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species abundance data

Werner Ulrich, Santiago Soliveres, Wojciech Kryszewski, Fernando T. Maestre and  
Nicholas J. Gotelli

W. Ulrich (ulrichw@umk.pl), Chair of Ecology and Biogeography, Nicolaus Copernicus Univ. in Toruń, Lwowska1, PL-87-100 Toruń,  
Poland. – S. Soliveres and F. T. Maestre, Área de Biodiversidad y Conservación, Depto de Biología y Geología, Escuela Superior de Ciencias 
Experimentales y Tecnología, Univ. Rey Juan Carlos, ES-28933 Móstoles, Spain. SS also at: Inst. of Plant Sciences, Univ. of Bern, Alterbengrain 
21, CH-3013 Bern, Switzerland. – W. Kryszewski, Faculty of Mathematics and Informatics, Nicolaus Copernicus Univ. in Toruń,  
Chopina 12/18, PL-87-100 Toruń, Poland. – N. J. Gotelli, Dept of Biology, Univ. of Vermont, Burlington, VT 05405, USA.

In a network of competing species, a competitive intransitivity occurs when the ranking of competitive abilities does 
not follow a linear hierarchy (A  B  C but C  A). A variety of mathematical models suggests that intransitive 
networks can prevent or slow down competitive exclusion and maintain biodiversity by enhancing species coexistence. 
However, it has been difficult to assess empirically the relative importance of intransitive competition because 
a large number of pairwise species competition experiments are needed to construct a competition matrix that is 
used to parameterize existing models. Here we introduce a statistical framework for evaluating the contribution of 
intransitivity to community structure using species abundance matrices that are commonly generated from replicated 
sampling of species assemblages. We provide metrics and analytical methods for using abundance matrices to estimate 
species competition and patch transition matrices by using reverse-engineering and a colonization–competition model. 
These matrices provide complementary metrics to estimate the degree of intransitivity in the competition network of 
the sampled communities. Benchmark tests reveal that the proposed methods could successfully detect intransitive 
competition networks, even in the absence of direct measures of pairwise competitive strength. To illustrate the 
approach, we analyzed patterns of abundance and biomass of five species of necrophagous Diptera and eight species of 
their hymenopteran parasitoids that co-occur in beech forests in Germany. We found evidence for a strong competitive 
hierarchy within communities of flies and parasitoids. However, for parasitoids, there was a tendency towards increasing 
intransitivity in higher weight classes, which represented larger resource patches. These tests provide novel methods for 
empirically estimating the degree of intransitivity in competitive networks from observational datasets. They can be 
applied to experimental measures of pairwise species interactions, as well as to spatio-temporal samples of assemblages 
in homogenous environments or environmental gradients.
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Species differ in their competitive ability, and these differ-
ences might translate to observed inequalities in species’  
relative abundances within multi-species assemblages 
(Meserve et al. 1996, Levine and Rees 2002). Ecologists have 
devoted much effort to inferring competitive processes from 
observed patterns of species abundances and morphology, 
and from changes in the spatio-temporal distribution of  
species (Gotelli and Graves 1996, Chesson 2000, Engel and 
Wetzin 2008). Such data are often summarized in a sample 
matrix A, in which rows represent species i, columns  
represent different sites j (or multiple sampling times at a 
single site), and entries are the abundance or incidence of 
species i at site (or time) j. Classic assembly rules models 
(Diamond 1975), derived from the principle of competitive 
exclusion (Gause 1934), predict that differences in competi-
tive abilities should cause non-random patterns of species 
occurrences among sites and generate inequalities in species 

abundances within sites. Competitively inferior species are 
predicted to occur less frequently and at lower abundance, 
and an important and largely unresolved question is  
how such species can persist in a community over long time 
periods (Fox 2013).

Many theoretical models of competitive interactions 
assume that species can be ranked unequivocally 
(A  B  C …  Z) according to their competitive strength 
or resource utilization efficiency (Tilman 1988). However, 
intransitive competitive networks (Gilpin 1975) can  
generate loops in the hierarchy of competitive strength (e.g. 
the rock–scissors–paper game, in which A  B  C  A). 
Theoretical and empirical studies have shown that competi-
tive intransitivity can moderate the effects of competition, 
allowing weak competitors to coexist with strong ones  
(Huisman et  al. 2001, Kerr et  al. 2002, Laird and  
Schamp 2006, 2009, Reichenbach et al. 2007). The degree 
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of intransitivity may change depending on environmental 
heterogeneity (Allesina and Levine 2011), successional stage 
(Worm and Karez 2002), or the presence of consumers 
(Paine 1984).

Despite the conceptual simplicity of intransitive com-
petitive hierarchies, the empirical estimation of the strength 
of competition and of the frequency of competitive intran-
sitivity in nature has proven difficult. Estimation is possible 
for small assemblages because researchers can perform  
separate competition experiments for every unique pair of 
m species (Grace et  al. 1993, Shipley 1993, Keddy and 
Shipley 1989). However, because there are m(m 2 1)/2 such 
pairs, it quickly becomes impractical to test all species pairs 
for even a moderately-sized community. Perhaps as a conse-
quence of this limitation, intransitivity as a driver of com-
munity structure (e.g. species diversity) has mainly been 
studied in a conceptual (Bowker et  al. 2010, Bowker and 
Maestre 2012) and mathematical (May and Leonard  
1975, Laird and Schamp 2006, 2009, Rojas-Echenique and 
Allesina 2011) framework, and existing models have rarely 
been applied to empirical data (but see Grace et al. 1993, 
Soliveres et al. 2011).

Theoretical work on the impact of intransitive competi-
tion hierarchies begins with the assumption that the  
structure and strength of the competitive networks are 
already known, but in real communities such competitive 
hierarchies are generally unknown (but see Miller and  
Werner 1987, Keddy and Shipley 1989 for examples). 
Instead, ecologists try to infer quantitative interactions from 
observed patterns of species incidences, abundances, or co-
occurrences (Ovaskainen et  al. 2010, Ulrich and Gotelli 
2010). Such inferences are challenging, because replicated 
samples from real assemblages often exhibit multiple  
contrasting patterns of species co-occurrence that may be 
caused by multiple mechanisms, including biotic inter
actions such as competition and facilitation, and abiotic 
responses reflecting niche conservatism and habitat filtering 
(Gotelli and Ulrich 2012, Ulrich et al. 2012).

It is difficult, however, to infer the relative abundances of 
species in an assemblage at equilibrium from the entries  
in pairwise competition matrices, which are the ones used  
as the basis of most current modeling approaches (Engel  
and Wetzin 2008, but see Laird and Schamp 2006, 2008, 
2009 for related approaches). Moreover, most current 
approaches assume competitive interactions to have deter-
ministic dichotomous outcomes (win or lose). That is, for a 
set of m species, competitive outcomes are coded in a binary 
m  m matrix. If the species in the row wins, the entry is 
coded as 1, and if the species in the column wins, the  
entry is coded as 0 (Laird and Schamp 2006, Allesina and 
Levine 2011). This coding has proven especially useful to 
develop metrics of intransitivity such as the degree of nested-
ness (the progressive decrease of 1s in the outcome matrix 
after ordering according to row and column totals; Laird  
and Schamp 2006) and to infer numerous consequences  
of changing the degree of intransitivity in ecological com-
munities (Laird and Schamp 2006, Allesina and Levine 
2011, Rojas-Echenique and Allesina 2011). However,  
deterministic competitive exclusion is uncommon even  
at equilibrium (Tilman 1994, Chesson 2000) and these 
binary pairwise competitive outputs are unlikely to represent 

competitive dynamics in natural communities. For these rea-
sons, we prefer models of probabilistic competition out-
comes, which may be more realistic, and allow for empirical 
tests with species abundance data.

In this paper, we propose metrics and statistical tests for 
evaluating the contribution of intransitivity and other pat-
terns of competitive interaction to community structure in 
real communities. We develop a framework for the analysis 
of two types of data: competition matrices (hereafter C 
matrices) derived from the outcomes of pairwise experimen-
tal studies, and species abundance matrices (hereafter A 
matrices) derived from field samples that are replicated in 
time or space (Fig. 1). To translate empirical species abun-
dance data into a competition matrix, we construct patch 
transition matrices (hereafter P matrices) and apply them  
in a simple Markov chain model.

