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Abstract. The probability of a rare event is usually estimated directly as the number
of times the event occurs divided by the total sample size. Unfortunately, the precision of
this estimate is low. For typical sample sizes of N , 100 in ecological studies, the coefficient
of variation (CV) of this estimate of the probability of a rare event can exceed 300%. Sample
sizes on the order of 103–104 observations are needed to reduce the CV to below 10%. If
it is impractical or impossible to increase the sample size, auxiliary data can be used to
improve the precision of the estimate. We describe four approaches for using auxiliary data
to improve the precision of estimates of the probability of a rare event: (1) Bayesian analysis
that includes prior information about the probability; (2) stratification that incorporates
information on the heterogeneity in the population; (3) regression models that account for
information correlated with the probability; and (4) inclusion of aggregated data collected
at larger spatial or temporal scales. These approaches are illustrated using data on the
probability of capture of vespulid wasps by the insectivorous plant Darlingtonia californica.
All four methods increase the precision of the estimate relative to the simple frequency-
based estimate (absolute precision 5 1.26, relative precision [CV] 5 70%): stratification
(absolute precision 5 1.10, CV 5 62%); regression models (absolute precision 5 1.59, CV

5 55%); Bayesian analysis with an informative prior probability distribution (absolute
precision 5 4.28, CV 5 47%); and using temporally aggregated data (absolute precision
5 6.75, CV 5 36%). When informative auxiliary data is available, we recommend including
it when estimating the probability of rare events.

Key words: aggregation; Bayesian inference, coefficient of variation; estimators; precision; rare
events; regression; sampling, stratification.

INTRODUCTION

Rare events are important in ecology and evolution.
Familiar examples include genetic drift in founding
populations (Mayr 1963), seedling establishment in
plant populations with low growth rates (Harper 1977),
successful establishment of seedlings following long-
distance dispersal (Clark et al. 2001), species extinction
(Roberts and Solow 2003), and extreme meteorological
events such as ice storms, wildfires, or hurricanes
(Whelan 1995, Foster and Aber 2003). The ecology
(Rabinowitz 1981) and biogeography (Jetz and Rahbek
2002) of rare species may be very different from that
of common species, and the statistical distribution of
rare species is a key prediction that distinguishes many
models of community structure (Williams 1964, Hub-
bell 2001, Magurran 2003, Chave 2004).

Precisely estimating the probability of rare events is
a statistical challenge. If the true probability of a dis-
crete rare event is p, the standard frequentist estimate
of this probability, p̂, is calculated as the number of
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observations n of the rare event divided by the total
number of observations (or trials) N (Gotelli and El-
lison 2004): p̂ 5 n/N. The standard error of this estimate
SEp̂ 5 , and its coefficient of variation CVp̂Ïp̂(1 2 p̂)/N
5 SEp̂ /p̂.

If an event is truly rare (p , 0.01), its frequentist
estimate p̂ has reasonable precision (CVp̂ # 10%) only
when the sample size N exceeds 1000 total observa-
tions or trials. For N , 100 total observations, typical
for many ecological studies, CVp̂ may exceed 300%.
When the precision is low, it can be difficult to detect
trends in the frequency or differences between groups.
Increasing the precision provides better estimates and
higher power for statistical tests of trends and differ-
ences. The precision of an estimate can also be im-
portant for policy decisions (e.g., Lewison et al. 2004).
In this article, we describe four methods that can pro-
vide more precise estimates of the probability of a rare
event. All of these methods require auxiliary data, but
obtaining this auxiliary data usually requires less effort
or cost than obtaining larger samples of the rare event
itself.

EXAMPLE DATA

We use data on the capture efficiency of wasps by
the insectivorous pitcher plant, Darlingtonia califor-
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PLATE. 1. Darlingtonia californica, a rare carnivorous plant species endemic to the Siskiyou Mountains of Oregon and
northern California, which grows in a threatened plant community type—serpentine fen. Photo credit: A. M. Ellison.

nica (Sarraceniaceae), to illustrate methods by which
the precision of estimates of the probability of rare
events can be increased (see Plate 1). Although prey
capture by carnivorous plants provides nutrients re-
quired for successful sexual reproduction (reviewed in
Ellison and Gotelli 2001), prey capture may be infre-
quent or rare (Zamora 1995, Zamora et al. 1998); most
insects that enter pitcher-plant traps are not captured
(Newell and Nastase 1998).

