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SUMMARY

Bruzzi et al. (1985, American Journal of Epidemiology 122, 904-914) provided a general logistic-
model-based estimator of the attributable fraction for case-control data, and Benichou and Gail
(1990, Biometrics 46, 991-1003) gave an implicit-delta-method variance formula for this estimator.
The Bruzzi et al. estimator is not, however, the maximum likelihood estimator (MLE) based on the
model, as it uses the model only to construct the relative risk estimates, and not the covariate-
distribution estimate. We here provide maximum likelihood estimators for the attributable fraction
in cohort and case-control studies, and their asymptotic variances. The case-control estimator
generalizes the estimator of Drescher and Schill (1991, Biometrics 47, 1247-1256). We also present
a limited simulation study which confirms earlier work that better small-sample performance is
obtained when the confidence interval is centered on the log-transformed point estimator rather than
the original point estimator.

1. Introduction

An important measure of the public health impact of an exposure on disease burden is the population
attributable fraction (Deubner et al., 1980; Kelsey, Thompson, and Evans, 1986; Last, 1983)

Pr(disease) — Pr(disease | no exposure)
Pr(disease) ’

also known as the population etiologic fraction (Kleinbaum, Kupper, and Morgenstern, 1982;
Schlesselman, 1982), or population attributable risk (Breslow and Day, 1980). (The term “population
attributable risk” has been abandoned by many epidemiologists because the measure does not
represent disease risk, and because the term “attributable risk” has traditionally been used to denote
the risk difference

Pr(disease | exposure) — Pr(disease | no exposure);

see, for example, MacMahon and Pugh (1970), Mausner and Bahn (1974), and Deubner et al. (1980).)
The attributable fraction ranges from — to 1, although negative values are commonly transformed
to the preventable fraction, in which “no exposure” is replaced by “exposure” in the first formula
(Last, 1983).

Benichou (1991) reviews point and interval estimation methods for the population attributable
fraction (hereafter denoted AF). Of interest here are those based on a logistic model for disease risk.
Deubner et al. (1980) were apparently the first to apply such an estimate, but focused on cohort study
data. Bruzzi et al. (1985) gave a general estimate for case~control data, and Kooperberg and Petitti
(1991) used this to obtain a bootstrap interval for case-control data with known sampling fractions.
Benichou and Gail (1990) gave variance estimators for the Bruzzi et al. point estimator. Drescher and
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Schill (1991) provided another AF estimator and variance based on logistic modelling. In work as yet
unpublished, Drescher and Osius have derived a maximum likelihood estimator (MLE) for case-
control data and showed that the Drescher-Schill estimator is a special case of their MLE.

The present note provides both cohort and case-control maximum likelihood estimators for AF
based on the logistic model, and corresponding variance estimators. A simulation study paralleling
that in Benichou and Gail (1990) suggests that in large samples there is no practical difference between
the MLE and the Bruzzi et al. estimator, or between confidence intervals based on the two estimators,
but that for both estimators the log-transformed intervals are best in smaller samples.

2. Parameters

Consider first discrete covariates only. Let x,, . . ., X; represent 7 distinct values of a row K-vector of
covariates (exposures, confounders, factors used for matching in the study, and products among these
covariates); assume the list is exhaustive of all covariate patterns occurring in the sampled (source)
population. Also, let z;, ..., z; be a corresponding list of 7 not necessarily distinct values of x, such
that z, is the covariate value a subject with actual covariate value x; would have if not exposed. For
example, if x;; = smoking (in pack-years) is the exposure, and smoking occurs once more in x; as the
product x7 = x;x;s with the confounder x;; = beta-carotene, then each z; is obtained from the
corresponding pattern x; by substituting O (no smoking) for the first and seventh components of x;.
Finally, let

pi = Pr(x;|d; =1) and s; = Pr(d; = 1|z,)/Pr(d; = 1]|x,),

where d is a disease indicator (d = 1 if disease occurs, O if not), p; is the covariate distribution among
cases, and s; is the inverse of the risk ratio (relative risk) at covariate pattern i. The attributable
fraction can then be expressed as

AF = 1 — Pr(disease|no exposure)/Pr(disease) = 1 — p’s,

where p and s are /-column vectors with elements p; and s;; this is equivalent to the formulation in
Bruzzi et al. (1985). The generalized impact fraction of Morgenstern and Bursic (1982) is identical in
form but, rather than substituting 0 for exposure to obtain z; from x;, one may substitute another
“reference” or “target” value of exposure, and this target value may vary with i.

