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Abstract
The problem of identifying differentially expressed genes in designed microar-

ray experiments is considered. Lönnstedt and Speed (2002) derived an expression
for the posterior odds of differential expression in a replicated two-color experi-
ment using a simple hierarchical parametric model. The purpose of this paper is
to develop the hierarchical model of Lönnstedt and Speed (2002) into a practical
approach for general microarray experiments with arbitrary numbers of treat-
ments and RNA samples. The model is reset in the context of general linear
models with arbitrary coefficients and contrasts of interest. The approach applies
equally well to both single channel and two color microarray experiments. Con-
sistent, closed form estimators are derived for the hyperparameters in the model.
The estimators proposed have robust behavior even for small numbers of arrays
and allow for incomplete data arising from spot filtering or spot quality weights.
The posterior odds statistic is reformulated in terms of a moderated t-statistic in
which posterior residual standard deviations are used in place of ordinary stan-
dard deviations. The empirical Bayes approach is equivalent to shrinkage of the
estimated sample variances towards a pooled estimate, resulting in far more stable
inference when the number of arrays is small. The use of moderated t-statistics
has the advantage over the posterior odds that the number of hyperparameters
which need to estimated is reduced; in particular, knowledge of the non-null prior
for the fold changes are not required. The moderated t-statistic is shown to follow
a t-distribution with augmented degrees of freedom. The moderated t inferential
approach extends to accommodate tests of composite null hypotheses through the
use of moderated F-statistics. The performance of the methods is demonstrated
in a simulation study. Results are presented for two publicly available data sets.
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1 Introduction

Microarrays are a technology for comparing the expression profiles of genes on a genomic
scale across two or more RNA samples. Recent reviews of microarray data analysis
include the Nature Genetics supplement (2003), Smyth et al (2003), Parmigiani et
al (2003) and Speed (2003). This paper considers the problem of identifying genes
which are differentially expressed across specified conditions in designed microarray
experiments. This is a massive multiple testing problem in which one or more tests
are conducted for each of tens of thousands of genes. The problem is complicated by
the fact that the measured expression levels are often non-normally distributed and
have non-identical and dependent distributions between genes. This paper addresses
particularly the fact that the variability of the expression values differs between genes.

It is well established that allowance needs to be made in the analysis of microarray
experiments for the amount of multiple testing, perhaps by controlling the familywise
error rate or the false discovery rate, even though this reduces the power available
to detect changes in expression for individual genes (Ge et al, 2002). On the other
hand, the parallel nature of the inference in microarrays allows some compensating
possibilities for borrowing information from the ensemble of genes which can assist in
inference about each gene individually. One way that this can be done is through the
application of Bayes or empirical Bayes methods (Efron, 2001, 2003). Efron et al (2001)
used a non-parametric empirical Bayes approach for the analysis of factorial data with
high density oligonucleotide microarray data. This approach has much potential but can
be difficult to apply in practical situations especially by less experienced practitioners.
Lönnstedt and Speed (2002), considering replicated two-color microarray experiments,
took instead a parametric empirical Bayes approach using a simple mixture of normal
models and a conjugate prior and derived a pleasingly simple expression for the posterior
odds of differential expression for each gene. The posterior odds expression has proved
to be a useful means of ranking genes in terms of evidence for differential expression.

The purpose of this paper is to develop the hierarchical model of Lönnstedt and
Speed (2002) into a practical approach for general microarray experiments with arbi-
trary numbers of treatments and RNA samples. The first step is to reset it in the
context of general linear models with arbitrary coefficients and contrasts of interest.
The approach applies to both single channel and two color microarrays. All of the
commonly used microarray platforms such as cDNA, long-oligos and Affymetrix are
therefore accommodated. The second step is to derive consistent, closed form estima-
tors for the hyperparameters using the marginal distributions of the observed statistics.
The estimators proposed here have robust behavior even for small numbers of arrays and
allow for incomplete data arising from spot filtering or spot quality weights. The third
step is to reformulate the posterior odds statistic in terms of a moderated t-statistic
in which posterior residual standard deviations are used in place of ordinary standard
deviations. This approach makes explicit what was implicit in Lönnstedt and Speed
(2002), that the hierarchical model results in a shrinkage of the gene-wise residual sam-
ple variances towards a common value, resulting in far more stable inference when the
number of arrays is small. The use of moderated t-statistic has the advantage over
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the posterior odds of reducing the number of hyperparameters which need to estimated
under the hierarchical model; in particular, knowledge of the non-null prior for the fold
changes are not required. The moderated t-statistic is shown to follow a t-distribution
with augmented degrees of freedom. The moderated t inferential approach extends
to accommodate tests involving two or more contrasts through the use of moderated
F -statistics.

The idea of using a t-statistic with a Bayesian adjusted denominator was also pro-
posed by Baldi and Long (2001) who developed the useful cyberT program. Their work
was limited though to two-sample control versus treatment designs and their model did
not distinguish between differentially and non-differentially expressed genes. They also
did not develop consistent estimators for the hyperparameters. The degrees of freedom
associated with the prior distribution of the variances was set to a default value while
the prior variance was simply equated to locally pooled sample variances.

Tusher et al (2001), Efron et al (2001) and Broberg (2003) have used t statistics
with offset standard deviations. This is similar in principle to the moderated t-statistics
used here but the offset t-statistics are not motivated by a model and do not have an
associated distributional theory. Tusher et al (2001) estimated the offset by minimizing
a coefficient of variation while Efron et al (2001) used a percentile of the distribution
of sample standard deviations. Broberg (2003) considered the two sample problem and
proposed a computationally intensive method of determining the offset by minimizing a
combination of estimated false positive and false negative rates over a grid of significance
levels and offsets. Cui and Churchill (2003) give a review of test statistics for differential
expression for microarray experiments.

Newton et al (2001), Newton and Kendziorski (2003) and Kendziorski et al (2003)
have considered empirical Bayes models for expression based on gamma and log-normal
distributions. Other authors have used Bayesian methods for other purposes in mi-
croarray data analysis. Ibrahim et al (2002) for example propose Bayesian models with
correlated priors to model gene expression and to classify between normal and tumor
tissues.

