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Some Cautionary Notes on the

Use of Principal Components Regression

Ali S. Hapt and Robert F. LING

Many textbooks on regression analysis include the method-
ology of principal components regression (PCR) as a way of
treating multicollinearity problems. Although we have not
encountered any strong justification of the methodology, we
have encountered, through carrying out the methodology in
well-known data sets with severe multicollinearity, serious
actual and potential pitfalls in the methodology. We address
these pitfalls as cautionary notes, numerical examples that
use well-known data sets. We also illustrate by theory and
example that it is possible for the PCR to fail miserably in
the sense that when the response variable is regressed on
all of the p principal components (PCs), the first (p — 1)
PCs contribute nothing toward the reduction of the residual
sum of squares, yet the last PC alone (the one that is always
discarded according to PCR methodology) contributes ev-
erything. We then give conditions under which the PCR
totally fails in the above sense.

KEY WORDS: Hald’s data; Longley data; Multicollin-
earity.

1. INTRODUCTION

Many textbooks on regression analysis include the
methodology of principal components regression (PCR) as
an alternative to ordinary least squares when computa-
tional or statistical problems arise in the presence of se-
vere multicollinearity in the set of independent variables
X = X4,...,X,. By keeping the first few principal com-
ponents (PCs) of X, the regression of the response vari-
able Y on these PCs (which are orthogonal) will remove
any computational problem that may arise as a result of
multicollineary/ill-conditioning while keeping all of the
original variables.

In our opinion, in such cases of severe multicollinearity,
it is simply a sign of some statistical redundancy in X, and
the removal of one or more of the superfluous variables in
the X-space will have removed both the numerical and sta-
tistical difficulties in the problem. Moreover, as was pointed
out by Beaton, Rubin, and Barone (1976), the insistence on
a high degree of numerical accuracy in the estimated re-
gression coefficients (when all original variables are kept,
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even the statistically redundant ones) may not lead to a set
of statistically correct estimates anyway.

We have not encountered in the statistical literature any
strong justification for using the PCR for multicollinearity
problems. We are not here to discuss or argue how such
multicollinearity problem should be handled or addressed.
Instead, we wish to draw attention to some very serious
potential pitfalls in the application of the PCR methodology
to warn against such pitfalls by numerical examples.

As a methodological and theoretical characterization of
the PCR defect we observed in several real-life data sets, we
begin by presenting an extreme-case scenario to illustrate
by theory and example that it is possible for the PCR to
fail miserably in the sense that when the response variable
is regressed on all of the p PCs, the first (p — 1) PCs con-
tribute nothing toward the reduction of the sum of squares,
yet the last PC alone (the one that is always discarded ac- -
cording to PCR methodology) contributes everything. We
give conditions under which the PCR totally fails in that
sense.

We then use two real-life data sets to illustrate the cau-
tionary notes presented in this article. The first data set
is the Longley (1967) data set, well-known for its multi-
collinearity. The second is the Hald’s data set in (Draper
and Smith 1981) which drew our attention to the pitfalls
in the first place, though such pitfalls seemed to have been
overlooked by those authors. Otherwise, we felt they might
have included some cautionary notes as they had done on
some other methods alternative to the use of ordinary least
squares (OLS). We show that the same type of defects that
appeared in our analysis of the Longley data by PCR occur
in the analysis of the Hald’s data by PCR also.

Section 2 summarizes the rationalization commonly
given for using PCR. Section ?? gives the main cautionary
remark and illustrates it both by an example and by theoret-
ical arguments. Section ?? gives other cautionary remarks
and illustrates them by examples. Section ?? discusses the
relationships bewteen our cautionary notes and existing re-
lated literature. Section 6 gives concluding remarks.

2. RATIONALIZATION FOR USING PCR

The usual motivation and rationalization given for us-
ing PCR is as follows. Let Y denote the response variable
and X denote the design matrix or the matrix containing
p explanatory variables. Suppose that the columns of X
are highly multicollinear, but the researcher wants to keep
all the variables in X. Based on this premise, the PCR-
advocates would then:

