

Climate Change and Vegetation Phenology

Climate Change

- In the Northeastern US mean annual temperature increased 0.7°C over 30 years (0.26° C per decade)
- Expected another 2-6°C over next century

(Ollinger, S.V. "Potenail effects of climate change and rising CO2 on ecosystem process in northeastern U.S. forests)

Why does it matter?

- Impacts on plant productivity
- Competition between plant species
- Interaction with other organisms
- Food production
- Shifts in agricultural
- Pest and disease control
- Pollen forecasts

- Carbon balance of terrestrial ecosystems
- Feedback into atmosphere
- Water, energy exchange
- Timing of migrations and breeding

other ideas?

Phenology is the science that measures the timing of life cycle events in all organisms

Plants tell a story about climate.....

Listening to the story they tell year after year can tell us about climate change

Plants provide an excellent context to understand changes in the environment

They are extremely sensitive to:

- temperature change
- precipitation change
- growing degree days

Phenology: A glimpse of ecosystem Impacts

Some potential effects:

- Wildlife populations
- Vegetation health
- Species composition and ranges
- Water availability
- Nutrient cycling and decomposition
- Carbon storage

Measuring Phenology

Field Observations

Satellite Remote Sensing

How do scientists monitor vegetation phenology?

Measuring Phenology on the ground

Field Observations

Investigation F	u wish to retrieve inst Measurement	Last Measurement*A	leasurements* S	chools*
All Measurements	1995-01-01	2002-01-27	7351385	5098
C Atmsphere	1995-01-01	2002-01-27	6390075	4529
Air Temperaturs	1995-01-01	2002-01-27	2449014	4050
Cloud Observations	1995-01-01	2002-01-27	1777947	4411
Caquad Precipitation	1995-01-01	2002-01-27	1053441	4019
Solid Precipitation	1995-01-01	2002-01-27	1055716	3421
C Humidity	1995-02-02	2002-01-37	33329	363
© Ozone	2000-08-16	2002-01-24	4294	19
C Ascords	2000-07-02	2002-01-22	2649	9
Barometric Pressure	1995-02-02	2002-01-27	13685	189
C Surface Water	1995-01-02	2002-01-36	638909	1806
Soil Meisture	1995-00-21	2002-91-25	58823	215
Soil Moisture (profile)				
Sad Moisture (by depth)				
Soil Temperature	1997-01-01	2002-01-26	71906	20.5
C Soil Temperature (profile)				
C Soil Temperature (by depth)	CONTRACTOR OF THE PARTY.		2000000	GREE
Soil Characterization	1998-05-18	2002-01-23	10308	156
C Soil builtration	1997-02-17	2001-11-24	1910	26
C Land Cover/Biology	1993-04-19	2002-01-25	115827	642
Tree Biometry	1995-04-23	2001-11-26	42702	500
Grees Biometry	1995-05-16	2001-11-26	69716	238
C Land Cover	1995-04-19	2002-01-25	3409	345
Phenology-Budburst	1998-03-30	2001-10-12	2021	100
C Phenology - Lillacs	2008-03-25	2001-08-21	251	20
Calleds (Common)				
C Lileco (Clonal)				
C Green up/Green down	1999-09-26	2001-12-05	6848	18
C Green-up	1999-09-26	2001-12-06	6048	18
C Green-down	1999-09-26	2001-12-06	6048	18
C Size Location	1996-10-19	2002-01-27	19749	2446
Go Site Photos Site photos are viewed using the GLORE Site Photo viewer	1905-04-19	2001-10-29	2031	92
Metafatal	1995,05.01	2807-01-25	31642	2165

Timing of sugar maple leaf drop Monitored at Proctor Maple Research Center

Sandra Wilmot Tom Simmons

Hemispherical Photography

Helps us "see" the canopy as a satellite might see it

Hemispherical Imagery

- Scientists spend big bucks to purchase the equipment and software necessary to link ground measurements with satellite imagery.
- Calculate canopy closure, transparency, leaf area index, vegetation indices, gap fraction, etc.

Measuring Phenology

Satellite Remote Sensing

Land surface phenologies in 2000 revealed by three AVHRR biweekly composites."

<u>From USA National Phenology Network</u>
(USANPN)

How do you see phenology from space?

- Chlorophyll, strongly absorbs visible light for photosynthesis.
- Leaf cell structure reflects near-infrared light.
- NDVI exploits these characteristics of vegetation reflectance to quantify how much, how dense and how productive vegetation is.

$$NDVI = \frac{(NIR - VIS)}{(NIR + VIS)}$$

Normalized Difference Vegetation Index NDVI

- Negative values of NDVI correspond to water.
- •Values close to zero correspond to barren areas of rock, sand, or snow.
- •low, positive values represent shrub and grassland
- •high values indicate temperate and tropical rainforests.

0.9 Death Valley 8.0 0.7 0.6 0.5 0.4 0.3 0.2 What would this NDVI curve look like? Kirsten M. de Beurs, Ph.D. Virginia Tech University

NDVI for Phenological Dates

comparison of NDVI values for different dates

Plotting NDVI Use of NDVI to identify key phenological dates

How do you determine dates?

Use of NDVI thresholds to identify key phenological dates

Start of the Season

Common Thresholds

0.5 of the Max:Min NDVI ratio to approximate the start and end of the season

50% Threshold (Seasonal Mid-point)

(White et al., mean day = 124, May 4th)

Other key phenological dates

RSP Data Set	Acronym	Phenological Interpretation	Description	
Start of Season – Time	sost	Beginning of measurable photosynthesis in the vegetation canopy	Day of year identified as having a consistent upward trend in time series NDVI	
Start of Season -NDVI	sosn	Level of photosynthetic activity at the beginning of measurable photosynthesis	NDVI value (or baseline) identified at the day of year identified as a consistent upward trend in time series NDVI	
End of Season –Time	EOST	End of measurable photosynthesis in the vegetation canopy	Day of year identified at the end of a consistent downward trend in time series NDVI	
End of Season -NDVI	EOSN	Level of photosynthetic activity at the end of measurable photosynthesis	NDVI value corresponding with the day of year identified at the end of a consistent downward trend in time series NDVI	
Time of Maximum	махт	Time of maximum photosynthesis in the canopy	Day of year corresponding to the maximum NDVI in an annual time series	
Maximum NDVI click to enlarge	MAXN	Maximum level of photosynthetic activity in the canopy	Maximum NDVI in an annual time series	