Suppose that we are testing the following hypotheses about the means of two populations at the α level of significance based on *n* observations in each sample:

$$\begin{split} H_0: \mu_1 - \mu_2 &= 0 \\ H_1: \mu_1 - \mu_2 &= \delta \quad (\delta > 0) \end{split}$$

Assuming that $\sigma_1 \neq \sigma_2$ are known, derive the formula relating the sample size needed ($n = n_1 = n_2$) for a given power as a function of $z_{\alpha}, z_{\beta}, \sigma_1, \sigma_2, and \delta$. Show the steps of your derivation, which should be similar to the one from class for testing a single population mean.

<u>Hint</u>: Start with the first 3 steps for computing power, keeping your derivation within the appropriate probability statements. Consider using a single constant (e.g., "a" or " \overline{D}_{α} ") to represent the RR in terms of the original units $(\overline{X}_1 - \overline{X}_2)$ -- we used \overline{X}_{α} to represent the RR in the original units for the one-sample case.