
Survival Analysis: A Primer

David A. FREEDMAN

In this article, I will discuss life tables and Kaplan–Meier

estimators, which are similar to life tables. Then I turn to

proportional-hazards models, aka “Cox models.” Along the

way, I will look at the efficacy of screening for lung cancer,

the impact of negative religious feelings on survival, and the

efficacy of hormone replacement therapy.

What conclusions should be drawn about statistical practice?

Proportional-hazards models are frequently used to analyze data

from randomized controlled trials. This is a mistake. Random-

ization does not justify the models, which are rarely informa-

tive. Simpler analytic methods should be used first.

With observational studies, the models would help us dis-

entangle causal relations if the assumptions behind the mod-
els could be justified. Justifying those assumptions, however, is

fraught with difficulty.
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1. CROSS-SECTIONAL LIFE TABLES

Cross-sectional life tables date back to John Graunt and Ed-

mond Halley in the 17th century. There were further develop-

ments by Daniel Bernoulli in 1760, when he computed what life

expectancy would be—if smallpox were eliminated. His calcu-

lations made a key assumption, to be discussed later: the inde-

pendence of competing risks.

Here is a simple discrete case to illustrate the idea behind

cross-sectional life tables (“cross-sectional” because they can

be computed from vital statistics available at one point in time,

covering people of all ages). There are Nt people alive at the
beginning of age t , but nt of them die before reaching age

t + 1. The death probability in year t of life is nt/Nt , the sur-
vival probability is 1−nt/Nt . The probability at birth (“age 0”)
of surviving T years or more is estimated as

T−1∏
t=0

(
1− nt

Nt

)
. (1)

There are corrections to make if you want to get from dis-

crete time to continuous time; this used to be a major topic in

applied mathematics. However, the big assumption in construct-

ing the life table is that death rates do not change over time. If

there is a trend, the life table will be biased. From Bernoulli’s
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day onwards, death rates have been going down in the west-

ern world. This was the beginning of the demographic transi-

tion (Kirk 1996). Therefore, cross-sectional life tables under-

state life expectancy.

2. HAZARD RATES

Let τ be a positive random variable—the waiting time for
failure. Suppose τ has a continuous positive density f . The dis-
tribution function is F(t) = ∫ t

0 f (u) du, with F
′ = f . The

survival function is S = 1− F . The hazard rate is

h(t) = f (t)
1− F(t)

. (2)

The intuition behind the formula is that h(t) dt represents the
conditional probability of failing in the interval (t, t+dt), given
survival until time t .
We can recover f , S, and F from the hazard rate:

S(t) = 1− F(t) = exp
(
−

∫ t

0

h(u) du
)
, (3)

f (t) = h(t)S(t). (4)

It follows that
∫ ∞
0 h(u) du = ∞. In many studies, however, the

failure rate is low. Then F(t) ≈ 0 , S(t) ≈ 1 , and f (t) ≈ h(t)
over the observable range of t’s.
Here are four types of failure, the first two drawn from con-

sulting projects, the others to be discussed later on. (i) A light

bulb burns out. (This may seem too trite to be true, but the client

was buying a lot of bulbs: which brand to buy, and when to re-

lamp?) (ii) A financial institution goes out of business. (iii) A

subject in a clinical trial dies. (iv) A subject in a clinical trial

dies of a prespecified cause, for instance, lung cancer.

Some examples may help to clarify the mathematics.

Example 1. If τ is standard exponential, P(τ > t) =
exp(−t) is the survival function, and the hazard rate is h ≡ 1.

Example 2. If τ is Weibull, the survival function is by defini-
tion

P(τ > t) = exp(−atb). (5)

The density is

f (t) = abtb−1 exp(−atb), (6)

and the hazard rate is

h(t) = abtb−1. (7)

Here, a > 0 and b > 0 are parameters. The parameter b controls
the shape of the distribution, and a controls the scale. If b > 1,

the hazard rate keeps going up: the longer you live, the shorter

your future life will be. If b < 1, the hazard rate goes down:
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the longer you live, the longer your future life will be. The case

b = 1 is the exponential: if you made it to time t , you still have
the same exponential amount of lifetime left ahead of you.

Example 3. If c and d are positive constants andU is uniform
on the unit interval, then c(− logU )d is Weibull: a = (1/c)1/d
and b = 1/d.

Example 4. If τi are independent with hazard rates hi , the
minimum of the τ ’s has hazard rate

∑
i hi .

Turn now to the independence of competing risks. We may

have two kinds of failure, like death from heart disease or death

from cancer. Independence of competing risks means that the

time to death from heart disease is independent of the time to

death from cancer.

There may be a censoring time c as well as the failure time
τ . Independence of competing risks means that c and τ are in-
dependent. The chance that τ > t + s given τ > t and c = t
equals the chance that τ > t + s given τ > t , without the c.
If they lose track of you, that does not change the probability

distribution of your time to failure. (Independence of c and τ is
often presented as a separate condition, rather than being folded

into the independence of competing risks.)

3. THE KAPLAN–MEIER ESTIMATOR

In a clinical trial, t is usually time on test, that is, time from
randomization. Time on test is to be distinguished from age and

calendar time (“period”). The analysis here assumes stationar-

ity: failure times are determined by time on test, and are not

influenced by age or period.

We also have to consider censoring, which occurs for a va-

riety of reasons. For instance, one subject may withdraw from

the study. Another subject may get killed by an irrelevant cause:

if failure is defined as death from heart disease, and the subject

gets run over by a bus, this is not failure, this is censoring. (At

least, that’s the party line.) A third subject may be censored be-

cause he survived until the end of the study.

