Aggregate Modeling and Coordination of Diverse Energy Resources Under Packetized Energy Management*†

Luis A. Duffaut Espinosa, Mads Almassalkhi, Paul Hines, and Jeff Frolik

Abstract—Transmitting a large file across the internet requires breaking up the file into smaller packets of data. Packetized energy management (PEM) leverages similar concepts from communication theory to coordinate distributed energy resources by breaking up deferrable residential consumer demands into smaller fixed-duration/fixed-power packets of energy. Each individual load is managed by a probabilistic automaton that stochastically requests energy packets as a function of its local dynamic state (e.g., temperature or state-of-charge). Based on the aggregate request rate from packetized loads and grid conditions, the PEM coordinator will modulate the rate of accepting requests, which permits tight tracking of a reference (load-shaping or market) signal. This paper presents a state bin transition (macro) model suitable for characterizing a diverse population of electric water heaters (EWHs) and energy storage systems (ESSs) under a single PEM coordinator that is validated against a physical micro simulation of the diverse loads. The resulting model provides a measure of real-time flexibility of the aggregate population that is a function of the request rate and illustrate how diversity of packetized load types enhances the level of flexibility offered by the coordinator.

Index Terms—Packetized energy management, state bin transition model, controlled Markov chain, distributed energy resources, modeling.

I. INTRODUCTION

Operating the electric grid reliably with a high penetration of renewable energy represents a significant challenge. To overcome this challenge, an active role for flexible and controllable distributed energy resources (DERs), such as thermostatically-controlled loads (TCLs) and energy storage systems (ESSs) has been proposed [1]. While the core concepts underlying modern demand-side management (DSM) have existed for decades [2], [3], the technology for coordinating the activities of DERs is nascent but maturing rapidly [4]–[6]. This is the context in which PEM aims to contribute as presented in [7], [8].

Under packetized energy management (PEM), a load aggregator requires only the aggregate power consumption and the aggregate request process from a collection of loads to develop control strategies. While aggregate power consumption only informs the system about devices that are ON, PEM’s unique packet request process received from the loads that are OFF supplies valuable information about the aggregate power consumption; however, in some cases, the model may not be observable [6].

Recently, the foundational work in [4] has been extended in several directions. For example, higher order dynamic models and end-user compressor delay constraints and lock-out periods have been included in [5], which inspired the modeling of packet duration in PEM presented in this paper. In addition, bounds on stochastic dynamical performance have been developed in [9]. Another approach to achieve direct load control involves mean-field theory applied to heterogeneous TCL populations in [10]. Similarly to the proposed work herein, the mean-field approach developed in [6], [11] maintain quality of service (QoS) by automating opt-out mechanisms and injecting randomization based on local state variables, which limits synchronization effects and promotes equitable access to the grid. However, in contrast to those prior works, PEM does not require to broadcast the control signal (in top-down fashion). Instead, PEM is designed to have each load request an energy packet from the coordinator stochastically (in a locally-driven, bottom-up fashion) based on the load’s local state variables. The coordinator then responds in real-time to each packet request based on grid or market conditions.

Furthermore, related work on energy packets is given by [12], [13], where an omniscient centralized packetized direct load controller (PDLC) is developed for TCLs. The average controller performance and consumer QoS is analytically investigated and queuing theory is employed by the authors to quantify the centralized controller’s performance. In [14], a distributed (binary information) version of PDLC is proposed that requires only (binary) packet request information from the loads. The main drawbacks of the distributed PDLC are that it assumes complete knowledge of the exact number of participating packetized loads at any given time, the allocation of packet requests from the queue is synchronized, and the queue stores packet requests if the packets cannot be allocated, which creates delays in service.

The contributions of this paper includes extending the preliminary macro-model developed for a large population of homogeneous TCLs in [7] and [8] to a diverse group of DERs. Specifically, this paper considers TCLs and ESSs in this diverse group. Since an ESS not only consumes power from, but also injects power into the grid, the flexibility provided by an ESS is bidirectional (unlike unidirectional TCLs) and enhances the overall flexibility of the diverse group of loads. Interestingly, the general PEM framework presented herein seamlessly integrates different types of flexible loads, which engenders bottom-up plug-and-play control across different types of loads without having to design separate control systems for each load type.

The paper is organized as follows. In Section II, PEM fundamentals are presented. A state bin transition model that models the population dynamics is detailed in Section III.

*This work was supported by the U.S. Department of Energy’s Advanced Research Projects Agency - Energy (ARPA-E) grant DE-AR0000694.
†M. Almassalkhi, P. Hines, and J. Frolik are co-founders of Packetized Energy Technologies, Inc, which seeks to bring to market a commercially viable version of Packetized Energy Management.

The authors are with the department of electrical and biomedical Engineering at The University of Vermont, Burlington, Vermont 05405, USA.
Section IV combines the population state bin transition model and the PEM abstraction (equivalent to two timers that track energy packets from accepted “consume” and “inject” requests). This is followed by an illustration of how a diverse population of DERs (TCLs and ESSs) under PEM engenders greater flexibility than an all-TCL population.

