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Nestedness analysis has become increasingly popular in the study of biogeographic patterns of species occurrence. Nested
patterns are those in which the species composition of small assemblages is a nested subset of larger assemblages. For
species interaction networks such as plant—pollinator webs, nestedness analysis has also proven a valuable tool for
revealing ecological and evolutionary constraints. Despite this popularity, there has been substantial controversy in the
literature over the best methods to define and quantify nestedness, and how to test for patterns of nestedness against an
appropriate statistical null hypothesis. Here we review this rapidly developing literature and provide suggestions and
guidelines for proper analyses. We focus on the logic and the performance of different metrics and the proper choice of
null models for statistical inference. We observe that traditional ‘gap-counting’ metrics are biased towards species loss
among columns (occupied sites) and that many metrics are not invariant to basic matrix properties. The study of
nestedness should be combined with an appropriate gradient analysis to infer possible causes of the observed presence—
absence sequence. In our view, statistical inference should be based on a null model in which row and columns sums are
fixed. Under this model, only a relatively small number of published empirical matrices are significantly nested. We call
for a critical reassessment of previous studies that have used biased metrics and unconstrained null models for statistical

inference.

The basic concept

In biogeography, the concept of nestedness was proposed
independently by Hultén (1937; cited in Hausdorf and
Hennig 2003), Darlington (1957) and Daubenmire (1975),
to describe patterns of species composition within con-
tinental biotas and among isolated habitats such as islands
and landscape fragments (Fig. 1A). In a nested pattern, the
species composition of small assemblages is a nested subset
of the species composition of large assemblages.

Even though the concept dates from the first half of the
past century, nestedness analyses became popular among
ecologists only after Patterson and Atmar (1986) and
Patterson (1987) proposed that nestedness patterns reflected
an orderly sequence of extinctions on islands and in
fragmented landscapes. Afterwards, they introduced an
intuitive ‘matrix temperature’ metric to quantify the pattern
of nestedness. The matrix temperature could be easily
calculated with a freely distributed software package (The
Nestedness Temperature Calculator), which included a
bundled set of 294 presence—absence matrices that were
compiled from the literature (Atmar and Patterson 1993,
1995). These innovations were largely responsible for the
initial popularity of nestedness analysis and its continued
application during the past 20 years.

Nestedness data are usually organized as a familiar
binary, presence—absence matrix: each row is a species,

each column is a site (or a sampling time), and the entries
indicate the presence (1) or absence (0) of a species in a site
(McCoy and Heck 1987). Typically, the matrix is ordered
according to the marginal row and column sums, with
common species placed in the upper rows, and species-rich
sites placed in the left-hand columns (Fig. 1). When the
data are organized this way, nestedness is expressed as a
concentration of presences in the upper left triangle of the
matrix (Fig. 1A).

Another distinct application of nestedness analysis has
been the description of bipartite networks involving two sets
of potendally interacting species (Fig. 1B). In bipartite
networks, the rows of the matrix represent one set of species
(such as predators or herbivores) and the columns represent
the other set of species (such as prey or plants). Nestedness
is particularly common in mutualistic networks, such as
those involving plants species and their pollinators or seed
dispersers (Bascompte et al. 2003, Dupont et al. 2003,
Ollerton et al. 2003; but see also Guimardes et al. 2000,
2007, Ollerton et al. 2007 for other mutualistic systems).
Some antagonistic and commensal bipartite networks also
have exhibited nested patterns (host—parasite: Valtonen
et al. 2001, plant-herbivore: Lewinsohn et al. 2006,
plant—epiphyte: Burns 2007, tree—fungus: Vacher et al.
2008). In such nested interaction networks, specialists from
both sets of species interact preferentially with generalists
(Bascompte and Jordano 2007).
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Figure 1. Nested geographical (A) and interaction (B) matrices.
The isocline in (A) separates the occupied and empty regions of a
maximally nested matrix. According to the temperature concept
the marked absences and presences have the greatest distances to
the isoclines and are therefore less probable (contain more
information) than respective absences and presences nearer the
isoclines. The upper left square in (B) marks the group of generalist
core species (Bascompte et al. 2003), whereas the bottom right
rectangle depicts possible forbidden species combinations.

The distinction between geographical and bipartite
matrices is not strict, but instead marks the ends of a
continuum. For example, nestedness analysis has been
applied to describe the distribution of species among
resource patches, such as parasite species among hosts
(Guégan and Hugueny 1994, Poulin 1996, Worthen and
Rhode 1996, Rhode et al 1998, Timi and Poulin 2008) and
scavenger species among carrion patches (Selva and Fortuna
2007). Such systems can be viewed both as occupied
resource patches and as bipartite interaction networks.
Patches correspond to the biogeographical islands, but
differ from them because patches represent both habitats
and food resources. In addition, they are dynamical islands
capable of responding to their ‘guests’ both in ecological
time (population dynamic responses) and in evolutionary
time (coevolutionary responses).

Nestedness analysis has been a widely used ecological tool
to describe patterns of species occurrences and their under-
lying mechanisms. A search in Scopus within the subject
‘environmental sciences’ returned more than 120 papers
published since 2000 with the keyword ‘nestedness’. This
interest has been accompanied by a growing number of
studies of the statistical properties of nestedness metrics, the
performance of null models in nestedness analysis, and the
inference of mechanism from a pattern of nestedness (Cook
and Quinn 1998, Wright et al. 1998, Jonsson 2001, Fischer
and Lindenmayer 2002, 2005, Maron et al. 2004, Greve and
Chown 2006, Higgins et al. 2006, Rodriguez-Gironés
and Santamaria 2006, Burgos et al. 2007, Hausdorf and
Hennig 2007, Moore and Swihart 2007, Nielsen and
Bascompte 2007, Ulrich and Gotelli 2007a, 2007b,
Almeida-Neto et al. 2007, 2008, Santamaria and Rodri-
guez-Gironés 2007, Timi and Poulin 2008).

There are three steps in a nestedness analysis: 1)
calculation of a metric to quantify the pattern of nestedness
in a matrix; 2) comparison with an appropriate null model
or randomization test to assess the statistical significance of
the metric; 3) inference of the mechanism that generated
the pattern of nestedness. On all three points, no consensus
has yet been reached among ecologists, which has hindered
a general understanding of the frequency, causes, and
consequences of nestedness (Ulrich and Gotelli 2007a,
Almeida-Neto et al. 2008, Timi and Poulin 2008). The
growing number of applied and theoretical studies of
nestedness calls for a critical review of the state of art and
for perspectives for future research. In this paper we
concentrate on the different nestedness metrics that have
been proposed and the randomization algorithms with
which they are tested. Our aim is to provide a review of the
basic statistical issues and provide some recommendations
for future analyses. We will focus on nestedness patterns in
biogeography and community ecology, which are the most
popular form of analysis and rely on a species occurrence
matrix (Fig. 1A). However, many of the suggestions and
guidelines proposed here can also be applied to the analysis
of bipartite networks (Fig. 1B).

