Vermont

cheddar cheese,

maple syrup and

the ever-popular Ben and Jerry's ice cream and Now Saffron

Famous people in Vermont Bernie Sanders

•JoJo, 28.

•Susan Bennett, 69. Voice Actress.

•Calvin Coolidge (1872-1933) US President.

•Joseph Smith (1805-1844) Religious Leader.

•Alex Farnham, 31.

•John Deere (1804-1886)

•Aaron Lewis, 46.

•Chester A. Arthur (1829-1886) US President.

Saffron as anti inflammatory and anti oxidant supplement

Hassan Ashktorab, Professor

Director of NGS lab March 12, 2020, 2:15 PM University of Vermont, Davis Center Burlington, Vermont

Human Genome

Human Microbiome

NIH is made up of 27 Institutes and Centers, each with a specific research agenda, often focusing on particular diseases or body systems.

Saffron types

Overall color of Sargol saffron is more than others and is between 210 to 260 units.

Apart from its traditional value as a spice and coloring agent, saffron has a long history of medicinal use spanning over 2,500 years.

Moghaddasi MS. Saffron chemicals and medicine usage. J Med Plants Res. 2010;4:427–430. ; Srivastava R, Ahmed H, Dixit RK, Dharamveer, Saraf S. Crocus sativus L.: A comprehensive review. Pharmacogn Rev. 2010;4:200.

How about The USA? Stay tune

Country	Production	Cultivated area	
	(kg)	(ha)	
Iran	160,000	47,000	Ehsanzadeh et al., 2004
India	8,000 - 10,000	n.a.	Fernandez, 2004
Greece	4,000 - 6,000	860	Fernandez, 2004
Azerbaijan	n.a.	675	Azibekova and Milyaeva, 1999
Morocco	1,000	500	Ait-Oubahou and El-Otmani, 1999
Spain	300-500	200	Fernandez, 2004
Italy	120	35	Gresta et al., 2008
France	4	1	Girard and Navarrete, 2005
Turkey	10	n.a.	Thiercelin, 2004
Switzerland	0.4	n.a.	Negbi, 1999

n.a. = not available.

SAFFRON APOCAROTENOIDS: A REVIEW OF THEIR BIOMOLECULAR FEATURES AND BIOLOGICAL ACTIVITY PERSPECTIVES Laura Siracusa, Fabio Gresta, Giuseppe Ruberto (2011)

Saadi Shirazi (1200-1292)

Human beings are members of a whole, In creation of one essence and soul. If one member is afflicted with pain, Other members uneasy will remain.

If you have no sympathy for human pain, The name of human you cannot retain.

The Bostan and The Golestan of Saadi ,One of the world's greatest masterpieces

Saadi was born in Shiraz around 1200. He died in Shiraz around 1292. He lost his father in early childhood. With the help of his uncle, Saadi completed his early education in Shiraz. Later he was sent to study in Baghdad at the renowned Nezamiyeh College, where he acquired the traditional learning of Islam. به، به واسطه حضور چشمگیر در متن جامعه که از قضا نقطه افتراق ت و سادهزیستی اخلاقمدارانه دعوت میکند و از زیادهخواهی خور عارفان که فرهنگساز و میراثدار جامعهای است که اندک زمانی وزها شاید، در رفت و آمد حاکمان است، که سعدی را به تاثیر از ابن و ناگزیرش میسازد که مشفقانه سخن از چیزی گوید که در اصطلاح خصوص میگوید: با در نظر گرفتن این سخن، «گرت مملکت باید سعدی اصول مدیریت را هم مورد توجه قرار داده و شایستهسالاری قط در اندیشه که در قامت یک اصلاحگر عملگرا، همزمان به حاکمان و این نوع موضوعات حساس میسازد. استفاده مناسب از منابع

عر کهن بسیار ظریف گنجانده شده: «نخواهی که ضایع شود روزگار/ بان به مقدرات الهی و رسیدن رزق از سوی خدا، در شعر سعدی هم کلاسیک، ایرانیان را به کار تشویق میکند و میگوید: «گرچه بیرون ز نگاه سعدی ظریف تر و دقیقتر از سایر شاعران کلاسیک کشور است، ۵ کرده و جنبههای ظریفی را مطرح کرده است که در شعر شاعران

دیگر دیدہ نمی شود.