The patch transition matrix describes the outcomes of 
species interactions at a small spatial scale in which a single 
individual occupies an entire patch. As in Horn’s (1975) 
original exposition, the elements in this matrix reflect the 
outcomes of species interactions in each time step, which 
lead to either a species replacement in a patch, or continued 
occupancy by the original resident. Similar transition  
matrices are used in population genetics to predict equilib-
rium allele frequencies (Pritchard et al. 2000). In our analy-
sis, the patch model provides a simple spatial representation 

Transitionmatrix (P)

Species abundances × site
OR

Species abundances × time
(A)

Species x species
competitionmatrix (C)

Equilibriumabundancesvector
(U)

Reverse engineering

simulate 100,000 C
matrices, transform to P,
take those that best fit the
observed U by using
Markov chain models

Colonization-

competition

model

Max = 1; full transitivity

Min ≈ 0.25; intransitivity

Max = 1

Min ≈ 0.5

Rank correlation of relative abundances of species among sites (r
s
)

High values = high dominance = high transitivity

METRICS

>0.95 = strong competition hierarchy

τC τp

Figure 1. Flowchart illustrating the procedure followed to obtain 
the metrics of the degree of intransitivity from two different  
possible data sources (A [species abundance  sites or time] and C 
[pairwise competition] matrices). Three metrics are obtained from 
the measured/simulated matrices (A, C and P[patch transition]. 
The two main steps of our approach (reverse-engineering to  
estimate C from A, and colonization–competition modeling to  
estimate P from C) are shown within circles. The area below  
the dotted line details the three developed metrics to measure the 
degree of intransitivity within the observed community and how  
to interpret them.
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of interacting species that leads to changes in relative abun-
dance. This spatial context is lacking in most theoretical 
models, which are based only on interaction coefficients.

In this way, we relate empirically-derived competition 
matrices C to an explicit colonization–interaction model  
to obtain patch transition matrices P. Next, we use a 
‘reverse-engineering’ approach to infer the structure of the 
competition (C) and the transition (P) matrices from an 
empirical (temporal or spatial) A matrix. There is no unique 
solution to this problem because a large number of differ-
ent competition matrices (C) can generate the same patch 
transition matrix (P) that will reproduce the A matrix. 
However, by simulating a large set of stochastically created 
C matrices, the matrix that provides the best fit to an 
empirical A matrix can be analyzed with respect to its tran-
sitivity pattern. Finally, we develop and test different  
indices to quantify the degree of intransitivity from the 
underlying C and P matrices for different types of data.  
To illustrate our methods, we analyze empirical data matri-
ces on the colonization of slug carrion by necrophagous 
flies and their parasitoids (Ulrich 1999).

A matrix algebra approach to intransitivity

Defining the pattern
Traditionally, researchers have organized experimentally- 
estimated measurements of pairwise competitive strengths 
among m species as a square m  m matrix C in which an 
entry cij is the probability that species i replaces species j in a 
competitive interaction. In such a matrix, the diagonal  
elements are set to 1.0, and therefore, such matrices  
cannot be used to directly predict species abundances from a 
Markov chain approach. However, the complementary 
matrix elements cij and cji always sum to unity because,  
for any pair of species, cij  (1 2 cji). In models designed to 
test for the degree of intransitivity in a community (Laird and 
Schamp 2006), these C matrices are often transformed to 
dichotomous 0/1 data (i.e. species i completely replaces species 
j or vice versa [cij  1 or cji  1])

The C matrix itself is not column stochastic (column 
sums do not sum to 1.0), so it cannot be used to estimate a 
vector of relative abundances in a Markov chain model  
without further information (for instance on resource  
use; Allesina and Levine 2011). To translate competitive 
strengths coded in the C matrix to species abundances,  
we need an additional patch matrix (P) that is column sto-
chastic. The P matrix specifies the probability of transition 
from one species occupancy state to another, given the 
underlying competitive strengths in the C matrix.

Transforming a competition matrix (C) to a transition 
matrix (P)
A simple Markov chain model that predicts relative  
abundances is Horn’s (1975) classic patch transition model. 
In this model, a m  m patch transition matrix P describes 
the probability pij of a transition from a patch occupied by 
species j to a patch occupied by species i in a single time step. 
Here we adapt this model to predict relative abundances 
from competitive coefficients coded in C. Although the tran-
sitions in Horn’s (1975) model are determined by the  

outcome of species interactions, their precise relationship to 
the elements of the C matrix is not clear. Horn’s (1975)  
general model can also describe turnover in patch  
occupancy that is neutral or that reflects facilitation  
(McAuliffe 1988).

Assuming that the probabilistic outcome of species inter-
actions is fully described by the entries of C, we want to 
compute the patch transition matrix P in terms of the  
competition matrix C. Here are the additional assumptions 
in our model (cf. Laird and Schamp 2008 for a similar 
model): 1) there are many homogeneous patches, each of 
which can be colonized and occupied by individuals of a  
set of m species; 2) all species produce a large number of 
potential propagules, so there is a ‘propagule rain’, and colo-
nization is never limited by dispersal limitation; 3) only a 
single species can occupy one patch at a time; 4) in a single 
time-step, a species occupying a patch either retains its occu-
pancy or is replaced by a different species; 5) the set of 
patches is spatially unstructured.

A model satisfying the above assumptions might describe 
a species of plant or sessile invertebrate that competes with 
the mobile propagules of all potentially invading species. 
With this model, we can use simple probability rules to  
convert the entries in the C matrix into a P matrix. We 
denote the probabilities in the P matrix that species i replaces 
species j by pij. This definition makes the matrix P column
stochastic, i.e. pij

t



1

1

m∑ .
For example, consider an assemblage of m  three  

species {1, 2, 3}, with the m  m competition matrix C. The 
off-diagonal entry c12 in the C matrix specifies the prob
ability that species 1 wins over species 2. The probability p11 
that species 1 is not replaced by species 2 or 3 is given by

p11  p p C C( ) ( )1 2 1 3 12 13→ ∧ → 	 (1)

Diagonal entries for p22 and p33 are calculated the same way.
This result can be achieved differently: with probability 

1/2, species 1 meets species 2, wins over it with probability 
c12, then species 1 meets species 3 and with probability c13 
wins; or species 1 meets first species 3 with probability  
1/2 and wins over it with probability c13 and then it meets 
species 2 winning over it with probability c12. Hence the 
total probability is

p11   
1
2

1
212 13 13 12 12 13C C C C C C

	
(2)

The same logic can be applied to calculate the off-diagonal 
elements of the P matrix. Let us compute p12 for instance, 
i.e. the probability that species number 1 replaces the resi-
dent species 2. With probability 1/2 species 2 meets  
species 1 and loses with it with probability c12 (and, accord-
ing to our assumption 4, this ends the competition) or, with 
probability 1/2 the resident species 2 meets species 3, wins 
over it with probability c23 (it cannot loose, since we  
compute the probability that species 2 is replaced by 1) and 
then meets 1 and loses it with probability c12. Hence

p12  
1
2

1
212 12 23C C C

	
(3)
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and for 1  i  m

pii ij ik 


 
   

C
m

C P k k m i i
j j i

m

k k i

m1
1

1 1 1
1 1, ,

( , , , , , )[ ]∏ ∑ … … →

(9)

Equation 8 and 9 generate the required transition matrix P 
for an arbitrary number m of species in terms of competitive 
strength matrices for sets consisting of (m  1) species.

The fact that the transition probability for two species 
(Eq. 8) contains terms that include other species means  
that a fully transitive competitive strength matrix C is not 
necessarily transitive with respect to the transition matrix P 
(Fig. 2). A fully transitive C matrix translates into a transitive 
P matrix only if competitive strengths of the off-diagonal 
elements in C are either constant or increase in each row 
from left to right (Fig. 2, C2, C3). This feature is equivalent 
to a fully quantitatively nested pattern of competitive 
strength (cf. Staniczenko et  al. 2013). If this ordering is  
broken, a transitive C matrix translates always into an  
intransitive P matrix (Fig. 2, C4). Thus, it is important to 
quantify intransitivity in both the P matrix and in the  
underlying C matrix. Importantly, full transitivity (when 
defined by transition probabilities) does not necessarily 
imply competitive exclusion. Only C matrices that translate 
into absorbing P matrices cause competitive exclusion  
(Fig. 2, C1).