Causes of nested subsets

Nestedness was first described for insular faunas (Darling-
ton 1957, Patterson and Atmar 1986) and was attributed to
differential rates of extinction and colonization. However, a
variety of different mechanisms can lead to a nested pattern,
some of which are deterministic and some of which are
stochastic. Table 1 and 2 briefly review the different
mechanisms that have been proposed for nestedness in
species occurrence matrices and networks of interacting
species. For the latter, there has been much recent debate on
the mechanisms underlying nestedness (see Santamaria and
Rodriguez-Gironés 2007 and responses by Vizquez 2007,
Devoto 2007 and Stang et al. 2007a), and Table 2 should
be treated as an inital compilation of hypotheses.

All of the explanations for nested subsets within
geographic matrices can be seen as variations of ordered
colonisations or extinctions along environmental or biolo-
gical gradients (area, isolation, quality) of the target patches.
In most cases, these mechanisms cannot be distinguished



Table 1. Causes of nested subset patterns in metacommunities.

Examples

Predictions

Assumption/precondition

Hypothesis

Species properties —
gradient of:

Site properties —
gradient of:

Andrén 1994a, 1994b, Cutler 1994, Fischer and
Lindenmayer 2002, Higgins et al. 2006,

Ulrich and Gotelli 2007a

power function relationship between richness and

regional abundance

carrying capacities

of sites

Passive sampling

area (SAR). Regional abundance predicts occupancy

Ulrich and Zalewski 2007

regional log-series distributions. Extinction inversely

proportional to local abundance

dispersal ability

carrying capacities

of sites

Neutrality

Darlington 1957, Patterson 1990, Cook and Quinn 1995,

Honnay et al. 1999, McAbendroth et al. 2005

selective occupancy of sites according to isolation

dispersal ability

isolation

Selective colonization

Patterson and Atmar 1986, 2000, Wright and Reeves 1992,

Bruun and Moen 2003, Wethered and Lawes 2005

selective occupancy of sites according to area of sites

extinction susceptibility

(faunal relaxation)

carrying capacities

of sites

Selective extinction

Wright and Reeves 1992, Honnay et al. 1999, Fleishman
and Mac Nally 2002, Hausdorf and Hennig 2003,

Hylander et al. 2005

higher proportion of generalist species in smaller and/or

resource poor patches

degrees of specialization

habitat

Nested habitats

heterogeneity

Blake 1991, Worthen et al. 1998, Smith and Brown 2002,

Greve et al. 2005, Driscoll 2008

selective occupancy of sites according to tolerance to

environmental tolerances
environmental stress

environmental
harshness

Selective environmental

tolerances

Simberloff and Martin 1991, Fernandez-Juricic 2002,

Hylander et al. 2005, Bloch et al. 2007

site occupancy in accordance to the ideal free distribution
model. Abundances tend to increase in the same direction

environmental
harshness

Habitat quality

merely by establishing the statistical pattern of nestedness.
Pinning down the different mechanisms usually will require
additional data beyond the original presence—absence
matrix, such as the sequence of extinctions that have led
to the distribution of species on islands, or the spatial
pattern of nesting of habitats and resources. To that extent,
null models based on different orderings of the same matrix
may allow for some inferences about simple colonization
mechanisms and their contribution to nestedness patterns.
Ideally, nestedness analyses should be accompanied by
appropriate gradient analyses (Leibold and Mikkelson
2002). An ordering of sites in species X sites matrices
according to such one-dimensional gradients (which could
be generated through ordination and other multivariate
methods) should result in different degrees of nestedness
and allow for an identification of the strongest gradient that
generates the nested pattern (Lomolino 1996).

We note that certain mechanisms, such as passive
sampling, are embedded in some of the null model
procedures used to test for patterns of nestedness. The
passive sampling effect is widespread because metacommu-
nities are typically characterized by species with highly
unequal regional abundances that are distributed among
patches (or isolates sensu Preston 1962) of different sizes. If
the probability that a species colonizes a site is proportional
to its regional abundance, abundant species have a better
chance of colonizing many patches than do low-density
species, a ‘mass effect’ (Leibold et al. 2004). Similarly, larger
sites tend to harbour more species because they receive
effectively larger samples than smaller ones (Connor and
McCoy 1979, Cam et al. 2000). Passive sampling should
not be confused with a similar ‘collecting artefact’ that
results from disproportional sampling of rare species or
small assemblages (Cam et al. 2000). Collecting artefacts
introduce undesirable bias that needs to be controlled for
(Gotelli and Colwell 2001), whereas passive sampling only
needs to be controlled for if the aim is to test whether
nestedness results from some biological process apart from
the mass effect. Following the lead of all other nestedness
analyses, we assume that the presence-absence data matrix is
accurate and does not reflect major collecting artefacts.

Although habitat fragmentation is not a direct cause of
nestedness, it is expected to generate a nested pattern
because fragmented landscapes are characterized by patches
that differ in size and relative isolation. According to
Patterson and Atmar (2000), nestedness within fragmented
landscapes is caused mostly by ordered extinction se-
quences. That means that smaller fragments selectively
lose species that are habitat specialists with low abundance;
these same species have a better chance of persistence in
larger and/or less isolated fragments. Similarly, disturbance
can also produce a nested pattern if ordered sequences of
absences along disturbance gradients occur due to distinct
disturbance susceptibilities (Worthen et al. 1998, Ferndn-
dez-Juricic 2002, Bloch et al. 2007). This mechanism
reduces to the nested habitat quality hypothesis because
disturbance can be seen as one aspect of habitat quality.

Some mechanisms that cause nestedness in geographical
matrices also apply to interaction networks. For instance,
Ollerton et al. (2003) found abundant insect species visited
a wider range of plant species than did rare insect species,
and Olesen et al. (2008) reported that new species entering



Table 2. Causes of nested subset patterns in networks of interacting species.