1. Compute the standardized version of X and denote it
by Z.
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Table 1. Hald’s Data, the Corresponding PCs Wy, ..., W4, and a Constructed Variable U
X4 X2 Xz X4 Y Wy, W, W3 ' V)
7 26 6 60 78.5 1.467 1.903 —.530 .039 .077
1 29 15 52 74.3 2.136 .238 —.290 —.030 —.060
11 56 8 20 104.3 —1.130 184 —.010 —.094 —.187
11 31 8 47 87.6 .660 1.577 179 —.033 —.066
7 52 6 33 95.9 —.359 484 —.740 .019 .038
11 55 9 22 109.2 —.967 170 .086 —.012 —.024
3 71 17 6 102.7 —.931 —2.135 —.173 .008 .017
1 31 22 44 725 2.232 —.692 .460 .023 .045
2 54 18 22 93.1 .352 —1.432 —.032 —.045 —.090
21 47 4 26 115.9 —1.663 1.828 .851 .020 .040
1 40 23 34 83.8 1.641 —1.295 494 .031 .063
11 66 9 12 113.3 —1.693 —.392 —.020 .037 .074
10 68 8 12 109.4 —1.746 —.438 —.275 .037 .074

2. Compute the principal components: Let Ay > --- > A,
be the eigenvalues of Z”'Z (or the correlation matrix R) and
V be the corresponding eigenvectors. Let W = ZV. The
columns in W are the PCs of Z. The jth column of W is
called the jth PC, j =1,...,p.

3. Regress Y on the first m PCs, Wy, ..
m < p.

., Wh,, where

For a more detailed description of the methodology, for
example, see Draper and Smith (1981), and Chatterjee and
Price (1991).

Advocates of PCR give the following reasons for the use
of the methodology:

1. Because the PCs, Wy,..., W,,, are orthogonal, the
problem of multicollinearity disappears completely, and no
matter how many PCs are actually used, the regression
equation will always contain all of the variables in X (be-
cause each PC is a linear combination of the variables in X
formed by an eigenvector of ZTZ).

2. PCR presumably improves the numerical accuracy of
the regression estimates because of the use of orthogo-
nal PCs.

3. THE MAIN CAUTIONARY NOTE

3.1 Cautionary Note 1: The First m Principal
Components can Totally Fail in Accounting for the
Variation in the Response Variable

To illustrate this cautionary note we use the Hald’s data
set, which is taken from Draper and Smith (1981, p. 630)
who used it to illustrate the PCR methodology (pp. 327—
331). Hald’s data consist of one response and four explana-
tory variables. The data set appears in the first five columns
of Table ??. The next four columns, Wy, ..., Wy, in Table
1 are the four PCs of X. (Note that the PCs at the bottom

Table 2. Hald’s Data: Principal Components Decomposition

PC Eigenvalues % of Total Cumulative %
W4 2.2357 55.893 55.893
Wy 1.5761 39.402 95.294
W3 .18661 4.6652 99.959
Wy .0016237 .040594 100
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of page 330 in Draper and Smith (1981) should be the same
as the ones given here.) The last column U is a constructed
response variable that we use to illustrate this cautionary
note.

The principal components decomposition (PCD) of
Hald’s data are given in Table 2. Accordingly, the num-
ber of PCs to keep is 2 or 3 (they account for 95.29% and
99.96% of the variation in X, respectively). The sum of
squares (SS) decomposition from the regression of the re-
sponse variable U on the four PCs is given in Table 3. Note
that W, — W3, which constitute 99.96% of the variance in
X, contribute nothing to the fit while W, alone contributes
everything. This can also be seen from the scatterplots of U
versus each of the PCs (see Fig. ??). The scatter of points in
the graphs of U versus each of the first three PCs are com-

Table 3. Hald’s Data: Analysis of Variance Table for PCR
Using U as the Response Variable

Source S DF MS F value P value
Wy .00000 1 .00000 . 1.0
Ws .00000 1 .00000 . 1.0
W3 .00000 1 .00000 . 1.0
Wy 07794 1 .07794 0o .0

Residual .00000 8 .00000
0075 = ., 0.075 . - .
0.000 0.000- "
U U ’
-0.075 . - -0.075] . - .
-0.150+ -0.150
T L T T T T T
-1 4] 1 2 -2 -1 o 1
W W2
0.075 D 0.075 - -
. - . -
0,000 . 0.000 -
U : U L
-0.075+ " . -0.075 L
-0.150 =0.150
04 00 o4 o8 -008  -004 000 '
Wy Wy
Figure 1. Hald’s Data: Scatterplots of U Versus Each of the PCs
W;—Ws.



Table 4. Longley (1967) Data: Analysis of Variance Table for PCR

Source Ss DF MS F value P value
Wi 169144914 1 169144914 1820.01 1.06603E—11
Wo 2706733 1 2706733 29.1247 4.34863E—4
W3 10560944 1 10560944 113.637 2.09675E—6
Wy 28586.8 1 28586.8 .307597 592672
W5 1457234 1 1457234 15.68 0033053
Ws 273990 1 273990 2.94816 120105

Residual 836424 9 92936

pletely random, whereas the relationship between U and
the last PC Wy is perfectly linear.