We note that the dominant eigenvector of the simple 
Markov chain model predicts the relative abundances of all 

In general the probability pij, with 1  i ≠ j  3, that species j 
is replaced by the species i is calculated as

pij ij ij jk 
1
2

1
2

C C C
	

(4)

and, for any 1  i  3,

pii ij ikC C 	 (5)

where j, k ≠ i.
Generalizing to m  3, consider m  4. For 1  i ≠ j  4 

we have

pij ij ij jk ij jk jl ij jl ij jl    
1
3

1
3

1
2

1
2

1
3

1
2

1
2

C C C C C C C C C C



 CC jk







(6)

where k ≠ i, j, l and l ≠ i, j, k, and for 1  i  4

pii ij ik ilC C C 	 (7)

where j, k, l ≠ i.
To generate the formula for pij, i, j  1, … ,m, for an  

arbitrary m, we need the following notation: given a  
set A  {a1, … , an} of species with the corresponding  
competition matrix C, let P(A)[aj → ai] denote the probabil-
ity that species aj is replaced by ai, i, j  1, … , n.

Within this notation: for 1  i ≠ j  m

Dominant
Eigenvector

(C1) (P1) (U1)

(C2) (P2) (U2)

(C3) (P3) (U3)

(C4) (P4) (U4)

Transition matrixCompetitive strength matrix

A B C A B C
A 1.00 1.00 1.00 A 1.00 1.00 0.50 A 1.00
B 0.00 1.00 1.00 B 0.00 0.00 0.50 B 0.00
C 0.00 0.00 1.00 C 0.00 0.00 0.00 C 0.00

A B C A B C
A 1.00 0.80 0.80 A 0.64 0.72 0.48 A 0.63
B 0.20 1.00 0.80 B 0.18 0.16 0.48 B 0.22
C 0.20 0.20 1.00 C 0.18 0.12 0.04 C 0.15

A B C A B C
A 1.00 0.60 0.80 A 0.48 0.48 0.56 A 0.50
B 0.40 1.00 0.60 B 0.32 0.24 0.36 B 0.32
C 0.20 0.40 1.00 C 0.12 0.16 0.08 C 0.18

A B C A B C
A 1.00 0.80 0.30 A 0.24 0.72 0.18 A 0.37
B 0.20 1.00 0.80 B 0.13 0.16 0.68 B 0.31
C 0.70 0.20 1.00 C 0.63 0.12 0.14 C 0.32

Figure 2. Four competitive strength matrices (C1 to C4), the corresponding column stochastic transition patch matrices (P1 to P4), and 
the respective dominant eigenvectors U that contain predicted equilibrium relative abundances generated from Eq. 8 and 9. Entries in the 
competitive strength matrices designate the probability that species A wins in pairwise competition against species B. Entries in the  
patch transition matrices (which are column stochastic) designate the probability that a patch occupied by species A is converted to a patch 
occupied by species B. Note that full competitive exclusion is only reached in case C1.

(8)pii ij jk 





 
 

P m j i
m

C
m

C P k k m
k k i

( , , )[ ] ( , , , , , )
,

1 1
1

1
1

1 1 1
1

… … …→
,,

[ ]
j

m
j i∑ →
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2) Spatial and environmental data
The second approach is based on spatial abundance data for 
m species collected at i  1 to n sites for which environ-
mental variables are available. Assume a number of  
homogeneous patches. If observed species abundance dis-
tributions were determined only by competition, we  
could make a time-space substitution and interpret the  
vector Ai of the abundance distribution of m species at site 
i as representing the outcome of a single time step of a 
Markov chain triggered by the m  m matrix P. At equilib-
rium, we can assume that the abundance distribution Ai  
at site i (scaled to unity) approximates the right stable  
state vector (eigenvector) U (PU  LU), with L as the 
diagonal matrix of the largest eigenvalue l. Thus it holds 
approximately

PAi ≈ lAi	 (12)

We note that this eigenvector exists only if the matrix P 
defines an ergodic process, i.e. a process that converges to  
an equilibrium condition. But if P defines a periodic com-
petitive hierarchy, no stable state vector exists, and species 
abundance distributions do not reach equilibrium. For 
instance, the intransitive competitive cycle A  B  C  A  
is periodic. Although such a system does not reach station-
ary abundances, the distribution of abundances reaches  
an equilibrium. Using many single abundance vectors  
allows for the approximation of the generating probability 
matrix P.

In the case of n study sites, the single column vectors Ai 
form the m  n matrix U that contains the abundance distri-
butions of the m species among the n sites. These can be 
viewed as individual approximations to the stable state  
vector ui. For large n the average species abundance across 
the sites approximate the dominant eigenvector U (Allesina 
and Levine 2011) This is equivalent to

PU ≈ U	 (13)

Therefore, the problem of identifying the patch transition 
matrix P is reduced to the problem of solving P in Eq. 13. 
For this task, we decompose the variance in PU into a  
part explained by U and a part contained in an m  n matrix 
E to get the model

PU  U  E	 (14)

We next incorporate environmental data to estimate the 
matrix E from a multiple regression analysis. These data are 
contained in a n  h matrix H, with n sites (rows) and h 
environmental variables (columns) measured at each site. 
The occurrence vector Bi of a species i at the n sites predicted 
by H is given by

Bj  HXj	 (15)

where X is the vector of regression parameters. Computed 
for all species, the regression model yields a predicted  
n  m matrix of species abundances that is identical to 
BT  HX, and that provides an estimate of that part of  

species at equilibrium. This model implies that, whether or 
not the P matrix is dominated by transitive or intransitive 
chains, the more pairwise interactions in which a particular 
species wins, the greater its abundance at equilibrium  
(Allesina and Levine 2011). Therefore, a consistent rank 
order of species abundances among a set of sites that are 
environmentally similar implies a predominance of transitive 
species interactions. In contrast, an inconsistent ranking  
of species abundances among a set of similar sites would 
imply the existence of intransitive loops. Thus, the average 
degree of rank correlations of the relative abundances of 
across sites can be interpreted as a first metric of transitivity 
within the community (Fig. 1). A high evenness of species 
abundances in a single assemblage indicates some degree of 
intransitivity within a community.

Estimating transitivity patterns with three data structures
1) Temporal data
To estimate the degree of intransitivity in a given commu-
nity, we need first to estimate the transition matrix P from an 
observed distribution of species abundances or occurrences. 
Depending on the data, there are three different scenarios. 
The first and most obvious approach relies on appropriate 
time series data. If At is the vector of relative abundances  
of m species at generation t, then PAt  At  1 if P is  
column stochastic. If data are available from at least t  1 
time steps, the single abundance vectors of each generation 
can be embedded in two matrices N1,t, which runs from  
generation 1 to t, and N2,t  1, which runs from generation 2 
to t  1. Combining these two matrices yields:

PN1,t   N2,t  1	 (10)

and therefore

P  N2,t  1 N1,t
T (N1,t N1,t

T)21	 (11)

where T denotes the transpose. This approach allows for the 
estimation of the P matrix from an A matrix of consecutive 
temporal censuses of an assemblage. Although a unique 
solution for P usually exists, in many cases the variability in 
species abundances not caused by competitive effects will 
return P matrices that are not column stochastic and that 
do not allow for an assessment of competitive interactions. 
Therefore we used a ‘reverse-engineering’ approach to  
find those C and P matrices that best mimicked observed 
abundances. For this task, we generated a large number 
(n  100 000) of randomly assembled C matrices, in  
which each entry above the diagonal in the C matrix was 
chosen from a random uniform (0,1) distribution. Using 
Eq. 8 and 9, we transformed the randomly assembled C 
matrices into P transition matrices to predict the N2,t  1 
matrices from our Markov chain model. We used average 
rank order correlations between respective columns in the 
predicted and observed N2,t  1 matrices to assess goodness 
of fit, and selected those P and C matrices that generated 
the best fit to the observed vector of relative abundances 
(At). A worked example of this reversed-engineering 
approach is presented in the electronic supplement C.
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matrices that have probability entries 0  cij  1. A simple 
measure of the degree of transitivity in probabilistic C  
matrices is the count N of species pairs for which cij  cji  
after the matrix has been sorted to maximize the number of 
matrix elements with p  0.5 in the upper right triangle 
(Petraitis 1979). Although for each individual species pair 
cij  (1 – cji), the number of entries that end up above the 
diagonal after sorting should reflect the number of transitive 
chains in the matrix. The normalized version of this transi-
tivity count (tC) is a quantitative measure of the degree of 
transitivity in C:

τC 





2
1

N c c
m m

i jij ji( )
( )

( )
	

(18)

Quantifying transitivity in P matrices
To quantify transitivity in the transition matrix P, we pro-
pose the normalized count of the number of reversals in the 
decreasing order of probabilities for each column as an 
appropriate metric:

τP  


 
 1

2
1 2

N p p
m m m

i k i k jij k j( )
( ) ( )

( , ), and
	

(19)

where i and j run from 1 to m and k from i  1 to m (m is  
the total number of species in the studied community).  
Theoretically, this measure runs from 0.0 (completely  
intransitive) to 1.0 (fully transitive). However, because the 
entries in the P matrix are calculated from the probabilities 
in the C matrix, they are not independent of one another, 
and the matrix ordering of species according to the largest 
eigenvector imposes constraints on the lower boundary.  
In a simulation study of randomly filled C and P matrices, 
we found a rapid asymptotic convergence of the lower 
boundary towards tP  0.5 with increasing species  
richness, with a minimum observed value tCmin  0.25  
(cf. Petraitis 1979).