Like other pitcher plants in this family, Darlingtonia
grows as a rosette of leaves that are modified to form
pitcher-shaped traps (Arber 1941). These pitchers se-
crete copious nectar that attracts foraging insects, es-
pecially vespulid wasps (Vespula atropilosa) and ants
(Tapinoma sessile). As part of a long-term study of the
demography of Darlingtonia, we recorded the frequency
with which Darlingtonia captures wasps and estimated
the conditional probability of a successful capture: p 5
P(capture z visit). During July 2002, Ellison, Gotelli and
their colleagues observed 753 Darlingtonia plants for
one-half hour each, for a total of 376.5 plant-hours of
observation (A. M. Ellison, R. J. Emerson, E. J. Farns-
worth, N. J. Gotelli, C. M. Hart, H. R. Steinhoff, and
S. E. Wittman, unpublished data). During this time, N
5 157 wasps were seen to visit the pitchers, and n 5 2
of these wasps were captured. For each visit, we also
recorded the time a wasp spent in each pitcher, and we
measured the orientation of the pitcher’s opening (as
degrees east of north). Assuming that the observed visits
are a simple random sample of visits, the frequentist

estimate of p is p̂ 5 n/N 5 2 captures/157 visits 5
0.0127. The estimated standard error for p̂ is SEp̂ 5

5 0.0089. These estimates do not assumeÏp̂(1 2 p̂)/N
that the per-visit probability of capture is the same for
all visits. When the sample is a simple random sample,
heterogeneity in the population is irrelevant (Thompson
2002). Because the probability of capturing a wasp is
very low and the total sample size is small, the precision
of this frequentist estimate (p̂) of capture probability by
Darlingtonia is poor: CVp̂ 5 70.2% and precision (de-
fined below) 5 1.26.

MEASURES OF PRECISION OF A PROBABILITY

Precision ‘‘refers to the dispersion of the observa-
tions’’ (Marriott 1990). It can be quantified by at least
four different, but related, measures (Table 1). The most
familiar are measures of absolute precision, the stan-
dard error (SE) and variance (s2). Because more precise
estimates have smaller SEs, it is also common to define
precision as 1/s2, especially in the Bayesian literature
(Gelman et al. 1995:43).

When used to compare events that have different
probabilities, absolute measures of precision have the
counter-intuitive property that rarer events are more
precisely measured. To illustrate this, consider an event
(such as a visit of a wasp to a Darlingtonia pitcher)
that occurs as an independent Poisson process over time
with a constant rate of 0.1 visits/hour. If a plant is
watched for a one-hour period, the probability of a visit
during that hour is P(visit) 5 1 2 e20.1 5 0.095. If 100
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TABLE 1. Measures of absolute and relative precision when a proportion, p, is estimated from
a simple random sample of n observations.

Measure Absolute measures Relative measures

Variability Standard error (SE): Coefficient of variation:
Ïp(1 2 p)/n Ï(1 2 p)/(pn)

Precision 1/s2 5 (1/SE)2 (1/CV)2 5 p2/s2

plants are watched, each for one hour, the SE of the
visit probability is 0.029. If a plant is watched for a
one-minute period, the probability of a visit during that
one minute is P(visit) 5 1 2 e20.1/60 5 0.00167. If 100
plants are watched, each for one minute, the SE of the
one-minute-visit probability is much smaller, 0.00408.
This apparent increase in precision is an artifact of a
rarer event.

Measures of relative precision, including the CV or
relative variance (Table 1), avoid this counterintuitive
behavior by expressing the precision relative to the
probability of the event. Rarer events are less precisely
estimated, on a relative scale, than are more common
events. Measures of relative precision are also unitless,
unlike absolute measures of precision. To continue the
example from the previous paragraph, when 100 plants
are watched for an hour each, the CV is 0.029/0.095 5
32%. When 100 plants are watched for a minute each,
the CV is much larger, 0.00408/0.00167 5 244%. The
estimate from the shorter observation period is less
precise, when measured using relative precision. The
CV is one of many possible measures of relative pre-
cision. Others include the reciprocal of the CV, which
is larger for more precise estimates, or the reciprocal
of the CV2, which is the relative analog of the Bayesian
measure of precision (1/s2).

HOW CAN THE PRECISION BE INCREASED?

