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Abstract. Recent studies have highlighted the importance of higher-order competitive
interactions in stabilizing population dynamics in multi-species communities. But how does the
structure of competitive hierarchies affect population dynamics and extinction processes? We
tackled this important question by using spatially explicit simulations of ecological drift (10
species in a homogeneous landscape of 64 patches) in which birth rates were influenced by
interspecific competition. Specifically, we examined how transitive (linear pecking orders) and
intransitive (pecking orders with loops) competitive hierarchies affected extinction rates and
population dynamics in simulated communities through time. In comparison to a pure neutral
model, an ecological drift model including transitive competition increased extinction rates,
caused synchronous density-dependent population fluctuations, and generated a white-noise
distribution of population sizes. In contrast, the drift model with intransitive competitive inter-
actions decreased extinctions rates, caused asynchronous (compensatory) density-dependent
population fluctuations, and generated a brown noise distribution of population sizes. We also
explored the effect on community stability of more complex patterns of competitive interac-
tions in which pairwise competitive relationships were assigned probabilistically. These proba-
bilistic competition models also generated density-dependent trajectories and a brown noise
distribution of population sizes. However, extinction rates and the degree of population syn-
chrony were comparable to those observed in purely neutral communities. Collectively, our
results confirm that intransitive competition has a strong and stabilizing effect on local popula-
tions in species-poor communities. This effect wanes with increasing species richness. Empirical
assemblages characterized by brown spectral noise, density-dependent regulation, and asyn-
chronous (compensatory) population fluctuations may indicate a signature of intransitive com-
petitive interactions.

Key words: community assembly; competition; density dependence; ecological drift; grid model; intransi-
tive competition; neutral model; noise; spectral analysis; stability; Taylor’s power law; time series.

INTRODUCTION

Analyses of empirical population time series have
focused on the detection of ecologically important tem-
poral patterns and processes (e.g., Turchin and Taylor
1992, Bjǿrnstad and Grenfell 2001, Brook and Bradshaw
2006), including community stability (Ives et al. 2003),
the influence of environmental triggers (Coulson et al.
2004) and latitude on temporal variability (Doxford
et al. 2013), and density-dependent population regula-
tion (Turchin 2003, Ziebarth et al. 2010).
In a deterministic system without time lags, density

dependence is characterized by a tendency for popula-
tion trajectories to return toward a stable equilibrium

point (such as the carrying capacity in a logistic growth
model). In a simple stochastic system, equilibrium can
be characterized by a system that approaches a station-
ary distribution, with a constant mean and variance
(Turchin 2003). In contrast, even the simplest unregu-
lated random walk will not achieve a stationary distribu-
tion because the variance increases through time (Berg
1993). A much richer array of possible outcomes is pos-
sible for more realistic stochastic models that include
environmental stochasticity (temporal or spatial varia-
tion in vital rates), demographic stochasticity (fluctua-
tions from random birth, death, or dispersal processes),
and measurement error (uncertainty in the estimation of
trajectories from empirical data). Constantino et al.
(2005) extended studies of fluctuations in flour beetles
(Tribolium castaneum) exemplify the complexity that can
arise from the interactions of these different kinds of
stochasticity.
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However, this fundamental corpus of literature,
together with the many available studies dealing with
single species-time series (Taylor 1961, Routledge and
Swartz 1991), constitutes just a first step in the overly
challenging path of discovery of the natural world’s
complexity. In fact, the individual temporal dynamics of
a species in most real-world ecological settings cannot
be simply regarded as self-regulated processes subjected
to various sources of stochasticity. Instead, it is becom-
ing increasingly clear that higher-level processes, includ-
ing assemblage-level regulation (Gotelli et al. 2017) and
pairwise species interactions, are important elements of
species coexistence and community stability (e.g., Hart
et al. 2016, Serv�an et al. 2018).
Simultaneous interactions within multi-species com-

munities and their effects on temporal population vari-
ability have received relatively less attention than
pairwise interactions, and have sometimes generated
conflicting results (Godoy et al. 2017, Grilli et al. 2017).
Models developed in this context have used a generalized
Lotka-Volterra framework of first-order differential
equations (Kokkoris et al. 2002, Dobramysl et al. 2018),
or stochastic particle systems (Foley 1994) either with
static (e.g., Cattin et al. 2004) or dynamic parameters
(e.g., Cohen et al. 1990). In most of them, long-term sta-
bility requires specific parameter combinations and/or
variable interaction strength (Taylor 1988, Allesina and
Tang 2012, Serv�an et al. 2018). However, Grilli et al.
(2017) made a convincing argument that diversity can be
maintained even without assuming competitive equiva-
lence between species (Gilpin 1975), showing how
higher-order species interactions promote stable, long-
term multi-species coexistence even when interaction
coefficients are determined by a random draw from a
uniform distribution.
Here we take a further step, by examining the different

