1. We are interested in testing the following hypotheses about the average weight of students at a college:

$$
\begin{aligned}
& H_{0}: \mu=68 \\
& H_{1}: \mu>68
\end{aligned}
$$

A SRS of $\mathrm{n}=36$ students will be used and we will assume that σ is known to be 6 kg .
a. Find α if we choose to reject $H o$ if we observe a sample with $\bar{y}>69$.
b. Find β if the true mean weight is 70.5 kg .
c. Find the power to detect a true mean of 69.8 kg .
d. Answer part (c) if we use a larger sample of $n=64$ students.
2. Blood pressure for American women aged 18-44 is approximately normal with a mean of 75 mm Hg and a standard deviation of 10 mm Hg . A sample of $n=25$ women who jog at least 5 miles/week has a sample average blood pressure of 70.9 mm Hg .

The research question is: Does the data provide strong evidence that the mean blood pressure for those who exercise regularly is not equal to 75 mm Hg ?
a. State the hypotheses $\left(\mathrm{H}_{\mathrm{o}}\right.$ and $\left.\mathrm{H}_{\mathrm{a}}\right)$ to be tested and find the p -value for these data.
b. Write the rejection region (RR) in terms of z-scores and test H_{o} at the $\alpha=.03$ level.
c. Write the RR for H_{o} in terms of \bar{X}.
d. Find the probability of a Type II error if the true mean is 73 mm Hg .
3. Let Y be a random variable denoting the number of pips showing on a die that is tossed
a. Find $\mathrm{E}(\mathrm{Y})$
b. Find $\operatorname{Var}(\mathrm{Y})$
c. Find $\mathrm{E}(3 \mathrm{Y}+2)$
d. Find $\operatorname{Var}(3 Y+2)$
4. Suppose that X is a random variable with $\mathrm{E}(\mathrm{X}+4)=10$ and $\mathrm{E}\left[(\mathrm{X}+4)^{2}\right]=116$
a. Find $\operatorname{Var}(\mathrm{X}+4)$
b. Find μ
c. Find σ^{2}