Subjects may be censored at late times if they were early en-

trants to the trial. Conversely, early censoring is probably com-

mon among late entrants. We are going to lump all forms of

censoring together, and we are going to assume independence

of competing risks.

Suppose there are no ties (no two subjects fail at the same

time). At any particular time t with a failure, let Nt be the num-
ber of subjects on test “at time t−,” that is, just before time t .
The probability of surviving from t− to t+ is 1 − 1/Nt . You
just multiply these survival probabilities to get a monotone de-

creasing function, which is flat between failures, but goes down

a little bit at each failure:

T →
∏
t≤T

(
1− 1

Nt

)
. (8)

This is the Kaplan–Meier (1958) survival curve. Notice that Nt
may go down between failures, at times when subjects are cen-

sored. However, the Kaplan–Meier curve does not change at

censoring times. Of course, censored subjects are excluded from

future Nt ’s, and do not count as failures either. The modification
for handling ties is pretty obvious.

In a clinical trial, we would draw one curve for the treatment

group and one for the control group. If treatment postpones time

to failure, the survival curve for the treatment group will fall off

more slowly. If treatment has no effect, the two curves will be

statistically indistinguishable.

What is the curve estimating? If subjects in treatment are IID

with a common survival function, that is what we will be get-

ting, and likewise for the controls. What if subjects are not IID?

Under suitable regularity conditions, with independent subjects,

independence of competing risks, and stationarity, the Kaplan–

Meier curve for the treatment group estimates the average curve

we would see if all subjects were assigned to treatment. Simi-

larly for the controls.

Kaplan–Meier estimators are subject to bias in finite samples.

Technical details behind consistency results are not simple; ref-

erences will be discussed below. Among other things, the times

t at which failures occur are random. The issue is often finessed
(in this article too).

The Kaplan–Meier curve is like a cross-sectional life table,

but there is some difference in perspective. The context for the

life table is grouped cross-sectional data. The context for the

Kaplan–Meier curve is longitudinal data on individual subjects.

4. AN APPLICATION OF THE

KAPLAN–MEIER ESTIMATOR

If cancer can be detected early enough, before it has metas-

tasized, there may be improved prospects for effective ther-

apy. That is the situation for breast cancer and cervical cancer,

among other examples. Claudia Henschke et al. (2006) tried to

make the case for lung cancer. This was an intriguing but un-

successful application of survival analysis.

Henschke and her colleagues screened 31,567 asymptomatic

persons at risk for lung cancer using low-dose CT (computer-

ized tomography), resulting in a diagnosis of lung cancer in 484

participants. These 484 subjects had an estimated ten-year sur-

vival rate of 80%. Of the 484 subjects, 302 had stage I cancer

and were resected within one month of diagnosis. The resected

group had an estimated ten-year survival rate of 92%. The dif-

ference between 92% and 80% was reported as highly signifi-

cant.

Medical terminology. Cancer has metastasized when it has
spread to other organs. Stage describes the extent to which

a cancer has progressed. Stage I cancer is early-stage cancer,

which usually means small size, limited invasiveness, and a

good prognosis. In a resection, the surgeon opens the chest cav-

ity and removes the diseased portion of the lung. Adenocarci-

nomas (referred to in the following) are cancers that appear to

have originated in glandular tissue.

Survival curves were computed by the Kaplan–Meier

method: see Figure 2 in Henschke et al. (2006), reproduced

here for ease of reference. Tick marks usually show censoring.

Deaths from causes other than lung cancer were censored, but

a lot of the censoring is probably because the subjects survived
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Figure 2 in Henschke et al. (2006). Reprinted with permission. Copy-

right c©2006 Massachusetts Medical Society. All rights reserved.

until the end of the study. In this respect among others, crucial

details are omitted. The authors concluded that

CT screening . . . can detect clinical stage I lung can-
cer in a high proportion of persons when it is cur-

able by surgery. In a population at risk for lung can-

cer, such screening could prevent some 80% of deaths

from lung cancer. [p. 1769]

The evidence is weak. For one thing, conventional asymp-

totic confidence intervals on the Kaplan–Meier curve are shaky,

given the limited amount of data after month 60. (Remember,

late entrants to the trial will be at risk only for short periods

of time.) For another thing, why are the authors looking only

at deaths from lung cancer rather than total mortality? Next,

stage I cancers—the kind detected by the CT scan—are small.

This augurs well for long-term survival, treatment or no treat-

ment. Even more to the point, the cancers found by screening

are likely to be slow-growing. That is “length bias.”

Table 3 in Henschke et al. shows that most of the cancers were

adenocarcinomas; these generally have a favorable prognosis.

Moreover, the cancer patients who underwent resection were

probably healthier to start with than the ones who did not. In

short, the comparison between the resection group and all lung

cancers is uninformative. One of the things lacking in this study

is a reasonable control group.

If screening speeds up detection, that will increase the time

from detection to death—even if treatment is ineffective. The

increase is called “lead time” or “lead-time bias.” (To measure

the effectiveness of screening, you might want to know the time

from detection to death, net of lead time.) Lead time and length

bias are discussed in the context of breast cancer screening by

Shapiro et al. (1988).

When comparing their results to population data, Henschke et

al. measured benefits as the increase in time from diagnosis to

death. This is misleading, as we have just noted. CT scans speed

up detection, but we do not know whether that helps the patients

live longer, because we do not know whether early treatment is

effective. Henschke et al. are assuming what needs to be proved.