effects of nonrandom competitive hierarchies on com-
munity stability. Transitive competitive hierarchies are
characterized by a linear pecking order (species A > B >
C > D) whereas intransitive competitive hierarchies con-
tain loops in the order of competitive strength (A > B >
C > D > A; Laird and Schamp 2006). Soliveres et al.
(2015), Laird and Schamp (2015), and Ulrich et al.
(2018) demonstrated that competitive intransitivity can
stabilize ecological communities and increase local spe-
cies richness (but see Godoy et al. 2017). However, the
impact of intransitive competition on the temporal vari-
ability of relative species abundance and community
composition has not received sufficient attention so far.
In multi-species communities, the temporal variability

in total abundance and species richness is often less than
that of individual species (Doak et al. 1998), and may be
regulated by a simple portfolio effect (Gotelli et al.
2017), in which stability is obtained from the sum of
stochastic fluctuations (Loreau and de Mazancourt
2008). However, it is unknown how intransitive competi-
tive interactions influence single species population
dynamics and the stability of the whole community.

Because intransitivity may reduce local species extinc-
tion and increase species richness (Soliveres et al. 2015,
Ulrich et al. 2017, 2018, but see Godoy et al. 2017), it
should have a stabilizing effect on population dynamics
and community structure.
Spectral analysis of time series, in which a time series

is decomposed into a mixture of different sinusoidal
functions, is commonly used to infer short- and long-
term patterns in variability (Box et al. 2015). The slope
of the respective power spectrum indicates the difference
in short-term vs. long-term variation. A slope z = 0 indi-
cates equal contribution of short-term and long-term
fluctuations (white noise), whereas z > 1 indicates a
greater importance of long-term fluctuations (brown
and red noise). Many empirical time series exhibit red
(z � 1) and brown noise (Pimm and Redfearn 1988), as
do simple models of ecological drift (McGill et al.
2005). But what does the power spectrum of populations
look like when competitive interactions are included?
Null model analysis could answer this question:

observed patterns of temporal fluctuations are com-
pared with randomized assemblages built according to
specific ecological hypotheses (Gotelli and Ulrich 2012).
Most previous studies of temporal fluctuations have
used a random walk as a (null) frame of reference to
identify nonrandom patterns in empirical time series
(e.g., Bulmer 1975, Ulrich et al. 2017). In contrast,
Gotelli and McGill (2006), He et al. (2012), and Rosin-
dell et al. (2012) advocated neutral ecological drift
(Hubbell 2001) as an appropriate null standard. How-
ever, neutral models have not been used in this way, in
part because it is difficult to directly estimate their
parameters (Gotelli and Ulrich 2012). However, even in
the absence of direct comparisons with empirical data,
stochastic simulations that are “null” with respect certain
processes are still important for understanding what
kind of patterns these mechanisms can generate.
Here, we use an individual-based spatially explicit

neutral drift model (Hubbell 2001) enriched by transitive
and intransitive competitive interactions (Ulrich et al.
2017) to infer the impact of competition on the form of
population time series. In this simulation model, we have
assumed the environment is constant in space and time,
so there is no component of environmental stochasticity.
We also did not incorporate measurement error because
we are not trying to compare model results with empiri-
cal time series. Instead, our model isolates the effect of
demographic stochasticity (random birth, death, and
movement of individuals across a landscape) in combi-
nation with transitive and non-transitive competitive
interactions.
Previously, we have used the same model to demon-

strate that intransitivity is able to increase local richness
and to generate nonrandom patterns of species co-occur-
rence (Ulrich et al. 2017). Here we ask (1) which pat-
terns of population fluctuation are expected under pure
neutral conditions? (2) How, if at all, do competitive
interactions change these patterns? (3) Can intransitivity
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generate compensatory fluctuations and density-depen-
dent population regulation? And (4) do intransitive
interactions modify local extinction probabilities?