Hypothesis Assumption/precondition

Species properties — gradient of:

Predictions Examples

Passive sampling abundance and/or ubiquity

Asymmetric interaction
strength

ecological specialization

abundance and/or ubiquity
predict occupancy

ecological specialization leads
to forbidden interactions.
species are ecologically not

Ollerton et al. 2003,
Medan et al. 2007

Bascompte et al. 2003, Thompson 2005,
Jordano et al. 2006,
Ollerton et al. 2007, Olesen et al. 2007

equivalent (not neutral)

Phenotypic complementary morphological specialization

different tempo of phenotypic

Rezende et al. 2007

change should result in a
generalist/specialist gradient

a pollination network preferentially interact with already
well-connected (abundant) species. These patterns suggest
that passive sampling explanation might account for
nestedness patterns in pollinator networks: abundant
pollinators and plant species simply have higher chances
to visit and to be visited by their more abundant counter-
parts (Table 2). Furthermore, the aforementioned selective
extinction and colonization models apply to interaction
networks as well.

Jordano et al. (2003, 2006) drew attention to ‘forbidden
interactions’ within interaction networks (Fig. 1B). These
are interactions that are impossible due to physical or
biological constraints, such as phenological asynchrony or
morphological mismatching. For instance, imagine an
interaction matrix of seed dispersers and plants. If both
groups exhibit morphological gradients of body size and
seed size, bipartite combinations of large seed size and small
seed-disperser body size and vice versa might be less
probable than interactions of pairs of more similar sizes.
Recently Stang et al. (2006, 2007a) showed that nectar-
holding depth of flowers produces asymmetric interactions
between plants and their insect pollinators. Although they
found a significant nested patter under an equiprobable null
model (Table 4), their analysis did not evaluate directly
whether nestedness might arise simply from mismatches of
pollinator proboscis length and nectar holding depth.

Nested interaction networks would also arise from the
complementarity and convergence of phenotypic traits
between both sets of interacting species (Thompson
2005). In a simulation study, Rezende et al. (2007) found
that highly nested networks can emerge from phenotypic
complementarity. Their analysis of empirical mutualistic
networks supported the hypothesis that co-evolution of
several phenotypic traits results in strongly nested matrices.
This finding directly links nestedness to evolutionary
processes.

Getting started

Two questions need to be answered before performing a
nestedness analysis: (1) What type of nestedness pattern is
of interest: nestedness of species incidence, of species
composition, or both? (2) What is the criterion used to
order the rows and/or columns of the matrix? Answers to
these questions will affect both the choice of the nestedness
metric, and the choice of the null model.

The first question can be translated as ‘is nestedness
being tested for matrix rows (species incidence), for matrix
columns (species composition), or for both? If the
hypothesis being tested predicts nestedness both for species
composition and species incidence, then we should use a
metric capable of quantifying both components of nested-
ness. Conversely, if one wishes to test whether differences in
environmental variables or, alternatively, in life-history
traits, promote nestedness, we should use a metric that is
able to measure nestedness independently among columns
and among rows.

For example, the matrix temperature metric (Atmar and
Patterson 1993, Rodriguez-Gironés and Santamaria 2006)
is based on distances of unexpected presences and absences
from a diagonal isocline of perfect nestedness. Therefore,
this metric is actually testing for an aggregate pattern that
reflects both species incidence and species composition.
Although some authors have subsequently tried to correlate
the temperature metric with environmental factors or
species traits in the packed matrix (Meyer and Kalko
2008), this approach cannot discriminate patterns of
nestedness in composition from the patterns of nestedness
in incidence.

Nestedness analysis requires an ordering of rows and/or
columns of the incidence matrix according to some
predefined criterion. This will be an ordering -either
according to species richness and incidence or according
to an environmental gradient hypothesized to be controlling
the observed distribution of species (Lomolino 1996,
Ferndndez-Juricic 2002, Bruun and Moen 2003). Patch
area and the degree of isolation are commonly used for
ordering matrices (Lomolino 1996, Bruun and Moen
2003), in which case the pattern is linked to the common
species — area and isolation — diversity relationships
(MacArthur and Wilson 1963). Different outcomes after
sorting according to area and isolation can be used to judge
whether the system is colonization- or extinction-driven
(Bruun and Moen 2003). If the area-sorted matrix is nested
but the isolation-sorted not, the system should be extinc-
tion-driven because colonization does not seem to be
sufficiently strong to generate nestedness. Whether the
opposite argument holds is less clear because either selective
immigration or extinction can generate nested patterns for
isolation-sorted matrices. However, passive sampling can be
ruled out because nestedness should appear after either
method of sorting (Driscoll 2008). Hence differential



sorting according to independent environmental or biolo-
gical gradients is a way to falsify at least the passive sampling
hypothesis.

Analyses of interaction networks have simply used
matrix row and column totals of the matrix, and have not
addressed alternative orderings. However, sorting according
to morphological gradients or measures of resource specia-
lization should be explored to provide further tests of the
‘forbidden interactions’ hypothesis (Jordano et al. 2006,
Ollerton et al. 2007).

The choice of a metric that is based on incidences,
species composition, or both addresses whether presences
and absences in the matrix differ in information content.
For instance, in a colonization-driven assemblage of species
with high dispersal ability, absences might be more
informative than presences, and a metric should put more
weight on unexpected absences (holes) than on unexpected
presences (outliers). In contrast, if extinctions dominate the
system, local presences might contain more information. In
the absence of a priori expectations, presences and absences
in the matrix should receive equal weight. This important
point has been overlooked in nearly all previous studies on
nestedness.

Quantifying nestedness

Several studies have quantified nestedness by ordering
columns on the basis of area, isolation, or other criteria,
and then testing whether the ranks of occupied cells versus
unoccupied cells are significantly different by a U-, ¢, or
y*-test (Schoener and Schoener 1983, Patterson 1984,
Simberloff and Levin 1985, Ferndndez-Juricic 2002). This
method is potentially valuable because it may reveal which
variables lead to strong or weak nestedness patterns.
However, this method necessitates many tests of individual
species performed on the same data matrix and requires a
correction of probability levels for muldple tests. Most
researchers now use the sequential Bonferroni correction for
dependent or independent data sets (Holm 1979, Benja-
mini and Yekutieli 2001), although Moran (2003) has
cautioned that these procedures may inflate type II error
rates (incorrectly accepting a null hypothesis that is false).
Perhaps a more fundamental issue is that these tests treat
each species in isolation, whereas most nestedness studies
are concerned with community-level patterns.

The first community-wide metric for nestedness was
developed by Patterson and Atmar (1986), and since then,
several metrics have been proposed (Table 3). The aim of
any metric is to quantify the extent to which a given
arrangement of presences and absences approximates or
deviates from a perfectly nested pattern. However, some of
the metrics differ because they quantify distinct matrix
properties (e.g. unexpected absences or holes, unexpected
presences or outliers, and overlaps), and/or put different
weights to these properties (Table 3). Recently, Almeida-
Neto et al. (2008) showed that most metrics do not measure
nestedness according to what most authors have defined as a
nested pattern for metacommunities or bipartite networks.

