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Historical Trends in Lake and
River Ice Cover in the Northern

Hemisphere
John J. Magnuson,1* Dale M. Robertson,2 Barbara J. Benson,1

Randolph H. Wynne,3 David M. Livingstone,4 Tadashi Arai,5
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Freeze and breakup dates of ice on lakes and rivers provide consistent evidence
of later freezing and earlier breakup around the Northern Hemisphere from
1846 to 1995. Over these 150 years, changes in freeze dates averaged 5.8 days
per 100 years later, and changes in breakup dates averaged 6.5 days per 100
years earlier; these translate to increasing air temperatures of about 1.2°C per
100 years. Interannual variability in both freeze and breakup dates has increased
since 1950. A few longer time series reveal reduced ice cover (a warming trend)
beginning as early as the 16th century, with increasing rates of change after
about 1850.

Calendar dates of freezing and thawing of
lakes and rivers were being recorded by di-
rect human observation well before scientists
began to measure, manipulate, and model
these freshwater ecosystems (1). The early
observations were made for religious and cul-
tural reasons (2, 3), for practical reasons con-
cerned with transportation over ice or open
water (4), and, apparently, simply out of
curiosity. These simple records provide a sea-
sonally integrated view of global warming
from regions where early temperature mea-
surements are sparse.

Here, we present and analyze the trends
from time series that are longer than 100
years on lakes and rivers around the Northern
Hemisphere. Thirty-nine time series are avail-
able for the 150-year period from 1846 to
1995 (5); three sites from Russia, Finland,
and Japan with records beginning before
1800 are also available. The “freeze date” is
defined as the first date on which the water
body was observed to be totally ice covered,
and the “breakup date” is the date of the last

breakup observed before the summer open-
water phase (6).

Between 1846 and 1995, 38 of 39 records
change in the direction of later freeze dates
(14 of 15) and earlier breakup dates (24 of
24) (Fig. 1 and Table 1) (7). The single
exception, Lake Suwa, Japan, freeze dates,
was not significant (P 5 0.25). Individual
slopes (9 out of 15 for the freeze date and 16
out of 24 for the breakup date) were statisti-
cally significant (P , 0.05). Linear trends
over the 150 years averaged a freeze date that
was 5.8 days/100 years later (61.9 days,
confidence interval 95%) and a breakup date
that was 6.5 days/100 years earlier (61.4
days, confidence interval 95%).

Slopes did not differ statistically between
freeze and breakup dates (matched pair t test;
n 5 12; P 5 0.37), among latitudes, between
North America and Eurasia, nor between riv-
ers (7.8 days/100 years) and lakes (5.9 days/
100 years) (t test; n 5 7, 30; P . 0.25). The
overall rate of change for the Northern Hemi-
sphere has been 6.2 days/100 years between

1846 and 1995, including all records except
Toronto Harbor (Table 1) and giving equal
weight to freeze and breakup.

The few records before 1846 suggest that
long-term changes toward later freezing and
earlier breakup dates were already occurring,
but at slower rates, at sites as far apart as
Europe and Japan. Three time series (one lake
and two rivers) have records that are long
enough to provide annual information on ice
phenology trends before 1846 (Fig. 2 and
Table 1).

For Lake Suwa, Japan, freeze dates be-
came later over the 550-year record by 2.0
days/100 years (P , 0.0001) (Fig. 2). Slopes
indicating later freezing for relatively unbro-
ken windows of time ranged from 3.2 days/
100 years (1443 to 1592) to 20.5 days/100
years (1897 to 1993). Additional evidence
from Lake Suwa comes from the ice cover
occurrence data. Lake Suwa was ice covered
for 240 out of 243 winters (99%) from 1443
to 1700 but only for 261 out of 291 winters
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(90%) from 1700 to 1985 (x2 test; P ,
0.0001). A reversed trend toward earlier
freezing dates is apparent from about 1872 to

1897 (Fig. 2) and produces the single excep-
tion for slopes (Table 1) for the 150-year
period from 1846 to 1995. This period is

inconsistent with the trends toward later
freezing dates for the rest of the Lake Suwa
time series. The period includes 25 years of
missing data, a time of social change, adjust-
ments to the Japanese calendar, and, perhaps,
anthropogenic influences.