METHODS

The ecological drift model

This analysis is based on a simulation platform for
neutral community modeling that combines a spatially
explicit ecological drift process with competitive species
interactions (Ulrich et al. 2017). Here, we use a square
grid of N = 64 contiguous patches initially populated
randomly by S = 10 species (complete model settings are
contained in the electronic Appendices S1 and S2). Smal-
ler grids (≤32) might have generated possible edge effects,
while in larger grids, edge effects are negligible (Ulrich
et al. 2017). To investigate the potential effects of grid
size, we also ran our models for a large grid of 144
patches. Because the results for both grid sizes were qual-
itatively identical, we present only results for the smaller
grid (64 patches). We provide details and major results
for the larger grid in Appendix S1. We tracked the popu-
lation fluctuations of all species in the innermost patch
only and did not analyze temporal trajectories from the
other 63 patches in the grid (Appendix S1: Fig. S1).
Total meta-community size J (the total number of

individuals in the grid) of the 64 patches grid ranged
between 6,400 (10 9 S 9 N) and 102,400 (160 9 S 9 N),
equivalent to an initial average of 10 to 160 individuals
per species and patch. The subsequent birth/death and
colonization/extinction dynamics in each patch followed
the zero-sum rule of Hubbell (2001): each local birth,
death, immigration, or emigration (all probabilities set
to 0.01 leading to 64 to 1,024 such events at each time
step) was immediately counterbalanced by a correspond-
ing death, birth, emigration, or immigration
(Appendix S2: Table S1, Fig. S1). Although these values
are arbitrary, Ulrich et al. (2017) demonstrated that
these migration probabilities (P < 0.001) did not influ-
ence patch species richness. We did not use very high
probabilities to ensure that the same individuals were
not selected several times at each time step.
In the pure neutral model, the individuals involved in

these processes were selected at random irrespective of
species identity. Any grid-wide species extinction was
counterbalanced by a speciation event from a single
point mutation of a randomly selected individual (Ulrich
et al. 2017). We note that the zero-sum constraint is a
simplifying assumption of the original neutral model of
Hubbell (2001). However, our approach focuses on the
abundance fluctuations of single species, making the
community-wide zero-sum assumption less important.
Moderate fluctuations of total community abundances
do not influence our results because these fluctuations
affect all species similarly.
Second, we incorporated the effects of direct pairwise

competition on birth rates using the Markov chain

approach of Ulrich et al. (2014, 2017). This method uses
the fact that a pairwise species interaction matrix C (as
defined by Laird and Schamp 2006) can be translated
into a unique column stochastic transition matrix P
(Appendix S1: Fig. S1). The inner product PA0 = A1 pro-
vides the vector of expected species abundances A1 after
one time step, given initial abundances A0. Within a neu-
tral model framework, birth probabilities (population
increase) are proportional to current abundances. There-
fore, the inner product

PA0 ¼ A1 / B1 (1)

generates the vector B, which (after normalization) con-
tains the local birth probabilities of an individual in the
community. In this way, our model incorporates effects
of direct (pairwise) competition on birth rates (Appendix
S1: Fig. S1). Thus, birth rates are affected by the density
of competing species, but do not contain an intraspecific
density effect. Therefore, our model is no longer strictly
neutral.

Simulation protocol

To assess the influence of interspecific competition on
otherwise neutral communities, we created a factorial
design and crossed two levels of dispersal limitation (un-
constrained, all cells are equally likely to be the target of
dispersal; limited dispersal, only the adjacent eight cells
[Moore neighborhood] can reach in a single dispersal
step), with four levels of competitive interactions (no
interaction, fully transitive, intransitive, complex; the
respective competition matrices are contained in Appen-
dices S1 and S2).
In the fully transitive competition matrices, competi-

tively inferior species were assigned a fitness value of
zero, leading to an upper triangular matrix of interaction
coefficient containing only 1s (Appendix S2: Table S2).
In the intransitive case, the fitness of the four most com-
petitive species was set to zero with respect to the least
competitive species (Appendix S2: Table S2), thus form-
ing a competitive loop. Finally, we used a complex tran-
sitive competition matrix forming a competitive network
(Allesina and Levine 2011), in which competitively supe-
rior species were assigned high, but not maximum, fit-
ness with respect to competitively inferior species
(Appendix S2: Table S2).
In the pure neutral case, we used five meta-community