Other approaches to linear models for microarray data analysis have been described
by Kerr et al (2000), Jin et al (2001), Wolfinger et al (2001), Chu et al (2002), Yang
and Speed (2003) and Lönnstedt et al (2003). Kerr et al (2000) propose a single linear
model for an entire microarray experiment whereas in this paper a separate linear model
is fitted for each gene. The single linear model approach assumes all equal variances
across genes whereas the current paper is designed to accommodate different variances.
Jin et al (2001) and Wolfinger et al (2001) fit separate models for each gene but model
the individual channels of two color microarray data requiring the use of mixed linear
models to accommodate the correlation between observations on the same spot. Chu
et al (2002) propose mixed models for single channel oligonucleotide array experiments
with multiple probes per gene. The methods of the current paper assume linear models
with a single component of variance and so do not apply directly to the mixed model
approach, although ideas similar to those used here could be developed. Yang and
Speed (2003) and Lönnstedt et al (2003) take a linear modeling approach similar to
that of the current paper.
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Figure 1: Example designs for two color microarrays.

The plan of this paper is as follows. Section 2 explains the linear modeling approach
to the analysis of designed experiments and specifies the response model and distribu-
tional assumptions. Section 3 sets out the prior assumptions and defines the posterior
variances and moderated t-statistics. Section 4 derives marginal distributions under the
hierarchical model for the observed statistics. Section 5 derives the posterior odds of
differential expression and relates it to the t-statistic. The inferential approach based
on moderated t and F statistics is elaborated in Section 6. Section 7 derives estimators
for the hyperparameters. Section 8 compares the estimators with earlier statistics in a
simulation study. Section 9 illustrates the methodology on two publicly available data
sets. Finally, Section 10 makes some remarks on available software.

2 Linear Models for Microarray Data

This section describes how gene-wise linear models arise from experimental designs and
states the distributional assumptions about the data which will used in the remainder
of the paper. The design of any microarray experiment can be represented in terms of
a linear model for each gene. Figure 1 displays some examples of simple designs with
two-color arrays using arrow notation as in Kerr and Churchill (2001). Each arrow
represents a microarray. The arrow points towards the RNA sample which is labelled
red and the sample at the base of the arrow is labelled green. The symbols A, B and C
represent RNA sources to be compared. In experiment (a) there is only one microarray
which compares RNA sample A and B. For this experiment one can only compute the
log-ratios of expression yg = log2(Rg)− log2(Gg) where Rg and Gg are the red and green
intensities for gene g. Design (b) is a dye-swap experiment leading to a very simple
linear model with responses yg1 and yg2 which are log-ratios from the two microarrays
and design matrix

X =

(
1
−1

)
.
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The regression coefficient here estimates the contrast B − A on the log-scale, just as
for design (a), but with two arrays there is one degree of freedom for error. Design (c)
compares samples A and B indirectly through a common reference RNA sample. An
appropriate design matrix for this experiment is

X =

 −1 0
1 0
1 1


which produces a linear model in which the first coefficient estimates the difference
between A and the reference sample while the second estimates the difference of interest,
B−A. Design (d) is a simple saturated direct design comparing three samples. Different
design matrices can obviously be chosen corresponding to different parametrizations.
One choice is

X =

 1 0
0 1

−1 −1


so that the coefficients correspond to the differences B − A and C −B respectively.

Unlike two-color microarrays, single color or high density oligonucleotide microarrays
usually yield a single expression value for each gene for each array, i.e., competitive
hybridization and two color considerations are absent. For such microarrays, design
matrices can be formed exactly as in classical linear model practice from the biological
factors underlying the experimental layout.

In general we assume that we have a set of n microarrays yielding a response vector
yT

g = (yg1, . . . , ygn) for the gth gene. The responses will usually be log-ratios for two-
color data or log-intensities for single channel data, although other transformations are
possible. The responses are assumed to be suitably normalized to remove dye-bias and
other technological artifacts; see for example Huber et al (2002) or Smyth and Speed
(2003). In the case of high density oligonucleotide array, the probes are assumed to
have been normalized to produce an expression summary, represented here as ygi, for
each gene on each array as in Li and Wong (2001) or Irizarry et al (2003). We assume
that

E(yg) = Xαg

where X is a design matrix of full column rank and αg is a coefficient vector. We
assume

var(yg) = Wgσ
2
g

where Wg is a known non-negative definite weight matrix. The vector yg may contain
missing values and the matrix Wg may contain diagonal weights which are zero.

Certain contrasts of the coefficients are assumed to be of biological interest and
these are defined by βg = CT αg. We assume that it is of interest to test whether
individual contrast values βgj are equal to zero. For example, with design (d) above
the experimenter might want to make all the pairwise comparisons B − A, C − B and
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C − A which correspond to the contrast matrix

C =

(
1 0 1
0 1 1

)

There may be more or fewer contrasts than coefficients for the linear model, although
if more then the contrasts will be linearly dependent. As another example, consider
a simple time course experiment with two single-channel microarrays hybridized with
RNA taken at each of the times 0, 1 and 2. If the numbering of the arrays corresponds
to time order then we might choose

X =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


so that αgj represents the expression level at the jth time, and

C =

 −1 0
1 −1
0 1


so that the contrasts measure the change from time 0 to time 1 and from time 1 to
time 2 respectively. For an experiment such as this it will most likely be of interest to
test the hypotheses βg1 = 0 and βg2 = 0 simultaneously as well as individually because
genes with βg1 = βg2 = 0 are those which do not change over time. Composite null
hypotheses are addressed in Section 7.

We assume that the linear model is fitted to the responses for each gene to obtain
coefficient estimators α̂g, estimators s2

g of σ2
g and estimated covariance matrices

var(α̂g) = Vgs
2
g

where Vg is a positive definite matrix not depending on s2
g. The contrast estimators are

β̂g = CT α̂g with estimated covariance matrices

var(β̂g) = CTVgCs
2
g.

