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Abstract

Statistics has moved beyond the frequentist-Bayesian controversies

of the past. Where does this leave our ability to interpret results? I

suggest that a philosophy compatible with statistical practice, labelled

here statistical pragmatism, serves as a foundation for inference. Sta-

tistical pragmatism is inclusive and emphasizes the assumptions that

connect statistical models with observed data. I argue that introduc-

tory courses often mis-characterize the process of statistical inference

and I propose an alternative “big picture” depiction.
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1 INTRODUCTION

The protracted battle for the foundations of statistics, joined vociferously

by Fisher, Jeffreys, Neyman, Savage, and many disciples, has been deeply

illuminating, but it has left statistics without a philosophy that matches

contemporary attitudes. Because each camp took as its goal exclusive own-

ership of inference, each was doomed to failure. We have all, or nearly all,

moved past these old debates, yet our textbook explanations have not caught

up with the eclecticism of statistical practice.

The difficulties go both ways. Bayesians have denied the utility of con-

fidence and statistical significance, attempting to sweep aside the obvious

success of these concepts in applied work. Meanwhile, for their part, fre-

quentists have ignored the possibility of inference about unique events despite

their ubiquitous occurrence throughout science. Furthermore, intepretations

of posterior probability in terms of subjective belief, or confidence in terms

of long-run frequency, give students a limited and sometimes confusing view

of the nature of statistical inference. When used to introduce the expres-

sion of uncertainty based on a random sample, these caricatures forfeit an

opportunity to articulate a fundamental attitude of statistical practice.

Most modern practitioners have, I think, an open-minded view about

alternative modes of inference, but are accutely aware of theoretical assump-

tions and the many ways they may be mistaken. I would suggest that it

makes more sense to place in the center of our logical framework the match

or mis-match of theoretical assumptions with the real world of data. This, it
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seems to me, is the common ground that Bayesian and frequentist statistics

share; it is more fundamental than either paradigm taken separately; and

as we strive to foster widespread understanding of statistical reasoning, it is

more important for beginning students to appreciate the role of theoretical

assumptions than for them to recite correctly the long-run interpretation of

confidence intervals. With the hope of prodding our discipline to right a

lingering imbalance, I attempt here to describe the dominant contemporary

philosophy of statistics.

2 STATISTICAL PRAGMATISM

I propose to call this modern philosophy statistical pragmatism. I think it is

based on the following attitudes:

1. Confidence, statistical significance, and posterior probability are all

valuable inferential tools.

2. Simple chance situations, where counting arguments may be based on

symmetries that generate equally-likely outcomes (6 faces on a fair die;

52 cards in a shuffled deck), supply basic intuitions about probability.

Probability may be built up to important but less immediately intuitive

situations using abstract mathematics, much the way real numbers are

defined abstractly based on intuitions coming from fractions. Proba-

bility is usefully calibrated in terms of fair bets: another way to say

the probability of rolling a 3 with a fair die is 1/6 is that 5 to 1 odds
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against rolling a 3 would be a fair bet.

3. Long-run frequencies are important mathematically, interpretively, and

pedagogically. However, it is possible to assign probabilities to unique

events, including rolling a 3 with a fair die or having a confidence

interval cover the true mean, without considering long-run frequency.

Long-run frequencies may be regarded as consequences of the law of

large numbers rather than as part of the definition of probability or

confidence.

4. Similarly, the subjective interpretation of posterior probability is im-

portant as a way of understanding Bayesian inference, but it is not

fundamental to its use: in reporting a 95% posterior interval one need

not make a statement such as, “My personal probability of this interval

covering the mean is .95.”

5. Statistical inferences of all kinds use statistical models, which embody

theoretical assumptions. As illustrated in Figure 1, like scientific mod-

els, statistical models exist in an abstract framework; to distinguish

this framework from the real world inhabited by data we may call it a

“theoretical world.” Random variables, confidence intervals, and pos-

terior probabilities all live in this theoretical world. When we use a

statistical model to make a statistical inference we implicitly assert

that the variation exhibited by data is captured reasonably well by the

statistical model, so that the theoretical world corresponds reasonably

well to the real world. Conclusions are drawn by applying a statistical

inference technique, which is a theoretical construct, to some real data.

5



Figure 1 depicts the conclusions as straddling the theoretical and real

worlds. Statistical inferences may have implications for the real world

of new observable phenomena, but in scientific contexts, conclusions

most often concern scientific models (or theories), so that their “real

world” implications (involving new data) are somewhat indirect (the

new data will involve new, and different experiments).