For the general case, let F'(x) be the distribution of x among cases, let z = g(x) be a fixed function
of x that maps each x into a reference value, and let s(x) = Pr(d = 1|z)/Pr(d = 1|x) be the inverse
risk ratio. The attributable fraction under g is then 1 — [ s(x) dF (Bruzzi et al., 1985; Benichou and
Gail, 1990).

3. Cohort Estimators

Let »; be the total number of subjects observed at covariate level x;, with m, total cases observed, and
suppose disease risk follows a logistic model

exp(x6*)

Pr(d = 1|x) = m

= expit(x6*),

where 0* = (a*, ) with o* the intercept and 8 the exposure coefficients (so x; = 1), and expit(u) =
e*/(1 + ¢*) is the antilogit transform. Let n, r., and r, be the column vectors with ith elements #;,
expit(z;0%), and expit(x,;0*), respectively, and let ¢, = n’r; and ¢, = n’r, be the expected total cases
under the reference and observed covariate levels. The attributable fraction for the cohort can then
be written

AF = (t, — L)/t = 1 — t,/L..

Since the n;, x;, and z; are constants, under the ordinary logistic likelihood an MLE of AF can be
found by substituting an MLE 6* for 6* in r. and r, to obtain f,, I, . and 7,. Because ¢, = m, (Bishop,
Fienberg, and Holland, 1975, Chap. 14), this MLE can be rewritten as

A:F =1- m:/mx,

where m, = {, = n’t.. This estimator equals that proposed by Deubner et al. (1980).
Now let Z and X be the matrices with rows z; and x;, let w, and w, be the vectors with elements
mir=(1 — rz;) and mir(1 — ry), respectively, and let

C* = (X’ diag(w,)X)™!
be the asymptotic covariance matrix of 0*. Noting that 9¢,/00* = Z’w. and dt,/36* = X'w,, the
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multivariate delta method (Bishop et al., 1975) yields
VarA(fﬁ:) = ([:/l‘,\.)z[l):/t% - ZCZ,\‘/(ZZZ,\') + U,\‘/l.%']a

where
v: = var’(m.) = w.ZC*Z’w.,
C-v = covi(m., m) = w.ZC*X'w,,
vy = var*(m,) = wiXC*X'w,.

However, because m, — I, is the efficient score component for o* at 6%, covi(m,, a*) = | and
covi(m,, B) = 0 (Cox and Hinkley, 1974, p. 256, eq. 16). Thus

Cox = COVA(mz, my) = W.Z covM(@*, m) = w.Z(1,0,...,0) =3, w-

because the first column of Z comprises only ones. By a parallel argument, v, = var(m,) = SiW..
An estimator Oy for varA(AF) may then be obtained by substituting 6* for 6* in the expressions.

For cohort studies with person-time denominators #;, the logistic model is usually replaced by the
Poisson rate model A(x) = exp(x@8). In this case the above formulas change only in that .; and r,; are
replaced by \.; = exp(z;8) and \,; = exp(x;8), and w.; and w,; are replaced by n;A;; and n;\,;. Unlike
the binomial-logistic case, however, a rare-disease assumption must be invoked to avoid interpreta-
tional problems (Greenland and Robins, 1988).

4. Case-Control Estimators

As discussed by many previous authors (Anderson, 1972; Mantel, 1973; Farewell, 1979; Prentice and
Pyke, 1979; Drescher and Schill, 1991), under simple random sampling of m, cases and 1, controls,
a logistic model for the sampled population implies that

Pr(d = 1]x, selection into sample) = expit(x6),
where 0 = («, 8) and
a = o + log(m,/mg) — log[Pr(d = 1)/Pr(d = 0)].