II. PEM FUNDAMENTALS

PEM is illustrated by the following events:

i. A DER measures its local energy state (e.g., temperature or state of charge).

ii. If the state exceeds some specified limits, the DER exits PEM, reverts to a default DER control until the state is returned to within limits, and returns to Step 1. Else, based on the state, the DER stochastically requests to consume or inject energy from/into the grid for a pre-specified epoch (an energy packet) and goes to Step 3.

iii. The aggregator (or Virtual Power Plant, VPP) either accepts or denies the DER’s request, depending on system conditions, such as binding constraints or reference tracking error. If denied, return to Step 1. If accepted, the TCL consumes/injects energy for the epoch and returns to Step 1.

The closed-loop diagram shown in Fig. 1 exercises the rules for PEM control described above.

By employing a probabilistic automata at each responsive load that is capable of exiting PEM to guarantee consumer Quality of Service (QoS), we inject randomization to the load that is capable of exiting PEM to guarantee consumer QoS, and promotes fair access to the grid. Fig. 1 illustrates the closed-loop system under PEM.

![Closed-loop feedback system for PEM with P_{req}(t) provided by the grid or market operator and the aggregate net-load P_{load}(t) measured by VPP.](image)

In this paper, the DER load types of interest are EWHs and ESSs. In a population of EWHs, the temperature of energy n at time t, $T_n(t)$, is

$$T_n(t) = \frac{P_{rate} z_n(t)}{c_p L_n \eta} - \frac{T_n(t) - T_{amb}}{\tau_n} - \frac{T_n(t) - T_{in}}{60 L_n} w_n(t),$$

(1)

where $c = 4.186$ [kJ/kg·°C] and $\rho = 0.990$ [kg/liters] represent specific heat capacity and density of water close to 50°C. L_n [liters] represents the total capacity of the EWH. The input power when ON (i.e., binary $z_n \equiv 1$) is P_{rate} [kW], heat-transfer efficiency η is assumed as 1.0, ambient losses are described by time-constant τ_n, and the uncontrolled hot-water withdrawal rate (i.e., noise) is w_n [liters/min]. The terms T_{amb} and T_{in} are, respectively, the ambient and inlet temperatures [°C], which are considered constant in this paper. The dynamic state variable for ESSs, on the other hand, is the state-of-charge (SOC). The SOC of the n ESS in a population is described by the equation

$$\dot{S}_n(t) = \eta_{d,n} S_n(t) + (z_n(t) P_{rate} + w_n(t)) \eta_{z,n}(t)$$

(2)

where P_{rate} is the power rate of the battery, $z_n = 1, 0, -1$ is the hybrid state corresponding to charge/Off/discharge, respectively, and $\eta_{d,n}, \eta_{z,n}, \eta_{s,n}$ represent parameters associated with standing losses and charging/discharging efficiencies, respectively. If standing losses are not considered, $\eta_{d,n} \equiv 0$. The control inputs are charge and discharge rates [kW], which are each bounded. The SOC is also bounded by battery capacity bounds: $S_n \in \{ S_n^1, S_n^2 \}$. Finally, the ESS is assumed to be subject to an uncontrollable bounded background net-demand process (charging and/or discharging), $w_n(t) \in [-P_{rate}^+, P_{rate}^+]$.

From hereafter, the dynamic state of the nth DER in a population is denoted by the Z_n. In the discrete-time implementation of PEM, the probability that the packetized load n with local dynamic state $Z_n[k] \in [Z_n^1, Z_n^2]$ and desired set-point $Z_n^{set} \in (Z_n^1, Z_n^2)$ requests access to the grid during time-step k (over interval Δt) is defined by the cumulative exponential distribution function:

$$P(Z_n[k]) := 1 - e^{-\mu(Z_n[k]) \Delta t},$$

where the rate parameter $\mu(Z_n[k]) > 0$ is dependent on the local dynamic state. Denoting by $P^R_k(n|Q)$ the probability that load n request a packet for consumption ($h = c$) or injection ($h = d$) given condition Q is satisfied. The dependence on the local dynamic state for the probability of request is established by considering the following boundary conditions:

i. $P^c_k (n|Z_n[k] \leq Z_n^1) = 1, P^c_k (n|Z_n[k] \geq Z_n^2) = 0,$

ii. $P^d_k (n|Z_n[k] \leq Z_n^1) = 0, P^d_k (n|Z_n[k] \geq Z_n^2) = 1,$

which give rise to the following natural design of a PEM rate parameter for consuming a packet:

$$\mu(Z_n[k]) = \begin{cases} 0, & \text{if } Z_n[k] \geq Z_n^2 \\ m_R Z_n[k] - Z_n^1 \frac{Z_n^{set} - Z_n[k]}{Z_n^2 - Z_n[k]}, & \text{if } Z_n[k] \in (Z_n^1, Z_n^2) \\ \infty, & \text{if } Z_n[k] \leq Z_n^1 \end{cases},$$

(3)

where $m_R > 0$ [Hz] is a design parameter that defines the mean time-to-request (MTTR). For example, if one desires a MTTR of 5 minutes when $Z_n[k] = Z_n^{set}$ then $m_R = \frac{60}{300}$Hz. Similarly, for injecting a packet,

$$\mu(Z_n[k]) = \begin{cases} \infty, & \text{if } Z_n[k] \geq Z_n^2 \\ m_R Z_n[k] - Z_n^1 \frac{Z_n^{set} - Z_n[k]}{Z_n^2 - Z_n[k]}, & \text{if } Z_n[k] \in (Z_n^1, Z_n^2) \\ 0, & \text{if } Z_n[k] \leq Z_n^1 \end{cases},$$

(4)

III. STATE TRANSITION UNDER END-USER EVENTS

This section develops a state bin transition (macro)model for a large homogeneous population of DERs of the same load type. In particular, the case for TCLs and ESSs are provided for illustration. A generalized macro-model for a diverse population of multiple DER types with charging and discharging is developed; however, a brief preamble is provided on the modeling of end-user events that affect directly the individual DER.

