
The Hardy-Weinberg Principle and
estimating allele frequencies in

populations

Introduction

The genetic composition of a population consists of three components when we confine
ourselves to the study of variation at a single locus:

1. The number of alleles at a locus.

2. The frequency of alleles at the locus.

3. The frequency of genotypes at the locus.

It may not be immediately obvious why we need both (2) and (3) to describe the genetic
composition of a population, so let me illustrate with two hypothetical populations:

A1A1 A1A2 A2A2

Population 1 50 0 50
Population 2 25 50 25

It’s easy to see that the frequency of A1 is 0.5 in both populations,1 but the genotype
frequencies are very different. In point of fact, we don’t need both genotype and allele
frequencies. We can always calculate allele frequencies from genotype frequencies, but we
can’t do the reverse unless . . .

1p1 = 2(50)/200 = 0.5, p2 = (2(25) + 50)/200 = 0.5.
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Derivation of the Hardy-Weinberg principle

We saw last time using the data from Zoarces viviparus that we can describe empirically and
algebraically how genotype frequencies in one generation are related to genotype frequencies
in the next. Let’s explore that a bit further. To do so we’re going to use a technique that is
broadly useful in population genetics, i.e., we’re going to construct a mating table.

Offsrping genotype
Mating Frequency* A1A1 A1A2 A2A2

A1A1 × A1A1 x2
11 1 0 0

A1A2 x11x12
1
2
† 1

2
0

A2A2 x11x22 0 1 0
A1A2 × A1A1 x12x11

1
2

1
2

0
A1A2 x2

12
1
4

1
2

1
4

A1A2 x12x22 0 1
2

1
2

A2A2 × A1A1 x22x11 0 1 0
A1A2 x22x12 0 1

2
1
2

A2A2 x2
22 0 0

Believe it or not, in constructing this table we’ve already made three assumptions about
the transmission of genetic variation from one generation to the next:

Assumption #1 Genotype frequencies are the same in males and females, e.g., x11 is the
frequency of the A1A1 genotype in both males and females.*

Assumption #2 Genotypes mate at random with respect to their genotype at this partic-
ular locus.*

Assumption #3 Meiosis is fair. More specifically, we assume that there is no segregation
distortion, no gamete competition, no differences in the developmental ability of eggs,
or the fertilization ability of sperm.†

Now that we have this table we can use it to calculate the frequency of each genotype in
newly formed zygotes, provided that we’re willing to make three additional assumptions:

Assumption #4 There is no input of new genetic material, i.e., gametes are produced
without mutation, and all offspring are produced from the union of gametes within
this population.
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Assumption #5 The population is of infinite size so that the actual frequency of matings
is equal to their expected frequency and the actual frequency of offspring from each
mating is equal to the Mendelian expectations.

Assumption #6 All matings produce the same number of offspring, on average.

Taking these three assumptions together allows us to conclude that the frequency of a par-
ticular genotype in the pool of newly formed zygotes is∑

(frequency of mating)(frequency of genotype produce from mating) .

So

freq.(A1A1 in zygotes) = x2
11 +

1

2
x11x12 +

1

2
x12x11 +

1

4
x2

12

= x2
11 + x11x12 +

1

4
x2

12

= (x11 + x12/2)2

= p2

freq.(A1A2 in zygotes) = 2pq

freq.(A2A2 in zygotes) = q2

Those frequencies probably look pretty familiar to you. They are, of course, the familiar
Hardy-Weinberg proportions. But we’re not done yet. In order to say that these proportions
will also be the genotype proportions of adults in the progeny generation, we have to make
two more assumptions:

Assumption #7 Generations do not overlap.

Assumption #8 There are no differences among genotypes in the probability of survival.

The Hardy-Weinberg principle

After a single generation in which all eight of the above assumptions are satisfied

freq.(A1A1 in zygotes) = p2 (1)

freq.(A1A2 in zygotes) = 2pq (2)

freq.(A2A2 in zygotes) = q2 (3)
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It’s vital to understand the logic here.