For additional discussion, see Patz et al. (2000) and Welch et

al. (2007).

Lead time bias and length bias are problems for observa-

tional studies of screening programs. Well-run clinical trials

avoid such biases, if benefits are measured by comparing death

rates among those assigned to screening and those assigned to

the control group. This is an example of the intention-to-treat

principle (Hill 1961, p. 259).

5. THE PROPORTIONAL-HAZARDS MODEL

IN BRIEF

Assume independence of competing risks; subjects are inde-

pendent of one another; there is a baseline hazard rate h > 0,

which is the same for all subjects. There is a vector of subject-

specific characteristics Xit , which is allowed to vary with time.
The subscript i indexes subjects and t indexes time. There is
a parameter vector β, which is assumed to be the same for all
subjects and constant over time. Time can be defined in sev-

eral ways. Here, it means time on test; but see Thiébaut and

Bénichou (2004). The hazard rate for subject i is assumed to be

h(t) exp(Xitβ). (9)

No intercept is allowed: the intercept would get absorbed into

h. The most interesting entry in Xit is usually a dummy for
treatment status. This is 1 for subjects in the treatment group,

and 0 for subjects in the control group. We pass over all techni-

cal regularity conditions in respectful silence.

The likelihood function is not a thing of beauty. To make this

clear, we can write down the log-likelihood function L(h, β),
which is a function of the baseline hazard rate h and the pa-
rameter vector β. For the moment, we will assume there is no
censoring and the Xit are constant (i.e., nonstochastic). Let τi
be the failure time for subject i . By (3)–(4),

L(h, β) =
n∑
i=1
log fi (τi |h, β), (10a)

where

fi (t |h, β) = hi (t |β) exp
(
−

∫ t

0

hi (u|β) du
)
, (10b)

and

hi (t |β) = h(t) exp(Xitβ). (10c)

This is a mess, and maximizing over the infinite-dimensional

parameter h is a daunting prospect.
Cox (1972) suggested proceeding another way. Suppose there

is a failure at time t . Remember, t is time on test, not age or pe-
riod. Consider the set Rt of subjects who were on test just before
time t . These subjects have not failed yet, or been censored; so
they are eligible to fail at time t . Suppose it was subject j who
failed. Heuristically, the chance of it being subject j rather than
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anybody else in the risk set is

h(t) exp(X jtβ) dt∑
i∈Rt h(t) exp(Xitβ) dt

= exp(X jtβ)∑
i∈Rt exp(Xitβ)

. (11)

Subject j is in numerator and denominator both, and by assump-
tion there are no ties: ties are a technical nuisance. The baseline

hazard rate h(t) and the dt cancel! Now we can do business.
Multiply the right side of (11) over all failure times to get

a “partial likelihood function.” This is a function of β. Take
logs and maximize to get β̂. Compute the Hessian—the sec-
ond derivative matrix of the log partial likelihood—at β̂. The
negative of the Hessian is the “observed partial information.”

Invert this matrix to get the estimated variance-covariance ma-

trix for the β̂’s. Take the square root of the diagonal elements to
get asymptotic SEs.

Partial likelihood functions are not real likelihood functions.

The harder you think about (11) and the multiplication, the less
sense it makes. The chance of what event, exactly? Conditional

on what information? Failure times are random, not determin-

istic; this is ignored by (11). The multiplication is bogus. For
example, there is no independence: if Harriet is at risk at time

T , she cannot have failed at an earlier time t . Still, there is math-
ematical theory to show that β̂ performs like a real MLE, under
the regularity conditions that we have passed over; also see Ex-

ample 5 below.

Proportional-hazards models are often used in observational

studies and in clinical trials. The latter fact is a real curiosity.

There is no need to adjust for confounding if the trial is ran-

domized. Moreover, in a clinical trial, the proportional-hazards

model makes its calculations conditional on assignment. The

random elements are the failure times for the subjects. As far as

the model is concerned, the randomization is irrelevant. Equally,

randomization does not justify the model.

5.1 A Mathematical Diversion

Example 5. Suppose the covariates Xit ≡ Xi do not depend
on t and are nonstochastic; for instance, covariates are measured
at recruitment into the trial and are conditioned out. Suppose

there is no censoring. Then the partial likelihood function is the

ordinary likelihood function for the ranks of the failure times.

Kalbfleisch and Prentice (1973) discussed more general results.

Sketch proof . The argument is not completely straightfor-
ward, and all the assumptions will be used. As a matter of no-

tation, subject i has failure time τi . The hazard rate of τi is
h(t) exp(Xiβ), the density is fi (t), and the survival function
is Si (t). Let ci = exp(Xiβ). We start with the case n = 2. Let

C = c1 + c2. Use (3)–(4) to see that

P(τ1 < τ2) =
∫ ∞

0

S2(t) f1(t) dt

= c1
∫ ∞

0

h(t)S1(t)S2(t) dt

= c1
∫ ∞

0

h(t) exp
(
− C

∫ t

0

h(u)du
)
dt. (12)

Last but not least,

C
∫ ∞

0

h(t) exp
(
− C

∫ t

0

h(u)du
)
dt = 1 (13)

by (4). So

P(τ1 < τ2) = c1
c1 + c2 , (14)

as required.