Imprecise estimates of a probability are not unique
to the Darlingtonia example. They are common when-
ever events are rare. When an event has a probability
of occurring less than five times in a hundred trials
(P(event) 5 p 5 0.05), the coefficient of variation (CV)
of estimates of this probability from samples of N 5
100 are larger than 50%. The CV can exceed 300%
when the event is very rare (p , 0.01; Fig. 1). On the
other hand, when events are common, p can be esti-
mated with high precision even with moderate sample
sizes. If p 5 0.5, a CV of 10% can be obtained with a
sample size of N 5 100.

Increasing the total sample size N increases the pre-
cision of the estimate of the probability of a rare event.
For example, increasing N from 100 to 500 independent
observations decreases the CV by a factor of .Ï1/5
However, if an event is rare, a precise estimate (CV #
10%) requires very large sample sizes. For example,
if p 5 0.01, a sample size of N 5 9900 is required to
achieve CV 5 10%. Such large sample sizes may be
expensive, difficult, or impossible to obtain.

Alternatively, the precision of the estimate of a rare
event can be increased by combining the primary data
(e.g., the observed numbers of visits and captures in
the Darlingtonia dataset) with auxiliary data that pro-
vides additional information about the probability of
the rare event. Auxiliary data may come from many
different sources, of which we discuss four: prior in-
formation, stratified sampling, covariates, and aggre-
gated data. We use the Darlingtonia data set to illustrate
the methods by which auxiliary data can be used to
improve the precision of point estimates of probability.
We will compare methods using relative precision (CV)
and absolute precision (0.0001/s2). We use 0.0001/s2

instead of 1/s2 as a measure of absolute precision be-
cause the factor of 0.0001 converts the variance of a
proportion to the variance of a percentage, which pro-
vides a more intuitive scale for interpreting absolute
precision.

Incorporating prior information
using Bayesian methods

Prior information about the probability p of a rare
event can be derived from other studies of the same or
related species, in the same or in different locations.
Bayesian inference can be used to combine this prior
information with the observed data (Ellison 1996). If
probability estimates from the primary data are similar
to those provided by the prior information, the com-
bined estimate will have greater precision than the es-
timate based on the primary data alone.

Bayesian inference treats parameters, such as the
probability p that Darlingtonia captures a wasp, as
random variables described by statistical distributions
(Barnett 1999, Ellison 2004). The distribution of each
parameter summarizes both the expected value of the
parameter and its variance. Bayesian inference uses the
data (observations), along with information known
about the parameter(s) before the data are analyzed (the
prior probability distribution, or simply the prior) to
construct a new distribution (the posterior probability
distribution, or simply the posterior) that expresses
what is known about the parameter after the data are
analyzed.

The posterior is computed from the data and the prior
using Bayes’ Theorem (Ellison 2004):

f (C z V, p) f (p)
f (p z C, V ) 5 . (1)

f (C z V, p) f (p) dpE
In Eq. 1, f (p) is the prior, f (C z V, p) is the likelihood
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FIG. 1. The relationship between four measures of precision (Table 1) and the probability of an event when an event is
rare (probability p , 5%). (A) standard error (SE), (B) coefficient of variation (CV), (C) absolute precision (presented as a
log value), (D) relative precision, (1/ CV)2. Each measure of precision is calculated for sample sizes of N 5 100 (solid line)
and N 5 500 (dashed line).

of the observations, and f (p z C, V) is the posterior.
The vertical bars indicate which quantities are consid-
ered fixed. That is, f (C z V, p) is the probability dis-
tribution of C (the number of captures), conditional on
the fixed values of V (the number of visits) and p (the
capture probability). The integral in the denominator
is a normalizing constant that ensures that the posterior
distribution is a valid probability distribution (i.e., 0
# f (p z C, V) # 1). Using Bayes’ Theorem requires
that the distributions of both the data and the prior be
specified.

In the Darlingtonia data set, the data ( f (C z V, p))
are the number of captures observed in a certain num-
ber of visits. A binomial distribution is commonly used
to model count data when the outcomes (capture or
not) are independent, the probability of success (cap-
ture) is the same for all visits, and where the number
of success (captures) cannot exceed the number of vis-
its (Gotelli and Ellison 2004).