1. If Assumptions #1–#8 are true, then equations 1–3 must be true.

2. If genotypes are in Hardy-Weinberg proportions, one or more of Assumptions #1–#8
may still be violated.

3. If genotypes are not in Hardy-Weinberg proportions, one or more of Assumptions #1–
#8 must be false.

Point (3) is why Hardy-Weinberg is so important. There isn’t a population of anything
anywhere in the world that satisfies all 8 assumptions, even for a single generation.2 But
all possible evolutionary forces within populations cause a violation of at least one of these
assumptions. Departures from Hardy-Weinberg are one way in which we can detect those
forces and estimate their magnitude.3

Estimating allele frequencies

Before we can determine whether genotypes in a population are in Hardy-Weinberg propor-
tions, we need to be able to estimate the frequency of both genotypes and alleles. This is
easy when you can identify all of the alleles within genotypes, but suppose that we’re trying
to estimate allele frequencies in the ABO blood group system in humans. Then we have a
situation that looks like this:

Phenotype A AB B O
Genotype(s) aa ao ab bb bo oo
No. in sample nA NAB NB NO

Now we can’t directly count the number of a, b, and o alleles. What do we do? Well, if we
knew pa, pb, and po, we could figure out how many individuals with the A phenotype have
the aa genotype and how many have the ao phenotype, namely

Naa = nA

(
p2

a

p2
a + 2papo

)

Nao = nA

(
2papo

p2
a + 2papo

)
.

2There may be some that come reasonably close, but none that fulfill them exactly.
3Actually, there’s a ninth assumption that I didn’t mention. Everything I said here depends on the

assumption that the locus we’re dealing with is autosomal.
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Obviously we could do the same thing for the B phenotype:

Nbb = nB

(
p2

b

p2
b + 2pbpo

)

Nbo = nB

(
2pbpo

p2
b + 2pbpo

)
.

Notice that Nab = NAB and Noo = NO (lowercase subscripts refer to genotypes, uppercase
to phenotypes). If we knew all this, then we could calculate pa, pb, and po from

pa =
2Naa + Nao + Nab

2N

pb =
2Nbb + Nbo + Nab

2N

po =
2Noo + Nao + Nbo

2N
,

where N is the total sample size.
Surprisingly enough we can actually estimate the allele frequencies by using this trick.

Just take a guess at the allele frequencies. Any guess will do. Then calculate Naa, Nao, Nbb,
Nbo, Nab, and Noo as described in the preceding paragraph.4 That’s the Expectation part of
what’s called the EM algorithm. Now take the values for Naa, Nao, Nbb, Nbo, Nab, and Noo

that you’ve calculated and use them to calculate new values for the allele frequencies. That’s
the Maximization part of the EM algorithm. Chances are your new values for pa, pb, and
po won’t match your initial guesses, but5 if you take these new values and start the process
over and repeat the whole sequence several times, eventually the allele frequencies you get
out at the end match those you started with. These are maximum-likelihood estimates of
the allele frequencies.6

Consider the following example:7

Phenotype A AB AB O
No. in sample 25 50 25 15

4Chances are Naa, Nao, Nbb, and Nbo won’t be integers. That’s OK. Pretend that there really are
fractional animals or plants in your sample and proceed.

5Yes, truth is sometimes stranger than fiction.
6I should point out that this method assumes that genotypes are found in Hardy-Weinberg proportions.
7This is the default example available in the Java applet at http://darwin.eeb.uconn.edu/simulations/em-

abo.html.
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We’ll start with the guess that pa = 0.33, pb = 0.33, and po = 0.34. With that assumption
we would calculate that 25(0.332/(0.332 + 2(0.33)(0.34))) = 8.168 of the A phenotypes in
the sample have genotype aa, and the remaining 16.832 have genotype ao. Similarly, we can
calculate that 8.168 of the B phenotypes in the population sample have genotype bb, and the
remaining 16.823 have genotype bo. Now that we have a guess about how many individuals
of each genotype we have we can calculate a new guess for the allele frequencies, namely
pa = 0.362, pb = 0.362, and po = 0.277. By the time we’ve repeated this process four more
times, the allele frequencies aren’t changing anymore. So the maximum likelihood estimate
of the allele frequencies is pa = 0.372, pb = 0.372, and po = 0.256.

What is a maximum-likelihood estimate?

I just told you that the method I described produces “maximum-likelihood estimates” for
the allele frequencies, but I haven’t told you what a maximum-likelihood estimate is. The
good news is that you’ve been using maximum-likelihood estimates for as long as you’ve been
estimating anything, without even knowing it. Although it will take me awhile to explain
it, the idea is actually pretty simple.