Now suppose n > 2. The chance that τ1 is the smallest of the
τ ’s is c1

c1 + · · · + cn ,

as before: just replace τ2 by min {τ2, . . . , τn}. Given that τ1 = t
and τ1 is the smallest of the τ ’s, the remaining τ ’s are inde-
pendent and concentrated on (t, ∞). If we look at the random
variables τi − t , their conditional distributions will have hazard
rates ci h(t+··· ), so we can proceed inductively. A rigorous treat-
ment might involve regular conditional distributions (Freedman

1983, pp. 347ff). This completes the sketch proof.

Another argument, suggested by Russ Lyons, is to change the

time scale so the hazard rate is identically 1. Under the condi-

tions of Example 5, the transformation t → ∫ t
0 h(u) du reduces

the general case to the exponential case. Indeed, if H is a contin-
uous, strictly increasing function that maps [0, ∞) onto itself,
then H(τi ) has survival function Si

(
H−1).

The mathematics does say something about statistical prac-

tice. At least in the setting of Example 5, and contrary to general

opinion, the model does not use time-to-event data. It uses only

the ranks: which subject failed first, which failed second, and so

forth. That, indeed, is what enables the fitting procedure to get

around problems created by the intractable likelihood function.

6. AN APPLICATION OF THE

PROPORTIONAL-HAZARDS MODEL

Pargament et al. (2001) reported on religious struggle as a

predictor of mortality among very sick patients. Subjects were

596 mainly Baptist and Methodist patients age 55+, hospital-
ized for serious illness at the Duke Medical Center and the

Durham Veterans’ Affairs Medical Center. There was two-year

follow-up, with 176 deaths and 152 subjects lost to follow-up.

Key variables of interest were positive and negative religious

feelings. There was adjustment by proportional hazards for age,

race, gender, severity of illness, . . . , and for missing data.
The main finding reported by Pargament et al. is that negative

religious feelings increase the death rate. The authors say:

Physicians are now being asked to take a spiritual his-

tory . . . . Our findings suggest that patients who indi-
cate religious struggle during a spiritual history may

be at particularly high risk . . . . Referral of these pa-
tients to clergy to help themwork through these issues

may ultimately improve clinical outcomes; further re-

search is needed . . . . [p. 1885]

The main evidence is a proportional-hazards model. Vari-

ables include age (in years), education (highest grade com-

pleted), race, gender, and . . . .

The American Statistician, May 2008, Vol. 62, No. 2 113



Table 1. Hazard Ratios. Pargament et al. (2001).

Religious feelings − 1.06 ∗∗
Religious feelings + 0.98

Age 1.39 ∗∗
Black 1.21

Female 0.71 ∗
Hospital 1.14

Education 0.98

Physical Health

Diagnoses 1.04

ADL 0.98

Patient 0.71 ∗ ∗ ∗
Anesthesiologist 1.54 ∗ ∗ ∗

Mental health

MMSE 0.96

Depression 0.95

Quality of life 1.03

∗ P < .10 ∗∗ P < .05 ∗ ∗ ∗ P < .01

Religious feelings

• Positive and negative religious feelings were measured on
a seven-item questionnaire, the subject scoring 0–3 points

on each item. Two representative items (quoted from the

paper) are:

+ “collaboration with God in problem solving”;
− “decided the devil made this happen.”

Physical Health

• Number of current medical problems, 1–18.
• ADL—Activities of Daily Life. Higher scores mean less
ability to function independently.

• Patient self-rating, poor to excellent.
• Anesthesiologist rating of patient, 0–5 points (where 0 is
healthy, 5 is very sick).

Mental health

• MMSE—Mini-Mental State Examination. Better cogni-
tive function is indicated by higher scores.

• Depression, measured on a questionnaire with 11 items.
• Quality of life is observer-rated on five items.
To review briefly, the baseline hazard rate in the model is a

function of time t on test; this baseline hazard rate gets multi-
plied by eXβ , where X can vary with subject and t . Estimation
is by partial likelihood.

Table 1 shows estimated hazard ratios, that is, ratios of hazard

rates. Age is treated as a continuous variable. The hazard ratio of

1.39 reported in the table is exp(β̂A), where β̂A is the estimated
coefficient for age in the model. The interpretation would be

that each additional year of age multiplies the hazard rate by

1.39. This is a huge effect.

Similarly, the 1.06 is exp(β̂N ), where β̂N is the estimated co-
efficient of the “negative religious feelings” score. The inter-

pretation would be that each additional point on the score mul-

tiplies the hazard rate by 1.06.

The proportional-hazards model is linear on the log scale.

Effects are taken to be constant across people, and multiplica-

tive rather than additive or synergistic. Thus, in combination,

an extra year of age and an extra point on the negative reli-

gious feelings scale are estimated to multiply the hazard rate by

1.39× 1.06.
The crucial questions. The effect is so small—the hazard ra-

tio of interest is only 1.06—that bias should be a real concern.

Was the censoring really independent? Were there omitted vari-

ables? Were the measurements too crude? What about reverse

causation? For example, there may well be income effects; in-

come is omitted.Wemight get different answers if age was mea-

sured in months rather than years; health at baseline seems to

be crudely measured as well. Finally, to illustrate reverse causa-

tion, sicker people may have more negative religious feelings.

This is all taken care of by the model. But what is the justifi-

cation for the model? Here is the authors’ answer:

This robust semiparametric procedure was chosen for

its flexibility in handling censored observations, time-

dependent predictors, and late entry into the study.

[p. 1883]

The paper has a large sample and a plan for analyzing the

data. These positive features are not as common as might be

hoped. However—and this is typical—there is scant justifica-

tion for the statistical model. (The research hypothesis is atypi-

cal.)