When the data follow a binomial distribution, a Beta
distribution,

p ; Beta(a, b) (2)

is a convenient choice for the prior because the integral
in the denominator of Eq. 1 can be evaluated analyti-
cally (Gelman et al. 1995). The values of the parameters
a and b in the beta distribution (Eq. 2) summarize our

knowledge of the capture probability before the data
are analyzed. When a . 1 and b . 1, the mean m of
the Beta(a, b) distribution equals a/(a 1 b) and the
mode equals (a 2 1)/(a 1 b 2 2). Because the Beta
distribution is skewed, the mode is the more appro-
priate measure of location. The variance s2 of a Beta(a,
b) distribution is m(1 2 m)/(a 1 b 1 1). The posterior
distribution given by Eq. 1 is also a Beta distribution
(Gelman et al. 1995), and simulation of the posterior
(e.g., with Markov chain Monte Carlo methods; Gilks
et al. 1996) is not required. The parameters of the pos-
terior depend on the parameters of the prior distribution
(a, b) and the data (C, V):

p z C, V; Beta(a 1 C, b 1 V 2 C) . (3)

The mode of the posterior is an updated estimate of
the capture probability, and the standard deviation is
an updated estimate of the variability:

a 1 C 2 1
mode 5 (4)

a 1 b 1 V 2 2

(a 1 C)(b 1 V 2 C)
SD 5 . (5)

2!(a 1 b 1 V ) (a 1 b 1 V 1 1)

The choice of prior distribution (i.e., of a and b) in-
fluences the posterior distribution, although the influ-
ence of the prior is small when V and C are large.
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TABLE 2. Parameters of Beta distributions used as prior distributions in the Bayesian analysis of the Darlingtonia data,
along with the resulting posterior distributions of the capture probability.

Parameter

Prior

Mode SD a b

Posterior

Mode SD CV (%) Precision

Data 0.0127 0.0089 70 12.5
Prior A 0.00931 0.0018 28 2873 0.0095 0.0018 19 31.5
Prior B 0.00931 0.0056 4.335 355.8 0.0104 0.0048 47 4.28
Prior C 0.00931 0.018 1.622 67.24 0.0117 0.0083 71 1.44
Prior D 0.00931 0.056 1.145 16.38 0.0124 0.010 80 0.99
Prior E 0.50 0.0833 1 1 0.0127 0.0108 85 0.86

Notes: All distributions except the uninformative prior (prior E) have a mode at the capture probability estimated by Newell
and Nastase (1998) for the confamilial species Sarracenia purpurea. Prior A has a standard deviation (SD) equal to the
sampling uncertainty reported by Newell and Nastase (1998). Priors B, C, and D have larger standard deviations to reflect
uncertainty in the extrapolation across species and study sites. Prior E is the uninformative prior. The mode, SD, and CV

reported in the first line (‘‘Data’’) of the table are the frequentist estimates for these parameters.

The prior distribution can be determined in many
ways (Berger 1985). One is to use an uninformative
prior: a prior for which any value of capture probability
is equally likely. For a probability between 0 and 1,
the uninformative prior is a uniform(0, 1) distribution
which is equivalent to a Beta(1, 1).

Another approach is to use previous research to de-
termine a prior distribution. Newell and Nastase (1998)
estimated the per-visit probability of insect capture by
a related pitcher plant, Sarracenia purpurea, to be
0.0093 (27 captures in 2899 visits with observed out-
comes). If S. purpurea and Darlingtonia are assumed
to have similar per-visit probabilities of insect capture,
these data can be used to specify the prior distribution
for the analysis of the Darlingtonia data. One approach
is to do a Bayesian analysis of Newell and Nastase’s
data, using a noninformative hyperprior (a 5 1, b 5
1) and the data (C 5 27, V 5 2899) in Eq. 3. The
resulting posterior distribution, Beta(28, 2873) can be
used as the prior for the Darlingtonia analysis. This
distribution has a mode 5 0.0093 and SD 5 0.0018.
There is some uncertainty introduced by extrapolating
between species and between studies. This uncertainty
can be expressed by increasing the standard deviation
of the prior. Accordingly, we used three additional prior
distributions with the same mode but with increasingly
larger standard deviations (Table 2). If multiple prior
data sets are available, the variability among the data
sets can be used to estimate the parameters of the prior
distribution (Birkes and Dodge 1993).

The posterior modes for the five choices of prior are
given in Table 2. The posterior mode lies between the
mode of the prior distribution and the capture proba-
bility estimated solely from the data. When the prior
distribution has a small standard deviation (e.g., Newell
and Nastase’s prior [A] in Table 2), the posterior mode
is very close to the prior mode (Fig. 2). As uncertainty
in the prior increases, the posterior mode approaches
the estimate based on the data (Table 2, Fig. 2).