The responses yg are not necessarily assumed to be normal and the fitting of the linear
model is not assumed to be by least squares. However the contrast estimators are
assumed to be approximately normal with mean βg and covariance matrix CTVgCσ

2
g

and the residual variances s2
g are assumed to follow approximately a scaled chisquare

distribution. The unscaled covariance matrix Vg may depend on αg, for example if
robust regression is used to fit the linear model. If so, the covariance matrix is assumed
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to be evaluated at α̂g and the dependence is assumed to be such that it can be ignored
to a first order approximation.

Let vgj be the jth diagonal element of CTVgC. The distributional assumptions made
in this paper about the data can be summarized by

β̂gj | βgj, σ
2
g ∼ N(βgj, vgjσ

2
g)

and

s2
g |σ2

g ∼
σ2

g

dg

χ2
dg

where dg is the residual degrees of freedom for the linear model for gene g. Under these
assumptions the ordinary t-statistic

tgj =
β̂gj

sg
√
vgj

follows an approximate t-distribution on dg degrees of freedom.
The hierarchical model defined in the next section will assume that the estimators

β̂g and s2
g from different genes are independent. Although this is not necessarily a

realistic assumption, the methodology which will be derived makes qualitative sense
even when the genes are dependent, as they likely will be for data from actual microarray
experiments.

This paper focuses on the problem of testing the null hypotheses H0 : βgj = 0 and
aims to develop improved test statistics. In many gene discovery experiments for which
microarrays are used the primary aim is to rank the genes in order of evidence against
H0 rather than to assign absolute p-values (Smyth et al, 2003). This is because only a
limited number of genes may be followed up for further study regardless of the number
which are significant. Even when the above distributional assumptions fail for a given
data set it may still be that the tests statistics perform well from a ranking the point
of view.

3 Hierarchical Model

Given the large number of gene-wise linear model fits arising from a microarray ex-
periment, there is a pressing need to take advantage of the parallel structure whereby
the same model is fitted to each gene. This section defines a simple hierarchical model
which in effect describes this parallel structure. The key is to describe how the unknown
coefficients βgj and unknown variances σ2

g vary across genes. This is done by assuming
prior distributions for these sets of parameters.

Prior information is assumed on σ2
g equivalent to a prior estimator s2

0 with d0 degrees
of freedom, i.e.,

1

σ2
g

∼ 1

d0s2
0

χ2
d0
.
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This describes how the variances are expected to vary across genes. For any given j,
we assume that a βgj is non zero with known probability

P (βgj 6= 0) = pj.

Then pj is the expected proportion of truly differentially expressed genes. For those
which are nonzero, prior information on the coefficient is assumed equivalent to a prior
observation equal to zero with unscaled variance v0j, i.e.,

βgj |σ2
g , βgj 6= 0 ∼ N(0, v0jσ

2
g).

This describes the expected distribution of log-fold changes for genes which are differ-
entially expressed. Apart from the mixing proportion pj, the above equations describe
a standard conjugate prior for the normal distributional model assumed in the previous
section. In the case of replicated single sample data, the model and prior here is a
reparametrization of that proposed by Lönnstedt and Speed (2002). The parametriza-
tions are related through dg = f , vg = 1/n, d0 = 2ν, s2

0 = a/(d0vg) and v0 = c where f ,
n, ν and a are as in Lönnstedt and Speed (2002). See also Lönnstedt (2001). For the
calculations in this paper the above prior details are sufficient and it is not necessary
to fully specify a multivariate prior for the βg.

Under the above hierarchical model, the posterior mean of σ−2
g given s2

g is s̃−2
g with

s̃2
g =

d0s
2
0 + dgs

2
g

d0 + dg

.

The posterior values shrink the observed variances towards the prior values with the
degree of shrinkage depending on the relative sizes of the observed and prior degrees of
freedom. Define the moderated t-statistic by

t̃gj =
β̂gj

s̃g
√
vgj

.

This statistic represents a hybrid classical/Bayes approach in which the posterior vari-
ance has been substituted into to the classical t-statistic in place of the usual sample
variance. The moderated t reduces to the ordinary t-statistic if d0 = 0 and at the
opposite end of the spectrum is proportion to the coefficient β̂gj if d0 = ∞.

In the next section the moderated t-statistics t̃gj and residual sample variances s2
g

are shown to be distributed independently. The moderated t is shown to follow a t-
distribution under the null hypothesis H0 : βgj = 0 with degrees of freedom dg +d0. The
added degrees of freedom for t̃gj over tgj reflect the extra information which is borrowed,
on the basis of the hierarchical model, from the ensemble of genes for inference about
each individual gene. Note that this distributional result assumes d0 and s2

0 to be given
values. In practice these values need to be estimated from the data as described in
Section 6.
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4 Marginal Distributions

Section 2 states the distributions of the sufficient statistics β̂bj and s2
g conditional on the

unknown parameters βgj and σ2
g . Here we derive the unconditional joint distribution

of these statistics under the hierarchical model defined in the previous section. The
unconditional distributions are functions of the hyperparameters d0 and s2

0. It turns
out that β̂gj and s2

g are no longer independent under the unconditional distribution

but that t̃gj and s2
g are. For the remainder of this section we will assume that the

calculations are being done for given values of g and j and for notational simplicity the
subscripts g and j will be suppressed in t̃gj, s̃g, sg, βgj, vgj, v0j and pj.