7. DOES HRT PREVENT HEART DISEASE?

There are about 50 observational studies that, on balance, say

yes: HRT (hormone replacement therapy) cuts the risk of heart

disease. Several experiments say no: there is no protective ef-

fect, and there may even be harm. The most influential of the

observational studies is the Nurses’ Health Study, which claims

a reduction in risk by a factor of 2 or more.

7.1 Nurses’ Health Study: Observational

Results from the Nurses’ Health Study have been reported

by the investigators in numerous papers. We consider Grod-

stein et al. (1996). In that paper, 6,224 post-menopausal women

on combined HRT are compared to 27,034 never-users. (For-

mer users are considered separately.) There are 0–16 years of

follow-up, with an average of 11 years. Analysis is by propor-

tional hazards. Apparently, failure was defined as either a non-

fatal heart attack or death from coronary heart disease.

The treatment variable is HRT. The investigators report 17

confounders, including age, age at menopause, height, weight,

smoking, blood pressure, cholesterol, . . . , exercise. Eleven of
the confounders make it into the main model. Details are a lit-

tle hazy, and there may be some variation from one paper to

another. The authors say:

Proportional-hazards models were used to calculate

relative risks and 95 percent confidence intervals, ad-

justed for confounding variables. . . . We observed a
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marked decrease in the risk of major coronary heart

disease among women who took estrogen with pro-

gestin, as compared with the risk among women who

did not use hormones (multivariate adjusted relative

risk 0.39; 95 percent confidence interval, 0.19 to

0.78). . . . [p. 453]

The authors do not believe that the protective effect of HRT can

be explained by confounding:

Women who take hormones are a self-selected group

and usually have healthier lifestyles with fewer risk

factors. . . . However, . . . . participants in the Nurses’
Health Study are relatively homogeneous. . . . Un-
known confounders may have influenced our results,

but to explain the apparent benefit on the basis of con-

founding variables, one must postulate unknown risk

factors that are extremely strong predictors of disease

and closely associated with hormone use. [p. 458]

7.2 Women’s Health Initiative: Experimental

The biggest and most influential experiment is WHI, the

Women’s Health Initiative. Again, there are numerous papers,

but the basic one is Rossouw et al. (2002). In the WHI ex-

periment, 16,608 post-menopausal women were randomized to

HRT or control. The study was stopped early, with an average

follow-up period of only five years, because HRT led to excess

risk of breast cancer.

The principal result of the study can be summarized as fol-

lows. The estimated hazard ratio for CHD (coronary heart dis-

ease) is 1.29, with a nominal 95% confidence interval of 1.02

to 1.63: “nominal” because the confidence level does not take

multiple comparisons into account. The trialists also reported a

95%-confidence interval from 0.85 to 1.97, based on a Bonfer-

roni correction for multiple looks at the data.

The analysis is by proportional hazards, stratified by clinical

center, age, prior disease, and assignment to diet. (The effects

of a low-fat diet were studied in another, overlapping experi-

ment.) The estimated hazard ratio is exp(β̂T ), where β̂T is the
coefficient of the treatment dummy. The confidence intervals

are asymmetric because they start on the log scale: the theory

produces confidence intervals for βT , but the parameter of in-
terest is exp(βT ). So you have to exponentiate the endpoints of
the intervals.

For a first cut at the data, let us compare the death rates over

the followup period (per woman randomized) in the treatment

and control groups:

231/8506 = 27.2/1000 vs. 218/8102 = 26.9/1000,
crude rate ratio = 27.2/26.9 = 1.01.

HRT does not seem to have much of an effect.

The trialists’ primary endpoint was CHD. We compute the

rates of CHD in the treatment and control groups:

164/8506 = 19.3/1000 vs. 122/8102 = 15.1/1000,
crude rate ratio = 19.3/15.1 = 1.28.

MI (myocardial infarction) means the destruction of heart

muscle due to lack of blood—a heart attack. CHD is coronary

heart disease, operationalized here as fatal or nonfatal MI. The

rate ratios are “crude” because they are not adjusted for any im-

balances between treatment and controls groups.

If you want SEs and CIs for rate ratios, use the delta method,

as explained in the appendix. On the log scale, the delta method

gives an SE of
√
1/164+ 1/122 = 0.12. To get the 95% confi-

dence interval for the hazard ratio, multiply and divide the 1.28

by exp(2×0.12) = 1.27. You get 1.01 to 1.63 instead of 1.02 to
1.63 from the proportional-hazards model. What did the model

bring to the party?

Our calculation ignores blocking and time-to-event data. The

trialists have ignored something too: the absence of any log-

ical foundation for the model. The experiment was very well

done. The data summaries are unusually clear and generous.

The discussion of the substantive issues is commendable. The

modeling, by contrast, seems ill-considered—although it is by

no means unusual. (The trialists did examine the crude rate ra-

tios.)

Agreement between crude rate ratios and hazard ratios from

multivariate analysis is commonplace. Indeed, if results were

substantively different, there would be something of a puzzle. In

a large randomized controlled experiment, adjustments should

not make much difference, because the randomization should

balance the treatment and control groups with respect to prog-

nostic factors. Of course, if P is close to 5% or 1%, multivariate
analysis can push results across the magic line, which has some

impact on perceptions.

7.3 Were the Observational Studies Right, or the Experi-

ments?