The SD, CV, and precision (0.0001/s2) of the posterior
distribution summarize the uncertainty in the estimated
capture probability. The improvement in precision

gained by incorporating prior information depends on
the SD of the prior and on the difference between the
expectation of the prior (the probability of prey capture
by Sarracenia) and the expectation of the primary data
(the probability of prey capture by Darlingtonia). If
the two species are very similar (priors A or B in Table
1) the Bayesian estimate is considerably more precise.
When the two species are less similar (priors C or D
in Table 1) or if the prior information is uninformative
(prior E in Table 1), the Bayesian estimate is less pre-
cise than the estimate based on the primary data alone.

Stratified sampling

Stratification, dividing the population into more ho-
mogeneous strata, can lead to a more precise estimate
of a proportion when heterogeneity in p is associated
with identifiable characteristics of the events (Thomp-
son 2002). Stratification can be used to estimate the
probability of a rare event by dividing the population
(e.g., all possible visits by wasps to Darlingtonia) into
subgroups that have different capture probabilities. For
example, one stratum may have a very small capture
probability, another may have a slightly larger capture
probability, and a third stratum may have a large cap-
ture probability. Stratification increases the precision
of the estimated probability by removing the variability
between strata. In this example we assume a simple
random sample of observations within each stratum,
but many other sampling designs could be used
(Thompson 2002).

Strata cannot be defined on the basis of the response
variable itself. In other words, it is not appropriate to
define one stratum as those plants that captured a wasp
(N1 5 2) and the other as those plants that did not (N2

5 155). Instead, strata should be defined a priori based
on knowledge specific to the system. For example, the
size of the plant or the orientation of the pitcher might
be associated with the capture probability. As an il-
lustration, we will use strata defined by the orientation
of the pitcher. Two different definitions of strata will
be used to illustrate the importance of between-strata
heterogeneity in capture probabilities (Table 3). One
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FIG. 2. Plots of the likelihood and prior (solid lines in density plots) and posterior (dashed lines in density plots)
distributions for the five choices of prior distribution in Table 2. Note the different y-axis scales.

TABLE 3. Precision of the estimate of the probability of
capture using two different stratifications of the data.

Parameter

Stratum

A B Total

Stratification 1†
Sample size (visits V) 9 148 157

Number of captures (C) 2 0 2

Capture probability (p̂) 0.222 0 0.0127
SEp̂ 0.138 0 0.00792
CVp̂ 62.1%

Precision 1.59

Stratification 2‡
Sample size (visits V) 19 138 157

Number of captures (C) 2 0 2

Capture probability (p̂) 0.105 0 0.0127
SEp̂ 0.0070 0 0.00852
CVp̂ 66.9%

Precision 1.38

† Stratum A, plants with orientations of 208 or 308; stratum
B, all other plants.

‡ Stratum A, plants with orientations from 108 to 408; stra-
tum B, all other plants.

strata definition separates pitchers facing either 208 or
308 east of north from plants with all other orientations.
The second strata definition separates those plants with
orientations between 108 and 408 east of north from all
other plants.

The estimated capture probability for the entire pop-
ulation from a stratified random sample is

N p̂ 1 N p̂A A B Bp̂ 5 (6)
N 1 NA B

where NA and NB are the population sizes in the two
strata, and p̂A and p̂B are the within-stratum estimates
of the capture probability (Thompson 2002). When the
event of interest only occurs in one stratum, the vari-
ance of the estimated probability is

2N p̂ (1 2 p̂ )A A A2ŝ ( p̂) 5 (7)1 2 [ ]N 1 N nA B A

where stratum A is the stratum including all the events
and nA is the sample size of that stratum. This variance
estimator assumes that the population size is large rel-
ative to the sample size. If this assumption is not ap-
propriate, a finite population correction factor should
be included in the variance estimate (see Thompson
2002 for details).
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FIG. 3. (A) Probability density of visit length, estimated
using a kernel smoother. The two modes are at 4 s and 50 s.
The trough between the two peaks is centered at 13.5 s. (B)
A log-normal quantile-quantile plot of the 86 visit lengths in
the upper peak (visit lengths . 13.5 s). The theoretical quan-
tiles were calculated after accounting for truncation (no value
less than 13.5 s) and censoring (two captures with lengths .
307 s).