The statistical models in Figure 1 could involve large function spaces or

other relatively weak probabilistic assumptions. Careful consideration of the

connection between models and data is a core component of both the art of

statistical practice and the science of statistical methodology. The purpose

of Figure 1 is to shift the grounds for discussion.

Data
Scientific Models

Statistical Models

Conclusions

Real World Theoretical World

Figure 1: The big picture of statistical inference. Statistical procedures are ab-

stractly defined in terms of mathematics but are used, in conjunction with scientific

models and methods, to explain observable phenomena. This picture emphasizes

the hypothetical link between variation in data and its description using statistical

models.
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Note, in particular, that data should not be confused with random vari-

ables. Random variables live in the theoretical world. When we say things

like, “Let us assume the data are normally distributed” and we proceed to

make a statistical inference, we do not need to take these words literally as

asserting that the data form a random sample. Instead, this kind of language

is a convenient and familiar shorthand for the much weaker assertion that,

for our specified purposes, the variability of the data are adequately consis-

tent with variability that would occur in a random sample. This linguistic

amenity is used routinely in both frequentist and Bayesian frameworks. His-

torically, the distinction between data and random variables, the match of the

model to the data, was set aside, to be treated as a separate topic apart from

the foundations of inference. But once the data themselves were considered

random variables, the frequentist-Bayesian debate moved into the theoretical

world: it became a debate about the best way to reason from random vari-

ables to inferences about parameters. This was consistent with developments

elsewhere. In other parts of science, the distinction between quantities to be

measured and their theoretical counterparts within a mathematical theory

can be relegated to a different subject—to a theory of errors. In statistics,

we do not have that luxury, and it seems to me important, from a pragmatic

viewpoint, to bring to center stage the identification of models with data.

The purpose of doing so is that it provides different interpretations of both

frequentist and Bayesian inference, interpretations which, I believe, are closer

to the attitude of modern statistical practitioners.

A familiar practical situation where these issues arise is binary regression.

A classic example comes from a psychophysical experiment conducted by
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Hecht et al. (1942), who investigated the sensitivity of the human visual

system by constructing an apparatus that would emit flashes of light at very

low intensity in a darkened room. Those authors presented light of varying

intensities repeatedly to several subjects and determined, for each intensity,

the proportion of times each subject would respond that he or she had seen

a flash of light. For each subject the resulting data are repeated binary

observations (“yes” perceived vs. “no” did not perceive) at each of many

intensities and, these days, the standard statistical tool to analyze such data

is logistic regression. We might, for instance, use maximum likelihood to

find a 95% confidence interval for the intensity of light at which the subject

would report perception with probability p = .5. Because the data reported

by Hecht et al. involved fairly large samples, we would obtain essentially the

same answer if instead we applied Bayesian methods to get an interval having

95% posterior probability. But how should such an interval be interpreted?

A more recent example comes from DiMatteo, Genovese, and Kass (2001),

who illustrated a new nonparametric regression method called Bayesian adap-

tive regression splines (BARS) by analyzing neural firing rate data from in-

ferotemporal cortex of a macaque monkey. The data came from a study

ultimately reported by Rollenhagen and Olson (2005), which investigated

the differential response of individual neurons under two experimental con-

ditions. Figure 2 displays BARS fits under the two conditions. One way

to quantify the discrepancy between the fits is to estimate the drop in firing

rate from peak (the maximal firing rate) to the trough immediately following

the peak in each condition. Let us call these peak minus trough differences,

under the two conditions, φ1 and φ2. Using BARS, DiMatteo, Genovese,
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Figure 2: (A) BARS fits to a pair of peri-stimulus time histograms displaying

neural firing rate of a particular neuron under two alternative experimental

conditions. (B) The two BARS fits are overlaid for ease of comparison.

and Kass, reported a posterior mean of φ̂1 − φ̂2 = 50.0 with posterior stan-

dard deviation (±20.8). In follow-up work, Wallstrom, Liebner, and Kass

(2008) reported very good frequentist coverage probability of 95% posterior

probability intervals based on BARS for similar quantities under simulation

conditions chosen to mimic such experimental data. Thus, a BARS-based

posterior interval could be considered from either a Bayesian or frequentist

point of view. Again we may ask how such an inferential interval should be

interpreted.
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3 INTERPRETATIONS

Statistical pragmatism involves mildly altered interpretations of frequentist

and Bayesian inference. For definiteness I will discuss the paradigm case

of confidence and posterior intervals for a normal mean based on a sample

of size n, with the standard deviation being known. Suppose that we have

n = 49 observations that have a sample mean equal to 10.2.