For both the C and the P matrices, another possible mea-
sure of intransitivity is fintr, the fraction of species in the 
assemblage that participate in intransitive loops. However, 
this metric always tends to include a large number of species 
– even for moderately intransitive communities – and there-
fore cannot discriminate well among transitive and intransi-
tive matrices. In nearly all test matrices for which tP and tC 
scores were less than 0.7, all species took part in at least one 
intransitive relationship. We therefore used fintr as an auxil-
iary metric in cases of high, but imperfect, transitivity.

Finally we test for the use of the average Spearman  
rank order correlation rS between the abundance vectors Ai. 
In this respect, Eq. 14 highlights an important property of 
the transition matrix P. If all abundance distributions Ai in 
the n sites of U have the same ranking (all combinations  
of rank correlations among sites  1.0), the P matrix  
generates for all representations of Ai a constant abundance 
hierarchy. This occurs if the C matrix is highly (or even  
maximally) transitive. Conversely, the lower the average rank 
correlations within U, the greater the degree of intransitivity 
in P, and consequently also in C. Therefore rS might also 
serve as an easily calculated metric of competitive transitivity 
(Fig. 1).

U  E that is not explained by competition [(HX)T  E]. 
This unexplained part can be plugged into Eq. 14 to yield

PU  U  XTHT	 (16)

Therefore

P  I 1 XTHTUT(UUT)21	 (17)

with I being the m  m identity matrix. Equation 17  
provides testable predictions about the competitive structure 
of the focal community. As with time series data, we use  
the ‘reverse-engineering’ approach and compare predicted 
and observed environmental terms XTHT (Eq. 16) to find 
those C and P matrices that best mimic the observed abun-
dance distributions. This method is only appropriate  
for relatively low levels of environmental variation. If the 
environmental variation is too great, the first assumption of 
the patch model is violated, and the calculation of the C 
matrices may not be valid.

3) Spatial data
Without additional environmental information for a precise 
definition of the minimum condition for E, Eq. 14 has  
no unequivocal non-trivial solution (Kryszewski pers. 
comm.). Therefore we use again the ‘reversed-engineering’ 
approach and assume that P predicts U best if the average 
rank correlations of all equivalent columns between pre-
dicted (PU) and observed (U) are above a predefined level 
rmin. Below, we use rmin  0.95. We define this case as the 
minimum state of E  PU 2 U. As before, we create a large 
number of randomly assembled C matrices, transform  
them into P matrices, and calculate PU. The respective 
Spearman rank order correlations between equivalent matrix 
columns in the PU and U abundance matrices serve as a 
measure of goodness of fit. The best performing C and P 
matrices are then candidates for the competitive and transi-
tion matrices that generated the distribution of abundance 
in U (Supplementary material Appendix 1, C).

An important limitation of this method is that the final 
competition matrix does not necessarily coincide with  
a P matrix that produces the observed pattern of species 
abundances. If strong environmental heterogeneity and 
environmental filtering (Webb et  al. 2002) influence  
species abundances, the matrix E will contain additional 
sources of variance. If environmental heterogeneity domi-
nates the pattern of species abundances, P might underesti-
mate the true strength of competition. Conversely, in cases 
where heterogeneity enhances disparities in abundance, P 
might overestimate the strength of competition. Both  
scenarios could bias the assessment of the importance of 
intransitivity. Thus a proper assessment of competitive  
hierarchies should be based on a homogeneous set of rela-
tively similar study sites for which environmental variables 
do not contribute greatly to the variance contained in E.

Quantifying transitivity in C matrices
Laird and Schamp (2006) proposed several useful metrics  
to quantify the degree of intransitivity in discrete (0/1)  
C matrices. However, these indices do not work with C 
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matrices matched the respective simulated matrices, we 
directly compared the simulated and the (best-fitting)  
predicted Ctest and Ptest matrices using Mantel correlations 
applied to the respective Euclidean distance matrices. We 
also used these best-fitting matrices to compare the degrees 
of transitivity tC and tP that occurred in these matrices.

The calculation of the probabilities for all pij of the  
transition matrix P from the entries of the competition 
matrix C needs the evaluation of all combinations of cik 
(k ≠ i, j) according to the recursive Eq. 8. This becomes com-
putationally challenging at higher species richness. A good 
approximation of pij uses the fact that the calculation of each 
pij (Eq. 8) involves multiplications of all combinations of  
cik within each row i. Therefore, we might reduce Eq. 8  
to a geometric series using the geometric average x– of the 
respective cik values. This leads to

p
m

C xij ij
k

k

m
≈ 1

1 0

2

 

∑
	

(20)

For our test matrices, the average relative error introduced  
by this approximation for pij was always less than 3%  
(not shown). Below we use this approximation to efficiently 
estimate P from C.

All calculations were done with the FORTRAN software 
application ‘Transitivity’ (Ulrich 2013), which is available 
for free from the homepage of WU (www.keib.umk.pl/
transitivity/). The respective source code is contained in 
the Supplementary material Appendix 1, A.

Case study

To test our three methods, we used data from a controlled 
field experiment on the colonization of slug carrion Arion 
ater (Arionidae) by eight species of necrophagous Diptera 
and five species of oligophagous primary hymenopteran  
parasitoids of the Dipteran genus Megaselius (Phoridae)  
in a temperate German beech forest (Table 1; detailed 
description in Ulrich 1999). Carrion is permanently colo-
nized by egg-laying females and thus resident and invading 
larvae strongly compete either for food or for phorid hosts. 
Such a system matches the assumptions of our patch model.

A total of 99 dead slugs were each assigned to one of  
nine weight classes (2–3, 3–4,…,9–10, 12–19 g fresh weight) 
and exposed for 30 days in the field in polystyrol boxes, 
which allowed flies and parasitoids access, but excluded 
larger arthropod and vertebrate scavengers. In the same 
beech forest, the density of Hymenoptera parasitoids  
associated with the Diptera in this experiment was moni-
tored for seven years (1981–1987; full description in Ulrich 
2001). We used average densities (individuals  m22) for the 
first (spring) and the second (summer) generation of these 
parasitoids.

Additionally, we used data from a leaf-litter manipulation 
experiment conducted in 1986 to assess the influence  
of environmental variability on competitive strength (full 
description in Ulrich 2001). In this experiment, leaf litter in 
two experimental plots was either totally or partially removed 
and on two other plots was supplemented two- or five- 
fold (Ulrich 2001). Collectively, these data provide all  
the information necessary to calculate the three proposed 

Methods

Benchmark testing of our approach

For each of the three approaches described above, we  
first generated 200 competitive strength matrices Ctest  
(with m taken from a uniform random distribution: 
5  m  50). Each matrix had a different predefined degree 
of intransitivity tc (0.7  tc  1) implying that no (tc  1) or 
(nearly) all (tc  0.7) species were part of at least one  
intransitive loop. This specified degree of intransitivity  
serves as the true or known parameter, so the set of matrices 
can be used to test the accuracy of the procedures and met-
rics and their ability to correctly detect intransitivity.

For the time series approach, we generated m  n  50 
sequential abundance vectors by multiplying the species 
abundance distribution at time step t with Ptest to obtain the 
abundance distribution at time step t  1. The initial  
species abundance vector was drawn from an exponential 
random distribution. To introduce additional variability, all 
species abundances at each time step were multiplied by a 
uniform random number arbitrarily ranging between 0.8 
and 1.2. Thus, approximately 80% of the variance in a  
species relative abundance was determined by competitive 
interactions, and approximately 20% was random.

For the environmental and spatial approaches, we  
transformed these artificial Ctest matrices into their respective 
Ptest transition matrices (Eq. 8, 9), and calculated for each 
transition matrix the respective dominant eigenvector Vtest. 
Non-ergodic Ptest and the respective Ctest matrices, which did 
not allow for the calculation of Vtest, were discarded.  
This eigenvector served as an estimate of the equilibrium  
distribution of the relative abundances of the species  
(Supplementary material Appendix 1, C). Proportional to 
this distribution, we randomly sampled individuals and 
assigned them to the elements of a matrix of m species and n 
sites (n again was sampled from a uniform random distribu-
tion: 5  n  50) until, at each site, all m species were placed. 
This procedure yields for each site a normal approximation 
of the equilibrium abundance distribution and defines  
the required abundance matrix Utest. For the environmental 
data approach, we also generated three environmental vari-
ables, each with values sampled from a random uniform 
(0,1) distribution. Their sum served as an additional multi-
plicative source of variability for species abundances.