Nasir Al-Mulk Mosque in Shiraz, Iran

The Nasīr al-Mulk Mosque (Persian: مسجد نصير الملك - Masjed-e Naseer ol Molk) or Pink Mosque is a traditional mosque in Shiraz, Iran, located in Goade-e-Araban place (near the famous Shah Cheragh mosque). The mosque was built during the Qājār era, and is still in use under protection by Nasir al Mulk's Endowment Foundation. It was built by the order of Mirza Hasan Ali Nasir al Molk, one of the lords of the Qajar Dynasty, in 1876 and was finished in 1888. The designers were Muhammad Hasan-e-Memar and Muhammad Reza Kashi Paz-e-Shirazi.

The mosque extensively uses colored glass in its facade, and it displays other traditional elements such as panj kāseh-i (five concaves) in its design. It is also named in popular culture as Pink Mosque due to the usage of beautiful pink color tiles for its interior design.

Highest producer of saffron in the world

Iran

Ranks first in the world production of saffron in the world, with more than 94 percent of the world yield, exports the spice to 46 countries all over the world. Apr 27, 2012

Other minor producers of saffron are: Spain, India, Greece, * Azerbaijan, Morocco, and Italy.

https://www.google.com/search?q=which+country+is+the+largest+producer+of+saffron+in+the+world&rlz=1C1CHBF_enU S755US755&oq=which+country+is+the+highest+producer+of+saffr&aqs=chrome.3.69i57j0l3.33912j0j7&sourceid=chrome &ie=UTF-8

Best saffron in the world

Saffron varieties are found throughout the world: including Iran, Spain, Morocco, Greece, India, and Italy.

Please see our paper for the geography typing and quality of saffron.

Saffron

http://www.parcosirentevelino.it/Eprodotti.tipici.dettaglio.php?id=2053;ttps://www.bing.com/images/search?view=detailV2&ccid=qBk68RzP&id=276BEA4BDA9831B5D1141FD48F397FF9034EFE53&thid=OIP.qBk68RzP8gaJgk15iwRmJA HaFB&mediaurl=https%3A%2F%2Fwww.foodunfolded.com%2Fimages%2Fuploads%2Farticle-images%2Fin-article-saffronfield.jpg&exph=523&expw=771&q=saffron+production+in+iran&simid=608018217260091761&selectedindex=8&ajaxhist=0&vt=0&sim=11

Saffron in the USA Saffron meeting in Vermont March 12, 2020

Nutrient Value Principle Energy 310 Kcal Carbohydrates 65.37 g **Protein** 11.43 g **Total Fat** 5.85 g Cholesterol 0 mg **Dietary Fiber 3.9** g **Vitamins Folates** 93 µg Niacin 1.46 mg Pyridoxine 1.010 mg Riboflavin 0.267 mg Vitamin A **530 IU** Vitamin C 80.8 mg **Electrolytes** Sodium 148 mg Potassium 1724 mg Minerals **Price:** Calcium 111 mg each gram \$10-50 Copper 0.328 mg Iron 11.10 mg Magnesium 264 mg Manganese 28.40 mg **Phosphorus** 252 mg Selenium 5.6 µg ***USDA** Zinc 1.09 mg

Table 1. *Saffron Nutritional value per 100 gr

Identification saffron via HPLC and UV

Tabtabei et al 2019. European Food Research and Technology

Ultraviolet-visible light spectrograph and mass spectrograph data for saffron

Ultraviolet-visible light spectrograph and mass spectrograph data for saffron. From top to bottom 210 nm, 280 m, and mass spectrography Total Ion Content profiles for saffron. Peaks associated with major constituents are numbered as follows: 1) Kaempferol diglycoside, 2) picrocrocin, 3) a-crocin, 4) crocin, 5) mixed crocins 6) safranal.

the world dry weight 1.8 - - IT1 - - IT2 IT3 1.6 - IT4 - IT5 **ITALY:** broken lines - — – IT6 1.4 - - + IT7 IRAN: full lines - IT8 - IT9 1.2 - - - IT10 - - IT11 - - IT12 1.0 IT12 A – – – IT13 - IR1 - IR2 0.8 - IR3 - IR4 picrocrocin and its derivatives - IR5 (maximum at 240-250 nm) 0.6 - IR6 - IR7 crocins - IR8 0.4 - IR9 - IR10 safranal - IR11 (maximum at 310 0.2 kaempferol derivatives 0.0 (maxima a5265 and 340-350 nm) 400 250 500 550 300 200 600 wavelenght (nm)