This example raises a natural question: What are the con-
ditions under which this phenomenon occurs? The answer
is provided by the following theorem.

Theorem 1.  For the usual regression model Y = X3+
e, let W = (Wy,...,W,) be the PCs of X. If the true
vector of regression coefficients 3 is in the direction of the
jth eigenvector of ZTZ, then when Y is regressed on W,
the jth PC W alone will contribute everything to the fit
while the remaining PCs will contribute nothing.

Proof. Let'V = (Vy,...,V,) be the matrix containing
the eigenvectors of ZTZ. Then, we have

Y XB+e¢
= XVVT34¢e (because VVT =1)

= W0 +e,

(1)

where §# = VT3 is the regression coefficients of W = ZV.
If 3 is in the direction of the jth eigenvector V;, then V; =
a3, where « is a nonzero scalar. Consequently, 8; = Vfﬁ =
afBTB and 0, = VI B = 0, whenever k # j. Therefore, the
regression coefficient 8 corresponding to Wy, is equal to
zero, for k # j, hence (??) can be written as
Y = ejo + €. (2)
Because, a variable W, does not produce any reduction in
the sum of squares (SS) iff its regression coefficient is zero,
then W; alone will contribute everything to the fit while
the remaining PCs will contribute nothing. This completes
the proof.
Two implications of Theorem 1 are:

Table 5. Longley (1967) Data: Principal Components Decomposition

1. If B is substantially in the direction of the pth eigen-
vector, then the PCR will fail miserably.
2. Data sets that satisfy the conditions of Theorem 1 can
easily be constructed as follows:
a. Choose any data set X (collinear or not).
b. Let V, be the eigenvector corresponding to the
smallest eigenvalue of XTX.
c. Generate Y using Y = aXV, + ¢, where o is a
nonzero scalar and ¢ is a random error.

For example, the variable U in last column of Table ?? was
generated using this procedure where X is replaced by its
standardized version Z, o = 2, and ¢ = 0 (i.e., a degenerate
normal random variable with mean 0 and standard devia-
tion 0).

4. OTHER CAUTIONARY NOTES

4.1 Cautionary Note 2: When Using m < p Principal
Components, the Increase in the Resulting Sum of
Squared Errors (SSE) may be Grossly Discrepant
with the Magnitudes of the Eigenvalues in the PC
Decomposition of the X Space

To illustrate this point we use Longley’s (1967) classic ex-
ample. This data set consists of six explanatory variables
X3i,..., X and a response variable Y. Table 4 shows the
SS decomposition accounted for by each of the orthogo-
nal PCs. The sum of squared errors, SSE, is 836424 for the
OLS fit. For the full model, where m = p, the PCR gives the
same SSE as that of the OLS. For m < p, the PCR method-
ology will never give smaller SSE than the SSE obtained
by the OLS. This is quite obvious from standard results in
regression analysis.

This cautionary note actually has two parts. First, if we
follow the usual PCR methodology deciding the number of
PCs to keep, even an extremely high “cumulative %” in

PC Eigenvalues % of Total cumulative % the PCs kept can result in much larger SSE than the SSE
w 4.60338 76.723 76.723 obtained by OLS.
1 . . . . .
W, 117534 19.589 96.312 This phenomenpn can be seen by the followmg PCR
A 203425 3.39042 99.7024 methodology applied to the Longley data. To determine the
W, .0149283 .248804 99.9512 number of PCs m, we would first look at the PCD. These
zvv5 3 %07%58%20‘7‘ dggg?gj‘; 99'9333 are given in Table 5. We would then probably have chosen
° i i to keep only 2 or 3 of the PCs which account for 96.3% and
Table 6. Longley (1967) Data: PCR Using the First Two PCs
Variable Estimate St. Error T value P value SSE
Wi —1565.11 121.067 —12.9277 4.25643E—9 13157179
W; 391.828 239.597 1.63536 .0629717
Constant 65317 251.507 259.703 0
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Table 7. Longley (1967) Data: PCR Using the First Three PCs
Variable Estimate St. Error T value P value SSE
W, —1565.11 55.9754 —27.9607 1.35515E—12 2596235
Wy 391.828 110.778 3.53705 .00204649
W3 —1860.39 266.277 —6.98667 7.30703E—6
Constant 65317 116.284 561.701 0

99.7% of the variation in X, respectively. The PCR results
for m = 2 and m = 3 are shown in Tables 6 and 7, respec-
tively. The cumulative percent of total variance of X and
the SSE for the various PCR models are given in Table ??,
from which we observe that the three PCs which account
for 99.7 of the variation in X (or a seemingly negligible
.3% loss) actually resulted in threefold increase in the SSE,
from 836424 to 2596235. An even more dramatic increase
in SSE is seen when only two PCs are kept (corresponding
to a cumulative % of 96.3).