Any nestedness metric should be invariant to simple
algebraic re-arrangements of the matrix that do not reflect
different biological hypotheses. Moreover, the null model

analysis used to test for statistical significance should ideally
have good power to detect nestedness when the pattern is
generated by a non-random process (low type II error), but
also should not detect nestedness when applied to matrices
generated by a random process (low type I error). The
nestedness metric and its statistical performance ideally
should not be affected by matrix size and shape. Matrix fill
(percent of s in the matrix) also affects the detection of
nestedness, but comparison with a proper null model
should control in part for the effects of matrix fill.
Moreover, there is no a priori reason for a nestedness
metric to treat absences and presences differendially. If both
contain the same amount of information, a metric should
be unaffected by occurrence inversion and give the same
degree of nestedness after all of the matrix presences have
been converted to absences and vice versa. Further, the
placement of species in rows or columns is arbitrary, so that
a metric that measures nestedness in both rows and columns
should be invariant to a matrix transpose. Violations of
these requirements might increase the risk of type I and type
IT errors (Wright et al. 1998, Ulrich and Gotelli 2007a).

Gap metrics

Given an incidence matrix whose columns and rows have
been sorted by their marginal totals, a ‘gap metric’
quantifies nestedness by counting the number of absences
followed by presences according to some predefined rule
(first seven metrics in Table 3). Gap metrics evaluate
whether species in species-poor columns are proper subsets
of the species in richer columns. This popular definition of
nestedness implies that gap metrics are column oriented and
therefore not independent of a matrix transpose. To make a
gap metric transpose invariant, we can calculate the metric
separately for rows and columns and take the smaller value
as the final score. The original definition of the Brualdi and
Sanderson (1999) discrepancy index (BR) even implies such
a calculation, and below we use BR in this way (Ulrich
2006, Ulrich and Gotelli 2007a).

Gap-counting metrics are inherently correlated with
matrix size and fill (Wright et al. 1998, Ulrich and Gotelli
2007a, Almeida-Neto et al. 2008) so it has been common
for researchers to transform them before analysis and
comparison (Wright and Reeves 1992, Lomolino 1996,
Wright et al. 1998, Brualdi and Sanderson 1999, Brualdi
and Shen 1999, Greve and Chown 2006). However, these
algebraic transformations will not address the problem that
all statistical tests have low power at small sample size
(=small matrix size). Moreover, algebraic standardization
will not account for differences in pattern that are affected
by matrix row and column sums.

One of the primary motivations for null model analysis
has been that null model tests may potentially control for
basic influences of matrix size and shape because all of the
simulated matrices have the same size and shape as the
empirical matrix (Gotelli and Graves 1996). This accom-
plishes much of the desired standardization, although
differences in the strength of the pattern among matrices
may still be correlated with matrix size and shape in
null model analyses, and a Z-transform (Gotelli and



Table 3. An overview over existing nestedness metrics. The seven first are gap counting metrics and the two last ones are metrics based on overlap among columns and/or rows.

Nestedness metric

Author(s)

Aim to quantify whether a metacommunity:

Description

NO (no. of absences)

NT (no. of presences)

Ua (no. of unexpected
absences)

Up (no. of unexpected
presences)

Ut (no. of unexpected

transformations)

Nc (nestedness index)

D (no. of departures)

BR (discrepancy measure)

T (matrix temperature)

HH (the number of
supersets)

NODF (nestedness
measure based on overlap
and decreasing fills)

Patterson and Atmar 1986

Cutler 1991

Cutler 1991

Cutler 1991

Cutler 1991

Wright and

Reeves 1992

Lomolino 1996

Brualdi and Sanderson 1999

Atmar and
Patterson 1993

Hausdorf and Hennig 2003

Almeida-Neto et al. 2008

deviates from a nested pattern due to non-ordered
extinctions from the poorest to the richest sites in
which each species occurs

deviates from a nested pattern due to non-ordered
colonizations from the richest to the poorest sites
in which each species occurs

deviates from a nested pattern due to non-ordered
extinctions from an intermediate richness to the
richest sites in which each species occurs

deviates from a nested pattern due to non-ordered
colonizations from an intermediate richness to the
poorest sites in which each species occurs

deviates from a nested pattern due to both factors
explained for Ua and Up

approximates from a nested pattern by evaluating
if presences of species in poorer sites are correctly
predicted by their presences in equally rich or
richer ones

deviates from a nested pattern by means of
sequences of unexpected absences followed by
presences

deviates from a nested pattern by means of
minimum number of replacements of presences to
produce a new nested matrix

deviates from a nested pattern due to unexpected
extinctions and colonizations, respectively, in
more and less “hospitable” sites

to quantify whether less frequent species are
found in subsets of the sites where the most
widespread occur

to quantify independently (1) whether
depauperate assemblages constitute subsets of
progressively richer ones and (2) whether less
frequent species are found in subsets of the sites
where the most widespread occur

a count of how often a species is absent from a
site with greater species richness than the most
impoverished site in which it occurs and sums

across all species

a count of the number of occurrences of a species
at sites with fewer species than the richest site
lacking it and sums across all species

a count of unexpected absences of species from
more species-rich sites for which the sum of
unexpected absences and presences is minimal

a count of unexpected presences of species from
more species-poor sites for which the sum of
unexpected absences and presences is minimal

the sum of Ua and Up

a count of the number of species shared over all
pairs of sites

the number of times the absence of a species is
followed by its presence on the next site

counts of the minimum number of discrepancies
(absences or presence) for rows and columns that
must be erased to produce a perfectly nested matrix

a normalized sum of squared relative distances of
absences above and presences below the
hypothetical isocline that separates occupied from
unoccupied areas in a perfectly nested matrix

counts the cases in which the occurrence of a
species form a subset of the occurrence of another
species

the percentage of occurrences in right columns
and species in inferior rows which overlap,
respectively, with those found in left columns and
upper rows with higher marginal totals for all pairs
of columns and of rows




McCabe 2002) is still needed to meaningfully compare the
strength of the pattern for different matrices.

Wright et al. (1998) reported the ‘percent metric’ values
of the gap-counting metrics N1, UA, UT and UC
(abbreviations in Table 3) to be positively correlated with
matrix fill using a null model with equiprobable cells and
no constraints on row and column sums (Table 4). Ulrich
and Gotelli (2007a) found that matrix fill also affected the
NO, N1, UA, UP metrics even with a more constrained null
model with fixed row and column sums. Among the gap
metrics, only BR and NC appeared to be largely indepen-
dent of matrix fill, shape and size, irrespective of null model
(Ulrich and Gotelli 2007a, Almeida-Neto et al. 2008).