Fig. UV–Vis spectra of Italian and Iranian saffron samples. a Raw UV–Vis spectra of all Iranian and Italian samples; (b) UV–Vis spectra of all Iranian and Italian samples after multiplicative scatter correction (MSC) treatment; (c) first-order derivative spectra of all samples Tabtabei et al 2019. European Food Research and Technology

Comparison of Saffron from different part of

Table 2. Saffron Constituents and theirresponsibilities

Constituent	Responsible	Action
Crocin	color	Anti-Inflammation/Anti- ROS
Picrocrocin	bitter taste	Anti-Inflammation/Anti- ROS
Safranal	Aroma	Anti-Inflammation/Anti- ROS

Saffron contains over 150 potentially biologically active agents, including a range of carotenoids (Bathaie and Mousavi, 2010).

Chemical structures of main secondary metabolites of saffron.

Gastrointestinal (GI) diseases in the US

The Digestive System

Gastrointestinal (GI) diseases in the US

(per year)

- In 2015,
 - An estimated 3 million hospitalizations,
 - 54.4 million ambulatory care visits,
 - 144300 deaths.
- Spending on GI diseases
 - An estimated at \$135.9 billion per year.

Anne F Peery et al. Gastroenterology, 156 (1), 254-272.e11 Jan 2019; Everhart JE1, Ruhl CE. Gastroenterology. 2009 Apr;136(4):1134-44.

Burden of Colorectal Cancer (CRC)

- World-wide about 1,400,000 people are diagnosed with colorectal cancer each year
- 2.4 million cases of CRC diagnosed every year by 2035.
- Both women and men
- All races
- Second leading cause of cancer death in US
- American Cancer Society estimates in 2020
 - 97,220 new cases
 - 50,000 deaths
 - About 27,400 patients will have had

their cancer metstasiz.*

*National Cancer Institute; Surveillance, Epidemiology, and End results Program Fact Sheet: Colon and Rectum. http://seer.cancer.gov/statfacts/html/colorect.html. Accessed April 2018. **https://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/colorectal-cancer-statistics

Ten Leading Cancer Types for the Estimated New Cancer Deaths, by Sex, US, 2018.

	Male				Female		
Estimated Deaths	Lung & bronchus	83,550	26%	L	.ung & bronchus	70,500	25%
	Prostate	29,430	9%	🗧 🔜 в	Ireast	40,920	14%
	Colon & rectum	27,390	8%	Δ 🕺 c	olon & rectum	23,240	8%
	ганстсаз	25,020	170		ancicas	21,510	7%
	Liver & intrahepatic bile duct	epatic bile duct 20,540 6%		C)vary	14,070	5%
	Leukemia	14,270	4%	U	Iterine corpus	11,350	4%
	Esophagus	12,850	4%	L L	eukemia	10,100	4%
	Urinary bladder	12,520	4%	ι ι	iver & intrahepatic bile duct.	9,660	3%
	Non-Hodgkin lymphoma	11,510	4%	N	Ion-Hodgkin lymphoma	8,400	3%
	Kidney & renal pelvis	10,010	3%	B	srain & other nervous system	7,340	3%
	All sites	323,630	100%	Α Γ	Ill sites	286,010	100%

Estimates are rounded to the nearest 10, and cases exclude basal cell and squamous cell skin cancers and in situ carcinoma except urinary bladder. Ranking is based on modeled projections and may differ from the most recent observed data.

©2018, American Cancer Society, Inc., Surveillance Research

American Cancer Society, Cancer Facts and Figures 2018

Siegel et al, CA Cancer J Clin 2014; 64:104-117

Colorectal Cancer in Young Adults

Ashktorab et al 2016. Dig Dis Sci. 2016 Oct:61(10):3026-30. doi: 10.1007/s10620-016-4207-1.