Frequentist assumptions: Suppose X1, X2, . . . , Xn are i.i.d. ran-

dom variables from a normal distribution with mean µ and stan-

dard deviation σ = 1. In other words, suppose X1, X2, . . . , Xn

form a random sample from a N(µ, 1) distribution.

Noting that x̄ = 10.2 and
√

49 = 7 we define the inferential interval

I = (10.2 − 2

7
, 10.2 +

2

7
).

The interval I may be regarded as a 95% confidence interval. I now contrast

the standard frequentist interpretation with the pragmatic interepretation.

Frequentist interpretation of confidence interval: Under the as-

sumptions above, if we were to draw infinitely many random

samples from a N(µ, 1) distribution, 95% of the corresponding

confidence intervals (X̄ − 2
7 , X̄ + 2

7) would cover µ.

Pragmatic interpretation of confidence interval: If we were to

draw a random sample according to the assumptions above, the
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resulting confidence interval (X̄ − 2
7 , X̄ + 2

7) would have proba-

bility .95 of covering µ. Because the random sample lives in the

theoretical world, this is a theoretical statement. Nonetheless,

substituting

X̄ = x̄ (1)

together with

x̄ = 10.2 (2)

we obtain the interval I, and are able to draw useful conclusions

as long as our theoretical world is aligned well with the real world

that produced the data.

The main point here is that we do not need a long-run interpretation of

probability, but we do have to be reminded that the unique-event probability

of .95 remains a theoretical statement because it applies to random variables

rather than data. Let us turn to the Bayesian case.

Bayesian assumptions: Suppose X1, X2, . . . , Xn form a random

sample from a N(µ, 1) distribution and the prior distribution of

µ is N(µ0, τ 2), with τ 2 >> 1
49 and 49τ 2 >> |µ0|.

The posterior distribution of µ is normal, the posterior mean becomes

µ̄ =
τ 2

1
49 + τ 2

10.2 +
1
49

1
49 + τ 2

µ0

and the posterior variance is

v =
(
49 +

1

τ 2

)−1
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but because τ 2 >> 1
49 and 49τ 2 >> |µ0| we have

µ̄ ≈ 10.2

and

v ≈ 1

49
.

Therefore, the inferential interval I defined above has posterior probability

.95.

Bayesian interpretation of posterior interval: Under the assump-

tions above, the probability that µ is in the interval I is .95.

Pragmatic interpretation of posterior interval: If the data were

a random sample for which (2) holds, i.e., x̄ = 10.2, and if the

assumptions above were to hold, then the probability that µ is in

the interval I would be .95. This refers to a hypothetical value x̄

of the random variable X̄, and because X̄ lives in the theoretical

world the statement remains theoretical. Nonetheless, we are able

to draw useful conclusions from the data as long as our theoretical

world is aligned well with the real world that produced the data.

Here, although the Bayesian approach escapes the indirectness of confidence

within the theoretical world, it can not escape it in the world of data analysis

because there remains the additional layer of identifying data with random

variables. According to the pragmatic interpretation, the posterior is not,

literally, a statement about the way the observed data relate to the unknown

parameter µ because those objects live in different worlds. The language of
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Bayesian inference, like the language of frequentist inference, takes a conve-

nient shortcut by blurring the distinction between data and random variables.

The commonality between frequentist and Bayesian inferences is the use

of theoretical assumptions, together with a subjunctive statement. In both

approaches a statistical model is introduced—in the Bayesian case the prior

distributions become part of what I am here calling the model—and we may

say that the inference is based on what would happen if the data were to be

random variables distributed according to the statistical model. This model-

ing assumption would be reasonable if the model were to describe accurately

the variation in the data.

4 IMPLICATIONS FOR TEACHING

It is important for students in introductory statistics courses to see the sub-

ject as a coherent, principled whole. Instructors, and textbook authors, may

try to help by providing some notion of a “big picture.” Often this is done

literally, with an illustration such as Figure 3 (e.g., Lovett, Meyer, and Thille,

2008). This kind of illustration can be extremely useful if referenced repeat-

edly throughout a course.