Assuming no other constraints on the joint distribution of (d, x) other than absolute continuity for
each continuous component of x, the case-control likelihood can then be written as

0 exp(x,0)“ w(x;)"

bl 1
LT+ expe)]" w1 — )™ M

where ¢; is the number of cases observed at covariate level x;, u = Pr(d = 1|selection into sample) =
m,/n, with ny = y,n, = m, + my, and 7(x) = p(x|selection into sample) with p a discrete mass function
or density according to whether x is discrete or not (Anderson, 1972).

Let § = (&, B) be the value of 8 that maximizes the logistic portion of the likelihood in ex-
pression (1) (the portion involving 8). Prentice and Pyke (1979) showed that 6 is a Vn,-consistent
asymptotically normal estimator of 8. See Drescher and Schill (1991) for a review of these results.
Full maximization of expression (1) with respect to 8 and = = (x(x,), . .., w(x;)) yields the same 6,
with # = (n,, ..., n;)/ns, u being a known constant. Assuming disease rarity, one also obtains s; =
exp[(z; — x;)8] and thus may employ §; = exp[(z: — x,)6].

The preceding results can be extended to stratified random sampling schemes with representative
(equal probability of selection) sampling of cases, and to frequency-matched sampling schemes
(representative sampling of cases, with stratified sampling of controls to match the case distribution).
This involves replacing o*, a, m;, my, 7, and u by stratum-specific quantities, then taking the product
of the stratum-specific likelihood contributions (Prentice and Pyke, 1979). In the remaining devel-
opment, we will assume that the disease is rare and sampling is simple random, unless stated
otherwise; for brevity, details for other schemes will be omitted. We also assume that m,/m, remains
constant as #.. increases.

Bruzzi et al. (1985) set p;, = a;/3; a; and so obtained the model-based estimator

AF = 1| — p's.

Since we assume a rare disease and simple random sampling of subjects, standard results (e.g.,
Ibragimov and Linnik, 1971) imply that the sum p’s is a Vn,-consistent asymptotically normal
estimator for the expected inverse risk ratio [s(x) dF (subject to mild regularity conditions on F).
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Since 6 is also x/n—;-gonsistent and s is a smooth function of 8, p’S inherits the same convergence
properties, and so AF is vn.-consistent asymptotically normal for AF. Using a delta method for
implicit functiclns that they had previously developed, Benichou and Gail (1990) derived a variance
estimator for AF, which we will denote ﬁBG.NSince Di does not incorporate the model constraints, it is
not the MLE of p; under the model; thus, AF is not an MLE of AF.

To obtain an MLE of AF for discrete x, note that random sampling and Bayes’ theorem yield

pi = Pr(x;|d = 1) = Pr(x;|d = 1, selection)

_ Pr(d = 1]x,, selection)Pr(x;|selection) .
- Pr(d = 1|selection) = himifu,

where r; = expit(x;0) and 7, = w(x;). It follows (Zehna, 1966) that the MLE of p; based on the
likelihood (1) is

Di = nii/my, (2)

where 7 = expit(x,8). More generally, the MLE of F(x) from expression (1) is the step function
{ Pt X; < x}, where p, is as in equation (2), and the sum is over all / with x, less than or equal to x in
all components. Thus, an MLE of the attributable fraction is

AF =1 - p's. ' 3)

For discrete x, v7.-consistent asymptotic normality of AF follows immediately from standard theory
(Bishop et al., 1975); for the general case, this follows from the fact that p’$ is a Vn,-consistent
asymptotically normal estimator for the expectation [s(x) dF (again subject to regularity conditions
on F).

