

Low Impact Design through the Life-Cycle Lens

Stormwater Strategies for Pittsburgh's Urban Ecology Collaborative

SEEDS / Ecological Design Collaborative Barton Kirk, M.S., EIT

- SEEDS is a MI based 501(c)3 non-profit research, design and educational institution
- Helping communities make appropriate decisions about built and natural infrastructure

Outline

- Part 1 Life Cycle Assessment of Stormwater Best Management Practices
- Part 2 Pittsburgh's Urban Ecology Collaborative and Opportunities for Optimizing Sustainable Stormwater Strategies

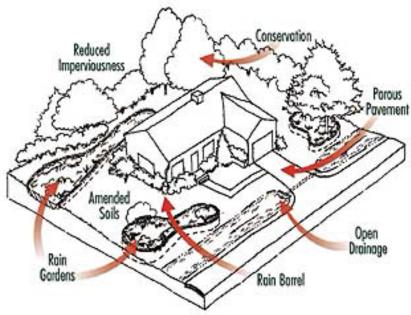
Redesigning the American Neighborhood (RAN) Project

Goal: To quantify the balances among environmental, economic, and social costs and benefits for alternative stormwater management practices

RAN / UNH Stormwater Center BMP Life Cycle Study: Making the Case for Stormwater Low Impact Design

Rationale

 Trend toward increased construction of stormwater Best Management Practices (BMPs)



Diverging Trends

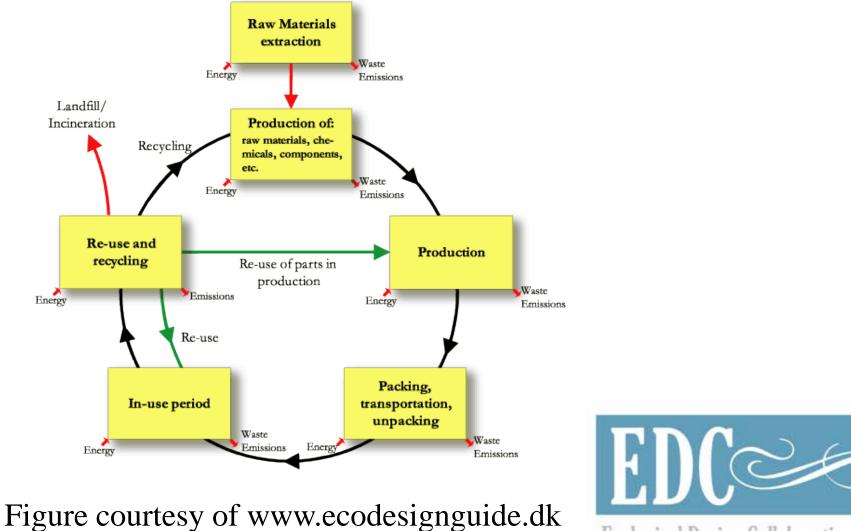
Manufactured Devices vs. Low Impact Design (LID)

Indirect Emissions and Discharges

Historical Stormwater Performance Analysis

- Effluent Quality
- Capital Cost coupled w/ Effluent Quality
- Life Cycle Cost coupled w/ Effluent Quality

Life Cycle Assessment

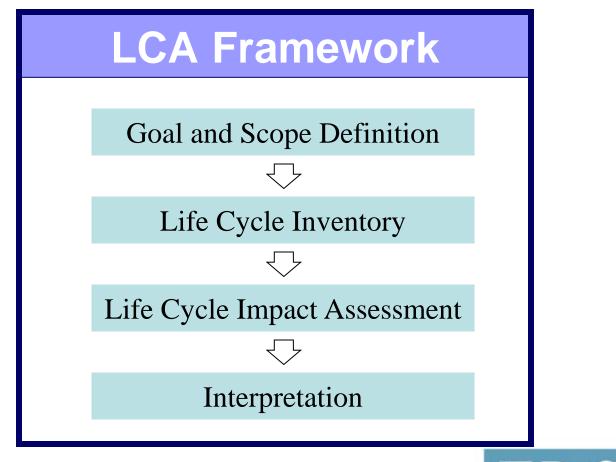

A quantitative inventory of the environmental impacts of a product, service, or process over the course of its lifecycle – "from cradle to grave"

□ May include

- extraction
- manufacturing
- operation, maintenance, and reuse
- disposal and decommissioning
- transport

Life-Cycle Concept

Life Cycle Assessment


Generation Focus on regional and global impacts

□ Typical Impacts

- Energy use Global warming
- Material use
 Eutrophication
- Land use
- Acidification
- Toxicity
- Human health
- Smog formation

LCA Procedure

LCA of Stormwater

- Are our BMPs resource efficient?
- What are the performance lives of BMPs?
- How does management effect the longterm costs and impacts?
- Are these sustainable solutions?