Environmental exposures (E-Score) and Genetics (G-score)

life expectancy based on wards

Prevalence of selected autoimmune diseases³⁻⁵

Arthritis is a common health problem in the US population, affecting more than 46 million people and resulting in disability for 19 million people. In fact, among chronic <u>diseases in the US, arthritis causes more disability than any other condition</u>, including heart disease, diabetes, and back or spine problems. RA is the third most common type of arthritis behind osteoarthritis (prevalence 26.9 million) and gout (prevalence 6.1 million). RA affects approximately <u>1.3 million in the US.</u>

https://rheumatoidarthritis.net/what-is-ra/ra-statistics/

Inflammatory Bowel Disease

- Inflammatory bowel diseases are a group of inflammatory conditions in which the body's own immune system attacks parts of the digestive system.
- The two most common inflammatory bowel diseases are Crohn's disease (CD) and ulcerative colitis (UC).
- IBD affects as many as 1.4 million Americans, most of whom are diagnosed before age 35. There is no cure for IBD but there are treatments to reduce and control the symptoms of the disease.

Scope of IBD in USA

Estimated prevalence¹ UC: 37-346:100,000

• CD: 26-199:100,000

Physician visits: >700,000/year²

Hospitalizations: 100,000/year²

Annual direct costs: ~\$4 billion³

- 1. Lichtenstein G. 2012. *Goldman's Cecil Medicine*. 24th ed. . Philadelphia, PA: Elsevier Saunders; 2012:913-921.
- 2. CDC. <u>http://www.cdc.gov/ibd/</u>. 2015.
- 3. Lichtenstein GR. Am J Gastroenterol. 2016. [Abstract 682]

Inflammatory Bowel Disease (Causes)

- The exact cause of IBD remains unknown.
- Researchers believe that a combination of four factors lead to IBD:
- Genetic component,
- Environmental trigger,
- Imbalance of intestinal bacteria
- Inappropriate reaction from the immune system.
- Immune cells normally protect the body from infection, but in people with IBD, the immune system mistakes harmless substances in the intestine for foreign substances and launches an attack, resulting in inflammation.

Mild Colitis

- ✓ Colitis is a global disease with increasing incidence and prevalence worldwide and with different frequencies dependent on age, ethnical background and geographic localization.
- ✓ Prevalence rates for Colitis range from 90 to 505 per 100,000 persons in Northern Europe and Northern America.
- ✓ Among Caucasians the highest annual incidence of Colitis is 24.3 per 100,000 personyears in Europe and 19.2 per 100,000 person-years in North America.
- ✓ The disease is less common in Eastern and Southern Europe, and at least 10 times less common in Asian, African and Oriental populations.
- Rising incidence and prevalence have also been shown for these ethnic groups, suggesting additional environmental and lifestyle effects on the pathogenesis of Colitis.
- ✓ The female to male ratio for UC differs between 0.51 and 1.58 indicating that UC is not sex specific.
- ✓ Any age group from infants to the elderly can be affected, but the peak age of onset is between 15 and 30 years with a second but smaller peak between 50 and 70 years.
- ✓ 20% to 30% of patients with Colitis and CD disease have the onset of their symptoms below the age of 18, although diagnosis is often delayed

Mild Colitis

►<u>Symptoms</u>

- Ulcerative colitis symptoms can vary, depending on the severity of inflammation and where it occurs. Signs and symptoms may include:
- Diarrhea, often with blood or pus
- Abdominal pain and cramping
- Rectal pain
- Rectal bleeding passing small amount of blood with stool
- Urgency to defecate
- Inability to defecate despite urgency
- Weight loss
- Fatigue
- Fever
- In children, failure to grow

Saffron and protection against diseases

Microbiome and colon disease GUT Brain axis GUT and Joint axis GUT and body axis

Microbiome and Organes

Saffron effect on colitis via anti inflammatory and anti oxidant pathway

• An immune system is a host defense system comprising many biological structures and processes within an organism that protects against disease. To function properly, an immune system must detect a wide variety of agents, known as pathogens, from viruses to parasitic worms, and distinguish them from the organism's own healthy tissue.

• In many species, there are two major subsystems of the immune system: the innate immune system and the adaptive immune system. Both subsystems use humoral immunity and cell-mediated immunity to perform their functions. In humans, the blood-brain barrier, blood-cerebrospinal fluid barrier, and similar fluid-brain barriers separate the peripheral immune system from the neuroimmune system, which protects the brain.