Figure 3 represents a standard story about statistical inference. Fisher

introduced the idea of a random sample drawn from a hypothetical infinite

population, and Neyman and Pearson’s work encouraged subsequent math-

ematical statisticians to drop the word “hypothetical” and instead describe
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POPULATION

SAMPLE

Inference

Figure 3: The big picture of statistical inference according to the standard con-

ception. Here, a random sample is pictured as a sample from a finite population.

statistical inference as analogous to simple random sampling from a finite

population. This is the concept that Figure 3 tries to get across. My com-

plaint is that it is not a good general description of statistical inference, and

my claim is that Figure 1 is more accurate. For instance, in the psychophys-

ical example of Hecht et al. discussed in Section 2, there is no population of

“yes” or “no” replies from which a random sample is drawn. We do not need

to struggle to make an analogy with a simple random sample. Furthermore,

any thoughts along these lines may draw attention away from the most im-

portant theoretical assumptions, such as independence among the responses.

Figure 1 is supposed to remind students to look for the important assump-

tions, and ask whether they describe the variation in the data reasonably

accurately..
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One of the reasons the population and sample picture in Figure 3 is

so attractive pedagogically is that it reinforces the fundamental distinction

between parameters and statistics through the terms population mean and

sample mean. To my way of thinking, this terminology, inherited from Fisher,

is unfortunate. Instead of “population mean” I would much prefer theoretical

mean, because it captures better the notion that a theoretical distribution is

being introduced, a notion that is reinforced by Figure 1.

I have found Figure 1 helpful in teaching basic statistics. For instance,

when talking about random variables I like to begin with a set of data, where

variation is displayed in a histogram, and then say that probability may be

used to describe such variation. I then tell the students we must introduce

mathematical objects called random variables, and in defining them and ap-

plying the concept to the data at hand, I immediately acknowledge that this

is an abstraction, while also stating that—as the students will see repeatedly

in many examples—it can be an extraordinarily useful abstraction whenever

the theoretical world of random variables is aligned well with the real world

of the data.

I have also used Figure 1 in my classes when describing attitudes toward

data analysis that statistical training aims to instill. Specifically, I define

statistical thinking, as in Brown and Kass (2009), to involve two principles:

1. Statistical models of regularity and variability in data may be used to

express knowledge and uncertainty about a signal in the presence of

noise, via inductive reasoning.
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2. Statistical methods may be analyzed to determine how well they are

likely to perform.

Principle 1 identifies the source of statistical inference to be the hypothesized

link between data and statistical models. In explaining, I explicitly distin-

guish the use of probability to describe variation and to express knowledge.

A probabilistic description of variation would be “The probability of rolling

a 3 with a fair die is 1/6” while an expression of knowledge would be “I’m

90% sure the capital of Wyoming is Cheyenne.” These two sorts of state-

ments, which use probability in different ways, are sometimes considered to

involve two different kinds of probability, which have been called “aleatory

probability” and “epistemic probability.” Bayesians merge these, applying

the laws of probability to go from quantitative description to quantified be-

lief, but in every form of statistical inference alleatory probability is used,

somehow, to make epistemic statements. This is Principle 1. Principle 2 is

that the same sorts of statistical models may be used to evaluate statisti-

cal procedures—though in the classroom I also explain that performance of

procedures is usually investigated under varying circumstances.

For somewhat more advanced audiences it is possible to elaborate, de-

scribing in more detail the process trained statisticians follow when reason-

ing from data. A big picture of the overall process is given in Figure 4.

That figure indicates the hypothetical connection between data and random

variables, between key features of unobserved mechansims and parameters,

and between real-world and theoretical conclusions. It further indicates that

data display both regularity (which is often described in theoretical terms
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as a “signal,” sometimes conforming to simple mathematical descriptions or

“laws”) and unexplained variability, which is usually taken to be “noise.”

The figure also includes the components exploratory data analysis—EDA—

and algorithms, but the main message of Figure 4, given by the labels of the

two big boxes, is the same as that in Figure 1.

Conclusions Conclusions

Experiments 
      or

Observations key features

Rules of Probability

noiseparameters

Formal

REAL WORLD THEORETICAL WORLD

random
variables

EDA
Algorithms

Data

regularity       variability

Statistical Methods

Statistical Models
Mechanisms

Unobserved

Figure 4: A more elaborate big picture, reflecting in greater detail the process

of statistical inference. As in Figure 1, there is a hypothetical link between data

and statistical models but here the data are connected more specifically to their

representation as random variables.

