HS-ESS3 Earth and Human Activity

Students who demonstrate understanding can:

HS-ESS3-1. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]

HS-ESS3-2. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.* [Clarification Statement: Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural soil use, mining (for coal, tar sands, and oil shales), and pumping (for petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen.]

HS-ESS3-3. Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.] [Assessment Boundary: Assessment for computational simulations is limited to using provided multi-parameter programs or constructing simplified spreadsheet calculations.]

HS-ESS3-4. Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.* [Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development; agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale engineered design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).]

HS-ESS3-5. Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. [Clarification Statement: Evidence for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacier ice volumes, or atmosphere and ocean composition).] [Assessment Boundary: Assessment is limited to one example of a climate and its associated impacts.]

HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices
- Analyzing and Interpreting Data
- Using Mathematics and Computational Thinking
- Constructing Explanations and Designing Solutions

Disciplinary Core Ideas
- ESS2.D: Weather and Climate
 - Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6)
- ESS3.A: Natural Resources
 - Resource availability has guided the development of human society. (HS-ESS3-1)
 - All forms of energy production and other resource extraction have associated economic, social, environmental, and governance costs and benefits. New technologies and social regulations can change the balance of these factors. (HS-ESS3-2)
- ESS3.B: Natural Hazards
 - Natural hazards and other geologic events have shaped the course of human history; they have significantly altered the sizes of human populations and have driven human migrations. (HS-ESS3-1)
- ESS3.C: Human Impacts on Earth Systems
 - The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. (HS-ESS3-3)
 - Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that reduce and remediate degradation. (HS-ESS3-4)
- ESS3.D: Global Climate Change
 - Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts. (HS-ESS3-5)
 - Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities. (HS-ESS3-6)
- ETS1.B: Developing Possible Solutions
 - When evaluating solutions, it is important to take into consideration:
 - Cost
 - Benefits
 - Potential downsides
 - Sustainability
 - Ethical considerations

Crosscutting Concepts
- Cause and Effect
 - Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS3-1)
- Systems and System Models
 - When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and the inputs and outputs analyzed and described using models. (HS-ESS3-6)
- Stability and Change
 - Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS3-3; HS-ESS3-5)
- Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS3-4)

Connections to Engineering, Technology, and Applications of Science
- Influence of Engineering, Technology, and Science on Society and the Natural Environment
 - Modern civilization depends on major technological systems. (HS-ESS3-1, HS-ESS3-2)
 - Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-ESS3-2)
 - New technologies can have deep impacts.
HS-ESS3 Earth and Human Activity

<table>
<thead>
<tr>
<th>Scientific Investigations Use a Variety of Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Science investigations use diverse methods and do not always use the same set of procedures to obtain data. (HS-ESS3-5)</td>
</tr>
<tr>
<td>• New technologies advance scientific knowledge. (HS-ESS3-5)</td>
</tr>
<tr>
<td>Scientific Knowledge is Based on Empirical Evidence</td>
</tr>
<tr>
<td>• Science knowledge is based on empirical evidence. (HS-ESS3-5)</td>
</tr>
<tr>
<td>• Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-ESS3-5)</td>
</tr>
</tbody>
</table>

Connections to Nature of Science

Science is a Human Endeavor

• Science is a result of human endeavors, imagination, and creativity. (HS-ESS3-3)

Science Addresses Questions About the Natural and Material World

• Science and technology may raise ethical issues for which science, by itself, does not provide answers and solutions. (HS-ESS3-2)

• Science knowledge indicates what can happen in natural systems—not what should happen. The latter involves ethics, values, and human decisions about the use of knowledge. (HS-ESS3-2)

• Many decisions are not made using science alone, but rely on social and cultural contexts to resolve issues. (HS-ESS3-2)

Connections to other DCs in this grade band:

- HS.PS1.B (HS-ESS3-3); HS.PS3.B (HS-ESS3-2),(HS-ESS3-5); HS.PS3.D (HS-ESS3-2),(HS-ESS3-5); HS.LS1.C (HS-ESS3-5); HS.LS2.A (HS-ESS3-2),(HS-ESS3-5); HS.LS2.B (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-6); HS.LS2.C (HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); HS.LS4.D (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); HS.LS2.E (HS-ESS3-3)

Articulation of DCs across grade bands:

- HS.PS1.B (HS-ESS3-3); HS.PS3.B (HS-ESS3-5); HS.PS3.D (HS-ESS3-2),(HS-ESS3-5); HS.LS2.A (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3); HS.LS2.B (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); HS.LS2.C (HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); HS.LS4.D (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3); HS.LS2.A (HS-ESS3-1),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); HS.ESS2.C (HS-ESS3-6); HS.ESS2.D (HS-ESS3-5); HS.ESS3.A (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3); HS.ESS3.B (HS-ESS3-1),(HS-ESS3-4),(HS-ESS3-5); HS.ESS3.C (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-5),(HS-ESS3-6); HS.ESS3.D (HS-ESS3-4),(HS-ESS3-5),(HS-ESS3-6)

Common Core State Standards Connections:

ELA/Literacy

- RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-4),(HS-ESS3-5)

- RST.11-12.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in a simpler but still accurate terms. (HS-ESS3-5)

- RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ESS3-5)

- RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ESS3-2),(HS-ESS3-4)

Mathematics

- MP.2 Reason abstractly and quantitatively. (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-5),(HS-ESS3-6)

- MP.4 Model with mathematics. (HS-ESS3-3),(HS-ESS3-6)

- HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS3-1),(HS-ESS3-4),(HS-ESS3-5),(HS-ESS3-6)

- HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS3-1),(HS-ESS3-4),(HS-ESS3-5),(HS-ESS3-6)

- HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS3-1),(HS-ESS3-4),(HS-ESS3-5),(HS-ESS3-6)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.