To test whether the gap metrics are invariant to
transposition and occurrence inversion we used a subset
of 286 matrices of the 294 presence—absence matrices
provided by Atmar and Patterson (1995) and generated for
each matrix its transpose and occurrence inverse. Of the
gap-counting metrics we found only BR and UT to be
invariant to both transformations.

Overlap metrics

Hausdorf and Hennig (2003) devised a metric based on the
numbers of species that form a subset of other species, i.e.
the number of supersets (HH, Table 3). In contrast to gap
metrics, HH quantifies nestedness for species incidence
instead of species composition. Unfortunately, the metric is
excessively affected by outliers and is not standardized.

Recently Almeida-Neto et al. (2008) introduced a new
metric (NODF) based on standardized differences in row and
column fills and paired matching of occurrences (Table 3).
An appealing feature of NODF is that it decomposes total
nestedness into a sum of the nestedness introduced by
columns and by rows. Both its absolute values and its
Z-transform are size invariant (Almeida-Neto et al. 2008).
NODEF is also invariant to transpose but not to occurrence
inversion.

The temperature metric

By far, the most popular metric for quantifying nestedness
has been the matrix temperature T introduced by Atmar
and Patterson (1993, 1995) and its recent modifications
(Rodriguez-Gironés and Santamaria 2006, Ulrich and
Gotelli 2007a). T is a normalized sum of squared relative
distances of absences above and presences below the
hypothetical isocline that separates occupied from unoccu-
pied areas in a perfectly nested matrix (Fig. 1A, Table 1).
Thus, T evaluates simultaneously whether rows and
columns are nested with respect to species incidence
and species composition. In our test with the Atmar and
Patterson (1995) matrices, T appeared to be to invariant to
both matrix transpose and occurrence inversion after sorting
according to marginal totals. However, due to its weighing
algorithm, T is positively correlated with matrix size
(Wright et al. 1998, Almeida-Neto et al. 2008).

The temperature concept differs from the gap-counting
metrics because it is based on the specific biogeographic
hypothesis that absences in predominately occupied areas of
the matrix and occurrences in predominately empty areas
are less probable (more informative) than respective
occurrences and absences. This argument is motivated by
the theory of island biogeography, which implies that
absences at species-rich sites and presences at species-poor
sites demand particular attention. In contrast to the gap
metrics, T weights the cells of the matrix in proportion to
their distance from the isocline (Greve and Chown 2006).
Atmar and Patterson’s (1993) original T uses quadratic
weights, but other weighting functions are possible. Because
of this weighting, one prominent shortcoming of the
temperature metric is its dependence on matrix size and
fill that increases type I error rates for larger and more filled
matrices (Rodriguez-Gironés and Santamaria 2006, Greve
and Chown 2006, Ulrich and Gotelli 2007a).

The different philosophies behind gap metrics, overlap
metrics, and matrix temperature have often been overlooked
in comparative studies, which has led to some confusion

Table 4. Common null models used to infer expected nestedness (species in rows, sites in columns).

Other names used
in the literature

Name

Row constraint

Column constraint Author(s)

Equiprobable-equiprobable SIM1, ROO equiprobable equiprobable Atmar and Patterson 1993,
Gotelli 2000
Fixed—equiprobable SIM2, RO, Random0  fixed equiprobable Patterson and Atmar 1986,
Gotelli 2000
Equiprobablefixed SIM3 equiprobable fixed Gotelli 2000
Fixed-fixed SIM9 fixed fixed Connor and Simberloff 1979,
Diamond and Gilpin 1982,
Gotelli 2000
Fixedincidence proportional ~ SIM5, R1, Random1 fixed proportional to Patterson and Atmar 1986,
species incidences Gotelli 2000
Abundance-proportional Randnest none proportional to species  Jonsson 2001
relative abundances
Incidence-proportional SIM8, Model 2 proportional to proportional to species  Gotelli 2000,
species incidences incidences Bascompte et al. 2003
Equiprobable-proportional proportional to equiprobable Fischer and Lindenmayer 2002
species incidences
Proportional Recol proportional to proportional to Moore and Swihart 2007

species relative
abundances

carrying capacities




Table 5. Quick guidelines for nestedness analysis. MT =marginal totals; EV =environmental variable; LHT =life-history trait. By convention

rows correspond to species and columns correspond to sites.

Questions Answers

Metrics

Observations

What is being tested? (1) composition
(2) incidence

(3) both

How are columns and/or
rows sorted?

(1) MT

(2) LHT (columns) and MT (rows)
(3) MT (columns) and EV (rows)

(4) EV (columns) and LHT (rows)

BRgs and NODFc
HH and NODFr
T, BR and NODF

BR, HH, and NODF

T, BR, HH, and NODF
BR, and NODF

T, BR and NODF

composition is a property of sites
incidence is a property of species
the focus is both differences among
sites (e.g. size, isolation) and among
species (e.g. dispersal ability)

columns and rows of expected
matrices created by null models

should also be sorted by MT

only rows of expected matrices

should be sorted by MT

only columns of expected matrices
should be sorted by MT

columns and rows of expected matrices
should not be sorted by MT

BRgs— Brualdi and Sanderson’s (1999) original algorithm for BR that only replaces 0-1’s within rows.

about the interpretation of nestedness patterns. The
temperature metric was designed specifically for insular
floras and faunas, in which ordered sequences of coloniza-
tion and extinction can be reasonably associated with
unexpected gaps in the incidence matrix. Thus, Atmar
and Patterson’s (1995) data compilation — on which many
subsequent tests were based — contains nearly exclusively
island matrices. However, it is unclear whether the
temperature concept should be applied to interaction
networks (Bascompte et al. 2003, Dupont et al. 2003,
Ollerton et al. 2003). In networks of interacting species,
there is no a priori reason to assume that certain species
pairs are less probable than others and to weight the cells by
their distance to the isocline. None of the three explanations
for nestedness in such matrices (Table 2) explicitly refers to
differential occurrence and absence probabilities. More
appropriate metrics for interaction networks are NODF
(Almeida-Neto et al. 2008), BR (Brualdi and Sanderson
1999), and HH (Hausdorf and Hennig 2003). Never-
theless, these points deserve further attention and a critical
meta-analysis and re-analysis of published networks of
interacting species is needed.