Tornionjoki River, Finland, has a persis-
tent long-term trend toward earlier breakup
dates throughout the entire record (1692 to
1995) (Fig. 2). Slopes were significant for
each 150-year interval tested, and they ranged
from 3.7 days/100 years (1701 to 1850) to 6.6
days/100 years (1846 to 1995). Human influ-
ence on this record should be small; a single
power plant is located on a tributary that
represents only 3% of the catchment area.

Data for the Angara River, Siberia, sug-
gest that the trend for later freezing began
near 1850 (Fig. 2). Breakup data exhibited no
long-term trend.

An additional data set of total ice cover is
available for Lake Constance in central Europe
from the 9th through the 20th centuries (2); it
indicates cooler winters from the 13th through
the 16th centuries. The criterion for “total ice
cover” was a walk across the ice of the main
basin to transport a Madonna figure between
two churches: one in Germany, the other in
Switzerland. The figure remained on one side
of the lake until the next ice-covered winter,
when it was possible to carry it back again. The
number of winters with ice cover increased
from 1 out of 100 years to 7 out of 100 years
from the 12th through the 15th centuries, de-
creased from 7 out of 100 years to 1 out of 100
years from the 16th through the 18th centuries,
and was 0, 1, or 2 out of 100 years in earlier and
later centuries. The recent 150-year trends of
later freeze and earlier breakup dates are not
detectable with this coarser level of data.

The change in freeze and breakup dates
over the 150 years from 1846 to 1995 corre-
sponds to an increase in air temperature of
;1.2°C/100 years. Typical values for conver-
sions of the change in ice cover to the change
in air temperature are near a 0.2°C per day
change in the phenological date for many
lakes and rivers around the Northern Hemi-
sphere (8–15).

Ice phenologies integrate change over an
8-month window (October through May). Ice
freeze and breakup dates correlate most
strongly with air temperatures in the month or
two before the event (9, 16–18). In more
northern areas, such as Lake Kallavesi, Fin-
land, freeze dates reflect the climate prevail-
ing around October to November (Fig. 1,
freeze dates). However, in more southern ar-
eas such as Grand Traverse Bay, whose con-
nection to the large Lake Michigan also de-
lays freezing (19), freeze dates reflect the
climate from January to February (Fig. 1,
freeze dates). Similarly, breakup dates reflect
February to March climates in more southern
areas, such as Lake Mendota in Wisconsin,

Fig. 1. Time series of freeze and breakup dates from selected Northern Hemisphere lakes and rivers
(1846 to 1995). Data were smoothed with a 10-year moving average. Locations and related
information are in Table 1.

Fig. 2. Time series of
freeze and breakup
dates for Lake Suwa
( Japan), the Angara
River (Russia), and
Tornionjoki River (Fin-
land), with records be-
ginning before 1800.
Data were smoothed
with a 10-year moving
average.
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and April to May climates in the more north-
ern areas, such as Kallavesi (Fig. 1, breakup
dates).

Interannual variability in ice phenology
dates also increased during the last half of the
20th century. For 184 lakes and rivers around
the Northern Hemisphere (20), variability was
12% greater for freeze dates and 5% greater for
breakup dates from 1971 to 1990 than during
the period from 1951 to 1970. At Lake Men-
dota, the two earliest breakup events occurred
in 1983 and 1997 during intense El Niño–
Southern Oscillation events (1, 21).

For rivers and even for lakes with substan-
tial stream inflow, the breakup date is strongly
influenced by the timing, magnitude, and rate of
spring runoff as well as by the nature of the
freezing process and ice stratigraphy (15, 22,
23). Such processes, which are active during
breakup, could explain why trends in ice phe-
nology dates for Russian rivers from the 1930s
to 1994 (24) were significant for the freeze date
but not for the breakup date. For lakes, snow
cover influences breakup dates (25); our ob-
served trends toward earlier breakup dates may
suggest some decline in snowfall.