A. Modeling of end-user events

In the case of EWHs and ESSs, end-user events correspond to stochastic water usage and power consumption/production,
respectively. These uncontrollable events can be modeled stochastically by employing a simple birth/death stochastic differential equation for the process, \(w_n(t) \). To clarify notation, the subscript \(n \) is omitted hereafter as this section focuses on a single DER. Assume that there exists an appropriate probability space \((\Omega, \mathcal{F}, P)\), where \(\Omega \) is the set of events, \(\mathcal{F} \) a filtration, and \(P \) the probability measure of elements in \(\mathcal{F} \). For this purpose, a Poisson rectangular pulse (PRP) stochastic differential model is employed [15]. That is,

\[
dw(t) = (v(t) - w(t)) \, dN_1(t) - w(t) \, dN_2(t),
\]

where \(v(t) \) is a random variable appropriate for the type of DER under study and \(N_1(N_2) \) is an independent, stationary Poisson point process with constant rate parameter \(\lambda_1(\lambda_2) \), representing the initiation (end) of a random end-user event. For an EWH, \(v \) describes the hot water usage and can be considered exponentially distributed with mean \(\lambda \). For an ESS, \(v \) may be a symmetric probability density function with mean in a neighborhood of zero given that it must consider positive and negative events.

The aggregate steady state behavior of end-user events is now described. This behavior is employed in the next section to compute the transition probabilities for an aggregated system of DERs in steady state. Denote the expected value of a random process \(w \) as \(\bar{w}(t) := E[w(t)] \). Due to the independence of the processes \(\Delta N_1, \Delta N_2 \) and \(v \) in time, one can compute the expected end-user event for each DER as

\[
\frac{d\bar{w}(t)}{dt} = (\bar{v}(t) - \bar{w}(t))\lambda_1 + \bar{w}(t)\lambda_2.
\]

The solution of (6) when \(\bar{w}(0) = 0 \) is

\[
\bar{w}(t) = E[v] \frac{\lambda_1}{\lambda_1 + \lambda_2} (1 - \exp(- (\lambda_1 + \lambda_2) t)).
\]

The expected event reaches steady state as \(t \) goes to infinity. Hence, the steady state end-user event is

\[
\bar{w}_{\text{sst}} := \lim_{t \to \infty} \bar{w}(t) = E[v] \frac{\lambda_1}{\lambda_1 + \lambda_2}.
\]

The next theorem theorem describes the probability distribution of these events as the number of devices increases. For simplicity, the end-user event are considered as independent and identically distributed random processes.

Theorem 1: The steady state aggregation of individual end-user events, \(w_{\text{sst}} \), is distributed in steady state as \(N(\mu_w, \sigma_w/\sqrt{N_e}) \), where \(N_e \) is the total number of end-user event processes and \(\mu_w \) and \(\sigma_w \) are the corresponding expected value and standard deviation of the process \(w \) in steady state.

Proof: One can derive the differential equation for the characteristic function of \(w \) in (5) from a direct application of the Itô chain rule for jump processes [16]. Let \(F_w(w) = e^{iww} \), then

\[
de^{iww} = (F_w(w) - F_w(w)) \, dN_1(t) + (1 - F_w(w)) \, dN_2(t).
\]

By definition, the characteristic function of \(w(t) \) is \(\Psi_w(\kappa, t) = E[F_w(w)] \) and \(E(N_i(t)) = \lambda_i(t) \). It then follows that

\[
\frac{d\Psi_w(\kappa, t)}{dt} = \Psi_w(\kappa, t)\lambda_1 + \lambda_2 - \Psi_w(\kappa, t)(\lambda_1 + \lambda_2).
\]

In steady state, \(\frac{d\Psi_w(\kappa, t)}{dt} = 0 \). Thus,

\[
\Psi_w(\kappa, \infty) = \frac{\lambda_2 + \Psi_w(\kappa)\lambda_1}{(\lambda_1 + \lambda_2)}.
\]

Clearly, the moments of \(w \) in steady state can be obtained by computing \(E[w^n] = (\frac{\lambda}{\lambda_2})^n \, d\Psi_w(\kappa, \infty) / dt |_{\kappa=0} \). A direct application of the central limit theorem for i.i.d random variables completes the proof given that in steady state all end-user events are independent of each other and identically distributed with the distribution associated to the solution of (8). Hence one can consider, on average, that a single DER is driven by a process \(\bar{w} \sim N(\mu_w, \sigma_w) \).

Example 1: If \(v \sim \exp(\lambda) \), then \(\mu_w = \lambda p \) and \(\sigma_w = \lambda \sqrt{2p - p^2} \), where \(p := \frac{\lambda_1}{\lambda_1 + \lambda_2} \).