Expression (3) is equivalent to the MLE derived by Drescher and Osius (unpublished manuscript).
They also derive an asymptotic variance formula similar to that of Benichou and Gail. A convenient
computing formula for the asymptotic variance of AF can also be obtained by the ordinary
multivariate delta method. Let a, b, and r be the column vectors of a;, b; = n, — a;, and r;; let w and
q be the column vectors with elements n. 771 — r;) and n.m(1 — r;)/mo, respectively; and define

Dy = d(p’s)/d0 = (Z — X)'diag(s)p + X'diag(w)s/m;,
DII

n.d(p’s)/dx = diag(s)r/m,,

Ve = cov(a) = mi(diag(p) — pp’),

Vi, = cov(b) = mo(diag(q) — qq”),

V,=cov(n)=V,+ V,,

C* = (X'diag(w).X)™" = [c}],

C = covA(0) = [cal,
where ¢, = ¢t — 1/m; — 1/mq, i = ¢ otherwise. Then, using § =~ C*X’(a — diag(r)n), we obtain

U = cov*(@, n) = C*X(V, — diag(r)V,) 4)

and

var*(AF) = var’(p’s) = D;CD, + 2D;UD, + D}V,D,. (5)

An estimator Oy, for this expression may be obtained by substituting 6 for 6 and # = n/n. for .

For frequency-matched sampling schemes with m,, cases and 1o, controls in stratum k, a separate
intercept term «, must be entered for each matching stratum (Prentice and Pyke, 1979). If « is the
vector of the ay, 6 = (a, 8), and g, is the vector with elements n,m,(1 — r;)/mo. when i is in stratum
k, V., becomes block diagonal with blocks m(diag(ps) — p«p#), V» becomes block diagonal with
blocks m,(diag(qr) — q«q%), and the variance ¢y of &, in C becomes cf, — 1/my, — 1/mq, (Prentice
and Pyke, 1979; see also Drescher and Schill, 1991).

5. Simulations
The first set of simulations presented here parallels that given by Benichou and Gail (1990). The
sampled population follows a distribution based on a study of breast cancer (Brinton, Hoover, and
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Fraumeni, 1982). Disease risk is given by
Pr(d = l|x; =k, 2 = h) = [1 + exp(—a, — kB)]"',

where a; = —6.24, a, = —6.10, a3 = —6.01 are effects for age ranges 50-54, 55-59, 60-64; 3 = .155
is a trend effect for category 0, 1, 2, 3 of age at first live birth (<19, 20-24, 25-29, =30 yr); for k =
0, 1,2, 3, Pr(x, = k) =.117, .370, .418, .095; for h = 1, 2, 3, Pr(x, = h) = .440, .335, .225; and x,
and x; are assumed to be independent. The true AF under z = (0, X;) is then .2127. Each column of
Tables 1 and 2 summarizes 7,600 simulation trials; thus, there is a 95% probability that a simulated
coverage rate falls between .945 and .955 if the true coverage rate is .95. No convergence failures or
infinite MLEs occurred in any trial.

Table 1 presents a series of cohort study simulations from this population. Cases were generated
from fixed denominators using binomial variates generated from the uniform random number
generator in GAUSS (Aptech, 1/9\92). Two ML intervals were examined: the untransformed interval
AF =+ 19604 and the log(1 — AF)-based (“log AF”) interval

1 — (1 — AF)exp[£1.96042/(1 — AF)],

which is suggested by the observation that AF is bounded above by 1 but has no lower bound (Walter,
1975). The point estimator tends to be downward biased with fewer expected cases, leading to
undercoverage of the untransformed confidence intervals in smaller samples, but the standard error
estimator and log-transformed interval appear reasonably accurate.

Table 2 presents a series of case-control simulations from the same population. Both cases and
controls were simple random samples from the d = 1 and d = 0 subpopulations, using multinomial
variates generated from the uniform random number generator in GAUSS (Benichou and Gail

Table 1
Simulation results for MLE (AF) of the attributable fraction: Cohort study, exposure with four
categories, modelled by single ordinal variable

Expected no. cases 50 200 300 250 1,000 4,000
Cohort size 1,000 4,000 16,000 1,000 4,000 16,000
True AF .204 .204 .204 .166 .166 .166
Mean point est. 185 .196 204 .164 .164 .166
Sample std. dev. 219 .108 .0550 .0913 .0459 .0228
Mean SE est.? 218 .108 .0540 .0914 .0456 .0228
Coverage®

Untransformed 937 949 943 .948 947 948

Log transform 947 .949 .946 952 946 949
Mean length

Untransformed .856 424 212 358 .179 .089

Log transform .897 .429 212 361 179 .089

2 Simulation means of O}fZ.

®7,600 trials each; simulation standard errors of coverages range from .002 to .003.