Applying LCA to Stormwater

University of New Hampshire Stormwater Center

TREATMENT UNIT DESIGNATION

- A ADS Treatment Unit (Water Quality Unit & Storage Unit)
- B Surface Sand Filter
- C Retention Pond
- D Bioretention Unit
- E Aqua Swirl and Aqua Filter Systems
- F Storm Drain Manhole Retrofit
- G Gravel Wetland Unit
- H Vegetated Swale

Ecological Design Collaborative

A Water Duality Unit

A Storage Unit

UNH Stormwater Center BMPs

Conventional

- Retention (wet) pond
- Rip-rap swale
- "Low Impact Designs"
- Bioretention
- Surface sand filter
- Gravel wetland
- Porous pavement
- Tree filter

Manufactured Units

- ADS water quality and infiltration unit
- Aqua Swirl & Aqua Filter unit
- Vortex separators
 - VortSentry
 - V2B1
 - CDS

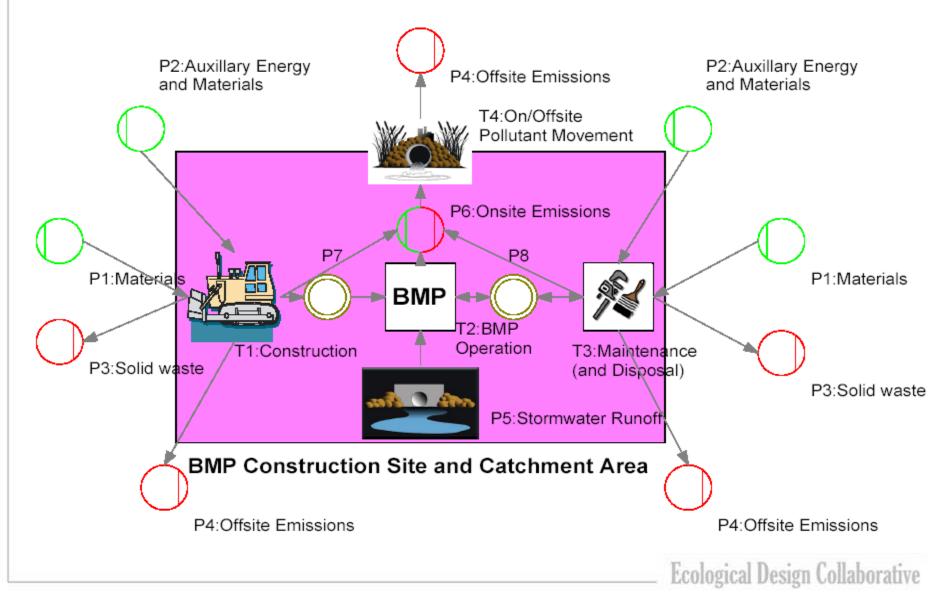
Scope

• Cradle to Grave

- Design Services
- Provision of materials
- Construction
- Operation
- Maintenance (Preventive and Corrective)
- Decommissioning and Disposal
- I/O LCA Hybrid Method
 - Process LCA based w/ missing inventory estimation
- Functional Unit
 - Stormwater management of 1 acre of impervious surface to New York State standards and NH rainfall conditions