If you are not committed to HRT or to observational epidemi-

ology, this may not seem like a difficult question. However, ef-

forts to show the observational studies got it right are discussed

in three journals:

• International Journal of Epidemiology 2004; 33 (3),
• Biometrics 2005; 61 (4),
• American Journal of Epidemiology 2005; 162 (5).
For the Nurses’ study, the argument is that HRT should start

right after menopause, whereas in the WHI experiment, many

women in treatment started HRT later. The WHI investigators

ran an observational study in parallel with the experiment. This

observational study showed the usual benefits. The argument

here is that HRT creates an initial period of risk, after which the

benefits start. Neither of these timing hypotheses is fully consis-

tent with the data, nor are the two hypotheses entirely consistent

with each other (Petitti and Freedman 2005).

For reviews skeptical of HRT, see Petitti (1998, 2002). If the

observational studies got it wrong, confounding is the likely

explanation. An interesting possibility is “prevention bias” or

“complier bias” (Barrett-Connor 1991; Petitti 1994). In brief,

subjects who follow doctors’ orders tend to do better, even when

the orders are to take a placebo. In the Nurses’ study, taking

HRT seems to be thoroughly confounded with compliance.

In the clofibrate trial (Freedman, Purves, and Pisani 2007,

pages 14 and A-4), compliers had half the death rate of

noncompliers—in the drug group and the placebo group both.
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Interestingly, the difference between compliers and noncompli-

ers could not be predicted using baseline risk factors.

Another example is the HIP trial (Freedman 2005, pp. 4–5).

If you compare women who accepted screening for breast can-

cer to women who refused, the first group had a 30% lower

risk of death from causes other than breast cancer. Here, the

compliance effect can be explained, to some degree, in terms

of education and income. Of course, the Nurses’ Health Study

rarely adjusts for such variables. Many other examples were dis-

cussed by Petitti and Chen (2008). For instance, using sunblock

reduces the risk of heart attacks by a factor of 2; this estimate is

robust when adjustments are made for covariates.

Women who take HRT are women who see a doctor regu-

larly. These women are at substantially lower risk of death from

a wide variety of diseases (Grodstein et al. 1997). The list in-

cludes diseases where HRT is not considered to be protective.

The list also includes diseases like breast cancer, where HRT is

known to be harmful. Grodstein et al. might object that, in their

multivariate proportional-hazards model, the hazard ratio for

breast cancer is not quite significant—either for current users

or former users, taken separately.

8. SIMULATIONS

If the proportional-hazards model is right or close to right,

it works pretty well. Precise measures of the covariates are not

essential. If the model is wrong, there is something of a puzzle:

what is being estimated by fitting the model to the data? One

possible answer is the crude rate ratio in a very large study pop-

ulation. We begin with an example where the model works, then

consider an example in the opposite direction.

8.1 The Model Works

Suppose the baseline distribution of time to failure for un-

treated subjects is standard exponential. There is a subject-

specific random variable Wi which multiplies the baseline time
and gives the time to failure for subject i if untreated. The haz-
ard rate for subject i is therefore 1/Wi times the baseline haz-
ard rate. By construction, the Wi are independent and uniform
on [0, 1]. Treatment doubles the failure time, that is, cuts the
hazard rate in half—for every subject. We censor at time 0.10,

which keeps the failure rates moderately realistic.

We enter logWi as the covariate. This is exactly the right
covariate. The setup should be duck soup for the model. We

can look at simulation data on 5,000 subjects, randomized to

treatment or control by the toss of a coin. The experiment is

repeated 100 times.

• The crude rate ratio is 0.620 ± 0.037. (In other words,
the average across the repetitions is 0.620, and the SD is

0.037.)

• The model with no covariate estimates the hazard ratio as
0.581± 0.039.

• The model with the covariate logWi estimates the hazard
ratio as 0.498± 0.032.

The estimated hazard ratio is exp(β̂T ), where β̂T is the coef-
ficient of the treatment dummy in the fitted model. The “real”

ratio is 0.50. If that’s what you want, the full model looks pretty

good. The no-covariate model goes wrong because it fails to

adjust for logWi . This is complicated: logWi is nearly bal-
anced between the treatment and control groups, so it is not

a confounder. However, without logWi , the model is no good:
subjects do not have a common baseline hazard rate. The Cox

model is not “collapsible.”

The crude rate ratio (the failure rate in the treatment arm di-

vided by the failure rate in the control arm) is very close to the

true value, which is

1− E[exp(0.05/Wi )]
1− E[exp(0.10/Wi )]

. (15)

The failure rates in treatment and control are about 17% and

28%, big enough so that the crude rate ratio is somewhat dif-

ferent from the hazard ratio: 1/Wi has a long, long tail. In this
example and many others, the crude rate ratio seems to be a

useful summary statistic.

The model is somewhat robust against measurement error.

For instance, suppose there is a biased measurement of the co-

variate: we enter
√ − logWi into the model, rather than logWi .

The estimated hazard ratio is 0.516 ± 0.030, so the bias in
the hazard ratio—created by the biased measurement of the

covariate—is only 0.016. Of course, if we degrade the measure-

ment further, the model will perform worse. If the covariate is√ − logWi + logUi where Ui is an independent uniform vari-
able, the estimate is noticeably biased: 0.574± 0.032.

8.2 The Model Does Not Work

We modify the previous construction a little. To begin with,

we drop Wi . The time to failure if untreated (τi ) is still standard
exponential, and we still censor at time 0.10. As before, the ef-

fect of treatment is to double τi , which cuts the hazard rate in
half. So far, so good: we are still on home ground for the model.

The problem is that we have a new covariate,

Zi = exp(−τi ) + cUi , (16)

whereUi is an independent uniform variable and c is a constant.
Notice that exp(−τi ) is itself uniform. The hapless statistician
in this fable will have the data on Zi , but will not know how the
data were generated.