In the next step, we simulated for each Ctest matrix 
10  m  n, but not less than 100 000, random matrices with 
entries of the upper triangular matrix sampled from a uni-
form random (0,1) distribution and translated each into a 
corresponding P matrix. To estimate the goodness of fit, we 
calculated for each of the random matrices the average  
rank order correlation between the columns of the Utest 
matrices (N2,m  1 in the case of the time series approach)  
and the respective columns of the predicted (Upred and  
predicted N2,m  1) matrices (Supplementary material  
Appendix 1, C). We retained for each Ctest matrix and its 
corresponding Ptest matrix the 100 best-fitting matrices Cpred 
and Ppred. We used this set of best-fitting matrices to com-
pare estimated and true patterns of intransitivity, and to 
identify the species with the strongest intransitivities in the 
Ctest and Ptest matrices. To infer how close the predicted 
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approach used to recover competitive interactions from 
abundance data (Fig. 3). Our ‘reverse-engineering’ algorithm 
performed best for P matrices in combination with the  
spatial and environmental data (Fig. 3). In these analyses, the 
regression of estimated versus true transitivity explained 
94% of the variance found in the data. Our methods were 
less successful at estimating pairwise competitive strength, 
and the respective regressions explained only between  
51% (abundance data, Fig. 3F) and 53% (time series data, 
Fig. 3B) of the variance.

Despite variability in the prediction of the precise  
degree of transitivity, all three approaches were able to 
identify at least moderate degrees of intransitivity in test 
matrices (Table 1). For P matrices, each of our three 
approaches correctly recovered more than 94% (time series 
approach) of the moderately to highly intransitive  
test matrices, with tP  0.95 (Table 1). For C matrices, at 
least 80% (times series) of them were correctly identified. 
Of the weakly intransitive matrices (0.95  tP  1.0) 
between 74% (time series) and 94% (environmental data) 
were identified as being intransitive by the P matrices,  
and between 72% (time series) and 90% (environmental 
data) of them were identified as being intransitive by the  
C matrices.

These methods were less successful in identifying  
perfectly transitive matrices (Table 1). For P matrices, 
between 36% (environmental data) and 60% (spatial data) 
of the upper 95% confidence limits of the tP distributions of 
the 100 best-performing matrices included the value of 1.0 
(full transitivity). For C matrices, between 49% (spatial data) 
and 61% (environmental data) were correctly identified as 
transitive. In all of the fully transitive test matrices, the  
predicted transitivity scores of the best-performing engi-
neered P and C matrices was  0.95 (not shown). Therefore, 
values of tP or tC  0.95 might serve as a strong indicator of 
full transitivity.

A direct comparison of the simulated and predicted 
entries of the P and C matrices (Fig. 3G–H) revealed in  
all cases a high correlation, which increased with the degree 
of transitivity. The correlation coefficient (Mantel test) 
between the simulated and the best-fitting matrices was 
extremely high (rinteraction  0.95) in 88% of the fully transi-
tive interaction matrices, indicating a high match between 
the simulated data and the matrices predicted with our 
approach (Fig. 3G).

methods for the same set of species within a single habitat. 
To estimate transitivity, we used the summed biomasses of 
each of the Diptera species, parasitism rates for the parasi-
toids in the slug experiment, and the abundances for the 
parasitoids in the time series data set. The complete raw data 
are provided in the Supplementary material Appendix 1, B.

To assess the degree of community-wide negative species 
associations, we used the incidence based C-score (Stone and 
Roberts 1990) and its abundance-based equivalent, CA 
(Ulrich and Gotelli 2010). Both metrics need to be com-
pared with a null model that provides an appropriate  
random expectation (Gotelli and Ulrich 2012, Ulrich and 
Gotelli 2013). For the Diptera and hymenopteran parasi-
toids, the individual slugs represent sites, which differed in 
size and desiccation rate. The different Diptera and 
Hymenoptera species also differed in their local abundances 
and incidences, which probably reflects differences in  
colonization potential.

To account for these typical sources of heterogeneity 
among sites and species, we used the fixed abundances  
null model IT of Ulrich and Gotelli (2010), which was 
developed for the randomization of abundance matrices. 
The IT algorithm assigns individuals randomly to matrix 
cells with probabilities proportional to observed row and 
column abundance totals until, for each row and column, 
total abundances are reached. Null expectations and  
standard deviations of the IT null distributions were in all 
cases based on 200 randomizations for each matrix. All co-
occurrence analyses were conducted with the FORTRAN 
software application ‘Turnover’ (Ulrich 2011, Ulrich and 
Gotelli 2013). Because null distributions appeared to be 
approximately normal, we used the standardized effect sizes 
(SES, calculated from the observed score x and the mean m 
and standard deviation s of the null distribution as: 
SES  (x 2 m)/s) to infer statistical significance. For a two-
tailed 95% confidence interval, ‘random’ SES scores should 
range between  1.96.

Results

Benchmark testing

We found highly significant correlations between simulated 
and predicted degrees of transitivity, regardless of the 

Table 1. Numbers of correctly identified test matrices of a predefined degree of transitivity (tP and tC) in benchmark tests based on  
spatial, time series, and environmental data. N denotes the total number of simulated matrices in each category (from a total of 200 test 
matrices), and ‘identified’ gives the number of tests for which the upper 95% confidence limit of the 100 best-performing reverse-engineered 
P or C matrices included the value 1.0 (predefined tC, tP  1) or excluded the value 1.0 (predefined tC, tP  1).

Degree of transitivity

Time series Environmental data Spatial data

N Identified % identified N Identified % identified N Identified % identified

P matrices
tP  1 20 9 45 25 9 36 30 18 60
0.95  tP  1 27 20 74 33 31 94 43 40 93
tP  0.95 153 144 94 142 142 100 127 127 100

C matrices
tC  1 40 20 50 33 20 61 35 17 49
0.95  tC  1 18 13 72 20 18 90 16 13 81
tC  0.95 142 114 80 148 130 88 149 131 88
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Figure 3. Simulated (tP,test, tC,test) and predicted (tP,pred, tC,pred) degrees of transitivity of competitive strength C and transition P matrices for 
the time series method (A, B), the environmental correlation method (C, D), and the spatial method (E, F). G, H: Mantel test correlation 
coefficients (Euclidean distances) of simulated and predicted interaction (rinteraction) and transition (rtransition) matrices in dependence  
on tC,test. Each point represents the scores from a different simulated matrix (n  200 matrices). Regression lines: A: r2  0.44; B: r2  0.53; 
C: r2  0.94; D: r2  0.60; E: r2  0.94; F: r2  0.51; G: r2  0.78; H: r2  0.84 (p  0.01 in all cases).

Table 2. Average densities (D, individuals per slug), dry biomasses (B, mg dry weight per slug), and parasitism rates p of eight necrophagous 
Diptera and five primary parasitoids of Megaselia ruficornis and M. pulicaria. Errors denote plus or minus one standard deviation. Average 
rank and range of ranks give the mean and the range of species ranks in the competitive hierarchies of the ten carrion weight classes.

Species D B Average rank Range of ranks

Diptera
Conicera schnittmani 51.9  80.4 0.030  0.051 2.2 1–6
Fannia immuntica 1.0  2.8 0.004  0.012 4.6 2–8
Gymnophora arcuata 0.6  1.8 0.001  0.004 3.8 2–8
Limosina sp. 23.2  34.1 0.014  0.020 4.7 1–8
Megaselia pulicaria 6.7  13.9 0.007  0.015 5.3 2–8
Megaselia ruficornis 8.2  9.3 0.009  0.010 5.0 1–8
Panorpa sp. 0.4  0.9 0.008  0.021 5.8 4–8
Psychoda sp. 3.3  7.3 0.003  0.007 4.6 2–8

Species D P Average rank Range of ranks

Hymenoptera
Aspilota A 3.4  5.8 0.22  0.30 1.6 1–2
Aspilota B 3.4  8.1 0.18  0.28 2.0 1–3
Aspilota C 0.5  1.4 0.04  0.16 4.0 3–5
Aspilota D 0.2  1.1 0.01  0.07 4.9 4–5
Orthostigma sp. 2.7  4.4 0.17  0.28 2.5 1–4

Case study

The eight dipteran and five hymenopteran species differed 
markedly in abundance, biomass, and parasitism rates  
(Table 2). Abundances of Diptera and Hymenoptera ranged 
between 0.2 and 52 individuals per slug, which corresponds 

to 19 and 5186 individuals of the least and most abundant 
species, respectively. Irrespective of carrion weight class,  
species incidences and abundances of both taxa tended to  
be significantly segregated (Fig. 4), suggesting a predomi-
nance of negative species interactions. The degree of segre
gation increased with slug weight class (Fig. 4).
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competitive strength (C) and the transition (P) matrices, 
with the latter showing a stronger pattern of intransitivity 
(Table 3).