Estimating either p̂ (Eq. 6) or its variance s2(p̂) (Eq.
7) requires knowledge of the relative sizes of the strata:
NA/(NA 1 NB). The relative size of the strata may be
estimated by independent criteria, such as stratum cov-
erage or frequency in GIS databases. Because such in-
formation is lacking for the Darlingtonia population,
we assume that the size of each stratum in the popu-
lation is proportional to the size of each stratum in the
sample: NA/(NA 1 NB) 5 9/157 for the first stratum
(pitchers oriented either 208 or 308), and 19/157 for the
second (pitchers oriented between 108 and 408).

Because stratum sizes were estimated from the sam-
ple itself, the capture probability p̂ from either stratified
sample (0.0127) is exactly the same as the estimate
from the entire sample (Table 3). However, stratified
sampling provides slightly more precise estimates of
p (CV 5 62.1% and 66.9% and absolute precision 5
1.59 and 1.38 for the two definitions, respectively; Ta-
ble 3) than do estimates based on the unstratified data
(CV 5 70.2%, absolute precision 5 1.26). The first
stratification (pitchers oriented either 208 or 308 vs. all
others) is more precise than the second (Table 3) be-
cause the former has a larger between-strata difference
in capture probability.

Stratification is especially useful when the proba-
bility of a rare event varies greatly among a small num-
ber of strata. However, if there are many strata, the
number of observations per stratum is likely to be small
and the stratum-specific probability will be poorly es-
timated.

Models incorporating covariates

Additional characteristics of the individuals may be
measured. If these characteristics are associated with
the rare event, they could be used either to stratify the
observations (as in the previous approach) or to con-
struct a model, e.g., a logistic regression model (Hos-
mer and Lemeshow 1989), to predict p for a specified
set of covariates. The overall capture probability can
be estimated by combining the model with information
about the distribution of covariates in the population.
The distribution can be enumerated when covariate in-
formation is available for all elements of the population
or estimated from a simple random sample of the pop-
ulation. If the event is very rare (,10 events per co-
variate incorporated in the logistic regression; Van
Belle 2002), logistic regression may not be useful for
modeling the probability of very rare events.

In some cases, the event of interest is determined by
an underlying continuous random variable. One ex-
ample of this approach is the analysis of flood fre-
quencies (Haan 2002). Floods are defined when water
level exceeds a critical height for a specific patch of
ground. The probability of flooding is the probability
that the water level exceeds the critical height. Flood-
frequency analysis uses a model for the distribution of
water levels to estimate the probability of flooding
(Hahn 2002).

We used this last approach to estimate the probability
that a wasp is captured by modeling the distribution of
the length of time (visit lengths) that a wasp spends in
a single pitcher. Visit lengths for noncaptured wasps
ranged from a minimum of 1 s to a maximum of 307
s, with a median of 17 s. The empirical distribution of
logarithmically transformed visit lengths is bimodal,
with peaks at 4 and 50 s (Fig. 3A). The distribution of
the logarithmically transformed values in the upper
peak is very close to a normal distribution, as shown
by a quantile-quantile plot (Fig. 3B). A two-component
normal mixture model was fit to the log-transformed
visit lengths by maximum likelihood. The two ob-
served captures were considered censored observa-
tions, i.e., visit length .307 s. The upper peak was
estimated to contain p 5 59.0% of the visit lengths
and have a normal distribution with x̄ 5 3.9 and SD 5
0.94.

The probability that a visit length exceeds s seconds
is estimated using the normal cumulative distribution
function, F(z):

log s 2 x̄
P̂(visit length . s) 5 y 1 2 F (8)1 2[ ]SD

where y is the probability that a visit is in the upper
peak. Eq. (8) only applies to long visits where the con-
tribution from the lower peak can be ignored.

Calculating the capture probability from this distri-
bution requires specifying a critical visit length; any
visit longer than that critical length is assumed to be
a capture. This critical value could be determined from
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knowledge of wasp behavior and energetics. Lacking
that information, we used a critical visit length of 307
s, the longest observed visit that did not result in a
capture. The estimated capture probability p̂ is the
probability that a visit exceeds 307 s: p̂ 5 0.59[1 2
F(1.99)] 5 0.0137. The estimate p̂ of p is very sen-
sitive to the choice of critical visit length. For example,
if the critical length is 360 s, the estimate p̂ decreases
to 0.0090.