The simple proportional-hazards model, without covariates,

matches the crude rate ratio. If we enter the covariate into the

model, all depends on c. Here are the results for c = 0.

• The crude rate ratio is 0.510 ± 0.063. (The true value is
1.10/2.10 ≈ 0.524.)

• The model with no covariate estimates the hazard ratio as
0.498± 0.064.

• The model with the covariate (16) estimates the hazard ra-
tio as 0.001± 0.001.

The crude rate ratio looks good, and so does the no-covariate

model. However, the model with the covariate says that treat-

ment divides the hazard rate by 1,000. Apparently, this is the

wrong kind of covariate to put into the model.

If c = 1, so that noise offsets the signal in the covariate, the

full model estimates a hazard ratio of about 0.45—somewhat
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too low. If c = 2, noise swamps the (bad) signal, and the full

model works fine. There is actually a little bit of variance reduc-

tion.

Some observers may object that (16) is not a confounder, be-

cause (on average) there will be balance between treatment and

control. To meet that objection, just change the covariate to

Zi = exp(−τi ) + ζi exp(−τi/2) + cUi , (17)

where ζi is the treatment dummy. The covariate (17) is unbal-
anced between treatment and control groups. It is related to out-

comes. It contains valuable information. In short, it is a clas-

sic example of a confounder. But, for the proportional-hazards

model, it is the wrong kind of confounder—poison, unless c is
quite large.

Here are the results for c = 2, when half the variance in (17)

is accounted for by noise, so there is a lot of dilution.

• The crude rate ratio is 0.522± 0.056.
• The model with no covariate estimates the hazard ratio as
0.510± 0.056.

• The model with the covariate (17) estimates the hazard ra-
tio as 0.165± 0.138.

(We have independent randomization across examples, which

is how 0.510 in the previous example changed to 0.522 here.)

Putting the covariate (17) into the model biases the hazard ratio

downwards by a factor of 3.

What is wrong with these covariates? The proportional-

hazards model is not only about adjusting for confounders, it

is also about hazards that are proportional to the baseline haz-
ard. The key assumption in the model is something like this.
Given that a subject is alive and uncensored at time t , and given
the covariate history up to time t , the probability of failure in
(t, t + dt) is h(t) exp(Xitβ) dt , where h is the baseline hazard
rate. In (16) with c = 0, the conditional failure time will be

known, because Zi determines τi . So the key assumption in the
model breaks down. If c is small, the situation is similar, as it is
for the covariate in (17).

Some readers may ask whether problems can be averted by

judicious use of model diagnostics. No doubt, if we start with a

well-defined type of breakdown in modeling assumptions, there

are diagnostics that will detect the problem. Conversely, if we

fix a suite of diagnostics, there are problems that will evade de-

tection (Freedman 2008a).

9. CAUSAL INFERENCE FROM

OBSERVATIONAL DATA

Freedman (2005) reviewed a logical framework, based on

Neyman (1923), in which regression can be used to infer cau-

sation. There is a straightforward extension to the Cox model

with nonstochastic covariates. Beyond the purely statistical as-

sumptions, the chief additional requirement is “invariance to in-

tervention.” In brief, manipulating treatment status should not

change the statistical relations.

For example, suppose a subject chose the control condition,

but we want to know what would have happened if we had put

him into treatment. Mechanically, nothing is easier: just switch

the treatment dummy from 0 to 1, and compute the hazard rate

accordingly. Conceptually, however, we are assuming that the

intervention would not have changed the baseline hazard rate,

or the values of the other covariates, or the coefficients in the

model.

Invariance is a heroic assumption. How could you begin to

verify it, without actually doing the experiment and interven-

ing? That is one of the essential difficulties in using models to

make causal inferences from nonexperimental data.

10. WHAT IS THE BOTTOM LINE?

There needs to be some hard thinking about the choice of

covariates, the proportional-hazards assumption, the indepen-

dence of competing risks, and so forth. In the applied literature,

these issues are rarely considered in any depth. That is why the

modeling efforts, in observational studies as in experiments, are

often unconvincing.

Cox (1972) grappled with the question of what the propor-

tional hazards model was good for. He ends up by saying

[i] Of course, the [model] outlined here can be made

much more specific by introducing explicit stochas-

tic processes or physical models. The wide variety

of possibilities serves to emphasize the difficulty of

inferring an underlying mechanism indirectly from

failure times alone rather than from direct study of

the controlling physical processes. [ii] As a basis for

rather empirical data reduction, [the model] seems

flexible and satisfactory. [p. 201]

The first point is undoubtedly correct, although it is largely

ignored by practitioners. The second point is at best debatable.

If the model is wrong, why are the parameter estimates a good

summary of the data? In any event, questions about summary

statistics seem largely irrelevant: practitioners fit the model to

the data without considering assumptions, and leap to causal

conclusions.

11. WHERE DOWE GO FROM HERE?

I will focus on clinical trials. Altman et al. (2001) docu-

mented persistent failures in the reporting of the data, and made

detailed proposals for improvement. The following recommen-

dations are complementary; also see Andersen (1991).

(i) As is usual, measures of balance between the assigned-

to-treatment group and the assigned-to-control group should be

reported.

(ii) After that should come a simple intention-to-treat anal-

ysis, comparing rates (or averages and SDs) among those as-

signed to treatment and those assigned to the control group.

(iii) Crossover should be discussed, and deviations from pro-

tocol.