sizes; in the models with competitive interactions, we
used only two (high and low) meta-community sizes
(Appendix S2: Table S1). Because variability in the
model output within parameter sets was low in compar-
ison to the variability between neutral and competitively
structured communities, we achieved consistent, repeat-
able results by replicating each parameter combination
only 10 times.
To ensure equilibrium conditions were achieved, we

ran for all models an initial burn-in (cf. Ulrich et al.
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2017) that incorporated between 32,000 (for the lowest
total meta-community size, i.e. J = 6,400) and 5,120,000
(for the highest meta-community size, i.e. J = 102,400)
birth/death, immigration/emigration, speciation/extinc-
tion events. This burn-in corresponded to approximately
50 cycles of complete turnover in species composition.
After this burn-in, total species richness per patch did
not show any systematic change through time.
Within this modeling framework, we defined a genera-

tion as the number of single birth/death steps needed to
replace all individuals of the grid that is the meta-com-
munity size J. After the burn-in, we ran the different
models for another T = 150 generations and recorded
the abundances of all species in each time step. This
resulted for each of the 18 different models
(Appendix S2: Table S1) in a 10 (species) 9 150 (time
steps) matrix of time series.

Analyzing temporal variability

To study the average amplitude in population fluctua-
tions we calculated for each species the dispersion index
of (Lloyd 1967):

L ¼ r2

l2
� 1
l
þ 1 (2)

where l and r2 are the mean and variance, respec-
tively, of the species-time series. A Poisson random
process yields L = 1. The empirical Taylor’s power law
states that the species population fluctuations within
a community follow a proportional rescaling pattern
(r2 / lz) with exponent z � 2 (Giometto et al. 2015).
Exponents z � 1 are equivalent to a Poisson resam-
pling process. We calculated z from the slope of the
power function r2 = f(l) relationship across of a given
model community. We also measured total local extinc-
tion rates as the number of times in which a species
reached zero patch abundance divided by matrix size
(S 9 T).
We studied spectral properties of the time series using

the power function slopes b of the spectrograms:

r2ðf Þ ¼ ð1=f Þb (3)

where f denotes the time interval (band width) and r2(f)
is the associated variance in mean abundance. For the
time series of 150 generations, we calculated for each
species the exponent b from seven time intervals (1, 2, 4,
8, 16, 32, 64). We excluded species absences from calcu-
lations. Below we present community-wide averaged val-
ues of b.b = 0 (white noise) means that the variance in
abundance is similar for all frequencies. Higher variabil-
ity at longer band widths returns b >> 0 (red and brown
noise).
We note that the precise estimation of spectral expo-

nents requires long time series. Short series are prone to
increased estimation errors. However, we were not
mainly interested in precise spectral data for single

species but in community-wide patterns. Therefore, we
used community averages. To exclude a possible bias due
to variation in species abundance and temporal species
absences, we always compared competitively structured
communities with the neutral standard. This comparison
is similar to a mechanistic null model approach (Gotelli
and Ulrich 2012) and provides a reliable baseline for
measuring the effects of competition on species temporal
variability.
Bulmer’s (1975) first autocorrelation method has

been widely used as a sensitive test of density-depen-
dent population regulation with low type I and II
errors rates (Pollard et al. 1987, Fox and Ridsdill-Smith
1995). However, Bulmer’s test, as well as more recent
state space Gompertz models (Dennis et al. 2006), can
yield biased results in cases of temporal trends in abun-
dance (Fox and Ridsdill-Smith 1995), census errors and
undersampling (Freckleton et al. 2006, Knape 2008),
unequal time intervals (Dennis and Ponciano 2014),
and strong Allee effects (Stephens et al. 1999). Our
model time series had no detection errors, were asses-
sed at equal time intervals and, stemming from random
drift, did not include any Allee effects. Moreover, the
burn-in period ensured that population data were taken
at equilibrium conditions. Therefore, these series fully
met the constraints of the random walk assumption
on which Bulmer’s and other autocorrelation tests
are based. Nevertheless, a random walk implies that
some populations might exhibit short-term stochastic
temporal trends. To ensure that such trends did not
affect the results, we additionally detrended each ser-
ies using a linear regression on the log-transformed
abundances

xt ¼ ln at þ 1ð Þ � mtþ bð Þ (4)

where at is the abundance at time t and m and b are the
slope and the intercept, respectively, of the linear regres-
sion between ln(at + 1) and time t. The quotient