Bootstrap resampling can be used to estimate the
precision of p̂ (Efron 1981, Dixon 2001). The boot-
strapped standard error of the capture probability is
estimated to be 0.0095, corresponding to a CV of 66%
and precision of 1.10. The estimate from the threshold
model is less precise than the frequentist estimate if
precision is measured using an absolute measure
(0.0001/s2) and more precise if precision is measured
by a relative measure (CV).

Using aggregated data from larger scales

The primary data used to estimate the probability of
a rare event come from observations of individuals,
such as detailed observations of 753 individual Dar-
lingtonia plants. Such data provide information about
both the number of events (e.g., captures) and the num-
ber of trials (e.g., visits). At larger spatial or temporal
scales, we can obtain samples of entire populations and
observe the total number of rare events over a given
interval of time or space (e.g., Lawson and Williams
1994, Plummer and Clayton 1996). This sample yields
the product of the rate of occurrence of the event 3
the number of trials (e.g., capture rate 3 visitation rate),
We can glean indirect information about the rate at
which the rare event occurs from this product. Com-
bining the direct and indirect information using a sta-
tistical model provides a more precise estimate of the
capture probability.

We collected aggregate data on the total number of
wasps captured by Darlingtonia individuals at several
nearby sites over one-hour and two-day periods (A. M.
Ellison, R. J. Emerson, E. J. Farnsworth, N. J. Gotelli,
C. M. Hart, H. R. Steinhoff, and S. E. Wittman, un-
published data). These aggregate data were much easier
to collect; we simply counted the number of wasps
trapped in each pitcher after one hour or two days,
rather than collecting direct behavioral observations.
However in the aggregate data, we only recorded the
number of wasps successfully captured per pitcher; the
number of visits to each pitcher by wasps was not re-
corded.

Direct observations of wasp behavior suggests that
wasps are actively foraging at Darlingtonia pitchers
only for a 4-h period (10:00–14:00 hours) each day,
so the 2-d aggregate data were assumed to reflect all
captures made during 8 h of wasp activity. In the ag-
gregate data, a total of six wasps were captured in a
total of 1416 plant-hours (162 plants in the 2-d sample
5 1296 plant-hours 1 120 plants in the 1-h sample).

This aggregate information can be combined with the
detailed data using a model that relates captures, visits
and aggregated data to capture efficiency and visitation
rate.

We again use a binomial random variable to model
C as a function of p and V:

C z V ; Bin(V, p). (9)

If visits are rare and independent of each other, the num-
ber of visits in the primary data (direct observation of
visits and captures) follows a Poisson distribution:

V ; Poiss(mD) (10)

where m is the mean number of visits per plant hour
and D is the total number of plant-hours of detailed
observations.

The same model (Eqs. 9 and 10) applies to the ag-
gregate data, except that we did not observe the number
of visits V. A capture in the aggregated data represents
two events: a wasp visits a plant, and then the wasp is
captured. If the probabilities of visitation and capture
are constant, W, the total number of captured wasps in
the aggregate data also has a Poisson distribution:

W ; Poiss(pmA) (11)

where A is the total number of plant hours of aggregated
observations. Because the aggregated information, V,
and W follow Poisson distributions, it is also conve-
nient to use a Poisson distribution for the number of
captures (cf. Eq. 9):

C z V ; Poiss(pV). (12)

Note that the Poisson distribution approximates a bi-
nomial distribution when the counts of rare events (e.g.,
captures) are small (Gotelli and Ellison 2004).

The parameters p and m in Eqs. 9–12 can be esti-
mated using maximum likelihood (Appendix A). When
captures are modeled using a Poisson distribution (Eq.
12), p and m can be estimated using standard software
for Poisson regression (Appendix B).

The estimated capture probability is p̂ 5 0.0107, only
slightly smaller than the estimate from using the de-
tailed observational data alone (Table 4). However, in-
corporating the aggregate data increases the precision
of this estimate; the CV is reduced to 36%, nearly 50%
smaller than the CV of the estimate from only the de-
tailed observational data (Table 4). The absolute pre-
cision is increased to 6.75, slightly more than five times
the precision of the estimate from only the detailed
observational data. To achieve an equally precise es-
timate using only direct observations of wasp foraging
behavior would require just over 2000 plant-hours of
continuous observation.

DISCUSSION

Auxiliary data come in many forms. We have illus-
trated four different methods of using auxiliary data to
increase the precision of the estimate of the probability
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TABLE 4. Summary of estimated capture probabilities and their coeffients of variation for
five estimators of capture probability, ranked from least to most precise.