Table 2
Simulation results for MLE (AF) of the attributable fraction: Case-control study; exposure with
four categories, modelled by single ordinal variable; true AF = 213

No. cases 100 100 300 300 600 3,000
No. controls 100 500 300 1,200 600 3,000
Mean point est. 183 202 .206 205 .208 212
Sample SD 227 .170 125 .100 .0880 .0386
Mean SE est.? 223 .169 124 099 ~ .0870 .0386
Coverage®

Untransformed .943 .940 944 945 945 .950

Log transform 952 952 .950 950 .949 951
Mean length

Untransformed 876 .663 485 .389 341 151

Log transform 918 .683 .492 .393 343 152

2 Simulation means of DMf.
©7,600 trials each; simulation standard errors of coverages range from .002 to .003.
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simulated frequency-matched control samples). The two “ML” intervals were examined, as well as
the two “BG” intervals studied by Benichou and Gail: the untransformed interval AF = 1. 9602 and
the log(1 — AF)-based interval

I — (1 = AF)exp[+1.96552/(1 — AF)].

The ML and BG point and variance estimators differed only trivially from trial to trial; their mean
differences were less than .001 and their correlations exceeded .999 in all but two of the present
simulations. This resulted in nearly identical coverage behavior. Consequently, only the ML results
are presented here. Also included in the simulation were conﬁdence intervals based on using only the
leading term D;CD, in formula (5) to estimate the variance of AF. This simplification also yielded
results nearly identical to those based on the entire formula.

It is apparent both in the tables and in earlier simulations (Benichou and Gail, 1990; Whittemore,
1982) that, even for fairly large samples, the case-control AF estimators are downward biased
(Whittemore’s estimator is equivalent to that based on a saturated logistic model). This results in
statistically (but not substantively) significant undercoverage of the untransformed intervals at even
fairly substantial sample sizes. This problem is, however, rectified by the log transformation, although
this transform invariably lengthens the interval (Whittemore, 1982).

To further investigate the performance of the point and interval estimators, the sequence of
simulations was repeated using the same population and sampling structure, but with an analysis
model that treated age at first birth as a categorical factor, so that the exposure was represented by
three parameters instead of one. With this richer exposure parameterization one should expect slower
convergence to limiting behavior, as well as larger variance of the AF estimators. This was observed,
but otherwise results were the same. In particular, the log-transformed intervals again had better
small-sample coverage than their untransformed counterparts.

Finally, case-control simulations were conducted with x, and x, bivariate Gaussian among
noncases, with means p and 0, unit variances, and correlation p among noncases. Under a logistic
model with 8 = («, 81, (8.), this implies that the case distribution F(x,, x») will be bivariate Gaussian
with the same covariance matrix, but with means shifted to ¢ + 8, + pB8> and pB, + B; the AF
parameter for z = (0, x,) then has closed form 1 — exp[—8i(z + 8:/2 + pB2)]. Because of the much
longer run time of the continuous simulations (due to the need to fit ungrouped data at each trial),
only 1,900 trials were used for each combination. This yields a 95% probability that a simulated
coverage rate falls between .94 and .96 if the true coverage rate is .95. Table 3 shows the results of
these simulations for p = 0, .5, u = 2, 8, = .28, 8 = .82; these imply relative risks of 3 and 25 when
comparing the 97.5 and 2.5 percentiles of the exposure and covariate distributions, and AF of .4507
and .5103 for p = 0, .5. The results for the Benichou-Gail approach are again omitted because in
nearly all cases the mean difference of AF and AF was below .001 and the correlation of AF and AF
exceeded .999; also, confidence inteivals based on Ugg or D;CD, performed in a manner nearly

identical to the intervals based on AFdm.. As can be seen from Table 3, correlation of x; and x»

Table 3
Simulation results for MLE (AF) in case-control study, bivariate Gaussian exposure and covariate
with unit variances, exposure mean = 2, covariate mean = 0 among noncases, 3, = .28, 8, = .82.
For reference exposure level of 0, true AF = .451 when e\posure—covanale Corre/atlon
is 0, 5 10 when correlation is .5.