Unexpected presences and absences

A perfectly nested matrix contains no absences (holes or
unexpected absences) within its filled part and no presences
(outliers or unexpected presences) within its empty part.
The gap and temperature metrics use the numbers of holes
and outliers to quantify the degree of nestedness. However,
neither holes nor outliers have been defined consistently in
the literature (Wright et al. 1998, Bird and Boecklen 1998).
For example, in Fig. 2, numbers of holes and outliers
defined by NO and N1 differ from those defined by T. This
inconsistency in definition has consequences for the use of
holes and outliers in subsequent analyses, for instance in the
identification of idiosyncratic species and sites in biogeo-
graphic analysis (below). Gap metrics define holes and
outliers based on rows and columns only. However, in our
view, the position of holes and outliers in the matrix
intimately depends on the number and distribution of
absences and presences within the whole matrix (Arita et al.
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Figure 2. The gap metrics NO and N1 and the temperature metric
T define holes and outliers (the bold numbers) different. Using the
definitions of NO and N1 we would identify six holes and 11
outliers. T identifies four holes and six outliers.



2008). To date, only the temperature concept uses a clear
matrix-wide definition of holes and outliers, although there
is some vagueness in the original definition of the isocline
that separates filled and empty parts of the matrix
(Rodriguez-Gironés and Santamarfa 2006, Ulrich and
Gotelli 2007a).

Staistical inference
Normalization

The pattern of nestedness in matrices that differ in size,
shape, or fill cannot be directly compared if the metric used
is not invariant to these properties. Further, if for a given
metric some of these matrix properties inflate type I and II
error rates, we cannot compare the significance of nested-
ness. One way to overcome these difficulties is standardiza-
tion. T and NODF are already normalized within the range
of 0 to 100. To account for the dependence of T on matrix
size, Greve and Chown (2006) proposed a modified
standardization of T according to matrix fill instead of
size. However, this allows for T-values larger than 100 and
potentially alters the performance of T. The performance of
the modification remains unclear.

The other metrics can be standardized (Egt) by the
following transformation (Wright and Reeves 1992)

EST — EObS ECXP (1)
Emax - ECXP

This transform still requires a null expectation E,, (below)
and the expected value E,,,, for a perfectly nested matrix.
For metrics with E,.,=0 Eq. 1 is identical to the
standardization proposed by Lomolino (1996). Equation
1 is a linear transform and does not change the response of
the metric along the nestedness gradient. Other possible
transformations such as the arc tangent transform that
squeezes a metric within the range from —1 to 1 are non-
linear and might influence the behaviour of the test. In the
case of BR, Greve and Chown (2006) proposed a simple
transformation independent of any null expectation

BR BR (2)
Al
where fill is the number of 1s in the matrix. UT can be
transformed in the same way. Both transforms range
between 0 and 1 (for the majority of data sets between
0 and 0.5). However, the transforms Eq. 1 and 2 do not
fully eliminate dependencies on matrix properties. Although
these kinds of transforms are mathematically convenient,
they are not a good substitute for a proper null model
analysis.
The most common standardization in nestedness analy-
sis and in null model analysis in general is the Z-score
Z — EUbS EeXP (3)
StDev,,,
which often gives an approximately normally distributed
metric with mean =0 and standard deviation (StDev) =1.
This transformation is based on a similar measure of ‘effect
size’ in meta-analysis (Gurevitch et al. 1992). Unlike the

previous algebraic transformations, the Z-score is a stan-
dardization that quantifies the position of the observed
metric within the simulated distribution from the null
model in common units of standard deviation. For this
reason, in most cases the metric performs well and allows
for valid statistical inference due to the well- known
properties of the standard normal distribution. The
Z-transforms of UT, BR and NODEF appear to be
independent of matrix properties (Ulrich and Gotelli
2007a, Almeida-Neto et al. 2008), but the Z-transform of
T decreases with fill and size (Ulrich and Gotelli 2007a). Of
course, in most cases the distribution of Z-transforms will
be skewed. Therefore, estimation of probabilities for
individual matrices should always be made directly from
the distribution of simulated values, rather than from the
normal approximation of the Z-transform.

Null models

The most controversial part of statistical inference in
nestedness analysis is surely the choice of the appropriate
null distribution to get Ecyp,. Starting from Connor and
Simberloff (1979) there is a growing number of models that
generate null expectations of matrix incidences (reviewed by
Gotelli and Graves 1996). These ecological null models
differ in their treatment of incidences (fill and marginal
totals, Table 4). Most models constrain matrix fill to
observed values (for an exception see Moore and Swihart
2007) but there is a gradient from liberal models that put no
constraints on marginal totals (equiprobable null: Table 4)
to restrictive models that fix numbers of occurrences within
rows and columns (fixed — fixed null). Restrictive models
incorporate more elements that are observed in the empirical
matrix, although the precise way these constraints translate
into biological assumptions is not always clear. For instance,
the fixed — fixed model (Gotelli 2000) constrains column
and row totals in the null model to match the observed
values in the matrix. This generically preserves differences
among rows and among columns, but does not specify
which traits of species or resources are preserved. Con-
strained models often reduce the effect sizes (Eqps — Ecyp) and
potentially decrease type I and increase type II error levels.
Because type I error levels have traditionally played a major
role in statistical inference, more constrained null models are
preferable because they are conservative and will not reject
the null hypothesis unless the generating process is strong.
Another argument that speaks against the use of
unconstrained null models is the potential dependence of
the variance on sample size. The equiprobable null model is
prone to give similar values of Ey, in larger matrices and
therefore lowered variances due to statistical averaging
(Ulrich unpubl.). This effect increases the respective
Z-values and the associated type I error rates. This problem
should not be so severe in the fixed-fixed model because
much of the variability in the metric scores is associated
with variability in row and column totals of the matrix. The
fixed — fixed model is not applicable to matrices that are
almost filled or almost empty because in these cases, there
are very few matrix re-arrangements that will preserve all the
row and column totals. However, such matrices are unusual
and in the vast majority of cases, the sampling space should
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be large enough for the fixed — fixed model to be applicable.
The effect of matrix size on the power of a statistical test has
been largely ignored in nestedness analysis (Fischer and
Lindenmayer 2005).