R ¼ V
U

¼
PT�1

t¼1 xtþ1 � �xð Þ2PT�1
t¼1 xtþ1 � xtð Þ2 (5)

was compared to the lower boundary RL = 1/4 + (T �
2)ξL. Here, we used ξL = 0.017, which denotes the empir-
ical 0.1% margin of the V/T2 random distribution.
Importantly, we used this lower boundary only as an
additional criterion as we compared the time series with
competitive interactions to those of pure neutrality. The
latter served in all tests as the baseline null standard
(Rosindell et al. 2012).
To infer the degree of temporal synchrony in abun-

dance between species, we used the index of Loreau and
de Mazancourt (2008) and calculated the quotient

u ¼ r2
tP

i ri
� �2 (6)
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where ri
2 denotes the total variance through time in the

summed abundance of all species, and ri is the standard
deviation of species i along the time series. Values of
u < 1 indicate compensatory effects in abundance,
whereas u > 1 points to synchrony in abundance varia-
tion and lack of compensation. Again, we compared
time series incorporating competitive interactions with
those generated by pure neutral drift. For each of the
four metrics (Eqs. 1–4), we used community averages
and their respective variances in subsequent analyses.
To explore temporal variability in community compo-

sition, we calculated the average degree of species co-
occurrences in time using the abundance-based weighted
C score (WCS) introduced by Ulrich and Gotelli (2010).
This metric is the abundance analogue of the familiar
incidence-based C score (Stone and Roberts 1990) and is
a normalized count of the number of abundance

checkerboards of the form CA ¼ a b
c d

� �
, where a > b,

a > c, d > b, d > c or a < b, a < c, d < b, d < c

WCS ¼ n CAð Þ
S S � 1ð ÞT T � 1ð Þ (7)

where n(CA) is the total number of abundance checker-
boards.
Because this metric depends on matrix fill and size, we

compared observed scores with a null model that resam-
ples individuals proportional to observed marginal
totals until, for each row and column, the observed total
number of individuals is reached (the IT null model in
Ulrich and Gotelli (2010)). Ulrich and Gotelli (2010)
advocated this null model because it is least affected by
matrix fill, shape, and size. We measured effect sizes
DWCS = WCS � WCSexp and standardized effect sizes
SES = DWCS/rWCSexp, where WCSexp and rWCSexp are
the mean and the standard deviation, respectively, of the
null model distribution. When used in this form, DWCS
is an averaged matrix-wide measure of the degree of
temporal synchrony in abundance (DWCS < 0) or of
temporal segregation (DWCS > 0). Under the assumption
of an approximately normal null model distribution,
|SES| > 2 indicate statistically significant deviations from
the null model expectation at roughly the two-sided 5%
error level.

RESULTS

Competitive interactions, but not the degree of disper-
sal limitation, had a strong influence on the temporal
fluctuations of the model communities (Table 1, Figs. 1,
2). Transitive competition caused rapid extinction of the
weaker species and leading to the persistence of only the
strongest competitors (Appendix S1: Table S1). There-
fore, we did not use these transitive simulations in the
following analyses of the impact of competition on com-
munity patterns.
Extinction rates per patch decreased with increasing

meta-community size by power functions (Fig. 1a).
Intransitive competitive loops decreased species extinc-
tion rates (Fig. 1a), while complex competitive interac-
tions also decreased extinction rates, but only at large
meta-community size (Fig. 1a). Grid size did not affect
this result. For a larger grid of 144 cells, we obtained
qualitatively identical results (Appendix S1: Fig. S2).
Competitive effects decreased Taylor’s z (Fig. 1b)

with respect to the neutral baseline, implying more syn-
chrony in abundance fluctuations irrespective of average
abundance. The variability in population fluctuations
quantified by the Lloyd index of dispersion strongly dif-
fered with respect to the type competition (Table 1).
Lloyd’s index was lowest in cyclic intransitive commu-

nities (Fig. 2a). Communities governed by complex
competitive interactions did not significantly differ from
the pure neutral ones in the degree of dispersion
(Fig. 2a). In pure neutral and complex competitive com-
munities, but not in intransitive communities, the degree
of dispersion decreased with increasing meta-community
size (Fig. 2a). The variability in dispersion among the
model communities was lowest in the case of cyclic
intransitive interactions (Fig. 3a). Again, this result was
not influenced by grid size (Appendix S1: Fig. S4).
Neutral communities exhibited pink-to-red noise

(0.3 < b < 1.5) abundance fluctuations (Fig. 2b). Color
changed from red to pink with increasing meta-commu-
nity size (Fig. 2b). Competitive interactions strongly
changed this pattern irrespective of grid size (Table 1,
Fig. 2b, Appendix S1: Fig. S3b). Cyclic intransitive com-
petition shifted the spectrum toward brown (b > 1.5)
noise. In turn, the opposite shift appeared when compar-
ing the variability among communities (Fig. 3b): cyclic

TABLE 1. Estimated coefficients and the explained variance r2 for a general linear model of six time series metrics as a function of
different models of competitive interaction and the degree of dispersal.