No. cases, controls 100, 100 250, 250 500, 500
Correlation 0 5 0 .5 0 5

Mean point est. 436 461 438 .494 446 502
Sample SD 192 267 122 .149 .080 104
Mean SE est.? .189 256 118 148 .082 .103
Coverage®

Untransformed 928 926 .938 .937 .949 951

Log-transform 957 957 943 .948 961 951
Mean length

Untransformed .739 1.001 463 .582 322 404

Log-transform 794 1.155 476 615 323 415

2 Simulation means of 0if}.

®1,900 trials per experiment; simulation standard errors of coverages range from .004 to .006.
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worsened the small-sample behavior of the confidence intervals, although the log-transformed interval
exhibited satisfactory coverage in all situations examined.

Other simulations were conducted, varying the distribution of the covariates and the magnitude of
their effects, and examining continuous covariates for cohort studies. These simulations revealed
patterns no different from those in Tables 1-3, and so are omitted here. In sum, considering the
systematic biases present in typical epidemiologic studies, there appears to be little practical difference
among the estimators, although the log-transformed intervals seem preferable for smaller samples.

6. Discussion

Both Benichou and Gail (1990) and Drescher and Schill (1991) provide example results of applying
their methods to a well-known study of oesophageal cancer in Brittany. This example is not repeated
here, because the ML method yields results numerically identical to the Drescher and Schill method
for such data (this fact was verified numerically in a suite of checks on the simulation program). The
ML method may in fact be viewed as a natural generalization of the Drescher and Schill method to
allow control of multiple and continuous confounders.

The presentation here has considered only “large-stratum” estimation, in which the number of
matching strata (and hence the dimension of 6*) is fixed. For a single binary risk factor, Greenland
(1987) provides attributable-fraction estimators for “sparse data,” in which the number of strata
increases with sample size, as occurs when one matches on neighborhood, sibship, etc. Benichou and
Gail provide an extension of their method to sparse data by using conditional logistic regression to
eliminate all but a finite number of parameters from the estimation problem. In contrast, the
unconditional methods discussed here and in Drescher and Schill (1991) and Drescher and Osius
(unpublished manuscript) inherently depend on estimated intercepts, and so do not readily generalize
to sparse data without further modelling of the intercepts to keep the number of parameters fixed.
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RESUME

Bruzzi et al. (1985, American Journal of Epidemiology 122, 904-914) ont présenté, a partir d’un
modéle logistique général, un estimateur de la fraction étiologique pour des études cas-témoins, et
Benichou et Gail (1990, Biometrics 46, 991-1003) ont donné une formule de la variance de cet
estimateur implicitement déduite de la delta méthode. Cependant, ’estimateur de Bruzzi et al. n’est
pas I’estimateur du maximum de vraisemblance fondé sur le modéle, puisque le modele est utilisé
uniquement pour construire les estimateurs du risque relatif, et non I’estimation de la distribution de
la covariable. Nous fournissons les estimateurs du maximum de vraisemblance de la fraction
attribuable pour des études cohortes et cas—-témoins ainsi que leurs variances asymptotiques. L’esti-
mateur cas—témoin généralise ’estimateur de Drescher et Schill (1991, Biometrics 47, 1247-1256).
Nous présentons aussi une étude de simulation limitée qui confirme un travail récent indiquant que
le meilleur résultat pour de petits échantillons est obtenu quand I'intervalle de confiance est centré
sur I’estimateur en échelle log plutot que sur ’estimateur sur données brutes.
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