The performance of different nestedness metrics is also
influenced by the choice of the null model. For the
Patterson and Atmar dataset, Fig. 3 illustrates regressions
of Z-scores versus matrix size for the best-performing gap
metrics (UT, BR,), and the temperature and NODF
metrics under the equiprobable (A, B) and the fixed —
fixed (C, D) models. Irrespective of metric, the equiprob-
able null model gave for most matrices extraordinarily large
Z-scores and identified them as being highly nested. The
fixed — fixed appeared to be much more conservative and
identified only a small fraction of the matrices as being
nested. Under the equiprobable null model, Z-scores of all
four metrics were highly positively correlated, and thus
exhibited similar statistical power. Under the fixed — fixed
model, these correlations vanished and different metrics
identified different matrices as being nested (Fig. 3C-D): of
the 286 empirical matrices, 113 were identified by at least
one of the metrics as being nested. However, only 10
matrices were jointly identified as being not random by all
four metrics. Most similar in performance were NODF and
T, with 29 joint significances. Moreover, the ranking of
matrices according to the degree of nestedness depended on
the null model used, and the ranks of Z-scores obtained
from the equiprobable and the fixed — fixed nulls were only
weakly correlated. The metrics that behaved most similarly
with the different null models were UT (Spearman’s rank
r=0.33, p<0.01) and BR (r=0.29, p <0.01), whereas
the respective ranks of T and NODF were not significantly
correlated.

The equiprobable—equiprobable null model assumes that
both columns and rows are equivalent, so that the
probability of a species occurrence is the same for any cell
in the null matrix. However, species differ in abundance
and therefore in colonization ability (the mass effect) and
sites differ in carrying capacities. There is growing accep-
tance that null models that do not consider species-specific

Figure 3. Correlations of Z-scores [Z =(observed —expected)/
StdDev Expectation] between the gap metrics UT and BR and the
distance weighing metrics T and NODF under the equiprobable
(A, B) and the fixed — fixed (C, D) null model. The squares mark
the non-significant Z-scores at the 5% error benchmarks. Data
from 286 matrices compiled in Atmar and Patterson (1995).
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differences and variability among sites should not be used in
biogeographic studies (Jonsson 2001, Ulrich and Gotelli
2007a, 2007b, Moore and Swihart 2007) and even in
analyses of interaction matrices (Vdzquez and Aizen 2006,
Vézquez 2007, Stang et al. 2007b). However, the
equiprobable—equiprobable null model might be justified
for the analysis of interaction matrices because there is no a
priori reason to assume that certain interactions are less
probable than others. More research is needed to determine
the most appropriate null model to use for interaction
matrices.

One possibility is to use a spatially explicit version of the
ecological drift model (Hubbell 2001), which makes precise
predictions about species occurrence patterns (Chave 2004,
Ulrich and Zalewski 2007). However, estimating the
parameters for the neutral model so it can be used as a
null model is problematic (Gotelli and McGill 2000).
Nevertheless, Ulrich and Zalewski (2007) found that
neutrality predicted a degree of nestedness in a community
of ground beetles on lake islands that was significantly
greater than observed in the real data, whereas the fixed-
fixed null model did not detect this departure from
randomness.

Many studies have addressed whether particular null
models are able to control for the effect of passive sampling
and to discern between mass effects and other causes of
nestedness (Andrén 1994b, Cook and Quinn 1998, Gotelli
and Ulrich 2007a, Hausdorf and Hennig 2007, Moore and
Swihart 2007). Ulrich and Gotelli (2007a) found the fixed
— fixed model to control at least in part for passive sampling
effects. They constructed artificial matrices from passive
sampling of a log-normally distributed metacommunity and
showed that the BR metric did not identify these matrices as
being more nested than expected by chance. However, after
the numbers of unexpected absences and occurrences were
artificially decreased, the BR metric used with the fixed —
fixed model correctly identified the modified matrices as
exhibiting a significantly nested pattern.

Unseen species and sampling effects

Most null model analyses assume the binary presence-
absence matrices do not contain errors. However, missing
or unseen species can have large effects on patterns in
interaction matrices (Nielsen and Bascompte 2007),
although this problem has been ignored until recently in
standard nestedness analyses (but see Cam et al. 2000).
Greve and Chown (2006) showed that T incorrectly
pointed to an increase in nestedness after a matrix was
seeded with additional occurrences of rare, non-nested
species. Although Greve and Chown (2006) were discussing
the effects of endemics, the same problems would arise for
unsampled or undersampled species as well. Adding rare
species to incidence matrices might severely alter the
detection probabilities of nestedness metrics. In contrast,
Nielsen and Bascompte (2007) found sample size effects to
be less important for the assessment of nestedness in
interaction matrices than species richness and matrix fill.
Because rare species are most sensitive to sampling effects,
these errors deserve more study in nestedness and interac-
tion matrix analysis.



The sampling problem has also a theoretical perspective.
Do rare and endemic species strengthen the nested pattern
and therefore conform to models of selective colonization
and extinction (Patterson 1990, Patterson and Atmar 2000)
or are their occurrences random, so that when they are
propetly censused, they contribute to a reduction in
nestedness? Additional exploration of the effects of species
rarity and sampling errors in nestedness analysis would be
worthwhile.

Idiosyncratic species

Atmar and Patterson (1993) termed species that decrease
the matrix wide nestedness ‘idiosyncratic’ (Fig. 1A). One
goal of nestedness analysis was always to identify such
‘deviating’ species and to infer the causes of idiosyncrasy.
Atmar and Patterson (1993) explained the existence of
idiosyncratic species by post-isolation immigration, geo-
graphic barriers, and competitive exclusion. Idiosyncratic
species can be described as running counter to ecological
and geographic gradients of species occurrence. For diatom
communities Soininen (2008) showed that idiosyncratic
species had wider geographic range sizes than ‘normal’
species, a pattern that surely deserves attention. Moreover,
assemblages dominated by idiosyncratic species appeared to
have rather high local species turnover (Soininen 2008).
This finding is consistent with the selective extinction
hypothesis for nestedness (Patterson 1990).

From a statistical perspective, idiosyncratic species
should be more common among species of intermediate
occupancy simply because these species have more potential
combinations of unexpected absences and presences. At
intermediate occurrence frequencies, statistical tests for
idiosyncratic distributions will have maximum power,
whereas at very high or low occurrence frequencies, the
tests will be very weak. For example, a species that occurs
only at one island (an endemic) has only one possibility for
a gap. The same holds for a widespread species, which is
absent from only one island. In contrast, a species that
occurs at four of ten islands has six possibilities for gaps.
Existing null model protocols cannot easily control for such
factors because they are inherent in the occurrence
frequencies of each species.