For Hymenoptera, there was a trend towards increasing 
intransitivity (tP) at higher slug weight (r  20.82, p  0.01, 
Table 2). The confidence limits of tP of the 8 and 12 g  
carrion weight classes did not encompass 1.0 (Table 3).  
tP was also negatively correlated with the degree of species 
segregation (r  20.78, p  0.01, Table 3). This trend was 
not obvious for tC (Table 3).

Detailed comparisons of the competitive hierarchies of 
flies and parasitoid wasps (Table 2), revealed a reordering  
of species competitive strength between the different  
carrion weight classes. The average coefficient of correlation 
between all 45 combinations of predicted species rank  
orders of competitive strength was r  0.11 for Diptera and 
r  0.76 for Hymenoptera. Predicted average rank order of 
competitive strength of both taxa was negatively correlated 
with the respective average species abundance (Fig. 5), 
although this trend was not significant at p  0.05 for  
the Diptera. In accordance with the observed reordering of 
competitive strength across slug weigh classes, we found for 
both taxa the degree of transitivity within each slug weight 
class to be uncorrelated with the average Spearman rank 
order correlation between the respective biomass, parasitism 
rate, and abundance ranks (Fig. 6).

Both time series (spring and autumn generations) and  
the data from the leaf manipulation experiment pointed to 
fully transitive competitive relationships among the five par-
asitoid species (Table 4). Again, we observed differences in 
the competitive hierarchy between generations and between 
the time series and the leaf litter experiment.

Discussion

A central question in community ecology is how diversity 
is maintained among a set of competing species. Together 
with niche differentiation and neutral theory (Tilman 

The average predicted degree of transitivity of the  
Diptera community was tP  0.99 and tC  0.99, respec-
tively (Table 2). The level of transitivity did not change with 
carrion weight class (r  0.13, p  0.1) or with the degree of 
negative species association (r  20.12, p  0.1, Table 2). 
Five of the predicted tP scores and all predicted tC scores 
were not significantly different from 1.0, a score which  
indicates full transitivity (Table 3). Thus competitive hierar-
chies within the fly communities appeared to be fully, or  
at least nearly fully, transitive. In accordance with our  
probabilistic interpretation of pairwise species interactions, 
the degree of transitivity differed between the pairwise  
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Figure 5. The average rank in the competitive hierarchies among 
necrophagous Diptera (open circles) and their parasitic Hymenoptera 
(full circles) decreases with average abundance among the slug  
carrions. Diptera: r  –0.76, p  0.03; Hymenoptera: r  –0.98, 
p  0.01.
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Figure 4. The degree of species segregation of necrophagous  
Diptera (A) and their parasitic Hymenoptera (B) among ten slug 
weight classes as quantified by the presence–absence based  
C-score (full circles and regression line; A: r  0.47, p  0.17;  
B: r  0.52, p  0.13) and the abundance based CA score  
(open circles and broken regression line; A: r  0.86, p  0.01;  
B: r  0.70, p  0.02) increased with slug body weight.

Table 3. tP and tC (given as the average transitivity metrics based on 
the 100 best fit transition and competition matrices according to  
Eq. 18 and 19) for species  slug carrion matrices of 10 carrion 
weight classes (in g). PP(1.0) and PC(1.0) give the probabilities  
that the distribution of tP and tC based on the 100 best-fitting P an  
C matrices include the fully transitive pattern of tP  1.0 and  
tC t 1.0.

Slug weight class tP PP(1.0) tC PC(1.0)

Diptera
2 0.998  0.5 0.999  0.5
3 0.968 0.01 0.980  0.5
4 0.946 0.01 0.934 0.08
5 0.985 0.03 0.989  0.5
6 0.988 0.08 0.993  0.5
7 0.987 0.08 0.989  0.5
8 0.990 0.14 0.989  0.5
9 0.975 0.01 0.975 0.47

10 0.998  0.5 0.999  0.5
12 0.972 0.01 0.978  0.5
All 0.985 0.08 0.988  0.5

Hymenoptera
2 0.991  0.5 0.900 0.01
3 0.995  0.5 0.897 0.01
4 0.972 0.32 0.993  0.5
5 0.987  0.5 0.899 0.01
6 0.999  0.5 1.000  0.5
7 1.000  0.5 0.900 0.01
8 0.939 0.02 0.904 0.05
9 0.944 0.13 0.891 0.01

10 0.952 0.22 0.970  0.5
12 0.880 0.01 0.951  0.5
All 0.944 0.140 0.968  0.5
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such as successional series. However, if conditions change 
through time (as in classic succession models; Connell and 
Slatyer 1977), the P matrix entries will be affected by both 
species interactions and abiotic conditions in each time step 
(Zaplata et al. 2013).

It is possible to construct other more complicated  
patch transition models, such as cellular automata models 
(Baltzer et al. 1998), but these models would require even 
more assumptions. Horn’s (1975) patch transition model is 
the simplest way to convert the effects of pairwise species 
interactions into changes in relative abundance. One  
important caveat for this patch model is that it assumes the 
outcomes of species interactions are density independent. 
This assumption is not unreasonable for many sessile inver-
tebrates and plants that produce large quantities of mobile 
larvae or seeds and act effectively as a ‘propagule rain’. This 
colonization scenario underlies classic models of island bio-
geography and metapopulation dynamics (Gotelli 2008).

As revealed by our benchmark testing, the methods 
introduced here successfully identify candidate competi-
tion matrices that predict abundance distributions that  
are very similar to the observed ones. Our approach recov-
ers competitive hierarchies (Fig. 3), and intransitive test 
matrices always had predicted tP and tC values  0.95. 
Thus, we propose this 0.95 value as a rule of thumb to sep-
arate communities with a strong transitive hierarchy in 
their competitive networks from those showing some 
degree of intransitivity (Fig. 1). Environmental heterogene-
ity can override these patterns (Fig. 3), but a pattern of 
consistent species rank abundances among sites is always a 
strong indicator of a high degree of competitive transitivity. 
However, the converse is not true. If species ranks vary 
widely among sites, it could indicate either the presence of 
intransitive networks and/or environmental heterogeneity 
among sites.

Our approach characterizes transitive hierarchies only  
in terms of simple pairwise species interactions. However, 
complex multi-species interactions and indirect effects may 
alter the outcome of pairwise interactions by at least two dif-
ferent mechanisms: 1) even in a completely transitive pair-
wise network (A  B, A  C, B  C), species A might 
enhance the performance of species C by suppressing species 
B, and thus generate a competitive loop (indirect positive 
interactions; Levine 1999). These indirect positive inter
actions could also likely reduce competitive exclusion of the 
weakest species, and thus affect community-wide competi-
tive networks. Complex outcomes are possible if subsets  
of species larger than just a species pair interact, and if, in 
pairwise contests, species A may outcompete species B  
and species C, but species B and species C might jointly  
outcompete A (i.e. additive competitive effects, Chesson 
2000). The effects of such additive competition on competi-
tion networks are likely to mimic those of indirect facilitative 
interactions.

Our approach is a first step towards disentangling the 
possible interactions in multispecies competitive situations 
by complementary using both C and P matrices, while pro-
viding testable hypotheses for models of bivariate competi-
tive interactions (the pairwise outcomes in the simulated C 
matrices). We must note, however, that species interactions, 
even in small communities, are by far too complex to be 

1994, Chesson 2000, Hubbell 2001), empirical (Bowker 
et  al. 2010), mathematical (Laird and Schamp 2006),  
and theoretical (Paine 1984) research has pointed to intran-
sitivity in competition networks (Gilpin 1975) as a key 
mechanism for the maintenance of diversity in natural 
communities (but see Shipley 1993). However, assessing 
the relative importance of intransitive competition net-
works in the field has been very difficult because it requires 
a large number of pairwise competition experiments  
linked to observed abundances of the interacting species, 
something extremely rare to find (Silvertown and  
Dale 1991, Engel and Weltzin 2008, Allesina and Levine 
2011). This is likely the reason why empirical research 
focused on this topic is very scarce, despite the fact that it 
was introduced almost 40 years ago by Gilpin (1975).