Variable df ES WCS Taylor’s z Dispersion Noise Density dependence Synchrony

Competition 2 0.22** 0.45*** 0.76*** 0.88*** 0.76*** 0.28**
Dispersal 1 <0.01 0.01 <0.01 0.01 <0.01 <0.01
Competition 9Dispersal 2 0.01 0.02 0.01 0.02 0.01 0.02
ln J 1 0.02 0.02 0.01 0.01 0.06 <0.01
Extinctions 1 0.01 <0.01 0.61*** 0.06 0.05 0.08
r2 (model) 0.26** 0.44*** 0.91*** 0.88*** 0.79*** 0.48***

Notes: Error df = 82. WCS, weighted C score
**P < 0.01, ***P < 0.001 (Bonferroni-corrected parametric values).
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intransitive competition resulted in a low variability
among communities of identical parameter settings
(Fig. 3b).
In spite of the zero-sum assumption, pure neutral

communities did not exhibit a density-dependent regula-
tion of abundances (Fig. 2c, Appendix S1: S3c). For all
meta-community sizes, Bulmer’s Rwas above the signifi-
cance threshold for density dependence (Fig. 2c) and
increased with increasing meta-community size. Com-
petitive interactions, irrespective of type, introduced a

significant (Fig. 2c, P < 0.001) signal of density-depen-
dent regulation. The strength of this signal did not
change with meta-community size. Again, the variability
in the degree of density-dependent regulation was lowest
in communities governed by cyclic intransitive competi-
tion (Fig. 3c).
We used two measures of temporal synchrony in spe-

cies abundances. In all model communities, segregation
in abundance was lower than expected from the null
model (Table 1, Fig. 1c). The three community types
significantly differed with respect to SES WCS (Fig. 1c,
one-way ANOVA P(F2,87) < 0.001). The u metric
(Table 1, Fig. 2d, Appendix S1: Fig. 3Sd) pointed to a
significantly lower degree of temporal abundance com-
pensation (temporal asynchrony) in the communities
governed by cyclic intransitive competition in compar-
ison to pure neutral ones. Communities with complex
competitive interactions did not differ from the pattern
observed in the pure neutral communities (Fig. 2d).

DISCUSSION

Results from our simulations on neutral and non-neu-
tral model meta-communities provide important insights
on the ecological mechanisms affecting temporal pat-
terns of population fluctuations. First, we asked which
patterns of population fluctuation are expected under
pure neutral conditions. This question has no simple
answer because the degree of fluctuation strongly
depends on the length of the time interval used to infer
variability. In our analysis, we measured population
abundances and community structure after each com-
plete turnover of individuals, that is, approximately,
every generation. We consider this temporal resolution
as the most ecologically meaningful for the purposes of
the study. At the temporal scale of one generation in our
model, neutral population variability appeared to be
equivalent to a random walk constrained by patch size.
McGill et al. (2005) neutral model also generated brown
noise, but these authors did not relate their findings to
the model parameter settings and the spectrogram slope.
Our simulations point to a range of possible slopes and
consequently colors, even at identical initial parameter
settings. Spectral color changed from brown to pink with
increasing community size.
Our second question was how, if at all, do competitive

interactions change these patterns? Transitive and
intransitive competitive interactions had opposite
effects. Intransitivity shifted the spectral colors toward
long-term brown noise, whereas transitive competition
shifted the spectral colors toward short-term white noise
(Fig. 1). Intransitivity strongly reduced the variability in
spectral colors among species (Fig. 3b) in comparison to
transitive interactions. Therefore, intransitive competi-
tion reduced temporal population fluctuation (Figs. 1a,
2a) and consequently stabilized local populations. This
lower variability decreased local extinction rates, irre-
spective of meta-community size (Fig. 1b). Based on the