B. The State Bin Transition Model

For the purpose of constructing a state bin transition macro-model for a large population of DERs, consider a population whose dynamic states are discretized so that it approaches the behavior of the agent-based micro-model as the number of devices increases [17]. The transition probabilities between bins are determined from the dynamical system equations of the DERs comprising the population. Let \(X = \{x_1, \ldots, x_N\} \), where each element is called a state and constitute a partitioning of the state space \(Z \) in which the DERs evolve. Assume that there exists an appropriate probability space \((\Omega, \mathcal{F}, P)\), where \(\Omega \) is the set of events, \(\mathcal{F} \) a filtration, and \(P \) the probability measure of elements in \(\mathcal{F} \). Then, random variables \(\{X_k\}_{k \geq 0} \) are defined as \(X_k : \Omega \to \mathcal{X} \). Let \(x_j \in \mathcal{X} \) and denote \(q_j[k] = P(X_k = x_j) \) as the probability of \(X_k = x_j, k \geq 0 \). The column vector \(q[k] := (q_1[k], \ldots, q_N[k])^\top \) then gives the probability mass function of the random variable \(X_k \). Also, if one denotes the transition probability of an homogeneous Markov chain as \(p_{ij} = P(X_{k+1} = x_i | X_k = x_j) \), it then follows that

\[
q[k+1] = M q[k],
\]

where \(M = \{p_{ij}\}_{i,j} \leq N \) \[18\]. Given an initial distribution \(q[0] \), one can solve for (9) and find the distribution at time \(k \) as \(q[k] = M^k q[0] \).

The focus of this paper is on DERs that have hybrid one dimensional dynamics as in (1) and (2). More specifically, an interval \([Z_{\text{min}}, Z_{\text{max}}]\) within the continuous state space of the DER is divided into \(N \) consecutive bins each corresponding to a bin state in \(\mathcal{X} \). Since (2) includes three types of dynamics (charge/OFF/discharge) and the ON/OFF dynamics of (1) can be seen as charging/OFF dynamics with a disconnected/inaccessible and trivial discharging dynamics, the state space for the system consists of three discrete state spaces: \(\mathcal{X}_c, \mathcal{X}_\text{OFF} \) and \(\mathcal{X}_d \). That is, the full state space is given by \(\mathcal{X} = \mathcal{X}_c \cup \mathcal{X}_\text{OFF} \cup \mathcal{X}_d \). At time \(k \), the probability mass function of the system is \(q[k] = (q_{c,k}, q_{d,k}, q_{\text{OFF},k}) \) with \(q_c = (q_{c,1}, \ldots, q_{c,N})^\top \) and \(q_d \) and \(q_{\text{OFF}} \) defined similarly. Note that \(q \) contains the percentage of the population in each state of \(\mathcal{X} \). For example, if \(N_c \) is total number of DERs (coincides with the number of end-user event processes) and \(N_{c,s} \) is the number of devices in state \(x_s \), then \(N_{c,s} = q_s[N_c] \). Similarly, the percentage of \(N_{c} \) that is charging and discharging, and the total power of the system are

\[
y_c = c q_c, \quad y_d = c q_d, \quad \text{and} \quad y = c q,
\]
where \(c_c = (1,0,\ldots,0) \in \mathbb{R}^{3N} \), \(c_d = (0,\ldots,0,1,0) \in \mathbb{R}^{3N} \),
\(e = N_i^{a,\text{rate}}(c_c - c_d) \in \mathbb{R}^{3N} \),
\(1_N = (1,\ldots,1) \in \mathbb{R}^N \), and
\(p^{\text{rate}} \) is the average power consumption by the DERs.

Transition rates are computed by considering how the dynamic state interval corresponding to a particular state is altered by the DER hybrid dynamics.

\[
T(t) = \Phi_{S_2}(t) = e^{-at} \left(T_0 - \frac{b(z)}{a} \right) + \frac{b(z)}{a},
\]

where \(a = \frac{1}{T} + \frac{\bar{w}_{\text{avg}}}{60L} \) and \(b(z) = \frac{T_{\text{amb}}}{\tau} + \frac{T_{\text{avg}}}{60L} \bar{w}_{\text{avg}} + \frac{p^{\text{rate}}}{cP_{\text{L}} L} \bar{z} \).

For ESSs, since the time-horizon of interest is less than 48 hours, one can set \(\eta_\delta \equiv 0 \) and, if we assume that \(v \) is a zero-mean random variable, one obtains \(\bar{w}_{\text{avg}} = 0 \). Making \(S(0) = S_0 \), one has that

\[
S(t) = \Phi_{S_0}(t) = S_0 + (z(t)p^{\text{rate}}\eta_\delta(t)) t.
\]

Furthermore, from Theorem 1, one can compute the standard deviation \(\sigma_x \) for (1) and (2) when driven by the stochastic process satisfying \(dw = \bar{w}_{\text{avg}} dt + \sigma_x dW(t) \) (\(W(t) \) is a standard Wiener process) by solving the following differential equation for the second moment of \(T \) and \(S \):

\[
\dot{\rho}(t) = (2A(t) + B^2(t))\rho(t) + 2Z(t)(\alpha(t) + B(t)) + \beta(t)^2(t),
\]