Experimental setup

Samples Analyzed for Anti inflammatory makers Pro inflammatory markers Saffron aqueous extract (SFE) treatment increases the colon length and improves histopathological characteristics of colonic mucosa in DSS-induced colitis mice

DSS control DSS+SFE5 mg

Figure 1: Colon Length and Histology of colon tissue

Saffron Increases *Disease activity index and Spleen weight

Paired t test b/w DSS Vehicle and DSS+SFE20mg Representation of one experiment (fourth set)

Paired t test b/w DSS Vehicle and DSS+SFE20mg Representation of one experiment (fourth set)

There was significant <u>decrease</u> in DAI score with 20mg Saffron concentration

Spleen to body weight ratio increased

*The DAI score was calculated as the sum of the weight loss score, the diarrheal score and the hematochezia score

Saffron

The anti-carcinogenesis activity of saffron components seems to occur indirectly through

• Different pathways and exert its effect as antiinflammatory, anti-ROS, and anti-proliferative

- The average human has 100 trillion microbes in the gut
- 10 times more than the cells in the human body
- Gut microbial genome is ~150 times larger than human genome
- The number and variety of bacteria increase from the proximal to the distal GI tract.

Microbes promote gut maturity

Science 2019 Feb 22, vol363, page 833

Gastrointestinal Bacteria in Normal Humans

Stomach 0-10²

Lactobacillus Candida Streptococcus Helicobacter pylori Peptostreptococcus

Distal lleum 10⁷-10

Clostridium Bacteroides sp Coliforms

Colon 10¹¹

Bacteroides Bifidobacterium Clostridium coccoides Clostridium leptum/ Fusobacterium Coliforms (10⁸)

Duodenum 10²

Streptococcus Lactobacillus

Jejunum 10²

Streptococcus Lactobacillus

Proximal Ileum 10³ Streptococcus Lactobacillus

Efficacy and Safety of Saffron Supplementation: Current Clinical Findings

Given the role of oxidative stress and anti inflammatory in many diseases, considerable interest has been shown into the potential role of saffron supplementation as a treatment for a range of diseases.

Cognition

Alzheimer's disease, which is believed to involve immune-mediated oxidative damage to CNS tissue, resulting in decreased cognitive function. There is some evidence that saffron extracts may inhibit betaamyloid aggregation in animal models, a key step in the pathogenesis of Alzheimer's disease (Papandreou et al., 2006).

Based on such findings, two small clinical studies have been conducted to assess the efficacy of saffron in Alzheimer's Disease. Compared to placebo, 30 mg saffron supplementation daily for 16 weeks resulted in <u>improved cognitive function</u> (change in both Alzheimer's Disease Scale-cognitive subscale and Clinical dementia ratings-scale sums of boxes significant, p < 0.0001 for both) (Akhondzadeh et al., 2010a).

Crocetin has also been trialled as a therapy for sleep complaints, although the crocetin for this study was sourced from Gardenia jasminoides, not saffron. In a double-blind, placebo-controlled trial of 21 males with mild sleep complaints, crocetin improved both objective (actigraph) and subjective measures of sleep quality (p=0.025 for reduction in waking episodes compared to placebo) (Kuratsune et al., 2010). The success of using crocetin from non-saffron sources suggests that these may offer cheaper alternative means of sourcing some saffron-based compounds for future therapeutic use.

Mood

Two small, 6-week trials have compared 30 mg/daily saffron to placebo for the treatment of mild-moderate depression, with significant improvements in the Hamilton depression scale noted with saffron therapy (Akhondzadeh et al., 2005; Moshiri et al., 2006).

These have been followed by two other trials comparing saffron to currently used antidepressants. One 6-week study compared the same dose of <u>saffron</u> to imipramine (100 mg/daily) and another 9-week trial compared 30 mg/daily saffron to 10 mg/daily <u>fluoxetine</u>. Both trials demonstrated non-inferiority of saffron in treating mild-moderate depression as measured by the Hamilton depression scale (Akhondzadeh Basti et al., 2007; Akhondzadeh et al., 2004).