BMPs Compared

- Conventional
 Retention (wet) pond
- Manufactured Device

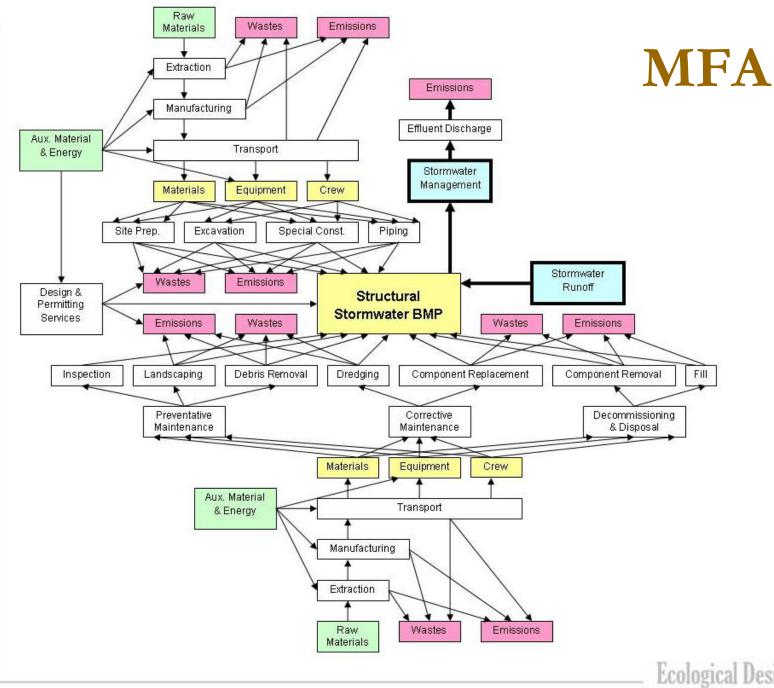

 ADS Water Quality
 and Infiltration Unit
 Infiltration Unit
- Low Impact Designs
 - Bioretention
 - Gravel Wetland

System Boundaries

Sonstruction Site/Catchment Area

STORMWATER CENTER RESEARCH FACILITY

Watershed Boundary


ourtesy of the Stormwater Center

LCI Calculation

- Material and Energy Flow Analysis (MFA)
- Emission and Resource Consumption Factors (EF)

$LCI = MFA \times EF$

LCI Model – Data Sources

MFA Process Model

- UNH Design, Construction, & Maintenance Data
- RS Means Construction Cost & Productivity Data
- CAT Performance Handbook Engine Loading & Fuel Use
- WERF Post-Monitoring BMP Performance Study

Emission Factors

- UNH BMP Treatment Performance Data
- US EPA NONROAD 2005 Emissions Model
- US EPA MOBILE 6.2 Emissions Model
- CMU Environmental Input-Ouput LCA (EIOLCA)
- NREL US LCI Database

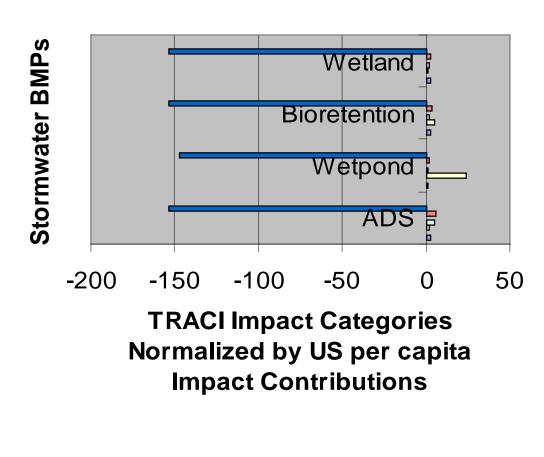
Abridged BMP Life Cycle Inventory

		Stormwater BMPs					
Inventoried Substance	Units	ADS	Wetpond	Bioretention	Gravel Wetland		
Local Inventory							
Resource Use							
Elec kWh	kWh	31300	3990	8020	8530		
Coal kg	kg	5160	775	1610	1610		
NatGas m^3	m ³	6370	794	2660	1880		
Gasoline		1890	1410	2180	2220		
Diesel	liter	1930	1990	2550	2210		
Emission, Compartment							
co2, air	mt	405	192	289	284		
co, air	kg	426	254	349	342		
nox, air	kg	155	144	184	190		
pm, air	kg	20	27	23	35		
so2, air	kg	95	26	47	45		
voc, air	kg	94	36	52	51		
TSS, freshwater	mt	-36.0	-21.3	-34.7	-36.1		
DRO, freshwater	mt	-762.9	-56.5	-762.9	-762.9		
NO3, freshwater	kg	79.6	26.6	-14.3	-37.1		
PO4, freshwater	kg	-3.0	186.9	35.5	6.0		
Zn, freshwater	kg	-6.1	-5.9	-6.1	-6.1		
Cl, freshwater	mt	235.7	563.5	348.9	191.9		
Iron, freshwater	kg	72.5	162.9	531.4	290.3		