(iv) Subgroup analyses should be reported, and corrections

for crossover if that is to be attempted. Two sorts of corrections

are increasingly common. (a) Per-protocol analysis censors sub-

jects who cross over from one arm of the trial to the other, for
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instance, subjects who are assigned to control but insist on treat-

ment. (b) Analysis by treatment received compares those who

receive treatment with those who do not, regardless of assign-

ment. These analyses require special justification (Freedman

2006).

(v) Regression estimates (including logistic regression and

proportional hazards) should be deferred until rates and aver-

ages have been presented. If regression estimates differ from

simple intention-to-treat results, and reliance is placed on the

models, that needs to be explained. The usual models are not

justified by randomization, and simpler estimators may be more

robust.

(vi) The main assumptions in the models should be dis-

cussed. Which ones have been checked. How? Which of the

remaining assumptions are thought to be reasonable? Why?

(vii) Authors should distinguish between analyses specified

in the trial protocol and other analyses. There is much to be said

for looking at the data; but readers need to know how much

looking was involved before that significant difference popped

out.

(viii) The exact specification of the models used should be

posted on journal web sites, including definitions of the vari-

ables. The underlying data should be posted too, with adequate

documentation. Patient confidentiality would need to be pro-

tected, and authors may deserve a grace period after first publi-

cation to further explore the data.

Some studies make data available to selected investigators

under stringent conditions (Geller et al. 2004), but my rec-

ommendation is different. When data-collection efforts are fi-

nanced by the public, the data should be available for public

scrutiny.

12. SOME POINTERS TO THE LITERATURE

Early publications on vital statistics and life tables include

Graunt (1662), Halley (1693), and Bernoulli (1760). Bernoulli’s

calculations on smallpox may seem a bit mysterious. For dis-

cussion, including historical context, see Gani (1978) or Dietz

and Hesterbeek (2002). A useful book on the early history of

statistics, including life tables, is Hald (2005).

Freedman (2007, 2008b) discusses the use of models to ana-

lyze experimental data. In brief, the advice is to do it late if at

all. Fremantle et al. (2003) presented a critical discussion on use

of “composite endpoints,” which combine data on many distinct

endpoints. An example, not much exaggerated, would be fatal

MI + nonfatal MI + angina + heartburn.
Typical presentations of the proportional-hazards model (this

one included) involve a lot of hand-waving. It is possible to

make math out of the hand-waving. But this gets very techni-

cal very fast, with martingales, compensators, left-continuous

filtrations, and the like. One of the first rigorous treatments was

Odd Aalen’s Ph.D. thesis at Berkeley, written under the super-

vision of Lucien LeCam. See Aalen (1978) for the published

version, which builds on related work by Pierre Bremaud and

Jean Jacod.

Survival analysis is sometimes viewed as a special case

of “event history analysis.” Standard mathematical references

include Andersen et al. (1996) and Fleming and Harrington

(2005). A popular alternative is Kalbfleisch and Prentice (2002).

Some readers like Miller (1998); others prefer Lee and Wang

(2003). Jewell (2003) is widely used. Technical details in some

of these texts may not be in perfect focus. If you want mathe-

matical clarity, Aalen (1978) is still a paper to be recommended.

For a detailed introduction to the subject, look at Andersen

and Keiding (2006). This book is organized as a one-volume

encyclopedia. Peter Sasieni’s entry on the “Cox Regression

Model” is a good starting point; after that, just browse. Law-

less (2003) is another helpful reference.

A. APPENDIX: THE DELTA METHOD

IN MORE DETAIL

The context for this discussion is the Women’s Health Ini-

tiative, a randomized controlled experiment on the effects of

hormone replacement therapy. Let N and N ′ be the numbers of
women randomized to treatment and control. Let ξ and ξ ′ be
the corresponding numbers of failures (i.e., for instance, fatal or

nonfatal heart attacks).

The crude rate ratio is the failure rate in the treatment arm di-

vided by the rate in the control arm, with no adjustments what-

soever. Algebraically, this is (ξ/N )
/
(ξ ′/N ′). The logarithm of

the crude rate ratio is

log ξ − log ξ ′ − log N + log N ′. (18)

Let μ = E(ξ). So

log ξ = log
[
μ

(
1+ ξ − μ

μ

)]

= logμ + log
(
1+ ξ − μ

μ

)

≈ logμ + ξ − μ

μ
, (19)

because log(1 + h) ≈ h when h is small. The delta-method ≈
a one-term Taylor series.

For present purposes, take ξ to be approximately Poisson, so
var(ξ) ≈ μ ≈ ξ and

var
(ξ − μ

μ

)
≈ 1

μ
≈ 1

ξ
. (20)

A similar calculation can be made for ξ ′. Take ξ and ξ ′ to be
approximately independent, so the log of the crude rate ratio

has variance approximately equal to 1/ξ + 1/ξ ′.
The modeling is based on the idea that each subject has a

small probability of failing during the trial. This probability is

modifiable by treatment. Probabilities and effects of treatment

may differ from one subject to another. Subjects are assumed to

be independent, and calculations are conditional on assignment.

Exact combinatorial calculations can be made, uncondition-

ally, based on the permutations used in the randomization. To

take blocking, censoring, or time-to-failure into account, unpub-

lished data would usually be needed.
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For additional information on the delta method, see van der

Vaart (1998). Many arguments for asymptotic behavior of the

MLE turn out to depend on more rigorous (or less rigorous)

versions of the delta method. Similar comments apply to the

Kaplan–Meier estimator.

[Received December 2007. Revised January 2008.]
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