Analysis of lake and river ice phenologies
has a long history (1, 26–28). Their strengths
as a climate proxy include the broad spatial
distribution of sites, the annual resolution of
the data, a longer record than other direct
measures such as air temperature, and the
relative ease and precision of measuring
freeze and breakup dates both directly and by
satellite (29). Their greatest weakness may be
the absence of metadata for older records.

These long-term trends in observed lake
and river ice phenologies provide evidence
that freshwater ecosystems are responding to
warming trends, and they increase confidence
in the patterns of climate changes and global
warming over the past 150 years. These in-
creases are generally consistent with scenar-
ios for greenhouse gas–forced climate warm-
ing (30, 31), but they may be related to other
drivers, such as changes in solar activity (30,
32). The increased variability in ice dates
may be related to greenhouse gas warming as
well; scenarios from some climate models
demonstrate an intensification of El Niño–
like conditions with greenhouse gas forcing
(33).
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Northridge Earthquake Damage
Caused by Geologic Focusing of

Seismic Waves
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Stephen S. Gao,2 Leon Knopoff3

Despite being located 21 kilometers from the epicenter of the 1994 Northridge
earthquake (magnitude 6.7), the city of Santa Monica experienced anomalously
concentrated damage with Mercalli intensity IX, an intensity as large as that
experienced in the vicinity of the epicenter. Seismic records from aftershocks
suggest that the damage resulted from the focusing of seismic waves by several
underground acoustic lenses at depths of about 3 kilometers, formed by the
faults that bound the northwestern edge of the Los Angeles basin. The am-
plification was greatest for high-frequency waves and was less powerful at
lower frequencies, which is consistent with focusing theory and finite-differ-
ence simulations.

The usual expectation is that damage to
buildings from an earthquake in an urban area
will be greatest near the epicenter and will
decrease steadily with increasing distance.
Traditionally, anomalous large damage has
been attributed to site effects, such as ampli-
fied shaking of compliant soil structures (1,
2). For the Northridge earthquake (magnitude
6.7), soil effects in Santa Monica were found
to be inadequate to explain the damage (3),
because areas that had identical soils and
were equidistant from the epicenter experi-
enced less damage (Fig. 1).

The localized concentrations of high am-
plitudes of ground motion from the after-
shocks of the Northridge earthquake suggest-
ed that focusing by deep geologic structures,
which act like acoustic lenses, was likely to
have caused the concentrated damage (Fig. 1)
in Santa Monica during the main event (4).

Models have been proposed to test wheth-
er focusing can explain the aftershock ampli-
tudes or the ground shaking from the main

event (5–11). These models have used pub-
lished cross sections (12) of the geology be-
neath Santa Monica, and although they con-
firm that focusing may occur, they either give
amplitudes that are too small (7) or the pre-
sumed site of the focus is located too far
south (13). The need to model high frequen-
cies at fine grid spacing (10 m) is so compu-
tationally intensive that such simulations
have been restricted to two-dimensional (2D)
structures and to unacceptably low frequen-
cies (6, 11). Iterative inversion of the data is
not yet feasible. However, the concentration
of damage and the patterns of high aftershock
amplification indicate that the proper treat-
ment of the problem must take high frequen-
cies into account, as well as the 3D subsur-
face structure. Our mapping of the under-
ground geology is not sufficiently detailed to
know, a priori, whether or not 3D focusing is
important at any wavelength, much less at
wavelengths on the order of 100 m. The
geological cross sections are derived from
logging of widely separated bore holes in the
region (12, 13) and from extrapolation from
the surface geology. We turned the problem
around by attempting to identify focusing
structures from an inversion of the aftershock
data. To do this, we have developed a 3D
forward model of deep basin focusing, albeit
a simple one, that is suitable for iterative
inversion.
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