The approach introduced here overcomes this problem by 
estimating competition hierarchies – and their associated 
degree of intransitivity – among the interacting species  
from their observed abundances in the field, rather than 
from direct measurements of interaction coefficients from 
pairwise competition experiments. We developed three 
methods for reconstructing pairwise competitive strength 
matrices C using intermediate patch transition matrices P. 
Because C matrices code all pairwise interactions between 
the species involved in a competitive network, they are  
preferable from a theoretical point of view. However, there 
are so many entries in a typical C matrix that it may be  
difficult to estimate them from pairwise competition  
experiments. P matrices can be more easily estimated from 
repeated samples of an assemblage of potential competitors, 

Table 4. Time series and environmental data measuring the degree 
of transitivity in the hymenopteran parasitoids of Megaselia flies.  
tP and tC are the average transitivity metrics based on the 100  
best-fitting transition and competition matrices (Eq. 11 and 12). 
PP(1.0) and PC(1.0) give the probabilities that the distribution of  
tP and tC based on the 100 best fitting P an C matrices includes  
the fully transitive pattern of tP  1.0 and tC  1.0.

Variable tP PP(1.0) tC PC(1.0)

First generation 0.963 0.01 1.000 0.50
Second generation 0.998 0.50 1.000 0.50
Both generations 1.000 0.50 1.000 0.50
Environment 1.000 0.50 1.000 0.50
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Figure 6. The degree of transitivity (full circles tC and open circles 
tP) within each of the ten slug weight classes did neither  
for necrophagous Diptera (A) nor for their parasitic Hymenoptera 
(B) significantly (p  0.1) depend on the average Spearman rank 
order correlations among Diptera species body weights (A) and 
Hymenoptera parasitism rates (B). Using abundances instead of 
body weights and parasitism rates did not qualitatively change this 
result (not shown).
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(Table 1), or across generations of Hymenoptera (Table 3). 
However, Ulrich (1999) did not observe an increased  
number of parasitoid species with increasing host density. 
Therefore, biases introduced by possible effects of matrix 
sizes (more species) cannot explain the observed reordering 
of the competitive chains among slug weight classes. A pos-
sible trigger might have been the number of dipteran hosts 
available, which increased linearly with carrion weight 
(Ulrich 1999). At low host density, host availability is a  
limiting factor and priority effects – but not the survival of 
host larvae – should be important determinants of the  
competitive hierarchy. At high host density, priority effects 
might be less important, and we discovered a tendency 
towards more species spatial segregation at higher slug  
weight classes. Spatial segregation may diminish the impact 
of interspecific competition among coexisting species  
(Silvertown et al. 1999, Chesson 2000), which is consistent 
with our finding that competitive hierarchies were relaxed  
in cases of stronger species spatial segregation (Table 3).

Assemblages of necrophagous insects are not usually in 
equilibrium, and community patterns are often determined 
by food inputs (Beaver 1977, Hanski 1987). Priority  
effects at a suitable carcass largely determine the survival of 
larvae and the abundance of patches (Ulrich 1999), and 
therefore control the competitive hierarchy in a carrion 
patch. As a consequence, hierarchies vary among patches, 
which may enhance the regional coexistence of species  
(Allen et  al. 1993). Thus, the detection of fully transitive 
relationships in combination with varying competitive  
rank order might be an indicator of both non-equilibrium 
conditions and priority effects. This interpretation is cor-
roborated by the fact that intransitive hierarchies appeared 
only in the case of Hymenoptera colonizing the largest  
carrion weight classes. These large resource patches contain 
sufficient numbers of host larvae to reduce priority effects  
in favor of other mechanisms, including differential larval 
mortality and predation (Peschke et al. 1987).

Summary

To the best of our knowledge, our tests represent the first 
tools available for estimating the degree of intransitivity in 
competitive networks from replicated samples of species 
abundance, a common form of community data. Benchmark 
tests with artificial matrices revealed that these metrics  
could successfully detect intransitive competition networks, 
even in the absence of direct measures of pairwise competi-
tive strength. These methods can be applied to replicated 
temporal and spatial data sampled in homogeneous envi
ronments or across environmental gradients, and can  
be applied to experimental measurements of pairwise inter-
actions when they are available.
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described using single metrics. Our approach does not aim 
to precisely describe all pairwise competitive relationships. 
Rather, it indicates whether a focal community is predomi-
nately transitive or intransitive, and points to possible  
candidate species responsible for intransitivity loops. These 
predicted interactions might be verified in subsequent con-
trolled experiments.

A common but unrealistic assumption of many intransi-
tivity analyses conducted to date is that only negative,  
competitive interactions are important (Laird and Schamp 
2006, Allesina and Levine 2011). However, positive  
(or facilitative) interactions are ubiquitous, not only among 
plants (Callaway 2007), but also among many other taxa 
(Kawai and Tokeshi 2007, Fugère et  al. 2012). Facilitative 
interactions can increase the degree of intransitivity in a 
given community in two ways: 1) by increasing the number 
of species that can colonize a given site (Lortie et al. 2004), 
as this increases the chance of finding an intransitive net-
work (Laird and Schamp 2008), and 2) by increasing  
the heterogeneity in the spatial distribution of resources, 
which can permit the coexistence of weak competitors  
(Allesina and Levine 2011). Although we can incorporate 
these positive interactions with our method by applying it to 
contrasting microsites (e.g. nurse plant vs open areas;  
Soliveres et  al. 2011), future studies should explicitly  
include positive interactions directly into pairwise competi-
tive strength (C) or transition probability (P) matrices.

Case study

Our case study revealed differences in the structure of com-
petitive hierarchies of communities of necrophagous flies 
and their hymenopterous parasitoids. For the Diptera,  
the most probable pattern was complete transitivity. The 
hymenopteran parasitoids were characterized by transitive 
hierarchies at lower carrion weight classes, and a tendency 
towards intransitive loops at higher weight classes (Table 2). 
We note, however, that we do not have independent  
pair-wise control experiments to verify this prediction.

Contrary to our expectation, we did not find a strong 
relationship between the degree of transitivity and the  
stability of hymenopteran and dipteran abundance ranks 
among sites (  carrion patches; Fig. 6). Because our  
basic model (Eq. 13) estimates the degree of transitivity 
from the matrix of abundance ranks among sites, we 
expected to see a close link between both variables. Indeed, 
the average species abundances among all treatments 
increased with competitive strength (Fig. 5). However, the 
average coefficient of correlation in abundance ranks of  
the eight Diptera species among the 10 replicates per car-
rion weight class was only rS  0.30  0.13 (p  0.05),  
and average coefficient of correlation in abundance ranks of 
the five hymenopteran parasitoids was even weaker 
(rS  0.17  0.09, p  0.05). Therefore, we conclude that 
competitive transitivity is not a necessary prerequisite  
for stable abundance distributions among sites. In turn, it 
follows that our method is able to detect intransitive loops 
in competitive chains even when the resulting abundances 
distributions among sites are similar.

Predicted competitive hierarchies in Diptera and 
Hymenoptera were not stable among experimental treatments 



1069

Laird, R. A. and Schamp, B. S. 2008. Does local competition 
increase the coexistence of species in intransitive networks?  
– Ecology 89: 237–247.

Laird, R. A. and Schamp, B. S. 2009. Species coexistence, 
intransitivity, and topological variation in competitive 
tournaments. – J. Theor. Biol. 256: 90–95.

Levine, J. M. 1999. Indirect facilitation: evidence and predictions 
from a riparian community. – Ecology 80: 1762–1769.

Levine, J. M. and Rees, M. 2002. Coexistence and relative 
abundance in annual plant assemblages: the roles of competition 
and colonization. – Am. Nat. 160: 452–467.

Lortie, C. J. et  al. 2004. Rethinking plant community theory.  
– Oikos 107: 433–438.

May, R. M. and Leonard, W. J. 1975. Nonlinear aspects of 
competition between three species. – SIAM J. Appl. Math.  
29: 243–253.

McAuliffe, J. R. 1988. Markovian dynamics of simple and complex 
desert plant communities. – Am. Nat. 131: 459–490.

Meserve, P. L. et  al. 1996. Role of biotic interactions in a  
small mammal assemblage in semiarid Chile. – Ecology 77: 
133–148.