Suppose we had a sock drawer with two colors of socks, red and green. And suppose
we were interested in estimating the proportion of red socks in the drawer. One way of
approaching the problem would be to mix the socks well, close our eyes, take one sock from
the drawer, record its color and replace it. Suppose we do this N times and we found k
red socks. If we knew p, the proportion of red socks in the drawer, we could calculate the
probability of getting k red socks in a sample of size N . It would be(

N

k

)
pk(1− p)(N−k) . (4)

This is the binomial probability distribution.
But we don’t know p. That’s what we’re trying to estimate. What gives? Well, suppose

we reverse the question to which equation 4 is an answer and call the expression in 4 the
“likelihood of the data.” Suppose further that we find the value of p that makes the likelihood
bigger than any other value we could pick. Then p̂ is the maximum-likelihood estimate of
p.8

In the case of the ABO blood group that we just talked about, the likelihood is a bit
more complicated

8You’ll be relieved to know that in this case, p̂ = k/N .
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(
N

NANABNBNO

)
pNA

a pNAB
ab pNB

b pNO
o (5)

This is a multinomial probability distribution.9

Testing Hardy-Weinberg

Testing the hypothesis that genotypes are in Hardy-Weinberg proportions is quite simple.
We can simply do a χ2 or G-test for goodness of fit between observed and predicted genotype
(or phenotype) frequencies, where the predicted genotype frequencies are derived from our
estimates of the allele frequencies in the population. There’s only one problem. To do either
of these tests we have to know how many degrees of freedom are associated with the test.
How do we figure that out? In general, the formula is

d.f. = (# of categories in the data -1 )

− (# number of parameters estimated from the data)

For this problem we have

d.f. = (# of phenotype categories in the data - 1)

− (# of allele frequencies estimated from the data)

In the ABO blood group we have 4 phenotype categories, and 3 allele frequencies. That
means that a test of whether a particular data set has genotypes in Hardy-Weinberg pro-
portions will have (4 − 1) − (3 − 1) = 1 degrees of freedom for the test. Notice that this
also means that if you have completely dominant markers, like RAPDs or AFLPs, you can’t
determine whether genotypes are in Hardy-Weinberg proportions because you have 0 degrees
of freedom available for the test.

An example

Here’s data from the ABO blood group:10

Phenotype A AB B O Total
Observed 862 131 365 702 2060

9In the notes at http://darwin.eeb.uconn.edu/notes/frequencies.pdf you’ll find a description of another
way to use likelihoods to make inferences about parameters, but I’ll save that discussion until we’ve had a
chance to look at WinBUGS and Bayesian inference in lab.

10Yet again!
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The maximum-likelihood estimate of allele frequencies, assuming Hardy-Weinberg, is:

pa = 0.281

pb = 0.129

po = 0.590 ,

giving expected numbers of 846, 150, 348, and 716 for the four phenotypes. χ2 = 3.8,
0.05 < p < 0.1.

An introduction to Bayesian inference

Maximum-likelihood estimates have a lot of nice features, but likelihood is a slightly back-
wards look at the world. The likelihood of the data is the probability of the data, x, given
parameters that we don’t know, φ, i.e, P(x|φ). It seems a lot more natural to think about the
probability that the unknown parameter takes on some value, given the data, i.e., P(φ|x).
Surprisingly, these two quantities are closely related. Bayes’ Theorem tells us that

P(φ|x) =
P(x|φ)P(φ)

P(x)
. (6)

We refer to P(φ|x) as the posterior distribution of φ and to P(φ) as the prior distribution
of φ. Notice how the relationship in 6 mimics the logic we use to learn about the world in
everyday life. We start with some prior beliefs, P(φ), and modify them on the basis of data
or experience, P(x|φ), to reach a conclusion, P(φ|x). That’s the underlying logic of Bayesian
inference.11

Estimating allele frequencies with two alleles

Let’s suppose we’ve collected data from a population of Desmodium cuspidatum12 and have
found 7 alleles coding for the fast allele at a enzyme locus encoding glucose-phosphate
isomerase in a sample of 20 alleles. We want to estimate the frequency of the fast allele. The

11If you’d like a little more information on why a Bayesian approach makes sense, you might want to take
a look at my lecture notes from the Summer Institute in Statistical Genetics.

12A few of you may recognize that I didn’t choose that species entirely at random.
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