Estimator Estimate (p̂) CV Precision

Frequentist (proportion of captures) 0.0127 70% 1.26
Threshold model (visit . 307 s 5 capture) 0.0137 66% 1.10
Stratification (best) 0.0127 62% 1.59
Bayesian (using Prior B, Table 1) 0.0104 47% 4.28
Aggregated data 0.0107 36% 6.75

of a rare event (Table 4). For the Darlingtonia data,
the most precise and appropriate estimate of capture
probability was estimated from pooling direct obser-
vations with temporally aggregated data. This method
led to an estimate that was about twice as precise as
the estimate derived from the direct observations alone
(Table 4). Bayesian inference using informative, nar-
row priors yielded slightly less precise estimates. Strat-
ification increased the precision only slightly, whereas
modeling the distribution of visit lengths or Bayesian
inference using informative priors with very large var-
iance or uninformative priors decreased the precision
of the estimate (see also Ellison 2004).

Which method is best? The appropriateness of a par-
ticular method can be judged by examining the as-
sumptions and the choices that each requires. Bayesian
inference assumes that information from previous stud-
ies is available and is relevant to the problem at hand.
The relevance can be quantified by choosing the stan-
dard deviation of the prior distribution; a small standard
deviation (i.e., high precision) implies that the prior is
strongly informative, whereas a large standard devia-
tion (i.e., low precision) implies little prior information
or prior ignorance. If there is more than one previous
study, the between-study standard deviation can be
used as an estimate of the prior standard deviation, but
if only one previous study is available, more care is
needed in setting the precision of the prior, and the
value may appear to be arbitrary. In the Darlingtonia
example, as in many studies of rare events, the pre-
cision of the prior was important because when the
sample size is small, the posterior will reflect more of
the prior. In typical Bayesian analyses reported in the
literature, data are more abundant, and the posterior
reflects the likelihood of the data more strongly than
the prior (Gelman et al. 1995, Ellison 1996, 2004).

Stratification requires strata that can be defined by
characteristics other than the response variable. Strat-
ification is most effective when event probabilities dif-
fer markedly between the strata. Correct use of strat-
ification also requires that the sizes of each stratum in
the sampled population are known. In the Darlingtonia
example, we chose strata and estimated the sizes of the
strata from the sample data. Realistic criteria and sup-
porting information should be used to justify whatever
strata are chosen.

Similarly, the modeling approach that incorporates
covariates depends on a choice of a threshold value at

which a rare event is said to have occurred. In some
situations, such as analysis of flood frequencies (Haan
2002) or the probability of structural failure (Heffernan
and Tawn 2004), the threshold can be identified clearly
and objectively supported. In other situations, such as
the Darlingtonia example, the threshold must be de-
rived from the data (e.g., the length of a wasp visit
designated as a capture was determined from the dis-
tribution of visit lengths). Deriving thresholds from the
data must be done cautiously, and should be justified
whenever possible using independent observations or
methods.

Finally, pooling of direct observations and aggre-
gated data assumes that probability of the rare event
is the same in both sets of data. Using Poisson distri-
butions for both assumes that there is no between-year
or between-site heterogeneity in the rate at which the
rare events occur. This assumption of heterogeneity is
almost impossible to test when the total number of
events is small. In the Darlingtonia example, this as-
sumption was reasonable because the two data sets
were collected over the same years in the same general
area, and each dataset (direct observations and tem-
porally aggregated data) included observations col-
lected from various sites and multiple years.

Estimating the probability p of an event from a series
of independent observations is a very common activity
in ecology and environmental science. The standard
frequentist estimator of p, p̂ 5 number of events n/
number of observations N, is unbiased and straight-
forward to calculate. However, if the event is rare, the
estimate is very imprecise if N , 1000. By incorpo-
rating other kinds of information, some of which may
be from other studies, ecologists can increase the pre-
cision and the usefulness of these estimates. Ecologists
should be alert for ways to incorporate auxiliary data
to improve the precision of conventional statistical es-
timates.
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APPENDIX A

A description of the likelihood function for combining detailed and temporally aggregated data is presented in ESA’s
Electronic Data Archive: Ecological Archives E086-059-A1.

APPENDIX B

The SAS code used to fit a Poison regression to detailed and aggregate data is presented in ESA’s Electronic Data Archive:
Ecological Archives E086-059-A2.