Second, the PCs selected according to the magnitudes
of their eigenvalues do not contribute monotonically to the
SSE. For example, from Table 4 one can see that W3 con-
tributes more to the fit than W and that W is substantially
less than W5 or Wg.

4.2 Cautionary Note 3: There May Not Be Any
Improvement on Numerical Accuracy Via the PCR
Procedure

Many alternatives to OLS have been proposed because
of the instability of parameter estimates (numerically as
well as statistically) as a result of the ill-conditioning of
the problem arising from multicollinearity in the predic-
tors. PCR was at least in part so motivated to consider or-
thogonal PC coordinates free from any collinearity prob-
lems. Historically, the numerical accuracy of the Longley
data posed challenge because of the short precision in the
computation, but with long precision and improved basic
algorithms for matrix computations, numerical accuracy is
no longer a reason for using PCR. For example, using a
mere double-precision to compute the OLS regression coef-
ficients 8 = (X7X)~1XTY, we get the parameter estimate
results accurate to at least nine significant figures in all of
the coefficients.

If all of the PCs are used (no PCR-advocate does that to
the best of our knowledge), then the PCR equation is (theo-
retically) identical to the OLS regression equation using all
the variables in X. Going through the PCR route, first com-
puting the six PCs and then regressing Y on the six PCs
and convert back to the estimated-beta solution in X, we
obtain the numerical results to be virtually the same—that
is, the results are accurate to the same orders of magnitude
of being correct to 9 to 11 significant digits.

Table 8. Longley (1967) Data: Cumulative Percent of Total
Variance and SSE for Three PCR Models

Model Cumulative % SSE

Full 100.0 836424
3 PCs 99.7 2596235
2 PCs 96.3 13157179
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Tables showing the detailed comparisons of the numerical
accuracies of the two solutions (PC vs OLS), when all of
the predictors are used, can be obtained from the authors.
by request.

5. RELATED LITERATURE

Several authors in the statistical literature have hinted or
mentioned some potential problems related to the pitfalls
that we are presenting here explicitly as cautionary notes
in the preceding sections. 1 Hotelling (1957) is the earli-
est reference to our knowledge that seems to be related to
our cautionary notes 1 and 2, in a very vague and non-
specific way. Jolliffe (1982) gave four examples in which
he considered the use of PCR to be unwise. Later, Jolliffe
(1986) gave an example (more specifically related to our
cautionary note 2, and a much less dramatic realization of
the principle behind our cautionary note 1) in which two
of the smaller principal components were among the bet-
ter predictors. Jackson (1991, p. 276fF) gave an excellent
exposition of the PCR methodology, together with some
warnings, as well as mentioning a few works that tried to
remedy the defects related to our cautionary note 2. These
include Lott (1973) and Gunst and Mason (1973).

Traditional use of PCR selects some principal compo-
nents but retains all of the original variables because each
PC is a linear combination of the original predictor vari-
ables. A related line of development has been the use of
PCR methodology in the selection of the predictor vari-
ables in the regression. Among these are Jeffers (1967), Jol-
liffe (1972, 1973), Hawkins (1973), Mansfield, Webster, and
Gunst (1977), and a stepwise procedure proposed by Boneh
and Mendieta (1994). Olaya (1997) questions the efficacy of
the Boneh and Mendieta methodology, but these methods
of selecting the predictor (or independent) variables in the
regression are beyond the scope of our coverage in this ar-
ticle.

6. CONCLUDING REMARKS

The basic conclusion of this article is that, in general, the
PCs may fail to account for the regression fit. As stated in
Theorem 1, it is theoretically possible that the first (p — 1)
PCs, which can have almost 100% of the variance, con-
tribute nothing to the fit, while the response variable Y
may fit perfectly the last PC which is always ignored by
the PCR methodology.

The reason for the failure of the PCR in accounting for
the variation of the response variable is that the PCs are
chosen based on the PCD which depends only on X. Thus,
if PCR is to be used, it should be used with caution and the
selection of the PCs to keep should be guided not only by



the variance decomposition but also by the contribution of
each principal component to the regression sum of squares.

[Received November 1995. Revised March 1997.]
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