It is convenient to note first the density functions for the scaled t and F distributions.
If T is distributed as (a/b)1/2Z/U where Z ∼ N(0, 1) and U ∼ χν , then T has density
function

p(t) =
aν/2b1/2

B(1/2, ν/2)(a+ bt2)1/2+ν/2

where B(·, ·) is the Beta function. If F is distributed as (a/b)U2
1/U

2
2 where U1 ∼ χ2

ν1

and U2 ∼ χ2
ν2

then F has density function

p(f) =
aν2bν1f ν1/2−1

B(ν1, ν2)(a+ bf)ν1/2+ν2/2

The null joint distribution of β̂ and s2 is

p(β̂, s2 | β = 0) =
∫
p(β̂ |σ−2, β = 0)p(s2 |σ−2)p(σ−2)d(σ−2)

The integrand is

1

(2πvσ2)1/2
exp

(
− β̂2

2vσ2

)

×
(
d

2σ2

)d/2
s2(d/2−1)

Γ(d/2)
exp

(
− ds

2

2σ2

)

×
(
d0s

2
0

2

)d0/2
σ−2(d0/2−1)

Γ(d0/2)
exp

(
−σ−2d0s

2
0

2

)

=
(d0s

2
0/2)d0/2(d/2)d/2s2(d/2−1)

(2πv)1/2Γ(d0/2)Γ(d/2)

σ−2(1/2+d0/2+d/2−1) exp

{
−σ−2

(
β̂2

2v
+
ds2

2
+
d0s

2
0

2

)}

which integrates to

p(β̂, s2 | β = 0)

=
(1/2v)1/2(d0s

2
0/2)d0/2(d/2)d/2s2(d/2−1)

D(1/2, d0/2, d/2)

(
β̂2/v + d0s

2
0 + ds2

2

)−(1+d0+d)/2
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where D() is the Dirichlet function.
The null joint distribution of t̃ and s2 is

p(t̃, s2 | β = 0) = s̃v1/2p(β̂, s2 | β = 0)

which after collection of factors yields

p(t̃, s2 | β = 0) =
(d0s

2
0)

d0/2dd/2s2(d/2−1)

B(d/2, d0/2)(d0s2
0 + ds2)d0/2+d/2

× (d0 + d)−1/2

B(1/2, d0/2 + d/2)

(
1 +

t̃2

d0 + d

)−(1+d0+d)/2

This shows that t̃ and s2 are independent with

s2 ∼ s2
0Fd,d0

and
t̃ | β = 0 ∼ td0+d.

The above derivation goes through similarly with β 6= 0, the only difference being that

t̃ | β 6= 0 ∼ (1 + v0/v)
1/2 td0+d.

The marginal distribution of t̃ over all the genes is therefore a mixture of a scaled
t-distribution and an ordinary t-distribution with mixing proportions p and 1 − p re-
spectively.

5 Posterior Odds

Given the unconditional distribution of t̃gj and s2
g from the previous section, it is now

easy to compute the posterior odds than any particular gene g is differentially expressed
with respect to contrast βgj. The odds that the gth gene has non-zero βgj is

Ogj =
p(βgj 6= 0 | t̃gj, s

2
g)

p(βgj = 0 | t̃gj, s2
g)

=
p(βgj 6= 0, t̃gj, s

2
g)

p(βgj = 0, t̃gj, s2
g)

=
pj

1− pj

p(t̃gj | βgj 6= 0)

p(t̃gj | βgj = 0)

since t̃gj and s2
g are independent and the distribution of s2

g does not depend on βgj.

Substituting the density for t̃gj from Section 4 gives

Ogj =
pj

1− pj

(
vgj

vgj + v0j

)1/2
 t̃2gj + d0 + dg

t̃2gj
vgj

vgj+v0j
+ d0 + dg

(1+d0+dg)/2

This agrees with equation (7) of Lönnstedt and Speed (2002). In the limit for d0 + dg

large, the odds ratio reduces to

Ogj =
pj

1− pj

(
vgj

vgj + v0j

)1/2

exp

(
t̃2gj

2

vgj

vgj + v0j

)
.

10



This expression is important for accurate computation of Ogj in limiting cases. Follow-
ing Lönnstedt and Speed (2002), the statistic

Bgj = logOgj

is on a friendly scale and is useful for ranking genes in order of evidence for differential
expression. Note that Bgj is monotonic increasing in t̃gj if the dg and vg do not vary
between genes.

6 Estimation of Hyperparameters

6.1 General

The statistics Bgj and t̃gj depend on the hyperparameters in the hierachical model
defined in Section 3. A fully Bayesian approach would be to allow the user to choose
these parameters. This paper takes instead an empirical Bayes approach in which these
parameters are estimated from the data. The purpose of this section is to develop
consistent, closed form estimators for d0, s0 and the v0j from the observed sample
variances s2

g and moderated t-statistics t̃gj. We estimate d0 and s2
0 from the s2

g and then

estimate the v0j from the t̃gj assuming d0 and the pj to be known.
Specifically, d0 and s2

0 are estimated by equating empirical to expected values for
the first two moments of log s2

g. We use log s2
g here instead of s2

g because the moments of
log s2

g are finite for any degrees of freedom and because the distribution of log s2
g is more

nearly normal so that moment estimation is likely to be more efficient. We estimate
the v0j by equating the order statistics of the |t̃gj| to their nominal values. Each order
statistic of the |t̃gj| yields an individual estimator of v0j. A final estimator of v0j is
obtained by averaging the estimators arising from the top Gpj/2 of the order statistics
where G is the number of genes.

The closed form estimators given here could be used as starting values for maximum
likelihood estimation of d0, s0 and the v0j based on the marginal distributions of the
observed statistics, although that route is not followed in this paper. The large size
of microarray data sets ensures that the moment estimators given here are reasonably
precise without further iteration.

6.2 Estimation of d0 and s0

Write
zg = log s2

g

Each s2
g follows a scaled F -distribution so zg is distributed as a constant plus Fisher’s

z distribution (Johnson and Kotz, 1970, page 78). The distribution of zg is roughly
normal and has finite moments of all orders including

E(zg) = log s2
0 + ψ(dg/2)− ψ(d0/2) + log(d0/dg)
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and
var(zg) = ψ′(dg/2) + ψ′(d0/2)

where ψ() and ψ′() are the digamma and trigamma functions respectively. Write

eg = zg − ψ(dg/2) + log(dg/2)

Then
E(eg) = log s2

0 − ψ(d0/2) + log(d0/2)

and
E{(eg − ē)2G/(G− 1)− ψ′(dg/2)} ≈ ψ′(d0/2)

We can therefore estimate d0 by solving

ψ′(d0/2) = mean
{
(eg − ē)2G/(G− 1)− ψ′(dg/2)

}
(1)

for d0. Although the inverse of the trigamma function is not a standard mathematical
function, equation (1) can be solved very efficiently using a monotonically convergent
Newton iteration as described in the appendix.