FIG. 1. Dependencies of (a) extinction rates, (b)the slope z
of Taylor’s power law, and (c) the standardized effect sizes SES
of weighted C score (WCS) measure of temporal co-occurrence
on ln-transformed meta-community size J. Open circles, ecolog-
ical drift only; green circles, ecological drift + cyclic intransitive
competition; red circles, ecological drift + complex competition.
N = 10 replicates simulated for each value of J. Power function
regression between extinction rates and J in panel a) black (pure
neutral) r2 = 0.81, slope z = �1.71; green r2 = 0.75, z = �1.01;
red r2 = 0.99, z = �2.31.
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analysis of a species-poor interaction models, Laird and
Schamp (2006) and Grilli et al. (2017) found that intran-
sitive competition and dynamic species interactions tend
to increase local species richness, and to stabilized spe-
cies abundances. In empirical studies conducted in grass-
lands and salt marshes, Soliveres et al. (2015, 2018),
Stouffer et al. (2018), and Ulrich et al. (2018) have
found empirical support for this hypothesis. However,
Dormann (2016) questioned the claims of Soliveres
et al. (2015), and pointed to the lack of testing of alter-
native hypotheses to the mechanism of intransitive

competition. Indeed, in earlier studies intransitivity
might have actually been a side effect of small-scale habi-
tat variability, leading, in turn, to environmentally
induced changes in species’ competitive strength.
In this respect, our simulations should be interpreted

as an initial proof of concept. Future studies will have to
explore the potential effects of environmental change on
species competitive interactions, and how this, in turn,
may affect population dynamics and community stabil-
ity (Strona and Lafferty 2016). Importantly, the patterns
we detected were strongest in case of the competitive

FIG. 2. Dependencies of the average values of (a) temporal dispersion in abundance, (b) spectral density noise, (c) temporal den-
sity dependence, and (d) temporal synchrony as a function of ln-transformed meta-community size J. Open circles, ecological drift
only; green circles, ecological drift + cyclic intransitive competition; red circles, ecological drift + complex competition. N = 10 repli-
cates for each value of J. The broken black line in panel c denotes the lower R value for density dependence at the 1% error level
according to Bulmer’s (1975) test. The respective variability (except for synchrony) for each metric is given in Fig. 3. Power function
regressions between the metric and J in (a) black (pure neutral) r2 = 0.79, slope z = �2.70 and red r2 = 0.66, z = �2.05; (b) black
r2 = 0.51, z = �1.63; (c) black r2 = 0.85, z = 0.36.

FIG. 3. Dependencies of the coefficients variation (CV) of (a) temporal dispersion in abundance, (b) spectral density noise, and
(c) temporal density dependence on ln-transformed meta-community size J. Open circles, ecological drift only; green circles, ecologi-
cal drift + cyclic intransitive competition; red circles, ecological drift + complex competition. N = 10 replicates for each value of J.
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loop used in earlier simulation studies to infer the behav-
ior of intransitive competitive networks (Laird and
Schamp 2006, Allesina and Levine 2011, Grilli et al.
2017). However, these strong, perfect cycles might be
uncommon in nature. Contrary to the argument of Grilli
et al. (2017), the more realistic complex networks pro-
duced much weaker effects. Laird and Schamp (2006)
and Grilli et al. (2017) used three to five species for their
simulations while our study was based on 10 species. We
speculate that the size of the competitive network might
affect the stabilizing power. In this respect, it has long
been known that complex food webs become eventually
unstable (May 2001, Allesina and Tang 2012). Competi-
tive networks and food webs are essentially governed by
the same types of interactions and should obey similar
stability criteria. Further studies have to determine the
relationships between richness effects and complexity in
competitive networks. Nevertheless, the results of Alle-
sina and Levine (2011) and Grilli et al. (2017) might not
be as general as supposed and rather refer to simple
model settings.
Specifically, the complex competitive structure (the