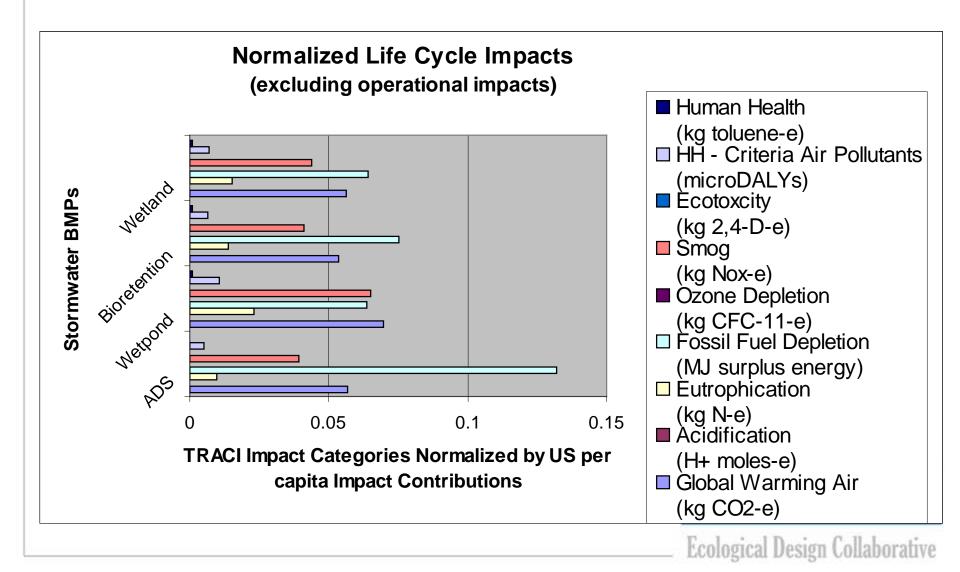
TRACI Impact Assessment

- Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts
 - Developed by US EPA National Risk Management Research Laboratory (NRMRL)
 - Characterizes emissions relative to location, media, transport, fate, and effect
 - Global Warming
 - Acidification
 - Eutrophication
 - Smog
 - Ozone Depletion

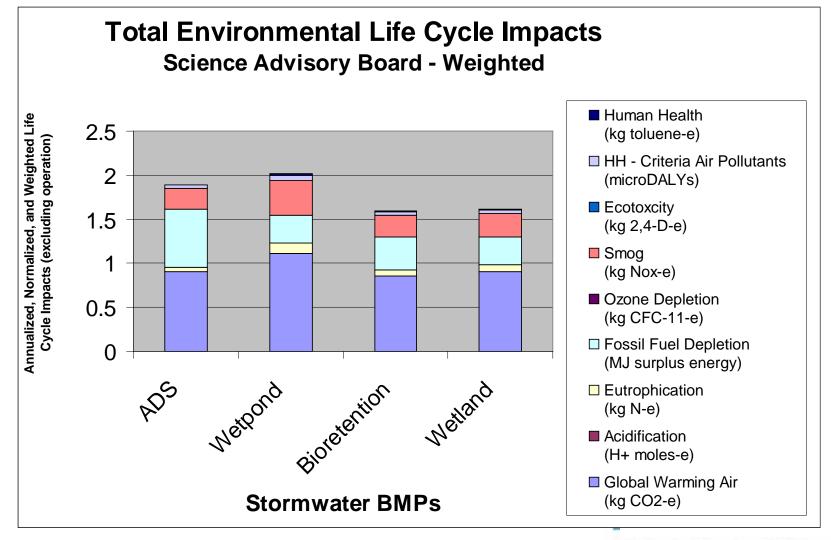
- Ecotoxicity
- Human Health Criteria Air Pollutants
- Human Health Cancer
- Human Health Non-Cancer
- Fossil Fuel Depletion