Given an estimate for d0, s
2
0 can be estimated by

s2
0 = exp {ē+ ψ(d0/2)− log(d0/2)}

This estimate for s2
0 is usually somewhat less than the mean of the s2

g in recognition of
the skewness of the F -distribution.

Note that these estimators allow for dg to differ between genes and therefore allow
for arbitrary missing values in the expression data. Note also that any gene for which
dg = 0 will receive s̃2

g = s2
0.

In the case that mean {(eg − ē)2G/(G− 1)− ψ′(dg/2)} ≤ 0, (1) cannot be solved
because the variability of the s2

g is less than or equal to that expected from chisquare
sampling variability. In that case there is no evidence that the underlying variances σ2

g

vary between genes so d0 is set to positive infinity and s2
0 = exp(ē).

6.3 Estimation of v0j

In this section we consider the estimation of the v0j for a given j. For ease of notation,
the subscript j will be omitted from t̃gj, vgj, v0j and pj for the remainder of this section.

Gene g yields a moderated t-statistic t̃g. The cumulative distribution function of t̃g
is

F (t̃g; vg, v0, d0 + dg) = pF

t̃g
{

vg

vg + v0

}1/2

; d0 + dg

+ (1− p)F
(
t̃g; d0 + dg

)

where F (·; k) is the cumulative distribution function of the t-distribution on k degrees
of freedom. Let r be the rank of gene g when the |t̃g| are sorted in descending order.

12



We match the p-value of any particular |t̃g| to its nominal value given its rank. For any
particular gene g and rank r we need to solve

2F (−|t̃g|; vg, v0, d0 + dg) =
r − 0.5

G
(2)

for v0. The left-hand side is the actual p-value given the parameters and the right-hand
side is the nominal value for the p-value of rank r. The interpretation is that, if a
probability plot was constructed by plotting the |t̃g| against the theoretical quantiles
corresponding to probabilities (r − 0.5)/G, (2) is the condition that a particular value
of |t̃g| will lie exactly on the line of equality. The value of v0 which solves (2) is

v0 = vg

(
t̃2g

q2
target

− 1

)

with
qtarget = F−1 (ptarget; d0 + dg)

and

ptarget =
1

p

{
r − 0.5

2G
− (1− p)F (−|t̃g|; d0 + dg)

}
provided that 0 < ptarget < 1 and qtarget ≤ |t̃g|.

If |t̃g| lies above the line of equality in a t-distribution probability plot, i.e., if
F (−|t̃g|; d0 +dg) < (r− 0.5)/(2G), then ptarget > 0 and v0 > 0. Restricting to those val-
ues of r for which (r− 0.5)/(2G) < p ensures also that ptarget < 1 so that the estimator
of v0 is defined. If |t̃g| does not lie above the line of equality then the best estimate for
v0 is zero.

To get a combined estimator of v0, we obtain individual estimators of v0 for r =
1, . . . , Gp/2 and set v0 to be the mean of these estimators. The combined estimator will
be positive, unless none of the top Gp/2 values for |t̃g| exceed the corresponding order
statistics of the t-distribution, in which case the estimator will be zero.

6.4 Practical Considerations: Estimation of pj

In principle it is not difficult to estimate the proportions pj from the data as well as
the other hyperparameters. A natural estimator would be to iteratively set

pj =
1

G

G∑
i=1

Ogj

1 +Ogj

since Ogj/(1 + Ogj) is the estimated probability that gene g is differentially expressed,
and there are other possibilities such as maximum likelihood estimation. The data
however contain considerably more information about d0 and s2

0 than about the v0j and
the pj. This is because all the genes contribute to estimation of d0 and s2

0 whereas only
those which are differential expressed contribute to estimation of v0j or pj, and even
that indirectly as the identity of the differentially expressed genes is unknown.
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Any set of sample variances s2
g leads to useful estimates of d0 and s2

0. On the
other hand, the estimation of v0j and pj is somewhat unstable in that estimates on the
boundaries pj = 0, pj = 1 or v0j = 0 have positive probability and these boundary
values lead to degenerate values for the posterior odds statistics Bgj. Even when not on
the boundary, the estimator for pj is likely to be sensitive to the particular form of the
prior distribution assumed for βgj and possibly also to dependence between the genes
(Ferkingstad et al, 2003).

A practical strategy to bypass these problems is to set the pj to values chosen by

the user, perhaps pj = 0.01 or some other small value. Since v
1/2
0j σg is the standard

deviation of the log-fold-changes for differentially expressed genes, and because this
standard deviation cannot be unreasonably small or large in a microarray experiment,
it seems reasonable to place some prior bounds on v

1/2
0j s0 as well. In the software package

Limma which implements the methods in this paper, the user is allowed to place limits
on the possible values for v

1/2
0j s0. By default these limits are set at 0.1 and 4, chosen to

include a wide range of reasonable values. For many data sets these limits do not come
into play but they do prevent very small or very large estimated values for v0j.

7 Inference Using Moderated t and F Statistics

As already noted, the odds ratio statistic for differential expression derived in Section 5 is
monotonic increasing in |t̃gj| for any given j if dg and vg do not vary between genes. This
shows that the moderated t-statistic is an appropriate statistic for assessing differential
expression and is equivalent to Bgj as a means of ranking genes. Even when dg and vg

do vary, it is likely that p-values from the t̃gj will rank the genes in very similar order
to the Bgj.

The moderated t has the advantage over the B-statistic that Bgj depends on hy-
perparameters v0j and pj for all j as well as d0 and s2

0 whereas t̃gj depends only on d0

and s2
0. This means that the moderated t does not require knowledge of the proportion

of differentially expressed genes, a potentially contentious parameter, nor does it make
any assumptions about the magnitude of differential expression when it exists. The
moderated t does require knowledge of d0 and s2

0, which describe the variability of the
true gene-wise variances, but these hyperparameters can be estimated in stable fashion
as described in Section 6.