In conservation ecology, the identification of idiosyn-
cratic sites has been discussed with regard to the
single-large-or-several-small (SLOSS) debate (Atmar and
Patterson 1993, Boecklen 1997, Patterson and Atmar 2000,
Fischer and Lindenmayer 2005, Fleishman et al. 2007).
Atmar and Patterson (1993) argued that the widespread
occurrence of nested subsets speaks for the value of single
larger areas to protect because they necessarily contain more
species than any number of smaller sites. However,
Boecklen (1997) and Fischer and Lindenmayer (2005)
convincingly showed that this argument is only valid for
perfectly nested subsets, which are very rare in nature. Even
for highly significantly (but not perfectly) nested subsets,
the total species numbers from subsets of many smaller sites
are often higher than the respective number of species from
a single larger site of the equivalent total area.

Nestedness an species co-occurrence

Nestedness is a pattern of species co-occurrence intrinsically
related to the degree of species aggregation. A perfectly
nested matrix is also a matrix with a maximum number of
perfect pair wise species aggregations, but the opposite does
not necessarily hold. Fig. 4 relates the Z-scores for BR and
NODF of 286 Atmar and Patterson data matrices to the
respective Z-transforms of the widely used C-score (Stone
and Roberts 1990), which measures matrix-wide species’
segregation. With the equiprobable—equiprobable null
model, both metrics are highly correlated (r=0.97; p <
0.0001) indicating that they capture essentially the same
pattern. In other words in these matrices a nested pattern
corresponds to species aggregation and vice versa. Indeed
the C-score is a normalized matrix wide count of the
number of joint occurrences (Stone and Roberts 1990) and
measures therefore essentially the same as NC (Wright and
Reeves 1992). This result together with the strong correla-
tions shown in Fig. 3 call for a reassessment of what has
actually been measured in previous analyses of nested
subsets that have used the equiprobable—equiprobable null
model. We are afraid that many previous studies have
quantified a pattern of matrix-wide species aggregation
instead of nestedness. Further analysis is needed to
determine whether nestedness is measuring something
above and beyond a simple pattern of species aggregation.

As with the nestedness metrics in Fig. 3, the relationships
of C-scores with BR and NODF vanished under the fixed-
fixed model (Fig. 4C-D). In fact, both nestedness metrics
showed a weak negative correlation with the C-score (BR:
r=-0.62; p <0.001; NODF: r =—0.48; p <0.01). When
co-occurrence and nestedness patterns are both analyzed
with the fixed-fixed model, the majority of matrices
remained significantly segregated (Fig. 4; Gotelli and
McCabe 2002, Gotelli and Ulrich unpubl.) whereas only
a small minority appeared to be significantly nested (Ulrich
and Gotelli 2007a). The contrasting results in Fig. 3 and 4
again emphasize that patterns of nestedness and species
segregation depend on the particular combination of metric
and null model that are used. These combinations must be
carefully benchmarked against artificial random data sets
before they can be used to understand patterns in empirical
data matrices.

The correlation between nestedness and co-occurrence
metrics might be used to identify non-random species
associations. An idiosyncratic species is by definition more
segregated than expected in a nested pattern, and this
pattern could be useful in co-occurrence analysis. The
detection of non-random species segregation is central to
the ecological assembly rule discussion (Diamond 1975,
Weiher and Keddy 1999), and has motivated much of the
work on matrix-wide measures of species segregation.
However, detecting individual species pairs that are non-
random has proven to be a statistical challenge (Sfenthour-
akis et al. 2006, Gotelli and Ulrich unpubl.). The reason is
simple. Even a moderate number of species gives hundreds
or even thousands of unique species pairs, of which tens or
even hundreds will be significantly non-random just by
chance at the 5% or 1% error benchmarks. Recent attempts
to solve the problem of identifying true non-random species
pairs used sequential Bonferroni corrections and Bayesian
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Figure 4. Correlations of Z-scores between the C-score and BR and NODF under the equiprobable (A, B) and the fixed—fixed (C, D)
null models for 286 data sets provided by Atmar and Patterson (1995).

approaches (Ulrich and Gotelli unpubl, but see Moran
2003). It would be useful to know whether the species
identified by these analyses are also idiosyncratic in a
nestedness analysis. Table 6 shows how such an approach
might work: 13 species pairs formed by 41 Amazon
gymnotiform fishes (Fernandes Cox 1995) appeared to be
significantly non-random using a sequential Bonferroni test

applied to significance tests for all possible pairs. Two of the
14 species in these pairs were significantly idiosyncratic.
The six pairs that contain these two species are the best
candidates of 14 pairs for strong non-randomness. In
contrast, of the four species involved in three non-
significant pairs of mammals of the Thousand Islands
(Lomolino 1986), none appeared to be significanty

Table 6. Pair wise species co-occurrence analysis of Amazon Gymnotiformes (data from Fernandes Cox 1995) and the oceanic and land
bridge mammals of the Thousand Island region (Lomolino (1986). Amazon Gymnotiformes: 41 species at 31 sites. Pair wise analysis of all
820 species pairs returned 13 significant pairs (sequential Bonferroni corrected after Benjamini and Yekutieli 2001). Nestedness analysis
using the temperature metric points to species 3 and 4 as being significantly idiosyncratic (bold face typed). The seven pairs containing these
two species have particularly low species overlap and are prime candidates of being more segregated than expected by chance. Thousand
island mammals: 10 species on 18 islands. The pair wise analysis returned three significant pairs (none is expected by chance at the 5% error
benchmark). However, none of the species appeared to be significantly idiosyncratic.

Species 1 Occl Species 2 Occ2 Joint occurrences Corr. p
Amazon Gymnotiformes
6 20 4 6 2 <0.0001
6 20 37 4 1 <0.0001
6 20 38 2 0 <0.0001
6 20 29 9 5 <0.0001
8 10 3 5 0 <0.0001
6 20 32 17 11 <0.001
36 9 3 5 0 <0.001
17 10 4 6 1 <0.001
41 26 6 20 16 <0.01
12 8 3 5 0 <0.01
25 14 3 5 1 <0.01
19 9 3 5 0 <0.01
6 20 12 8 5 <0.01
Thousand Island mammals
2 16 5 4 2 <0.001
2 16 4 3 1 <0.0001
2 16 10 2 1 <0.0001
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idiosyncratic, so perhaps these pairs are not significantly
non-random, even after being selected by a sequential
Bonferroni test.

In summary, the study of nestedness continues to be an
active research front in ecology, and has gained new impetus
with the analysis of interaction networks. As in many areas
of macroecology and biogeography, it is challenging to infer
biological mechanisms from the patterns of species occur-
rences. In this review, we have emphasized the importance
of the metrics that are used to quantify patterns of
nestedness, and the null models that are used as benchmarks
for comparison with observed metrics. Careful attention to
both of these factors will improve the quality of our
inferences about pattern.
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