where \(\rho(0) = Z^2(0) \). Then \(\sigma_x = \sqrt{\rho - E[Z^2]} \). In particular, EWHs have \(A = -1/\tau - \bar{w}_{\text{avg}}/(60L) \), \(\alpha = p^{\text{rate}}/cP_{\text{L}}L \), \(\beta = T_i\sigma_x/(60L) \), and ESSs have \(A = 0 \). The transition probabilities for the charging population, as shown in Fig. 2, are computed by taking the boundaries \(Z_{\text{min}} \) and \(Z_{\text{max}} \) corresponding to state \(x_1 \) and computing \(Z_{\text{min}} = Z_{\text{max}} \) and \(Z'_1 = \phi_1 \Delta(t) \). Note that in this case \(Z_1 < Z'_1 \). Thus, the percentage of DERs that remain in \(x_1 \) move to \(x_{1+1} \) and move to \(x_{1-1} \) are, respectively, given by:

\[
p_{i,i+1} = \frac{Z_i - Z_{i+1}}{\Delta Z_1} + \frac{\sigma_b + \sigma_f}{\Delta Z_1} \text{ and } p_{i,i-1} = 1 - p_{i,i+1}.
\]

Transition rates for the OFF and discharging dynamics are determined similarly. Note that the DER population does not transition to either a higher temperature (TCLs) or a higher state-of-charge (ESSs) since these represent a higher energy state, and, for \(z = 0, -1 \), (1) and (2) are driven by non-negative energy losses or zero-mean bounded damping terms.

The difference between TCLs and ESSs lies in the choice of \(\sigma_b, \sigma_f \). For TCLs, \(\sigma_b = 2\sigma_L \), given that this value contains 95\% of the distribution mass for the purpose of computing the probabilities of transitioning between adjacent bin states. However, for ESSs, \(\sigma_b = 0 \) due to the bounds established on the charging rate. In addition, there is the potential for some devices spilling over the right boundary of the interval shown in Fig. 2 (left) when charging. This effect is non-trivial when the end-user events affect the DER dynamics additively. Specifically in this paper, it is assumed in Section IV-D that ESSs have \(\eta_\delta = 0 \) with no background disturbance (i.e., \(\sigma_b = \sigma_f = 0 \)) in addition to the imposed charging/discharging power limits. For TCLs, the hot water usage events act multiplicatively via (1) and the spill-over effect to the right of the interval boundary can be ignored (\(\sigma_f = 0 \)).

Assuming conventional hysteretic control of DERs, which is based on keeping the local state variable (e.g., temperature, state-of-charge) within a dead-band \([Z_{\text{min}}, Z_{\text{max}}]\), one charges a device from the OFF states when \(Z < Z_{\text{min}} \), turn OFF discharging devices if \(Z \leq Z_{\text{min}} \) or turn OFF charging devices in the case that \(Z > Z_{\text{max}} \), where \([Z_{\text{min}}, Z_{\text{max}}] = [Z_{\text{set}} - Z_{\text{DB}}/2, Z_{\text{set}} + Z_{\text{DB}}/2]\). The hysteretic control is described in Fig. 3. In the case of a population of DERs consisting only of TCLs, the signals \(\beta_\delta, \beta_\epsilon, \beta_\beta, \beta_\alpha \) are always zero and the discharging states are unreachable since TCLs cannot inject power into the grid. In the case of a generic type of DERs, the signals \(\beta_\delta, \beta_\epsilon, \beta_\beta, \beta_\alpha \) are user-driven (e.g., ESSs being dispatched by owner or electric vehicles being driven). The state diagram for the Markov chain describing conventional DER control is shown in Fig. 3a. The associated Markov transition matrix \(M \) for \(\beta_\epsilon = \beta_\beta = \beta_\alpha = 0 \) is

\[
M = \begin{pmatrix}
M_0 & M_{\text{set}} & M_{\text{off}} & M_{\text{eff}} \\
0_N & M_{\text{set}} & M_{\text{off}} & M_{\text{eff}} \\
0_N & 0_N & M_L & M_L \\
0_N & 0_N & M_L & M_L
\end{pmatrix},
\]
where M_β, for $h = \{c, \text{off}, d\}$, is a tridiagonal matrix containing the probabilities of staying, going to next state and going to the previous state, $M_{c,\text{off}} = e_1 e_1^\top \rho_{\text{off}}^d$, $M_{\text{off}, c} = e_N e_N^\top \rho_{\text{off}}^d$, $M_{\text{off}, h} = e_N e_N^\top \rho_{\text{off}}^d$, e_i denotes the elementary vector with its i-th component equal to 1 and all the others 0, and 0_N denotes the N dimensional zero matrix. Observe that the Markov chain associated to M is irreducible since one can reach any state from any arbitrarily chosen initial state. It follows then that this abstraction possesses a unique invariant distribution since X is finite dimensional. Nonetheless, the conventional model lacks the flexibility inherent to PEM as discussed in Section II.

IV. PEM Bin Model for DERS

In this section, PEM is embedded into the Markov model for DERS developed above. Specifically, the state bin model is augmented with a timer comprised of two counters that capture the duration of energy packets being consumed and injected. Finally, additional states are conveniently introduced to account for the opt-out dynamics in order to ensure end-user quality of service (QoS). This permits a virtual power plant (VPP) operator to interact with the DER population through the stochastic packet request mechanism. The VPP regulates the proportion of accepted packet requests (charging and discharging) to allow tight tracking of balancing signals. The developed macro-model compares well with (agent-based) micro-simulations of diverse DERs under PEM and can be represented by a controlled Markov chain. Finally, the paper presents how the aggregate net-demand of TCLs and ESSs under PEM is managed by a single coordinator.