The moderated t has the advantage over the ordinary t statistic that large statistics
are less likely to arise merely from under-estimated sample variances. This is because
the posterior variance s̃2

g offsets the small sample variances heavily in a relative sense
while larger sample variances are moderated to a lesser relative degree. In this respect
the moderated t statistic is similar in spirit to t-statistics with offset standard deviation.
Provided that d0 <∞ and dg > 0, the moderated t-statistic can be written

t̃gj =

(
d0 + dg

dg

)1/2
β̂gj√
s2
∗,gvgj

14



where s2
∗,g = s2

g +(d0/dg)s
2
0. This shows that the moderated t-statistic is proportional to

a t-statistic with sample variances offset by a constant if the dg are equal. Test statistics
with offset standard deviations of the form

t∗,gj =
β̂gj

(sg + a)
√
vgj

,

where a is a positive constant, have been used by Tusher et al (2001), Efron et al (2001)
and Broberg (2003). Note that t∗ offsets the standard deviation while t̃ offsets the
variance so the two statistics are not functions of one another. Unlike the moderated
t, the offset statistic t∗,gj is not connected in any formal way with the posterior odds of
differential expression and does not have an associated distributional theory.

The moderated t-statistic t̃gj may be used for inference about βgj in a similar way to
that in which the ordinary t-statistic would be used, except that the degrees of freedom
are dg + d0 instead of dg. The fact that the hyperparameters d0 and s2

0 are estimated
from the data does not impact greatly on the individual test statistics because the
hyperparameters are estimated using data from all the genes, meaning that they are
estimated relatively precisely and can be taken to be known at the individual gene level.

The moderated t-statistics also lead naturally to moderated F -statistics which can
be used to test hypotheses about any set of contrasts simultaneously. Appropriate
quadratic forms of moderated t-statistics follow F -distributions just as do quadratic
forms of ordinary t-statistics. Suppose that we wish to test all contrasts for a given gene
equal to zero, i.e., H0 : βg = 0. The correlation matrix of β̂g is Rg = U−1

g CTVgCU
−1
g

where Ug is the diagonal matrix with unscaled standard deviations (vgj)
1/2 on the di-

agonal. Let r be the column rank of C. Let Qg be such that QT
g RgQg = Ir and let

qg = QT
g tg. Then

Fg = qT
g qg/r = tT

g QgQ
T
g tg/r ∼ Fr,d0+dg

If we choose the columns of Qg to be the eigenvectors spanning the range space of Rg

then QT
g RgQg = Λg is a diagonal matrix and

Fg = qT
g Λ−1

g qg/r ∼ Fr,d0+dg .

The statistic Fg is simply the usual F -statistic from linear model theory for testing
βg = 0 but with the posterior variance s̃2

g substituted for the sample variance s2
g in the

denominator.

8 Simulation Results

This section presents a simulation study comparing the moderated t-statistic with four
other statistics for ranking genes in terms of evidence for differential expression. The
moderated t statistic is compared with (i) ordinary fold change, equivalent to |β̂gj|,
(ii) the ordinary t-statistic |tgj|, (iii) Efron’s idea of offsetting the standard deviations
by their 90th percentile and (iv) the original Lönnstedt and Speed (2002) method as
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Figure 2: False discovery rates for different gene selection statistics when the true variances
are very different, i.e., the residual variance dominates. The rates are means of actual false
discovery rates for 100 simulated data sets.
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Figure 3: False discovery rates for different gene selection statistics when the true variances
are somewhat different, i.e., the prior and residual degrees of freedom are balanced. The rates
are means of actual false discovery rates for 100 simulated data sets.
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Figure 4: False discovery rates for different gene selection statistics when the true variances
are somewhat different, i.e., the prior and residual degrees of freedom are balanced. The rates
are means of actual false discovery rates for 100 simulated data sets.

Table 1: Area under the Receiver Operating Curve for five statistics and three simulation
scenarios.

Variances Fold Change SMA Efron t Moderated t Ordinary t

Different 0.6883 0.6888 0.7123 0.7525 0.7480
Balanced 0.7480 0.7592 0.7579 0.7593 0.7480
Similar 0.7710 0.7687 0.7680 0.7710 0.7496
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Table 2: Means (standard deviations) of hyperparameter estimates for the simulated data
sets. True values are d0/(d0 + dg) = 0.2, 0.5, 0.9960, s2

0 = 4, v0 = 2.

Variances d0/(d0 + dg) s2
0 v0, p = 0.01 v0, p = 0.02

Different 0.2000 (0.0019) 4.0000 (0.070) 2.37 (0.21) 1.91 (0.37)
Balanced 0.5000 (0.0054) 3.9984 (0.044) 3.41 (0.38) 2.02 (0.33)
Similar 0.9901 (0.0119) 3.9922 (0.031) 3.46 (0.25) 1.98 (0.25)

implemented in the SMA package for R. For Efron’s offset t-statistic we select genes in
order of |tE,gj| where

tE,gj =
β̂gj

(sg + s0.9)
√
vgj

where s0.9 is the 90th percentile of the sg. This is corresponds to the statistic defined by
Efron et al (2001). For the Lönnstedt and Speed (2002) method, genes were selected in
order of the B-statistic or log-odds computed by the stat.bay.est function the SMA
package for R available from

http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html.

The Lönnstedt and Speed (2002) B-statistic is equivalent here to the moderated t
except for differences in the hyperparameter estimators. The moderated t-statistic was
evaluated at the hyperparameter estimators derived in Section 6.