Life Cycle Impacts Characterized by TRACI

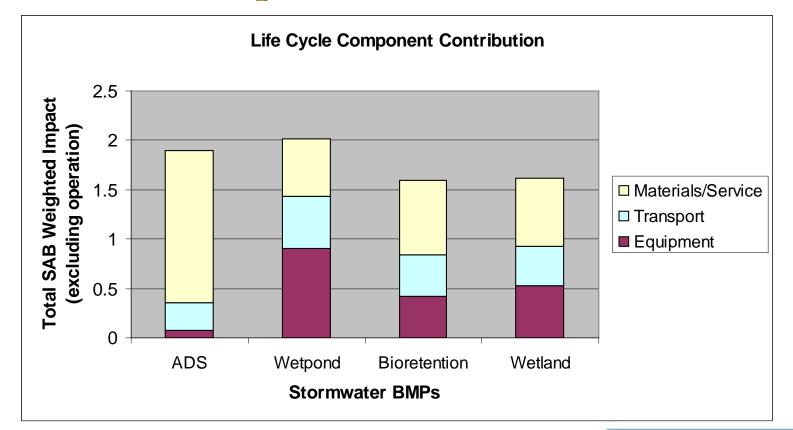
	Global Warming Acidification Eutrophication			Fossil Fuel Depletion	Smog	Ecotoxcity	HH - Criteria Air Pollutants	Human Health
BMPs	(kg CO2-e)	(H+ moles-e)	(kg N-e)	(MJ surplus energy)	(kg Nox-e)	(kg 2,4-D-e)	(microDALYs)	(kg toluene-e)
ADS	73500	15900	29.9	165000	903	-12500	6.26	2680
Wetpond	38000	7720	461.0	36500	286	-12000	2.74	3400
Bioretention	64600	11000	94.6	79200	471	-12500	4.19	3650
Wetland	61200	10400	18.5	65300	441	-12500	4.06	3650


Impacts Normalized by US per capita

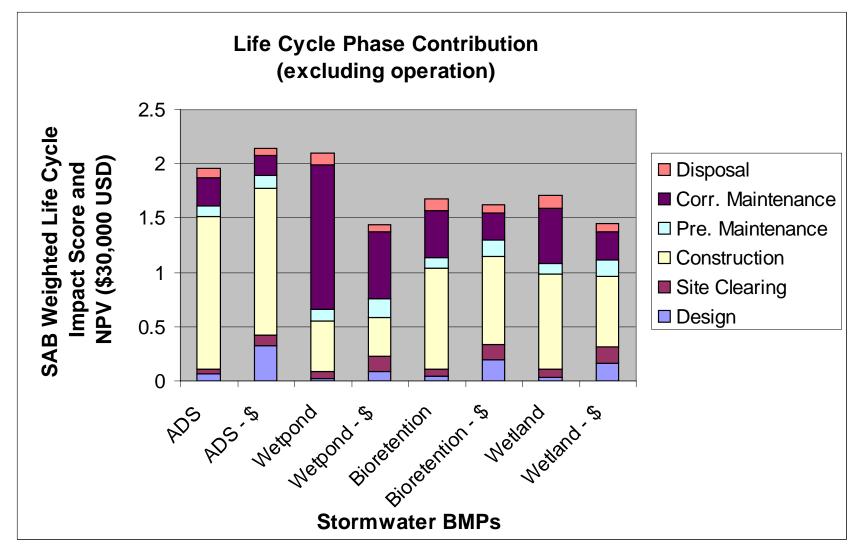
Normalized Life Cycle Impacts (including operational impacts)



Human Health (kg toluene-e) HH - Criteria Air Pollutants (microDALYs) Ecotoxcity (kg 2,4-D-e) ■ Smog (kg Nox-e) Ozone Depletion (kg CFC-11-e) □ Fossil Fuel Depletion (MJ surplus energy) Eutrophication (kg N-e) Acidification (H+ moles-e) Global Warming Air (kg CO2-e)