17



5 DISCUSSION

According to my understanding, laid out above, statistical pragmatism has

two main features: it is eclectic and it emphasizes the assumptions that

connect statistical models with observed data. The pragmatic view acknowl-

edges that both sides of the frequentist-Bayesian debate made important

points. Bayesians scoffed at the artificiality in using sampling from a finite

population to motivate all of inference, and in using long-run behavior to

define characteristics of procedures. Within the theoretical world, posterior

probabilities are more direct, and therefore seemed to offer much stronger

inferences. Frequentists bristled, pointing to the subjectivity of prior dis-

tributions. Bayesians responded by treating subjectivity as a virtue on the

grounds that all inferences are subjective yet, while there is a kernel of truth

in this observation—we are all human beings, making our own judgments—

subjectivism was never satisfying as a logical framework: an important pur-

pose of the scientific enterprise is to go beyond personal decision-making.

Nonetheless, from a pragmatic perspective, while the selection of prior prob-

abilities is important, their use is not so problematic as to disqualify Bayesian

methods, and in looking back on history the introduction of prior distribu-

tions may not have been the central bothersome issue it was made out to be.

Instead, it seems to me, the really troubling point for frequentists has been

the Bayesian claim to a philosophical high ground, where compelling infer-

ences could be delivered at negligible logical cost. Frequentists have always

felt that no such thing should be possible. The difficulty begins not with the

introduction of prior distributions but with the gap between models and data,
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which is neither frequentist nor Bayesian. Statistical pragmatism avoids this

irritation by acknowledging explicitly the tenuous connection between the

real and theoretical worlds. As a result, its inferences are necessarily sub-

junctive. We speak of what would be inferred if our assumptions were to

hold. The inferential bridge is traversed, by both frequentist and Bayesian

methods, when we act as if the data were generated by random variables. In

the normal mean example discussed in Section 4, the key step involves the

conjunction of the two equations (1) and (2). Strictly speaking, according

to statistical pragmatism, Equation (1) lives in the theoretical world while

Equation (2) lives in the real world; the bridge is built by allowing x̄ to refer

to both the theoretical value of the random variable and the observed data

value.

In pondering the nature of statistical inference I am, like others, guided

partly by past and present sages (for an overview see Barnett, 1999), but also

by my own experience and by watching many colleagues in action. Many of

the sharpest, and most vicious Bayes-frequentist debates took place during

the dominance of pure theory in academia. Statisticians are now more in-

clined to argue about the extent to which a method succeeds in solving a

data analytic problem. Much statistical practice revolves around getting

good estimates and standard errors in complicated settings where statistical

uncertainty is smaller than the unquantified aggregate of many other uncer-

tainties in scientific investigation. In such contexts, the distinction between

frequentist and Bayesian logic becomes unimportant and contemporary prac-

tioners move freely between frequentist and Bayesian techniques using one or

the other depending on the problem. Thus, in a review of statistical methods
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in neurophysiology in which my colleagues and I discussed both frequentist

and Bayesian methods (Kass, Ventura, and Brown, 2005), not only did we

not emphasize this dichotomy but we didn’t even mention the distinction

between the approaches or their inferential interpretations.

In fact, in my first publication involving analysis of neural data (Olson, et

al., 2001) we reported more than a dozen different statistical analyses, some

frequentist, some Bayesian. Futhermore, methods from the two approaches

are sometimes glued together in a single analysis. For example, to examine

several neural firing-rate intensity functions λ1(t), . . . , λp(t), assumed to be

smooth functions of time t, Behseta et al. (2007) developed a frequentist

approach to testing the hypothesis H0 : λ1(t) = · · · = λp(t), for all t, that

incorporated BARS smoothing. Such hybrids are not uncommon, and they

do not force a practitioner to walk around with mutually inconsistent in-

terpretations of statistical inference. Figure 1 provides a general framework

that encompasses both of the major approaches to methodology while em-

phasizing the inherent gap between data and modeling assumptions, a gap

that is bridged through subjunctive statements. The advantage of the prag-

matic framework is that it considers frequentist and Bayesian inference to be

equally respectable and allows us to have a consistent interpretation, with-

out feeling as if we must have split personalities in order to be competent

statisticians. More to the point, this framework seems to me to resemble

more closely what we do in practice: statisticians offer inferences couched in

a cautionary attitude. Perhaps we might even say that most practitioners

are subjunctivists.
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I have emphasized subjunctive statements partly because, on the frequen-

