45 8/1/2007 

OPTIMAL REMOVAL DESIGNS IN PROGRAM GENPRES 

 

GETTING STARTED WITH GENPRES 

OK, now we will take a look at how to program a removal model design in program 

GENPRES.  Open GENPRES and you’ll see the main form: 

 

The removal model is not a standard design, so go to Model | User-defined 

 



Exercises in Occupancy Estimation and Modeling; Donovan and Hines 2007 
 

Chapter 10 Page 46 8/1/2007 

You’ll be brought to a form where you can type in code to analyze various removal 

models.   

 

 

 

 

 

CONCLUSIONS 

A priori knowledge of your study organism and clear research objectives are 

valuable in determining survey design and allocating survey effort, especially if 

resources are limited.  When dealing with a rare and difficult to detect species 

(low p and ψ), your maximum number of surveys will most likely need to be higher to 

get unbiased, more precise model output. The large effect detection probability 

has on output variability and bias reinforces the importance of its incorporation 

into the modeling process. Also keep in mind that in some instances, the removal 

design may be less robust to violation of assumptions than the standard design. 

Careful consideration of study design is crucial for developing sound management 

and conservation efforts based on species distribution and occurrence across the 

landscape. 
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