Table1: Primary and secondary outcome measurements for the treatment with Saffron vs. Fluoxetine

			Treatment Group				
		saffron Fluoxetine					
Questionnaire	Weeks into						
	treatment	Mean	SD	p-value*	Mean	SD	p-value*
	Baseline	60.00	9.15		59.18	7.28	
IBS-Qol	2 weeks	60.61	8.07	0.033	59.27	6.21	0.753
	4 weeks	62.36	7.27	<0.001	61.33	6.74	<0.001
	6 weeks	68.06	7.00	<0.001	67.36	7.58	<0.001

Aged Macular degeneration (AMD)

Promising results have also been observed in small clinical studies in humans. The most common degenerative retinal condition worldwide is AMD, a disease that is thought to involve immune-mediated oxidative damage to retinal tissue.

<u>Saffron supplementation has been shown to delay improve focal electroretinogram</u> (fERG) findings in one small placebo-controlled study of patients with AMD (change in fERG amplitude 0.25 log uV vs. j0.003 log uV, p < 0.01) (Falsini et al., 2010). Longer-term follow-up of these patients demonstrated ongoing saffron supplementation improved visual acuity and fERG parameters, potentially delaying disease progression (Piccardi et al., 2012, 2019).

Piccardi et al. Antioxidant Saffron and Central Retinal Function in ABCA4-Related Stargardt Macular Dystrophy. Nutrients. 2019 Oct 15;11(10):2461.

BROADHEAD et al., Critical Reviews in Food Science and Nutrition, 56:2767–2776, (2016)

Sexual Dysfunction and Infertility (n = 4 studies)

Modabbernia et al. (2012) found that saffron supplementation (30 mg/d for 4 weeks) was efficacious in treating fluoxetine-related erectile dysfunction.

Modabbernia A, Sohrabi H, Nasehi AA, Raisi F, Saroukhani S, Jamshidi A, et al. Effect of saffron on fluoxetine-induced sexual impairment in men: randomized double-blind placebo-controlled trial. Psychopharmacology (Berl) 2012;223:381–8.

Reproductive disease

In women with symptoms of PMS, supplementation with 30 mg/day <u>saffron for two menstrual cycles resulted in improvement</u> <u>of symptoms</u> as measured by Daily Symptoms Report and Hamilton Depression Rating Scale compared to placebo (difference between two groups on both measures significant, df D 48, p < 0.001 for both) (Agha-Hosseini et al., 2008).

Two small, 4-week, placebo-controlled trials of saffron as a treatment for fluoxetine-induced sexual dysfunction in men and women showed that it was of benefit in reducing overall sexual dysfunction in both genders. <u>Men</u> <u>experienced greater erectile function and intercourse satisfaction, whilst</u> <u>women achieved greater arousal and reduced pain with saffron supplements</u> (Kashani et al., 2013; Modabbernia et al., 2012).

Saffron can be effective in metabolic syndrome

Saffron and its active components including crocin, crocetin, and safranal are potential therapeutic candidates for attenuating: metabolic syndrome (MetS).

MetS complications including hypertension, hyperglycemia, obesity, and dyslipidemia.

Cardiovascular

A single, short duration trial has investigated saffron in lipid metabolism and arterial disease.

Oral consumption of 50 mg saffron dissolved in 100 mL milk daily for 6 weeks was undertaken in 10 healthy participants and to 10 patients with coronary artery disease, and these results were compared to 10 control patients consuming milk only. Both intervention groups experienced a significant reduction in lipoprotein oxidation susceptibility (reduction from 66.4 to 38.3 units in healthy participants, from 76.0 to 48.8 in patients with CAD, p < 0.001 for both), whereas the control patients did not

(Verma and Bordia, 1998).

saffron supplementation significantly reduced depression symptoms compared to placebo

A recent study, by shahmansouri et al. 2014, not included in the 2013 meta-analysis by Hausenblas et al 2015, examined the effects of saffron supplementation versus fluoxetine in patients with major depressive disorder who had undergone percutaneous coronary intervention. The researchers found that short-term therapy of six weeks with <u>saffron supplementation</u> produced similar improvements in symptoms of depression as the antidepressant medication fluoxetine.

Lopresiti and Drummond found <u>a minimal frequency of adverse events</u>. An inspection of frequency data indicates increased reports of sedation/drowsiness, headache, dry mouth, constipation and sexual dysfunction with antidepressant treatment compared with saffron.

Depression (n = 6 studies) n = 2 placebo controlled trials, n = 4 antidepressant controlled trials).