Data sets were simulated from the hierarchical model of Section 3 under three dif-
ferent parameter scenarios, one where the gene-wise variances are quite different, one
where prior and residual degrees of freedom are balanced and one where the gene-
wise variances are nearly constant. Data sets were simulated with 15000 genes, 300
or p = 0.02 of which were differentially expressed. All three scenarios used dg = 4,
s2
0 = 4, vg = 1/3 and v0 = 2. The prior degrees of freedom was varied between the

scenarios with d0 = 1 for the scenario with very different variances, d0 = 4 to balance
the prior and residual degrees of freedom and d0 = 1000 to make the true variances
almost identical. A hundred data sets were simulated for each scenario.

Figures 2-4 plot the average false discovery rates for the five statistics and Table 1
gives the areas under the receiver operating curves (ROCs). The moderated t-statistic
has the lowest false discovery rate and the highest area under the ROC for all three
scenarios. The straight fold change does equally well, as expected, when the true
variances are nearly constant. The SMA B-statistic and Efron’s t statistic do nearly
as well as the moderated t statistic when the prior and residual degrees of freedom are
balanced but they are less able to adapt to other arrangements for the true variances.
Although the moderated t can be expected to perform better than the fold change and
the ordinary t-statistic on data simulated under the assumed hierarchical model, the
simulations show that this advantage is realized even though the hyperparameters need
to be estimated.
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Table 2 give means and standard deviations of the hyperparameter estimates for
the simulated data sets. The estimates for d0/(d0 + dg) and s2

0 were very accurate.
The estimator for v0 was nearly unbiased when p was set to the true proportion of
differentially expressed genes (p = 0.02) but was somewhat over-estimated when the
proportion was set to a lower value (p = 0.01). As expected the estimator for v0 is
somewhat more variable than that of d0/(d0 + dg) or s2

0. The results shown in Table 2
are not affected by the prior limits on v0s

2
0 discussed in Section 6.

9 Data Examples

9.1 Swirl

Consider the Swirl data set which is distributed as part of the marrayInput package
for R (Dudoit and Yang, 2003). The experiment was carried out using zebrafish as a
model organism to study the early development in vertebrates. Swirl is a point mutant
in the BMP2 gene that affects the dorsal/ventral body axis. The main goal of the Swirl
experiment is to identify genes with altered expression in the Swirl mutant compared
to wild-type zebrafish. The experiment used four arrays in two dye-swap pairs. The
microarrays used in this experiment were printed with 8448 probes (spots) including
768 control spots. The hybridized microarrays were scanned with an Axon scanner
and SPOT image analysis software (Buckley, 2000) was used to capture red and green
intensities for each spot. The data was normalized using print-tip loess normalization
and between arrays scale normalization using the LIMMA package (Smyth, 2003). Loess
normalization used window span 0.3 and three robustifying iterations.

For this data all genes have dg = 3 and vg = 1/4. The estimated prior degrees
of freedom are d0 = 4.17 showing that posterior variances will be balanced between
the prior and sample variances with only slightly more weight to the former. The
estimated prior variance is s2

0 = 0.0509 which is less then the mean variance at 0.109
but more than the median at 0.047. The estimated unscaled variance for the contrast
is v0 = 22.7, meaning that the standard deviation of the log-ratio for a typical gene is
(0.0509)1/2(22.7)1/2 = 1.07, i.e., genes which are differentially expressed typically change
by about two-fold. The prior limits on v0s

2
0 discussed in Section 6 do not come into

play for this data. The proportion of differentially expressed genes was set to p = 0.01
following the default in the earlier SMA software. This value seems broadly realistic for
single-gene knock-out vs wild-type experiments but is probably conservative for other
experiments where more differential expression is expected.

Table 3 shows the top 30 genes as ranked by the B-statistic. The table includes
the fold change (or M-value), the ordinary t-statistic, the moderated t-statistic and
the B-statistic for the each gene. The moderated t and the B-statistics are evaluated
at the hyperparameter estimators derived in Section 6. There are no missing values
for this data so the two statistics necessarily give the same ranking of the genes. The
ordinary t-statistics are on 3 degrees of freedom while the moderated t are on 7.17. The
moderated t-statistic method here ranks both copies of the knock-out gene BMP2 first
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Table 3: Top 30 genes from the Swirl data

ID Name M -value Ord t Mod t B
control BMP2 -2.21 -23.94 -21.1 7.96
control BMP2 -2.30 -20.20 -20.3 7.78
control Dlx3 -2.18 -21.03 -20.0 7.71
control Dlx3 -2.18 -20.09 -19.6 7.62

fb94h06 20-L12 1.27 30.23 14.1 5.78
fb40h07 7-D14 1.35 17.39 13.5 5.54
fc22a09 27-E17 1.27 21.11 13.4 5.48
fb85f09 18-G18 1.28 20.23 13.4 5.48
fc10h09 24-H18 1.20 28.30 13.2 5.40
fb85a01 18-E1 -1.29 -17.39 -13.1 5.32
fb85d05 18-F10 -2.69 -9.23 -13.0 5.29
fb87d12 18-N24 1.27 16.76 12.8 5.22
control Vox -1.26 -17.22 -12.8 5.20
fb85e07 18-G13 1.23 18.26 12.8 5.18
fb37b09 6-E18 1.31 14.02 12.4 5.02
fb26b10 3-I20 1.09 39.13 12.4 4.97
fb24g06 3-D11 1.33 13.26 12.3 4.96
fc18d12 26-F24 -1.25 -14.42 -12.2 4.89
fb37e11 6-G21 1.23 14.48 12.0 4.80
control fli-1 -1.32 -12.31 -11.9 4.76
control Vox -1.25 -13.24 -11.9 4.71
fb32f06 5-C12 -1.10 -18.52 -11.7 4.63
fb50g12 9-L23 1.16 15.08 11.7 4.63
control vent -1.40 -10.90 -11.7 4.62

fb23d08 2-N16 1.16 14.95 11.6 4.58
fb36g12 6-D23 1.12 13.63 11.0 4.27
control vent -1.41 -9.34 -10.8 4.13
control vent -1.37 -8.98 -10.5 3.91
fb22a12 2-I23 1.05 11.96 10.2 3.76
fb38a01 6-I1 -1.82 -7.54 -10.2 3.75
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and both copies of Dlx3, which is a known target of BMP2, second. Neither the fold
change nor the ordinary t-statistic do this. In general the moderated methods give a
more predictable ranking of the control genes.