A. PEM Markov Model

Under PEM, a DER can only switch to charging/discharging modes for an epoch if the corresponding charging/discharging packet request is accepted by the VPP coordinator. To capture the unique nature of PEM’s fixed packet duration and VPP’s role, we leverage prior literature on fault tolerant recovery logic [19] and TCL modeling with compressor lockout periods [5]. In this setting, two timers are added to the state bin transition model to track the population with accepted charging/discharging packet requests, respectively. PEM control is described as a controlled Markov chain.

Definition 1 (18): Let $\{u_i\}_{i \geq 0}$ be a sequence of real valued functions taking values on a set U. A Markov chain $\{X_k\}_{k \geq 0}$ is said to be a controlled Markov chain (CMC) if its transition matrix $M = M(u) := \{q_{ij}(u)\}_{i,j \leq N}$ satisfies

$$P(X_{n+1} = x_{i_{n+1}} | X_n = x_{i_n}, \ldots, X_0 = x_{i_0}, u_{n}, \ldots, u_0) = P(X_{n+1} = x_{i_{n+1}} | X_n = x_{i_n}, u_{n}) = p_{i_{n+1} i_n}(u_{n}).$$

Note that the resulting matrix $M(u)$ must be a (column) stochastic matrix for any choice of $u \in U$. As usual, the probability mass function of a CMC is computed similarly using $q[k+1] = M(u[k])q[k]$ given an initial distribution $q[0]$ and control policy $u(k) : X \rightarrow U$ for $k = 0, 1, \ldots, N$.

The underlying transition matrix over which PEM is implemented is given by (13), but with $p_{\text{off}} = p_{c, \text{off}} = p_{d, \text{off}} = 0$ and $p_{\text{off}, \beta} = 1$. In this manner the VPP becomes the interface between the three modes of operation.

Suppose $q[k] \in \mathbb{R}^{MN}$ is the probability distribution of the PEM macro-model population at time k, $\beta_k = \text{diag}\{\beta_k, \ldots, \beta_k\}$ with $\beta_k \in [0, 1]$ the percentage of the OFF-population in state x_{off} that is allowed to charge, $\beta_d = \text{diag}\{\beta_d, \ldots, \beta_d\}$ with $\beta_d \in [0, 1]$ the percentage of the OFF-population in state x_{off} that is allowed to discharge, and $\beta_{\text{off}} = \text{diag}\{\beta_{\text{off}}, \ldots, \beta_{\text{off}}\}$ with $\beta_{\text{off}} \in [0, 1]$ the percentage of the OFF-population in state x_{off} that is switched OFF. The action of instantaneously switching charging, discharging and OFF proportion of devices to a different state in q is given by the transformation:

$$\hat{q}[k] = M(\beta_{\text{on}}, \beta_{\text{off}}) q[k],$$

where $\beta_{\text{on}} = (\beta_c, \beta_d)^\top$, $\beta_{\text{off}} = (\beta_{\text{off}, c}, \beta_{\text{off}, d})^\top$, $M(\beta_{\text{on}}, \beta_{\text{off}}) = \begin{pmatrix} I_N - \beta_{\text{off}} & \beta_c & 0_N \\ \beta_{\text{off}, c} & I_N - \beta_d - \beta_{\text{off}, d} & 0_N \\ 0_N & \beta_{\text{off}, d} & I_N - \beta_{\text{off}, c} \end{pmatrix},$

I_N denotes the N-dimensional identity matrix. Once $M(\beta_{\text{on}}, \beta_{\text{off}})$ has switched some DERs to a new charge/OFF/discharging mode, the matrix M makes the DERs in \hat{q} evolve with the natural dynamics inside each mode of operation. It then follows that

$$q[k+1] = M(\beta_{\text{on}}, \beta_{\text{off}}) q[k].$$

Theorem 2: Let $\beta_{\text{on}}[k], \beta_{\text{off}}[k] \in \mathbb{R}^{2N \times N}$ be defined as in (14) $\forall k \geq 0$. The sequence $\{X_k\}_{k \geq 0}$ of random variables X_k taking values in X and probability distribution satisfying (16) is a controlled Markov chain as described by Definition 1 with input $u[k] = (1_{2N} \beta_{\text{on}}[k], 1_{2N} \beta_{\text{off}}[k])^\top \in \mathbb{R}^{4N}$.

Proof: The proof is straightforward since matrices in (13) and (15) are stochastic for any $\beta_{\text{on}}, \beta_{\text{off}} \in [0, 1]$, and the product of stochastic matrices is a stochastic matrix.

PEM control is based on the notion of charging/discharging requests of the OFF population as a function of their current dynamic bin state (for instance, temperature for TCLs and state-of-charge for ESSs). The number of charging/discharging requests thus are paramount for establishing the limits of PEM and different control strategies under PEM. Define

$$\hat{n}_b[k] := M_b q[k] = \text{diag}(I_N, T_{\text{req}}, I_N) q[k],$$

where $T_{\text{req}} = \text{diag}(p_{\text{req}}^{\text{ch}}, \ldots, p_{\text{req}}^{\text{d}})$. It is obvious that \hat{n}_b is not a probability mass function since $1_N \hat{n}_b = q[k] + q_{\text{on}} + q_{\text{off}} < 1$. Note that $\hat{n}_b = (q_{\text{on}}^{\top} q_{\text{off}}^{\top} q_d^{\top})^\top$. Nevertheless the aggregate charge/discharging request rate, i.e., the population that can be switched to charge/discharging, is given by:

$$n_b[k] := 1_N^\top \hat{n}_b[k].$$

It is assumed that each device cannot, in the same instance, request both charge and discharge. This implies that if both packet types are requested, they simultaneously cancel each other out and no request is made. Furthermore, for each individual DER, since a charging and a discharging request occur independently: $T_{\text{req}} = T_{\text{req}, k}$ and $T_{\text{req}, d} = T_{\text{req}, d}^k$ are replaced by $T_{\text{req}, k} = T_{\text{req}}(I_N - T_{\text{req}, d})$ and $T_{\text{req}, d} = T_{\text{req}}(I_N - T_{\text{req}, k})$, respectively. Thus, under PEM, the VPP determines the rate of accepting charging ($\beta_{\text{on}}[k]$) and discharging ($\beta_{\text{off}}[k]$) packets. Upon a packet being accepted by the VPP, the DER then
instantly switches to the corresponding state.

The population of devices that switch from OFF to charge/discharge, \(q^+ \), is a function of \(\beta_c, \beta_d \) and \(q_{off} \) as
\[
q^+ [k] := \begin{pmatrix}
0_N \\
0_N \\
\beta_c[k]T_{req,c} \\
\beta_c[k]T_{req,c} - \beta_d[k]T_{req,d}
\end{pmatrix}
\begin{pmatrix}
\delta \\
0_N \\
\beta_c[k]T_{req,c} \\
\beta_d[k]T_{req,d}
\end{pmatrix}
q[k] = M^+[\beta_c, \beta_d]q[k].
\]

Observe that the vector \(q^-\)[k] can be partitioned as \(q^-\)[k] = \((q^-c\)[k], \(q_{off}\)[k], \(q^-d\)[k])\top.\) The population of DERs that switch from charging/discharging to OFF requires information on the rate of expiring packets. In other words, let \(\delta \) [secs] be the duration of a packet epoch, then the DERs that have been charging/discharging for \(\delta \) seconds will turn OFF. A delayed system can be constructed based on the need of keeping track of how many DERs started a packet \(\delta \) seconds ago. Similar to the preliminary work in [8], two sets of states (timer states) are introduced to the system dynamics to account for the number of charging and discharging DERs, respectively. That is, given \(\delta \), the time step \(\Delta t \), and the two vectors of augmented timer states \(x_{p,h} \in \mathbb{R}^{n_p} \) with \(n_p = [\delta/\Delta t] \) and \(h = \{c,d\} \), the timer dynamics is given by
\[
x_{p,h}[k + 1] = M_{p,h} x_{p,h}[k] + C_{p,h} q^h[k], \tag{18a}
\]
where \(y_{p,d}[k] = x_{p,h}[k] \), \(M_{p,h} \in \mathbb{R}^{n_p \times n_p} \) is a zero matrix except for its first row and column whose components are 1 and \(C_{p,h} \in \mathbb{R}^{n_p \times N} \) is responsible for allocating the new charge/discharge population into their corresponding charge/discharge timer states. For DERs that were just switched from OFF to charge, there is a state \(Z_c \) such that \(\phi_c(\delta) = Z_{max} \). Therefore, \(C_{p,c} \) interrupts packets to prevent exceeding \(Z_{max} \). More precisely, if \(Z_{c+1} < Z_c, C_{p,c} \) allocates all DERs requesting charging packets from bin \([Z_c, Z_{c+1}] \) into the timer state \(x_{p,c} \). Otherwise, it allocates DERs with \(Z_j > Z_c \) in the timer state \(x_{p,c} \) with \(j = [(\delta - t_f)/\Delta t] \) and \(t_f \) the time that the DER takes to move its state from \(Z_j \) to \(Z_{max} - \) this captures packets that are interrupted due to QoS constraints. DERs switching from OFF to discharge similarly define the discharge timer states.

Using the information provided by both timers, one can define the population of DERs that completed their \(\delta \)-seconds packets (charging and discharging) and therefore turns OFF instantly as
\[
q^-\)[k] := \begin{pmatrix}
\beta_c[k]I_N \\
\beta_d[k]I_N \\
\beta_c[k]I_N \\
\beta_d[k]I_N
\end{pmatrix}
\begin{pmatrix}
\delta \\
0_N \\
\delta \\
0_N
\end{pmatrix}
q[k] = M^-\beta_c[k]q^-\)[k], \tag{19}
\]
where \(\beta^-c[k] := y^\top_{p,b}[k]/(1\top_n y_{p,b}[k]) \) with \(h = \{c,d\} \). The charge/OFF/discharge switching events for the entire population can be formulated as
\[
q[k] := q^+\)[k] + q^-\)[k] - q^-\)[k] = (I + M^+\beta_c[k] - M^-\beta_c[k])q[k],
\]
which yields the DER population dynamics:
\[
q[k + 1] = M(I + M^+\beta_c[k] - M^-\beta_c[k])q[k] = M^c[\beta_c, \beta_d]q[k], \tag{20}
\]
where \(\beta^c_0[k] = (\beta_c[k]T_{req,c} + \beta_d[k]T_{req,d})\top \) and \(\beta_d[k] = (\beta_c I_N, \beta_d I_N)\top \). Observe that, as in [8], that there is no order in which DERs are switched to charge, OFF or discharge since these events happen instantaneously and simultaneously every \(\Delta t \) seconds. Fig. 3b shows the state diagram of the population model under PEM control.