Lopresti AL, Drummond PD. Saffron (Crocus sativus) for depression: a systematic review of clinical studies and examination of underlying antidepressant mechanisms of action. *Hum Psychopharmacol*. 2014;29(6):517–527. doi:10.1002/hup.2434

Toxicity

The safety of any potential supplementation therapy needs carefully evaluation to ensure that the potential adverse effects of therapy are well understood. Although saffron has been used as a foodstuff without complication for <u>many centuries</u>, much of the reported toxicity data for saffron is anecdotal at best.

Doses up to 1.5 g/daily are considered relatively safe, and <u>harmful effects</u> are reportedly encountered with doses >5 g/day, with doses of 20 g/daily considered a lethal dose (Schmidt et al., 2007).

Type of	Secondary Metabolite	Mechanism of action	Molecular Changes	
Cancer			_	References
			Down-regulation of hTERT gene Down-	
			regulation of the expression of catalytic	
			subunit of enzyme telomerase	
		Apoptosis		12 14 17
			Increased the levels of GST, SOD and	<u>43, 44, 47</u>
			САТ	
			Reduced myeloperoxidase activity,	
		Antioxidant Property	malondialdehyde	
Hepatic Cancer	crocin	and	Inhibition of COX 2, iNOS, NF-kB	
		Anti-inflammatory effect		
			Reduced expression of Cdc-2	<u>48</u>
			(hyperphosphoryltion)	
	crocetin	Cell cycle arrest at G2/M Phase	Reduced expression of Cdc-25c	
		-	nhosnhatase	
			Inhibition of Cyclin B1	
			Increased expression of Bax protein	<u>48-50</u>
Pancreatic Cancer			increased expression of Dax protein	
	crocin, crocetin	Apontosis	Suppressed expression of Bcl-2	
			Elevated Bax/Bcl-2 ratio	
			Reduced activity of EGFR	<u>48</u> , <u>50</u>
		Inhibition of cell proliferation		
	crocetin	_	Reduced phosphorylation of Akt	
	crocetin	Cell cycle arrest at S Phase	Reduced expression of cyclin A and	<u>51</u>
			cdk2	
	crocin	Cell cycle arrest at G3 phase	Decrease in the levels of cyclin B1 and	<u>41, 44</u>
			pH3	
	crocin	Apoptosis	Augmented expression of p53 and P21	<u>41</u> , <u>52</u>
	crocetin			
	DNA Damage		Up-regulation of H2AX	<u>41, 44</u>
Colorectal Cancer	crocin		Formation of LC3-II Decrease in protein	<u>44</u>
	· · · · ·	Autophagolysis	levels of Beclin 1 and Atg 7 genes	52
Gastric Cancer	crocin	Apoptosis	Activation of caspases	
			Elevated Bax/Bcl-2 ratio	

Table 3. Molecular mechanisms by which extracts of saffron exert anti-cancer activity in GI cancers.

Schematic representation of saffron-mediated protective responses in MetS pathology

Figure. Saffron attenuates MetS complications including hypertension, hyperglycemia, obesity, and dyslipidemia.

Mojtaba Shafiee et al; J. Agric. Food Chem. 2017, 65, 10837-10843. DOI: 10.1021/acs.jafc.7b03762

Saffron

GUT-body axis (brain, joint, eye,..)

- -anti-inflammation
- -dysbiosis
- -anti-toxigenic bacteria
- -Anti-ROS
- -interventional on moderate mood disorder

Summary

- Saffron with induce anti-ROS factors,
 - thru Nrf2-HO1.
- Saffron has ability to alter the macrophage population during the intestinal inflammation in mouse model of colitis by:
- Increasing the anti-inflammatory signature
- Decrease Proinflammatory immune signature

Saffron effect on immune signature and Microbiome

Precision medicine using Genome and Microbiota

Howard University Brim, Tabtabaei Soleimani

HiThru Analytics Sudhir Varma

Stanford University Aida Habtezion Gulshan Singh

Italy, L'Aquila University Silvia Bisti Latella

Germany, Max-Delbrück-Center for Molecular Medicine Ulrike Stein

Zarin Saffron Shoraka, Karimi Mashhad University Ameri

Grant support: NIH RO1, RCMI, PI: Ashktorab