one with several competitive loops) was characterized by
several competitive loops, reduced extinction rates only
at large meta-community size (Fig. 1a). Hubbell (2001)
argued that drift alone is able to maintain high local spe-
cies diversity. However, even small departures from pure
ecological drift dramatically shorten coexistence time,
leading to low local diversity (Zhang and Lin 1997, Yu
et al. 1998). Zhang et al. (2012) applied a lottery model
and showed that a certain degree of reproductive trade-
off among species (low reproduction in one species gives
another species the chance for higher reproduction) can
decrease local extinction rates and consequently increase
diversity. However, He et al. (2012) noted that the high
species coexistence times of strict neutral meta-commu-
nity models do not match the transient coexistence
observed in empirical studies. Here, we clarify the precise
mechanism behind this effect. Reproductive trade-offs
are comparable (although not identical) to an intransi-
tive situation in which reproductive output does not
decrease linearly with competitive strength in a transitive
hierarchy (Ulrich et al. 2014). Here, we show that only
extreme intransitivity that reverse the competitive order
of the most and least competitive species, is able to
reduce extinction probabilities. More complex competi-
tive hierarchies only reduce extinction probabilities at
large meta-community sizes (Fig. 1a). Therefore, intran-
sitivity can increase the stability of community structure
only if a limited number of species at the top and the
bottom of the competitive pecking order is involved
(Fig. 1a). This result might explain contrasting reports
about the effect of intransitivity on community stability
(Vandermeer 2011, Soliveres et al. 2015, Gallien et al.
2017, Godoy et al. 2017).
Our third question was whether intransitivity can gen-

erate compensatory fluctuations and density-dependent
population regulation? The answer appears to be yes

(Fig. 2c). Density dependence has long been known to
stabilize populations (Murdoch 1994), decrease local
extinction rates (Drake 2005), and increase local species
richness (LaManna et al. 2017). Most evidence comes
from simulation studies within the Lotka-Volterra
framework (Wangersky 1978) and from experimental
studies involving small numbers of species (reviewed in
Laird and Schamp 2015). These studies have focused on
intraspecific regulation or predator–prey dynamics. Here
we show that interspecific competition might also be a
mechanism generating density dependence. We note that
transitive competition caused low local richness, and the
density effect was a statistical artefact due to the con-
straint on the local abundances. More important are the
results of both of the intransitive simulations, which gen-
erated sustained high diversity at the local patch scale.
Both forms of intransitivity increased the strength of
density-dependent regulation (Fig. 2c) and reduced the
variability in population fluctuations (Fig. 1b). These
results contrast with an early study by May and Leonard
(1975), who found that three competing species lead to
instable population cycling and rapid extinction. On the
other hand, Stouffer et al. (2018) found evidence in
annual plants that cyclic intransitivity, in which competi-
tive strength depends on population size, might cause
density-dependent population regulation. In our models,
competitive strength was fixed but nevertheless induced
strong density-dependent population regulation.
The pure neutral models assessed at the scale of a gen-

eration returned variance–mean ratio (as covered by the
slopes of Taylor’s power spectrum) comparable to those
of a Poisson random process and in line with previous
analyses of the temporal behavior of neutral models
(e.g., Azaele et al. 2016, Faust et al. 2018). Slopes
between z = 1 and z = 2 are typical for many vertebrate
and plant communities (Taylor 1988). However, many
arthropod time series follow a proportional rescaling
pattern characterized by a variance that is proportional
to the square of the mean abundances (r2 / l2; Ballan-
tyne and Kerkhoff 2007). In this respect, Ballantyne
(2005) argued that the key factor for determining the
slope value is the effective reproduction rate. Reproduc-
tion rates in the classical neutral model used here are
low and constrained to maintain population size. This
might be a crucial restriction for their applicability to
serve as random standards in community ecology (Mut-
shinda et al. 2008, Rosindell et al. 2012).
In multispecies communities, compensation in abun-

dances might be a strong stabilizing factor (Wilcox et al.
2017). A standard test for compensation, also used here,
compares community abundance variability with the
average variability of its constituent species (Loreau and
de Mazancourt 2008). However, our results strongly
indicate that this test might be biased toward detection
of asynchrony. Irrespective of meta-community size, the
pure neutral communities returned u values much below
unity, the random expectation. Apparently the zero-sum
constraint of the neutral model constrains the sample
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space for total abundance variation in neutral communi-
ties, leading to similar bias as for Taylor’s z. This
may reduce the value of neutral models as a benchmark
standard. Nevertheless, the low u values observed here
in communities characterized by intransitive competi-
tion clearly indicate that cyclic, but not complex, intran-
sitive competition is a strong compensatory agent. As
complex intransitivity should be quite common in the
real world, particularly in species-rich communities, a
simple mechanism of strong intransitivity may not be
the most likely explanation for the maintenance of high
local diversity.
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