Miller, T. E. and Werner, P. A. 1987. Competitive effects and 
responses between plant species in a first-year old field 
community. – Ecology 68: 1201–1210.

Ovaskainen, O. et  al. 2010. Modeling species co-occurrence  
by multivariate logistic regression generates new hypotheses  
on fungal interactions. – Ecology 91: 2514–2521.

Paine, R. T. 1984. Ecological determinism in the competition for 
space. – Ecology 65: 1339–1348.

Peschke, K. et  al. 1987. Ecological separation, functional 
relationships, and limiting resources in a carrion insect 
community. – Zool. Jahrb. Syst. 114: 241–265.

Petraitis, P. S. 1979. Competitive networks and measures of 
intransitivity. – Am. Nat. 114: 921–925.

Pritchard, J. K. et al. 2000. Inference of population structure using 
multilocus genotype data. – Genetics 155: 945–959.

Reichenbach, T. et  al. 2007 Mobility promotes and jeopardizes 
biodiversity in rock–paper–scissors games. – Nature 448: 
1046–1049.

Rojas-Echenique, J. R. and Allesina, S. 2011. Interaction rules 
affect species coexistence in intransitive networks. – Ecology 
92: 1174–1180.

Shipley, B. 1993. A null model for competitive hierarchies in 
competition matrices. – Ecology 74: 1693–1699.

Silvertown, J. and Dale, P. 1991. Competitive hierarchies and  
the structure of herbaceous plant communities. – Oikos  
61: 441–444.

Silvertown, J. et  al. 1999. Hydrologically-defined niches reveal  
a basis for species-richness in plant communities. – Nature 
400: 61–63.

Soliveres, S. et  al. 2011. Microhabitat amelioration and  
reduced competition among understorey plants as drivers of 
facilitation across environmental gradients: towards a  
unifying framework. – Persp. Plant Ecol. Evol. Syst. 13:  
247–258.

Staniczenko, P. P. A. et  al. 2013. The ghost of nestedness in 
ecological networks. – Nat. Commun. 4: 1391.

Stone, L. and Roberts, A. 1990. The checkerboard score and  
species distributions. – Oecologia 85: 74–79.

Tilman, D. 1988. Plant strategies and the dynamics and structure 
of plant communities. – Monogr. Popul. Biol. 26. Princeton 
Univ. Press.

Tilman, D. 1994. Competition and biodiversity in spatially-
structured habitats. – Ecology 75: 2–16.

Ulrich, W. 1999. Species composition, coexistence and mortality 
factors in a carrion-exploiting community composed of 
necrophagous Diptera and their parasitoids (Hymenoptera). 
– Pol. J. Ecol. 47: 49–72.

References

Allen, J. C. et  al. 1993. Chaos reduces species extinction by 
amplifying local population noise. – Nature 364: 229–232.

Allesina, S. and Levine, J. M. 2011. A competitive network  
theory of species diversity. – Proc. Natl Acad. Sci. USA 108: 
5638–5642.

Baltzer, H. et  al. 1998. Cellular automata models for vegetation 
dynamics. – Ecol. Modell. 107: 113–125.

Beaver, R. A. 1977. Non-equilibrium ‘island’ communities: Diptera 
breeding in dead slugs. – J. Anim. Ecol. 46: 783–798.

Bowker, M. A. and Maestre, F. T. 2012. Inferring local competition 
intensity from patch size distributions: a test using biological 
soil crusts. – Oikos 121: 1914–1922.

Bowker, M. A. et  al. 2010. Competition increases with abiotic 
stress and regulates the diversity of biological soil crusts.  
– J. Ecol. 98: 551–560.

Callaway, R. M. 2007. Positive interactions and interdependence 
in plant communities. – Springer.

Chesson, P. 2000. Mechanisms of maintenance of species diversity. 
– Annu. Rev. Ecol. Syst. 31: 343–366.

Connell, J. H. and Slatyer, R. O. 1977. Mechanisms of succession 
in natural communities and their role in community  
stability and organization. – Am. Nat. 111: 1119–1144.

Diamond, J. M. 1975. Assembly of species communities. – In: 
Cody, M. L. and Diamond, J. M. (eds), Ecology and  
evolution of communities. Harvard Univ. Press, pp. 342–444.

Engel, E. C. and Wetzin, J. F. 2008. Can community composition 
be predicted from pairwise species interactions? – Plant Ecol. 
195: 77–85.

Fox, J. W. 2013. The intermediate disturbance hypothesis should 
be abandoned. – Trends Ecol. Evol. 28: 86–92.

Fugère, V.et  al. 2012. Testing the stress-gradient hypothesis  
with aquatic detritivorous invertebrates: insights for 
biodiversity–ecosystem functioning research. – J. Anim.  
Ecol. 81: 1259–1267.

Gause, G. F. 1934. The struggle for existence. – Williams and 
Wilkins, Baltimore.

Gilpin, M. E. 1975. Limit cycles in competition communities.  
– Am. Nat. 109: 51–60.

Gotelli, N. J. 2008. A primer of ecology, 4th edn. – Sinauer.
Gotelli, N. J. and Graves, G. R. 1996. Null models in ecology.  

– Smithsonian Inst. Press.
Gotelli, N. J. and Ulrich, W. 2012. Statistical challenges in  

null model analysis. – Oikos 121: 171–180.
Grace, J. B. et  al. 1993. The examination of a competition  

matrix for transitivity and intransitive loops. – Oikos 68: 
91–98.

Hanski, I. 1987. Carrion fly community dynamics: patchiness, 
seasonality and coexistence. – Ecol. Entomol. 12: 257–266.

Horn, H. S. 1975. Markovian properties of forest succession. – In: 
Cody, M. L. and Diamond J. M. (eds), Ecology and evolution 
of communities. Harvard Univ. Press, pp. 196–211.

Hubbell, S. P. 2001. The unified neutral theory of biogeography 
and biodiversity. – Princeton Univ. Press.

Huisman, J. et  al. 2001. Towards a solution of the plankton 
paradox: the importance of physiology and life history. – Ecol. 
Lett. 4: 408–411.

Kawai, T. and Tokeshi, M. 2007. Testing the facilitation – 
competition paradigm under the stress-gradient hypothesis: 
decoupling multiple stress factors. – Proc. R. Soc. B 274: 
2503–2508.

Keddy, P. A. and Shipley, B. 1989. Competitive hierarchies in 
herbaceous plant communities. – Oikos 54: 234–241.

Kerr, B. et  al. 2002. Local dispersal promotes biodiversity in a  
real-life game of rock–paper–scissors. – Nature 418: 171–174.

Laird, R. A. and Schamp, B. S. 2006. Competitive intransitivity 
promotes species co-existence. – Am. Nat. 168: 182–193.



1070

Ulrich, W. et  al. 2012. Null model tests for niche conservatism, 
phylogenetic assortment and habitat filtering. – Meth. Ecol. 
Evol. 3: 930–939.

Webb, C. O. et  al. 2002. Phylogenies and community ecology.  
– Annu. Rev. Ecol. Syst. 33: 475–505.

Worm, B. and Karez, R. 2002. Competition, coexistence  
and diversity in rocky shores. – In: Sommer, U. and  
Worm, B. (eds), Competition and coexistence. Springer,  
pp. 133–163.

Zaplata, M. K. et  al. 2013. Species-driven phases and increasing 
structure in early-successional plant communities. – Am. Nat. 
181: E17–E27.

Ulrich, W. 2001. Hymenopteren in einem Kalkbuchenwald: Eine 
Modellgruppe zur Untersuchung von Tiergemeinschaften  
und ökologischen Raum-Zeit-Mustern. – Schriftenreihe  
des Forschzentrums Waldökosysteme A 171. Göttingen.

Ulrich, W. 2011. Turnover – a Fortran program for the analysis  
of species associations. – www.keib.umk.pl.

Ulrich, W. 2013. Transitivity – a Fortran program for the analysis 
of bivariate competitive interactions. – www.keib.umk.pl.

Ulrich, W. and Gotelli, N. J. 2010. Null model analysis of species 
associations using abundance data. – Ecology 91: 3384–3397.

Ulrich, W. and Gotelli, N. J. 2013. Pattern detection in null model 
analysis. – Oikos 122: 2–18.

Supplementary material (available as Appendix oik-01217 at 
www.oikosjournal.org/readres/appendix). Supplement A: 
Source code of the Fortran software application Transitivity 
(Ulrich 2013; www.keib.umk.pl/transitivity/) used to 
calculate the test matrices and transitivity scores. Supplement 
B: Supplementary raw data of the case study. Supplement C: 
Worked example of the benchmark testing procedure.