9.2 ApoAI

These data are from a study of lipid metabolism by Callow et al (2000) and are available
from

http://www.stat.berkeley.edu/users/terry/zarray/Html/matt.html.

The apolipoprotein AI (ApoAI) gene is known to play a pivotal role in high density
lipoprotein (HDL) metabolism. Mouse which have the ApoAI gene knocked out have
very low HDL cholesterol levels. The purpose of this experiment is to determine how
ApoAI deficiency affects the action of other genes in the liver, with the idea that this
will help determine the molecular pathways through which ApoAI operates.

The experiment compared 8 ApoAI knockout mice with 8 normal C57BL/6 mice,
the control mice. For each of these 16 mice, target mRNA was obtained from liver
tissue and labelled using a Cy5 dye. The RNA from each mouse was hybridized to a
separate microarray. Common reference RNA was labelled with Cy3 dye and used for
all the arrays. The reference RNA was obtained by pooling RNA extracted from the
8 control mice. Although still a simple design, this experiment takes us outside the
replicated array structure considered by Lönnstedt and Speed (2002).

Intensity data was captured from the array images using SPOT software and the
data was normalized using print-tip loess normalization. The normalized intensities
were analyzed for differential expression by fitting a two-parameter linear model, the
parameter of interest measuring the difference between the ApoAI knockout line and
the control mice.

The residual degrees of freedom are dg = 14 for most genes but some have dg as low
as 10. The estimated prior degrees of freedom are d0 = 3.7. The residual degrees of
freedom are relatively large here so the sample variances will be shrunk only slightly and
the moderated and ordinary t-statistics will differ substantially only when the sample
variance is unusually small. The prior variance is s2

0 = 0.048 which is somewhat less
than the median sample variance at 0.064. The unscaled variance for the contrasts of
interest is estimated to be v0 = 3.4 meaning that the typical fold change for differentially
expressed genes is estimated to be about 1.3. Prior limits on v0s

2
0 do not come into play

for these data.
Table 4 shows the top 15 genes as ranked by the B-statistic for the parameter of

interest. The moderated t rank the genes in the same order even though there are a
few missing values for this data. The top gene is ApoAI itself which is heavily down-
regulated as expected. Several of the other genes are closely related to ApoAI. The
top eight genes here have been confirmed to be differentially expressed in the knockout
versus the control line (Callow et al, 2000). For these data the top eight genes stand
out clearly from the other genes and all methods clearly separate these genes from the
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Table 4: Top 15 genes from the ApoAI data

Annotation M -value Ord t Mod t B
Apo AI, lipid-Img -3.17 -23.1 -24.0 15.96
EST highly similar to Apolipoprotein A-I precursor, lipid-UG -3.05 -11.8 -12.9 11.35
Catechol O-Methyltransferase, membrane-bound, brain-Img -1.85 -11.8 -12.5 10.98
EST similar to C-5 Sterol Desaturase, lipid-UG -1.03 -13.0 -11.9 10.52
Apo CIII, lipid-Img -0.93 -10.4 -9.9 8.65
EST highly similar to Apolipoprotein C-III precursor, lipid-UG -1.01 -9.0 -9.1 7.67
EST -0.98 -9.1 -9.1 7.66
Similar to yeast sterol desaturase, lipid-Img -0.95 -7.2 -7.5 5.55
EST similar to fatty acid-binding protein, epidermal, lipid-UG -0.57 -4.4 -4.6 0.63
Clone ID 317638 -0.37 -4.3 -4.0 -0.47
APXL2, 5q-Img -0.42 -4.0 -4.0 -0.56
Estrogen rec 0.42 4.0 3.9 -0.60
Caspase 7, heart-Img -0.30 -4.6 -3.9 -0.64
Psoriasis-associated fatty acid binding protein, lipid-Img -0.84 -3.6 -3.9 -0.69
Fatty acid-binding protein, epidermal, lipid-UG -0.64 -3.6 -3.8 -0.84

others. The B-statistic for example drops from 5.55 to 0.63 from the 8th to the 9th
ranked gene.

10 Software

The methods described in this paper, including linear models and contrasts as well
as moderated t and F statistics and posterior odds, are implemented in the software
package Limma for the R computing environment (Smyth et al, 2003). Limma is part
of the Bioconductor project at http://www.bioconductor.org (Gentleman et al, 2003).
The Limma software has been tested on a wide range of microarray data sets from
many different facilities and has been used routinely at the author’s institution since
the middle of 2002.
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Appendix: Inversion of Trigamma Function

In this appendix we solve ψ′(y) = x for y where x > 0 by deriving a Newton iteration
with guaranteed and rapid convergence.

Define f(y) = 1/ψ′(y). The function f is nearly linear and convex for y > 0,
satisfying f(0) = 0 and asymptoting to f(y) = y − 0.5 as y →∞. The first derivative

f ′(y) = − ψ′′(y)

ψ′(y)2

is strictly increasing from f ′(0) = 0 to f ′(∞) = 1. This means that the Newton iteration
to solve f(y) = z for y is monotonically convergent provided that the starting value y0

satisfies f(y0) ≥ z. Such a starting value is provided by y0 = 0.5 + z.
The complete Newton iteration to solve ψ′(y) = x is as follows. Set y0 = 0.5 + 1/x.

Then iterate yi+1 = yi + δi with δi = ψ′(yi){1−ψ′(yi)/x}/ψ′′(yi) until −δi/y < ε where
ε is a small positive number. The step δi is strictly negative unless ψ′(yi) = x. Using
64-bit double precision arithmetic, ε = 10−8 is adequate to achieve close to machine
precision accuracy. To avoid overflow or underflow in floating point arithmetic, we can
set y = 1/

√
x when x > 107 and y = 1/x when x < 10−6 instead of performing the

iteration. Again these choices are adequate for nearly full precision in 64-bit arithmetic.
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