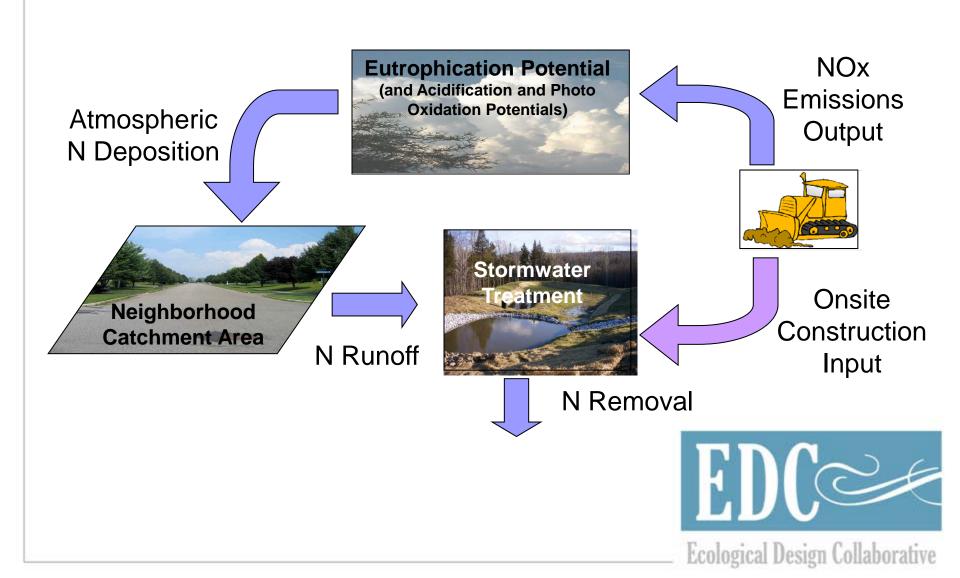

Impacts Normalized Without Operation

Impacts Weighted by US EPA SAB



Impacts Weighted by US EPA SAB Component Contributions

Life Cycle Cost and Impact Phase Contributions



Limitations

- No characterization of TSS and Chloride in TRACI
- No modeling of construction erosion
- No modeling of plant and algae air emissions mitigation
- Inability to directly compare operation and other life-cycle phases

Nitrogen Life Cycle

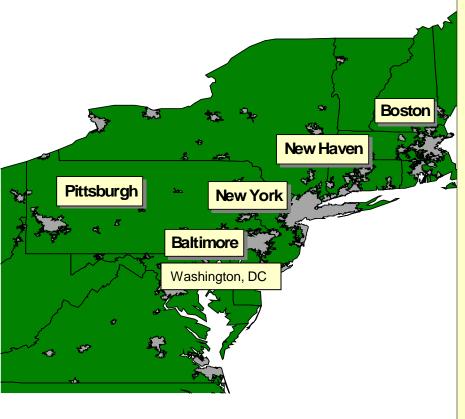
Environmental Payback Periods

- Example: Gravel Wetland Eutrophication Potential
 - Operation (1yr) Treatment

- 0.297 kg N-eq removed
- All Other Life Cycle Phases (30yrs)
 Equipment & Transport
 Materials
 7.70 kg N-eq emitted
 1.24 kg N-eq emitted
- Payback Period
 - PP = Embodied Impact / Impact Averted per Year
 = (7.70 + 1.24) / 0.297 = 30 years

Conclusions (excluding operation)

- Life cycle cost and capital cost not good indicators of environmental impact
- Stormwater LCA most valuable in development scenario analysis not BMP comparison


Consequential LCA Approach Making the case for LID

Landscaping Replaced Sewer & CSO Treatment Avoided Residential Heating / Cooling Effects Conservation vs. Mitigation

Urban Ecology COLLABORATIVE

Cultivating healthy, safe, and vibrant cities through collective learning & united action.

The UEC is a partnership of non-profits, government agencies, & universities across the Northeast

Founding partners in other cities include: **Boston:** Urban Ecology Institute, **Boston Forestry Partnership** New Haven: Urban Resources Institute/Yale University New York City: NYC Parks & **Recreation Department Baltimore:** Parks & People Foundation Washington DC: Casey Trees **Foundation** New participating cities: Providence, RI: Forestry Office Philadelphia: Philly Green

Urban Ecology Collaborative Pittsburgh Partners currently include:

Bringing Resources Together

Community Education & Restoration

Urban Eco Stewards
MERGE Forum
Green Education Novement
Vacant Land Restoration

UEC Research Working Group

- Growing Interest in Green
 Infrastructure
 - PPC
 - NMRWA
 - FoPUF
 - WPC (TreeVitalize)
 - PSU Coop-Ext / URA
- Intention to develop a strategic plan for stormwater intervention

Thank You