From Theorem 2, the following corollary follows directly.

Corollary 1: The sequence \(\{X_k\}_{k \geq 0} \) of random variables \(X_k \) taking values in \(X \) and probability distribution satisfying (20) is a controlled Markov chain with input \(u_{\beta_c} = \begin{pmatrix}
1 \beta_c[k]T_{req,c} \\
1 \beta_c[k]T_{req,c} \\
I_N \beta_c I_N \\
I_N \beta_d I_N
\end{pmatrix} \).
k (to maximize QoS). That is, one solves the following optimization problem:

$$\max_{\xi[k], \nu[k]} \xi[k] + \nu[k]$$

subject to

$$\xi[k] P_{\text{rate.c}}[k] + \nu[k] P_{\text{rate.d}}[k] = P_{\text{error}}[k],$$

$$0 \leq \xi[k] \leq n_c, \quad 0 \leq \nu[k] \leq n_d,$$

where

$$P_{\text{error}} = P_{\text{ref}}[k] - P_{\text{demin}}[k]$$

is the VPP tracking error and

$$n_c[k], n_d[k]$$

is the VPP’s total number of charging (discharging) requests received at k.

Example 2: Assuming

$$P_{\text{rate.c}}[k] \approx P_{\text{rate.d}}[k] = P_{\text{rate}},$$

one has that if

$$P_{\text{error}}[k] > 0$$

and

$$P_{\text{demin}}[k] := \min\{n_c[k] P_{\text{rate}}[k] - P_{\text{error}}[k], n_d[k] P_{\text{rate}}[k]\},$$

$$\xi[k] = \left\{\begin{array}{ll}
(P_{\text{error}}[k] + P_{\text{demin}}[k])/P_{\text{rate}}[k], & n_c[k] > P_{\text{error}}[k], \\
0, & n_c[k] < P_{\text{error}}[k],
\end{array}\right.$$

and when

$$P_{\text{error}}[k] < 0$$

and

$$P_{\text{demin}}[k] := \min\{n_c[k] P_{\text{rate}}[k] - P_{\text{error}}[k], n_d[k] P_{\text{rate}}[k] - |P_{\text{error}}[k]|\},$$

$$\xi[k] = \left\{\begin{array}{ll}
P_{\text{demin}}[k]/P_{\text{rate}}[k], & n_d[k] > |P_{\text{error}}[k]|, \\
0, & n_d[k] < |P_{\text{error}}[k]|,
\end{array}\right.$$
Fig. 6. (Top) Homogeneous macro/micro-model simulation of 1300 TCLs tracking a random signal and (Bottom) Diverse population of 1000 TCLs and 300 ESSs tracking the same random signal under one VPP.

in this study had a set temperature of 52°C inside the deadband $[45.75, 58.24]°C$ with PEM lower bound equal to 47.84°C. The homogeneous ESSs, on the other hand, have SOC set point of $70\%SOC$ inside the dead-band interval $[20, 100]\%SOC$ with PEM lower bound of $25\%SOC$. To validate the model’s performance, it is compared against a diverse (agent-based) PEM micro-model simulation similar to [22]. It is shown through simulation that the mean behavior of the macro-model compares well with the micro-model simulation.

Figure 5 shows the result of the first experiment. Clearly, the “accepting all” steady state macro and micro-model simulations agree (modulo the stochastic variability of the micro-model). Still the error between steady state behaviors of macro and micro-model simulations during period of accepting all charge/discharge requests are within a reasonable ±5% of the nominal power value. A similar outcome is observed for the error between steady state behaviors of macro and micro-model simulations during the period of rejecting all charge/discharge requests. The main difference between macro and micro-model simulations is in the speed at which the TCL population reaches steady state behavior after start rejecting all packet requests. This is mainly due to large end-user events for EWHs whose temperature is very close to the lower boundary of the deadband, which results into a very small number of devices exiting PEM regardless of the aggregated temperature of the system. The same effect is reflected in the QoS for TCLs whereas ESSs do not present such issue.

The result of the second experiment is given in Fig. 6. In the top part of the figure, a homogeneous TCL population is trying to track a random signal. However, the system fails due to QoS constraints. Specifically, the system is unable to track the random power reference signal since $\eta_T = \eta_{off,d} = 0$ in (21a) and (21b). From Fig. 6 and (21b), the exit-@ population dominates after minute 660 and the 1300 HWHs offer no downward flexibility, which affects the TCL-only VPP’s ability to track the random signal. On the other hand, by adding bidirectional DERS (i.e., ESSs) with TCLs to PEM, the downward flexibility in (21b) increases due to discharging requests, which improves the ability of the VPP to track the random signal. Note that the effect of adding ESSs into the PEM game does not decrease the upward flexibility, since ESSs can charge too. Thus, diversity in the population is enabled seamlessly by PEM without having to modify the automata logic at the load or the VPP control mechanism. Clearly, the performance of the diverse VPP is superior. Due to space constraints additional comparisons are omitted, however, the root mean square error between macro and micro-model aggregated dynamic states for the diverse VPP amounts to less than 0.8°C for the TCLs and less than 5.0% SOC for the ESSs while tracking the random signal.

References