tist side, they eliminate any need for long-run interpretation. For Bayesian

methods they eliminate reliance on subjectivism. The Bayesian point of view

was articulated admirably by Jeffreys (see Robert, Chopin, and Rousseau,

2009, and accompanying discussion) but it became clear, especially from

the arguments of Savage and subsequent investigations in the 1970s, that the

only solid foundation for Bayesianism is subjective (see Kass and Wasserman,

1995, and Kass, 2008). Statistical pragmatism pulls us out of that solopsistic

quagmire. On the other hand, I do not mean to imply that it really doesn’t

matter what approach is taken in a particular instance. Current attention

frequently focuses on challenging, high-dimensional data sets where frequen-

tist and Bayesian methods may differ. Statistical pragmatism is agnostic on

this. Instead, procedures should be judged according to their performance

under theoretical conditions thought to capture relevant real-world varia-

tion in a particular applied setting. This is where our juxtaposition of the

theoretical world with the real world earns its keep.

I called the story about statistical inference told by Figure 3 “standard”

because it is imbedded in many introductory texts, such as the path-breaking

book by Freedman, Pisani, and Purves (1978) and the excellent and very pop-

ular book by Moore and McCabe (1989). My criticism is that the standard

story misrepresents the way statistical inference is commonly understood by

trained statisticians, portraying it as analogous to simple random sampling

from a finite population. As I noted, the population vs. sampling termi-

nology comes from Fisher, but I believe the conception in Figure 1 is closer

to Fisher’s conception of the relationship between theory and data. Fisher
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spoke pointedly of a hypothetical infinite population, but in the standard story

of Figure 3 the “hypothetical” part of this notion—which is crucial to the

concept—gets dropped (confer also Lenhard, 2006). I understand Fisher’s

“hypothetical” to connote what I have here called “theoretical.” Fisher did

not anticipate the co-option of his framework and was, in large part for this

reason, horrified by subsequent developments by Neyman and Pearson. The

terminology “theoretical” avoids this confusion and thus may offer a clearer

representation of Fisher’s idea.1

We now recognize Neyman and Pearson to have made permanent, im-

portant contributions to statistical inference through their introduction of

hypothesis testing and confidence. From today’s vantage point, however,

their behavioral interpretation seems quaint, especially when represented by

their famous dictum, “We are inclined to think that as far as a particular

hypothesis is concerned, no test based upon the theory of probability can by

itself provide any valuable evidence of the truth or falsehood of that hypoth-

esis.” Nonetheless, that interpretation seems to have inspired the attitude

behind Figure 3. In the extreme, one may be led to insist that statistical

inferences are valid only when some chance mechanism has generated the

data. The problem with the chance-mechanism conception is that it applies

to a rather small part of the real world, where there is either actual random

sampling or situations described by statistical or quantum physics. I believe

the chance-mechanism conception errs in declaring that data are assumed to

1Fisher also introduced populations partly because he used long-run frequency as a

foundation for probability, which statistical pragmatism considers unnecessary.
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be random variables, rather than allowing the gap of Figure 1 to be bridged2

by statements such as (2). In saying this I am trying to listen carefully to the

voice in my head that comes from the late David Freedman (see Freedman

and Ziesel, 1988). I imagine he might call crossing this bridge, in the absence

of an explicit chance mechanism, a leap of faith. In a strict sense I am in-

clined to agree. It seems to me, however, that it is precisely this leap of faith

that makes statistical reasoning possible in the vast majority of applications.

Statistical models that go beyond chance mechanisms have been central

to statistical inference since Fisher and Jeffreys, and their role in reasoning

has been considered by many authors (e.g., Cox, 1990, Lehmann, 1990).

An outstanding issue is the extent to which statistical models are like the

theoretical models used throughout science (see Stanford, 2006). I would

argue, on the one hand, that they are similar: the most fundamental belief

of any scientist is that the theoretical and real worlds are aligned. On the

other hand, as observed in Section 2, statistics is unique in having to face the

gap between theoretical and real worlds every time a model is applied and,

it seems to me, this is a big part of what we offer our scientific collaborators.

Statistical pragmatism recognizes that all forms of statisical inference make

assumptions, assumptions which can only be tested very crudely (with such

things as goodness-of-fit methods) and can almost never be verified. This is

not only at the heart of statistical inference, it is also the great wisdom of

our field.

2Because probability is introduced with the goal of drawing conclusions via statistical

inference, it is, in a philosophical sense, “instrumental.” See Glymour (2001).
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